
Dynamic Data-Centric Storage for long-term storage in Wireless
Sensor and Actor Networks

Ángel Cuevas • Manuel Urueña • Gustavo de Veciana •

Rubén Cuevas • Noël Crespi

! Springer Science+Business Media New York 2013

Abstract Data-Centric Storage (DCS) appears as a novel
information storage and delivery mechanism for Wireless

Sensor and Actor Networks in which a rendezvous node

(home node) is selected to store and serve all the infor-
mation of a particular application. However, DCS was not

designed to provide long-term data availability. In this

paper we present a Dynamic DCS solution to enable a
long-term storage system. Dynamic DCS proposes to

periodically change home nodes over the time based on

periods of fixed duration called epochs. This makes it
possible to perform temporal queries to previous home

nodes in order to retrieve information from the past. We

evaluate our proposal using extensive simulations, and
reveal that Dynamic DCS makes sensor events available at

least 85 % of the maximum lifetime provided by an opti-

mal (but non practical) solution. Finally, we show that
Dynamic DCS could easily adapt its storage performance

to the requirements of an application by just tuning the

epoch duration.

Keywords Wireless Sensor and Actor Network (WSAN) !
Data-Centric Storage (DCS) ! Data availability ! Epoch

1 Introduction

Data-Centric Storage (DCS) [16] was introduced as a

novel distributed information storage and delivery mech-

anism in which a node is selected as a rendezvous point to
store all events of a particular application. For instance,

one node in the network stores all temperature events,

another node stores humidity events, another one fire
events, etc. Then nodes that produce the information

related to a particular application (called producer nodes)

compute the rendezvous node (also called home node) for
that application, and store its information into it. In turn, a

node that wants to retrieve information from that appli-

cation (called consumer node) only needs to query the
associated home node, which replies with the application’s

stored data. The efficiency of DCS comes from the fact

that each node is able to locally compute the home node
for any application, and then, by using the underlying

routing layer, can store/retrieve application data on/from
that home node.

Data-Centric Storage appears as a suitable information

and delivery mechanism for Wireless Sensor and Actor
Networks (WSANs) [2, 13]. In this novel type of network a

new player, the actor or actuator node, performs some

action based on the information retrieved from other sen-
sors in the network. Actor nodes go from very simple

devices that turn on/off a LED, to very sophisticated

mobile robots that can obtain samples of a terrain. In
WSANs all actor nodes are information consumers that

query sensor nodes in order to retrieve network informa-

tion. Therefore, DCS allows actors (consumer nodes) to

Á. Cuevas (&) ! M. Urueña ! R. Cuevas
Universidad Carlos III de Madrid, Madrid, Spain
e-mail: acrumin@it.uc3m.es

M. Urueña
e-mail: muruenya@it.uc3m.es

R. Cuevas
e-mail: rcuevas@it.uc3m.es

G. de Veciana
University of Texas at Austin, Austin, TX, USA
e-mail: gustavo@ece.utexas.edu

N. Crespi
Institut Mines-Télécom, Télécom SudParis, Evry, France
e-mail: noel.crespi@it-sudparis.eu

123

Wireless Netw

DOI 10.1007/s11276-013-0598-5

carry out their activity by easily retrieving from the home

node all the information that sensors (producer nodes) of a
particular application have generated. It must be noted that

both sensor and actor nodes can act as home node (i.e. store

data event) as long as they belong to the WSANs).
In addition, many applications may require to have long-

term access to past data, i.e. actor nodes may need some

historical information to decide whether they need to
actuate or not. However, the original DCS does not provide

long-term storage for sensor events since it does not dis-
tribute the storage load among network nodes. For

instance, in a WSAN with 100 nodes and 5 applications,

only 5 nodes will use their memory to store data events. In
addition, since all the traffic of an application is stored in a

single node, old events will quickly be replaced by new

ones, reducing sensor events lifetime. This problem is
especially relevant for applications that generate a contin-

uous stream of events (e.g. measuring the temperature

every second).
In this paper we propose a novel Dynamic DCS solution

to enable a long-term storage system that allows informa-

tion consumers to easily access historical sensor events.
Towards this end, we utilize a system similar to that pro-

posed in [4] in which several home nodes (or replicas) are

selected at random and only for a limited amount of time.
After that time a new set of home nodes is selected for the

next period. In order to change the home nodes over time

we divide the time into periods of a fixed duration called
epochs. During an epoch all application events are stored in
the selected home nodes. Therefore, a node will only

overwrite old events after being chosen as a replica mul-
tiple times in several different epochs, thus extending

sensor event availability. Since consumers are able to know

all home nodes at any given epoch, an event is considered
to be available as long as it is accessible in at least one of

the home nodes that initially stored it.

Considering the proposed solution, on one hand, it
seems clear that changing the home node (or home nodes)

over the time will suppose a significant extension on event

availability. If the home node selected for a particular
application never changes, it quickly saturates its memory

and needs to remove old events in order to store new ones.

This effect is especially significant for high load applica-
tions. This paper demonstrates that our solution extends

events availability more than 30 times as compared to those

static DCS proposals.
On the other hand, it is not clear whether it is better to

use only one home node per application, or to set up sev-

eral replicas (home nodes) in which the events are also
stored. In this paper we analyze and determine what is the

optimal number of replicas that should be used in a

Dynamic DCS system in order to extend sensor events
lifetime. The main conclusion is that to maximize event

availability in the medium and long-term the best solution

is to use a single home node per application.
Finally, we evaluate the performance of Dynamic DCS

long-term storage proposal and compare it with three other

distributed storage mechanisms: (1) A static DCS mecha-
nism with a single home node [16]. (2) Local Storage in

which each sensor locally stores the information it gener-

ates, and (3) an ideal Round Robin Storage in which all
network storage capacity is used before deleting an event.

We validate Dynamic DCS as a long-term storage sys-
tem because (if a reasonable epoch duration is selected) it

presents a median event lifetime longer than 85 % of the

optimal median lifetime offered by the Round Robin
solution. In addition, we demonstrate that our solution is

highly flexible and can be easily adapted to applications’

requirements by just tuning the epoch duration. Then the
performance of our solution ranges between a Round Robin

Storage when we select very short epochs, and a DCS static

behaviour in case of using long epochs.
The remainder of this paper is structured as follows:

Sect. 2 describes related work from the literature. In

Sect. 3 we introduce Dynamic DCS, and in Sect. 4 we
present a model to provide the optimal number of replicas

to maximize sensor events lifetime. Section 5 presents an

evaluation of our proposal, and we conclude the paper in
Sect. 6.

2 Related work

The original Data-Centric Storage proposal [16] already
compared DCS to other storage mechanisms such as Local

Storage and External Storage. In particular, the perfor-

mance of DCS was measured in terms of reliability,
number of messages sent and received per node and nodes

mobility. However, they did not study the time that sensor

events are available in the network, which is the scope of
our paper.

Some works [1, 4, 6, 7, 15] demonstrate that using

several home nodes (replicas) for a particular application
reduces the overall network traffic, which leads to a lower

energy consumption in the network. Some of those studies

[7, 15] propose allocating replica nodes following a grid-
structure, while the authors in [1] propose to use a uniform

replica deployment. Finally, we demonstrate in [4] that

allocating the replicas at random reduces the overall net-
work traffic compared to previous mechanisms, while

being the simplest replication algorithm.

In [4] we also claim that static DCS is an unfair system
in terms of energy consumption distribution, independently

of the number of replicas used. Nodes selected as replicas

and their surrounding neighbours will naturally expend
more energy than other nodes within the network. We

Wireless Netw

123

address this issue and propose to change the replicas over

the time in order to balance the energy consumption among
all network nodes. Our Dynamic DCS proposal thus uti-

lizes both elements: multiple replicas that change over time

to enable long-term storage of sensor events. The results
demonstrate that distributing the energy consumption has a

huge impact on extending the network lifetime.

There are two studies that propose rotating the home
node in order to balance the storage task. In the first one

[9], the authors propose to divide the network in a grid.
Each application is assigned to one of the grid cells, so that

one node inside of the selected cell will be the home node

for that application. After a pre-defined time a node in the
cell with the immediate lower ID is selected as the new

home node for that application, and so on. The second

proposal [10] also divides the network in a grid and assigns
each application to one cell. However, in this case the

home node rotation for an application occurs within the

same cell. Then whenever the initial home node reaches a
storage threshold, another node within the same cell

overtakes the home node role. Although both proposals

focus on alleviating the storage congestion problem of
using a single static home node, they do not discuss any-

thing regarding the time that sensor events are available

under these proposed solutions.
We did not find any previous work in the field of ‘‘pure’’

DCS networks that deeply studies event availability.

However, there exist a research line on erasure coding that
is similar in spirit and present a broader application field

further than WSNs and WSANs [3, 5].

3 Dynamic Data-Centric Storage

In this Section we present our dynamic Data-Centric

Storage proposal for the long-term storage of sensor events.

Our proposal is a DCS system in which each application
has one or more home nodes that change over the time.

We first outline the different roles that a node could

perform in an application, then we briefly describe the
original DCS proposal, and finally we introduce the pro-

posed solution.

A node in a DCS network could play one (or more) of
the following roles:

• Producer nodes: Those nodes that generate events for a
particular application. Generally, producers are sensor

nodes. A producer node could generate from very basic

events, such as a temperature sample, until very
complex ones, such as an intruder detection. Further-

more, producer nodes are usually equipped with quite a

few sensors so in many cases they produce events
streams that require a considerable amount of memory.

We must notice that nowadays there is cheap flash

memories whose capacity can reach hundred of Mega-

bytes that can be used in scenarios with applications
requiring to store quite a lot of information. However,

in some other cases we may like to use very cheap

sensor nodes (e.g. some few dollars) that will be
equipped with small memories, which will be able to

deal only with a moderate amount of information.

• Consumer nodes: Those nodes consuming events of a
particular application. An obvious example of a con-

sumer node in a traditional WSN is the base station,

which is the one querying the network in order to
retrieve the events. In this paper we focus on WSANs

where actor nodes act as consumer nodes. Other

possible deployments eliminate the presence of a base
station and the information is retrieved from time to

time by physically accessing the place where the

network is deployed and collecting the information
using some kind of mobile device such as a PDA or

laptop. Thus, it is worth noting that the nature and

number of consumers in a network vary considerably
according to different scenarios.We notice that in some

cases the same physical node can produce events and

send consumption queries at the same time, thus
playing the role of producer (i.e. sensor) and consumer

(i.e. actor) in the network.

• Home nodes or Replicas: These nodes are the ones
selected to store and deliver the information for a

particular application.

3.1 DCS overview

Shenker et al. [16] introduced the concept of Data-Centric

Storage in which a node, called home node, is selected to

store and serve all the events of a particular application.
Therefore, producer nodes store the events they generate in

the home node while consumer nodes query the home node

to retrieve that application events. It must be noted that the
original DCS proposal relies on geographical information

and is known as Geographical Hash Table (GHT). All the

nodes within the network know their own geographical
position and the network dimension. GHT relies on a

geographical routing service, Greedy Perimeter Stateless

Routing (GPSR) [8], to forward messages from source
nodes to destination coordinates. GPSR is a very efficient

routing protocol in terms of energy consumption for

WSANs. Furthermore, the authors propose using a single
home node per application. The location of the home node

(HN) is computed using a hash function over the applica-

tion’s name, i.e. HN_location = hash (0APP0). However, it
is very unlikely that the output coordinates match any of

the actual nodes’ location. Then, the closest node to the

Wireless Netw

123

hash output location is the one selected as the home node

for that application.
All producers and consumers of a particular application

obtain the same home node output location because all of

them use the same hash function and know the application
name. The authors claim that by just using GPSR producer

events and consumers queries forwarded towards the hash

output coordinates will ultimately reach the home node.
Therefore, this novel storage and delivery mechanism does

not require that consumers and producers of a particular
application have prior knowledge of each other, since by

just knowing the application name they can participate in

the application data flow.

3.2 Dynamic DCS for long-term storage

Although the original DCS solution is a very suitable

storage mechanism for WSANs, it was not designed to

offer long-term event storage. All the events of a particular
application are stored in a single node, the home node.

Therefore, new events can quickly overwrite old ones since

all application traffic is concentrated into a single node.
Hence, the original DCS does not use the network storage

resources efficiently. For instance in a network of 100

nodes and 10 applications, only 10 nodes (each applica-
tion’s home node) use their memory to store events, and

thus 90 % of the network storage resources are wasted.

In this paper we extend the original DCS proposal by
using several home nodes (replicas) placed at random that

change over time following the spirit of our previous

proposal [4]. Our goal is to efficiently use the storage
resources of the network to maximize the time window in

which sensor events are available. In order to change the

replicas over the time, the time is divided into periods of
the same duration called epochs. Then, a new set of rep-

licas is selected at the beginning of each epoch. It is

assumed that all nodes in the network know the epoch
duration as well as the number of replicas for those

applications in which they want to participate.

Under the proposed schema, new input parameters, the
number of replicas and an epoch ID, are required by the hash

function to allow consumers and producers to compute who

are/were the replication nodes in a particular epoch. Thus, the

new hash function is:HN location ¼ hashð0APP0 $ epochID
$iÞ; 8i 2 ½1; r', where r represents the number of replicas

deployed in the field for the application 0APP0.

Producer nodes store their events in the closest replica,
which in turns replicates the information in all the

remaining replicas using a minimum spanning tree as

proposed in [4]. Therefore, consumer queries only need to
access one of those replicas in order to retrieve all the

events of an application generated in a particular epoch.

When the current epoch ends a new set of replicas is

chosen. The replicas in the previous epoch do not transfer
any data to the new ones, unlike [4] where replicas in

epoch i transfer the stored events to replicas in epoch i ? 1

and delete them. Then, any node in the network selected as
a replica stores events until its memory is full. From that

moment it deletes the oldest information to store new

sensor events. Hence, it is very likely that a particular event
stored by a node would be only overwritten after that node

has been selected as replica several times.
In addition, the defined system allows consumers to

realize temporal queries in order to retrieve historical data.

The fact of using a fixed epoch duration facilitates to com-
pute the set of replicas that stored events of a particular

application at some particular moment in the past. To

accomplish this task, consumers only need to know the
application’s name (e.g. temperature), from which time they

want the information (e.g. 3 h ago), the epoch duration for the

application of interest (e.g. 1 h), and the number of replicas
being used by that application. Then, once the right epoch

has been identified, consumer nodes just need to send unicast

queries to any of the home nodes in that epoch. Therefore,
historical information will be available in the network until it

is overwritten in all home nodes of that epoch.

4 Sensor events lifetime analysis

In this section we analyze different distributed storage

mechanism in terms of sensor event availability. We first

present a very simple storage mechanism such as Local
Storage. Next, we describe an ideal Round Robin Storage

mechanism. Finally, we show how our Dynamic DCS

proposal can be utilized for long-term storage.

4.1 Local storage

This is the simplest storage mechanism in which each node

locally stores the events it generates. The energy con-

sumption to store those events is negligible since the radio
transceiver is not used. However, there is no way to know

where the information of a particular application in a

particular time-window is stored. Therefore, in order to
retrieve historical information, consumer nodes need to

flood the network. This converts Local Storage in a highly

inefficient storage system in terms of energy in most cases
when compared to Dynamic DCS. Our solution avoids the

need for flooding since a consumer node can easily deter-

mine the home nodes storing the desired information.
However, it must be noted that in those cases where pro-

ducers event rate is considerably larger than consumers

query rate, Local Storage appears as an efficient solution in
terms of energy.

Wireless Netw

123

In order to estimate the events lifetime, we assume a

network where N nodes with a storage capacity of s events
are deployed in a network with k applications

(APP1;APP2; . . .;APPk). In addition, we consider all

events to be of the same size. Then, the probability that a
node i generates an event of an application j in each time

unit is pei;j ; i 2 ½1;N'; j 2 ½1; k' Therefore, a node i gener-

ates
Pk

j¼1 pei;j events per time unit, and the event lifetime is

the time required to saturate its memory. Then for a par-
ticular node i the Local Storage event lifetime lt LSnodei is:

lt LSnodei ¼
s

Pk
j¼1 pei;j

time units

In Local Storage the event lifetime very much depends
on which node it is generated. This is, events generated by

very active nodes will be available short time, whereas

nodes with a low event rate will have their events available
long periods. Therefore, Local Storage is an unfair system

from the events lifetime point of view in heterogeneous

scenarios in which different nodes contribute different
loads to network applications. This unfairness basically

means that even in the case where the network is plenty of

storage resources, very active nodes will be overwriting old
data quickly. However, in a homogeneous scenario in

which all nodes have the same probability of generating

events for each application, the system becomes fair, and
all events experience a similar lifetime.

4.2 Round robin storage

Round Robin node selection appears as an optimal storage
solution since it efficiently uses all storage capacity of the

network. Then, in this mechanism a node is initially

selected as storage point for all network applications. That
node receives events until its memory is full. At that

moment, a new node is selected to perform the storage task,

and so on, until all nodes in the network have been
selected, and thus all network storage capacity has been

used. At this point, the initial node, which contains the

oldest data, is again selected and it overwrites the oldest
events to store the new ones.

Such Round Robin Storage requires a global synchro-

nization of network nodes. This can be achieved either with
a centralized solution in which a base station decides and

notifies to the rest of the network who is the storage node at

any moment, or with some sophisticated and complex
distributed algorithm that allows synchronizing all nodes in

the network to homogeneously select the current storage

node. It must be noted that DCS neither requires a central
node nor complex distributed algorithms to select home

nodes. Although Round Robin Storage presents some

issues to be implemented in practice, it is still a very

interesting approach to be used as a benchmark to test the

performance of our solution.
In order to model events lifetime in a Round Robin

Storage system, we again assume a network in which

N nodes are equipped with a memory able to store s events.
In addition, we consider k applications running on the

network, all of them generating events of the same size.

Then, if pei;j , i [[1, N], j [[1, k] is the probability that a

node i generates an event of an application j per time unit,

the expected lifetime (lt_RR) is:

lt RR ¼ N (s
PN

i¼1

PK
j¼1 pei;j

time units

Then, in the Round Robin storage analysis the data lifetime

depends on the traffic generated by all applications per time
unit. In addition, events from different applications will

have a similar lifetime independently of the load generated

by each of them.

4.3 Dynamic DCS

Once we have analyzed two alternative storage models,

now we present a model to compute data lifetime when

employing our Dynamic DCS proposal. In addition, using
the same model we will be able to answer one of the key

issues of this paper: what is the optimal number of replicas
that maximizes event availability? Finally, we validate the
model via simulation and discuss the results.

We consider a slotted discrete time (epoch) system

model where N nodes are available to store data in the
system. Each epoch r (home nodes) of the N nodes are

selected at random. We assume a uniform network

deployment in which all nodes have the same probability of
being selected as replicas. The selected r nodes are used to

store the data on that epoch. The r nodes are assumed to be

distinct, and store on average e events during each epoch.
Each node is assumed to be able to store s events. When a

node’s memory is full, then the oldest event is deleted, and

the new one is stored in its place.
The objective is to maximize the availability of events

t epochs into the future, by selecting the optimal r. If r is
too large then data will be initially available at many nodes
i.e., high redundancy, but the events will be quickly

overwritten over time. If r = 1 then data is stored in a

single node, so if it gets overwritten at that node prior to
t epochs it will no longer be available.

Lets us consider the performance for our mechanism.

Suppose data is stored at epoch 0 in r nodes and each
node’s memory is full. So the new data is the newest piece

of information in each of these r nodes. To compute the
likelihood that data will be available t epochs into the

future at one of these original nodes, we need to check

whether the nodes are selected S = s/e times in the

Wireless Netw

123

t epochs in the future. Let Ai(0,t] denote the number of

times that the ith node is selected after epoch 0 before
epoch t. Clearly Aið0; t')Binomialð rN ; tÞ. In order for the

data to be available at time t it must be that the 1; . . .r
original nodes were not all chosen more than S times each
to store data, i.e., the probability that an event is not

available after t epochs is given by

PðAið0; t'[S; 8i ¼ 1; . . .rÞ

i.e., the data must no longer be available at any of the nodes

where it was originally stored. Next, assuming that

N C r one can roughly consider that Ai(0,t] are
independent which gives:

PðAið0; t'[S; 8i ¼ 1; . . .rÞ ¼
Yr

i¼1

PðAið0; t'[SÞ

And it can be computed as follows:

PðAið0; t'[S; 8i ¼ 1; . . .rÞ ¼ 1* PðAið0; t' + SÞð Þr

¼ 1*
XS

i¼1

PðAð0; t' ¼ iÞ

 !r

¼ 1*
XS

i¼1

t

i

! "
r

N

$i
1* r

N

$t*i
 !r

Then, the optimal value of r that extends the data

lifetime, r*, will be the one minimizing previous expression

for P(Ai(0,t][S).
Finally, we can use previous model to compute the

events lifetime for the Dynamic DCS solution:

lt DDCS ¼
X1

i¼1

iPrðAð0; i'[SÞepochs

The previous formula provides event availability in

number of epochs. Therefore, we only need to multiply it

by the epoch duration in order to obtain events lifetime in

time units.

4.3.1 Model validation and discussion

We validate the model via simulation. We consider a

uniform deployment (e.g. grid) in which all nodes have the

same probability of being chosen as home node.
We evaluate three different scenarios in terms of number

of nodes: small size (20 nodes), medium size (100 nodes)
and large size (500 nodes). In addition for each scenario we

consider three different storage capacities: (1) small mem-

ory case in which a node has only capacity to store the
events of one epoch, that means S = 1; (2) medium mem-

ory in which a node can store information of three different

epochs, S = 3; and, (3) high storage capacity in which a
node can store information of five epochs, thus S = 5.

We compute the event overwrite probability at different

epochs for a number of replicas varying from 1 to 5. This
let us compare whether the previous model correctly cap-

tures the event overwrite probability. Furthermore, by

comparing the results for different number of replicas we
are able to conclude what is the number of replicas that

minimizes the event overwrite probability for a particular

number of epochs.
Figures 1, 2 and 3 represent the results for the small (20

nodes), medium (100 nodes) and large (500 nodes) network

size respectively. For each of them subfigure (a), (b) and
(c) show the low (S = 1), medium (S = 3) and high

(S = 5) memory capacity respectively.

First of all, the simulations results demonstrate that the
proposed model accurately captures the event overwrite

probability. In all the cases the simulation and model lines

collapse together, so they cannot be differentiated in the
figures.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Epochs

E
ve

nt
 O

ve
rw

rit
e

P
ro

ba
bi

lit
y

r=1−sim

r=1−Model

r=2−sim

r=2−Model

r=3−sim

r=3−Model

r=4−sim

r=4−Model

r=5−sim

r=5−Model

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Epochs

E
ve

nt
 O

ve
rw

rit
e

P
ro

ba
bi

lit
y

r=1−sim

r=1−Model

r=2−sim

r=2−Model

r=3−sim

r=3−Model

r=4−sim

r=4−Model

r=5−sim

r=5−Model

(b)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Epochs

E
ve

nt
 O

ve
rw

rit
e

P
ro

ba
bi

lit
y

r=1−sim

r=1−Model

r=2−sim

r=2−Model

r=3−sim

r=3−Model

r=4−sim

r=4−Model

r=5−sim

r=5−Model

(c)

Fig. 1 Event overwrite probability for a small size network (N = 20 nodes, r = 1–5 replicas, t = 1–100 epochs)

Wireless Netw

123

To answer the question referring to the optimal number
of replicas to maximize sensor event lifetime we can also

use the model results. By looking at the graphs, the main

conclusion is that in the long-term the best solution is
always using 1 replica.

Furthermore, we advise to select one replica in all

medium and high memory cases. Although under these
conditions using more than one replica provides a lower

event overwrite probability in the short term, the advantage

is negligible in practice compared to the results obtained
for a single replica. For instance, in the medium-size

medium-memory scenario (Fig. 2(b)) from 1 to 80 epochs

using a single replica is not the optimal solution. However,
if we look at 40 epochs the optimal solution (4 replicas)

reports an event overwrite probability of 0.002, whereas

selecting only 1 replica 0.008. Therefore, that difference
has a negligible impact in practice since both probabilities

are very low.

The only scenarios in which using more than 1 replica
would be worthwhile are those cases where: (1) the nodes’

memory only has capacity to store information of a single

epoch, (2) the application requires short-term storage (5
epochs for low-memory, 20 epochs for medium-memory,

250 epochs for high-memory). For instance, in the 100

nodes scenario (Fig. 2(a)), after 20 epochs the data loss
probability in case of using 3 replicas is below 0.1, whereas

the data loss probability is almost 0.2 when only a single

replica is in place. Lets us consider a practical case in
which the network information is collected once a day (24

h), the epoch duration is 1 h and the nodes memory only

can store th information of one epoch. Then, in practice
using a single replica means that on average we roughly

loose 5 h of information every day, whereas this value is

reduced to just 2 and a half hours when deploying 3 rep-
licas, which is the optimal value provided by the model.

We are aware that for some real applications losing 2.5 out

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Epochs

E
ve

nt
 O

ve
rw

rit
e

P
ro

ba
bi

lit
y

r=1−sim

r=1−Model

r=2−sim

r=2−Model

r=3−sim

r=3−Model

r=4−sim

r=4−Model

r=5−sim

r=5−Model

(a)

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Epochs
E

ve
nt

 O
ve

rw
rit

e
P

ro
ba

bi
lit

y

r=1−sim

r=1−Model

r=2−sim

r=2−Model

r=3−sim

r=3−Model

r=4−sim

r=4−Model

r=5−sim

r=5−Model

(b)

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Epochs

E
ve

nt
 O

ve
rw

rit
e

P
ro

ba
bi

lit
y

r=1−sim

r=1−Model

r=2−sim

r=2−Model

r=3−sim

r=3−Model

r=4−sim

r=4−Model

r=5−sim

r=5−Model

(c)

Fig. 2 Event overwrite probability for a medium size network (N = 100 nodes, r = 1–5 replicas, t = 1–200 epochs)

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Epochs

E
ve

nt
 O

ve
rw

rit
e

P
ro

ba
bi

lit
y

r=1−sim

r=1−Model

r=2−sim

r=2−Model

r=3−sim

r=3−Model

r=4−sim

r=4−Model

r=5−sim

r=5−Model

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Epochs

E
ve

nt
 O

ve
rw

rit
e

P
ro

ba
bi

lit
y

r=1−sim

r=1−Model

r=2−sim

r=2−Model

r=3−sim

r=3−Model

r=4−sim

r=4−Model

r=5−sim

r=5−Model

0 50 100 150 200 250 300 350 400 450 500
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of Epochs

E
ve

nt
 O

ve
rw

rit
e

P
ro

ba
bi

lit
y

r=1−sim

r=1−Model

r=2−sim

r=2−Model

r=3−sim

r=3−Model

r=4−sim

r=4−Model

r=5−sim

r=5−Model

(a) (b) (c)

Fig. 3 Event overwrite probability for a large size network (N = 500 nodes, r = 1–5 replicas, t = 1–500 epochs)

Wireless Netw

123

of 24 h is not acceptable, and in those cases we would need

to increase the memory of the nodes until S[3 to ensure
they are able to collect 24 h of data. Therefore, it is

importance to notice that previous example has been used

just to illustrate a case where r = 1 is not the best option
and what would be performance improvement in case of

using the optimal number of replicas provided by our

model, i.e. r = 3.
It is worth noting that the low-memory scenario refers to

those cases in which a node can just store information of a
single epoch. This could happen because, as suggested by

the employed taxonomy, the nodes may be equipped with

low storage capacity. However, in cases where an appli-
cation generates a huge amount of events, even if the nodes

have a high memory capacity, it could only store the

information of one epoch, and thus the premises that rule
the low-memory scenario are also applicable.

Finally, it must be highlighted that the defined model

accurately captures the event loss probability in case the
probability of selecting a node as replica follows a uniform

distribution. However, this is not the case in many sce-

narios. For instance, in a network based on geographical
information in which the nodes are randomly deployed, the

probability of being selected depends on the area of

responsibility of each node and it is no longer uniform.
Therefore, we have also evaluated via simulation the

number of replicas that minimizes the event loss proba-

bility, and thus maximizes the events lifetime, in non-
uniform scenarios. Although the event overwrite proba-

bility is different compared to the uniform scenario, the

main remarks are still the same. (1) Using a single replica
is the best option in the long-term, independently of the

scenario size and nodes’ storage capacity. (2) For medium

and high memory scenarios, even if in the short-term the
event overwrite probability is lower when using more than

one replica, the difference compared to using a single

replica is negligible. (3) Exclusively in those scenarios
where the sensors are equipped with low storage capacity

(S = 1) makes sense to deploy more than one replica to

maximize the events lifetime.
In a nutshell, we should use more than one replica

exclusively for those scenarios where network nodes can

only store events of one epoch, and when, in addition, the
application only requires short-term storage.

5 Performance evaluation

In this section we evaluate the performance of the proposed
solution by means of simulation and compare it with Local

Storage and Round Robin Storage solutions. We notice that

the goal of this section is to evaluate the network storage
performance in terms of event lifetime, thus we use

network nodes that generate events (i.e. sensors) and do not

focus on whether they also generate queries or not (i.e. they
are also actors), or on adding pure actor node that generate

queries in the network, since this is irrelevant to evaluate

event lifetime. We assume a uniform DCS scenario in
which all nodes have the same probability of being selected

as a replica. For each experiment we obtain the lifetime of

30,000 events. In order to do that we generate 1,000,000
events to be sure we overwrite the 30,000 evaluated events.

We must notice that our goal is to evaluate the perfor-
mance of the proposed solution in terms of data lifetime.

Therefore, we are aware that sensor/actor nodes can present

failures that can make them unreachable during short
periods of time (e.g. low signal strength) or for long peri-

ods (e.g. battery depletion), but this is an inherent char-

acteristic of sensor nodes for whatever solution, and thus it
affects all the proposals we are comparing in this paper.

Hence, in order to avoid distraction from our main goal of

evaluating the data storage duration, we have avoided
introducing nodes failures in our simulations.

5.1 Homogeneous scenario

We define a network with N = 100 nodes, in which each

node is assigned a probability of generating an event per
time unit and application. We simulate three applications

operating in the network, named as APP1, APP2 and

APP3. All nodes have a probability 0.01, 0.02 and 0.03 of
generating an event for APP1, APP2 and APP3 per time

unit, respectively. This means an overall traffic load of 6

events per time unit. In addition, sensors are equipped with
a memory that can store s = 300 events. In order to eval-

uate the performance of Dynamic DCS we define an epoch

duration of 50 time units for the three applications. In
addition, we obtain the results for 1, 2 and 3 replicas.

Figure 4 presents the CDF of the events lifetime for

Round Robin Storage, Local Storage, static DCS with a
single replica, and Dynamic DCS for 1, 2 and 3 replicas.

The first conclusion is that, as expected, using a static DCS

proposal leads to very poor results. The median lifetime for
the events is only 130 time units, 34 times lower than the

median for the Dynamic DCS with 1 replica (4,370 time

units). Therefore, static DCS solutions cannot be used as
long-term storage systems

The results also validate the conclusions obtained in

Sect. 4 since using a single replica extends the data lifetime
when compared to those Dynamic DCS cases in which

more replicas are deployed.

In addition, in a homogeneous scenario like the one
employed in this experiment, we can apply the formulas

obtained in Sect. 4 for event lifetime in Round Robin and

Local Storage. Those formulas provide an event lifetime of
5,000 time units for both mechanisms. Looking at Fig. 4 it

Wireless Netw

123

can be appreciated that all events lifetime are very close to

5,000. However, it must be noted that Local Storage pre-
sents a higher variance due to te random generation of

events. The sudden rise observed in the Round Robin

Storage approach is due to the fact that it uses all network
storage capacity before overwriting old events. Therefore,

since the network generates on average 6 event per time

unit and a node memory can store up to 300 events, each
sensor will serve as storage node during 50 s on average.

The network size is 100 nodes, thus each event will be

overwritten on average after 5,000 time units (i.e. 50 time
units 9 100 network nodes). Therefore, all events will

experience a lifetime around 5,000 time units, and this is

why Fig. 4 shows such a sudden rise for Round Robin
solution.

When Dynamic DCS is in place sensor events last in

median 4,370 time units. In case the time units refers to
seconds (6 events per second are generated in the network)

the median event lifetime would be 73 min. In case, the

time unit is mapped to 1 h (6 events per hour) then the
median lifetime of the events grows up to 182 days.

Finally, if we measure the time units in days (6 events per

day), sensor events would typically be accessible almost
12 years. Obviously, the event lifetime very much depends

on the load of the network. The higher the network load,

the shorter the event availability. However, we can provide
an objective result to measure the goodness of the proposed

solution by comparing it with Round Robin Storage. The

described Round Robin Storage is an optimal solution that
maximizes the median event lifetime because it efficiently

uses all network storage before overwriting an event.

Therefore, with the epoch duration selected, our solution
offers a median event lifetime that corresponds to 87 % of

the maximum median lifetime provided by the Round

Robin storage simulation (5,012 time units). Therefore, we

claim that Dynamic DCS storage system is quite close to
the benchmark in median.

Furthermore, it must be highlighted that the Round

Robin Storage solution is optimal when the goal is to
maximize the median event lifetime. However, if a par-

ticular application aims to keep some portion of the

application data available as long as possible, then the best
option is to use Dynamic DCS. None of the 30,000 events

has a lifetime longer than 5062 time units under the Round
Robin Storage mechanism, whereas more than 41 % of

events last longer than that value when Dynamic DCS is in

place. In addition, more than 30 % of events are available
longer than 6,000 time units, and even 8 % of events still

duplicate the Round Robin expected lifetime (5,000 time

units).
Therefore, depending on the applications requirements

Dynamic DCS could be presented as the best distributed

storage mechanism in terms of maximizing the data
availability in the sensornet, even improving the ideal

Round Robin Storage.

5.2 Heterogeneous scenario

In this experiment, we evaluate a scenario with 100 nodes
that are assigned different probabilities of generating

events. We again use three applications but now we define

three different nodes profiles. Out of the 100 nodes, 33
have a probability 0.01 of generating one event for each

application per time unit, 34 nodes have a probability 0.02,

and the last 33 nodes a probability 0.03. Under these
conditions the traffic load is again 6 events per time unit.

The epoch duration for all applications is again 50 time

units.
Figure 5 represents the events lifetime CDF. We can

appreciate that Dynamic DCS and Round Robin Storage

are not affected by nodes load heterogeneity. The ideal
Round Robin Storage, as it was previously stated, uses all

the network storage capacity before deleting an event,

while Dynamic DCS approximates that behaviour and also
distributes the storage load among network nodes. There-

fore, this experiment concludes that Dynamic DCS (and

also Round Robin Storage) is a fair storage mechanism that
does not prioritises any network application, but treats all

events in the same way.

In addition, we again verify in a different scenario that
Dynamic DCS is close to the optimum solution in median.

In this particular experiment the median events lifetime of

Dynamic DCS (4355 time units) is again an 87 % of the
Round Robin median (5020 time units).

Finally, Local Storage results demonstrate that it

depends greatly on the traffic load generated by each par-
ticular node. Then, the graph shows three clear steps

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sensor events lifetime (time units)

C
D

F

Static DCS
Dynamic DCS r=1
Dynamic DCS r=2
Dynamic DCS r=3
Round Robin
Local

Fig. 4 CDF of event lifetime for Local Storage, Round Robin
Storage, Static DCS and Dynamic DCS in a homogeneous scenario

Wireless Netw

123

representing the lifetime of events stored in nodes with
different traffic profiles, demonstrating that events lifetime

for Local Storage is no longer homogeneous across net-

work nodes.

5.3 Real WSN deployment scenario

In this subsection we rely on parameters extracted from

real WSNs deployments to evaluate the performance of our

solution as compared to Round Robin and Local Storage.
Our evaluation is based on the scenario presented in [14]

where a WSN has been deployed to measure climate

conditions inside The Mogao Grottoes. This WSN is
formed by 241 nodes that monitor three climate parame-

ters: temperature, relative humidity and CO2 density. The

event generation rate is 1 event per minute for each
parameter. Unfortunately, this paper does not provide the

memory size for the sensors. In order to obtain sensors’

memory size we use the data reported in [12] that refers to
a real WSN deployment to monitor climate conditions for

viticulture purposes. This paper uses sensors that include a

64 kb non-volatile memory for data storage, which is the
value we use in our experiment. Furthermore, none of the

two previous works provides information regarding the

memory size use by each event. For that, we use the
information reported in a third paper [11], which refers to a

real WSN deployment for habitat monitoring, that reports a

25 bytes data payload (i.e. event size) in the generated
packets. Hence, we consider that each events consumes 25

bytes of storage.

Figure 6 shows the CDF event lifetime for Local Stor-
age, Round Robin, standard DCS, and Dynamic DCS with

r = 1, r = 2 and r = 3. In the case of Dynamic DCS we

establish an epoch duration of 30 s for all event types. First

of all we notice that this scenario corresponds to an

homogeneous one since all nodes generate events at the
same rate for each application. Therefore, results in the

graph are similar to those obtained in the homogeneous

scenario, and hence the explanation we provided for
homogeneous scenarios is also valid here. Using the

equation that provides event lifetime in the case of Round

Robin, we compute a median event lifetime of 6,400 s,
which is very close to the median obtained from the sim-

ulation, 6,372 s (106.2 min or 1 h and 46 min). As it
happened in the homogeneous case, Local Sotrage shows a

very similar behaviour in all the nodes, having a very close

median (6,354 s) to the benchmark established by Round
Robin. Again, standard DCS appears as a bad solution to

provide long-term storage. Finally, for the case of Dynamic

DCS, we obtain 5,628 s as median event life time, which is
88 % of the Round Robin median result. In a nutshell, we

extract the same conclusions discussed in the homogeneous

scenario, thus we refer the reader to them in order to avoid
redundancy.

5.4 Epoch selection analysis

It has been demonstrated that using the proposed Dynamic

DCS can be utilized as a long-term storage system. How-
ever, there is a key parameter that has not yet been studied,

which can tune the proposed Dynamic DCS system

towards the Round Robin Storage mechanism or the poor
static DCS results. That parameter is the epoch duration.

On one hand, if we use short epochs we expect to have a

deterministic behaviour close to Round Robin Storage.
Short epochs mean frequent changes, and thus a balanced

utilization of storage resources of the network because a

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sensor events lifetime (time units)

C
D

F

Static DCS
Dynamic DCS r=1
Dynamic DCS r=2
Dynamic DCS r=3
Round Robin
Local

Fig. 5 CDF of event lifetime for Local Storage, Round Robin
Storage, Static DCS and Dynamic DCS in a heterogeneous scenario

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sensor events lifetime (seconds)

C
D

F

Static DCS
Dynamic DCS r=1
Dynamic DCS r=2
Dynamic DCS r=3
Round Robin
Local

Fig. 6 CDF of event lifetime for Local Storage, Round Robin
Storage, Static DCS and Dynamic DCS in a scenario using real
deployment parameters

Wireless Netw

123

node stores few events and quickly passes the home node

responsibility to another node. On the other hand, if we use
very long epochs we take the risk of saturating the nodes

memory before the end of the epoch. Therefore, events

happening in an epoch i would overwrite events generated
in the same epoch. Thus, the system performance would be

approximating the performance offered by a static DCS

solution, which has been demonstrated to be quite useless
in case the applications require long-term event

availability.
We evaluate the Dynamic DCS solution with a single

replica for the following epoch durations measured in time

units: 1, 5, 10, 50, 100, 500 and 1,000. Figure 7 shows the
event lifetime CDF for a network with the same parameters

as those described in the homogeneous experiment. In

addition, Table 1 shows the average median event lifetime
taken from 50 different simulation rounds for all epoch

durations. As expected, the shorter the epoch the closer is

the result to the Round Robin Solution. Then, for epochs of
1, 5 and 10 time units the average median event lifetime is

4991, 4938 and 4861 time units respectively. All of them

are over a 97 % of the ideal Round Robin median (5,000
time units). However, when we select longer epochs, i.e.

500 or 1,000 time units, the median is reduced to 141 and

118 time units respectively. If we look at the graph, for
those long epochs most events (70 and 85 % respectively)

experience a short lifetime below 350 time units. However,

those few events that are lucky of not being overwritten
within a single epoch experience a very long availability.

The reason is that epochs are very long and thus the nodes

storing those ’’lucky’’ events will only be selected again as
home nodes after a long time. Finally, intermediate epoch

durations (e.g. 50 time units) in which the nodes are not

saturated in a single epoch shows median lifetimes lower

than those of the shorter epochs, but, as stated in the

homogeneous scenario, they still show an important num-

ber of events reaching a long lifetime that cannot be
achieved in case of selecting short epoch durations.

Therefore, short or medium epoch durations should be

selected depending on the application requirements. It is
clear that using long epochs is always a wrong decision

because it would bring the network closer to the imbal-
anced and weak performance experienced by Static DCS

proposals. In addition, Dynamic DCS could approximate

the Round Robin Storage scheme in those cases where the
application requires to extend the median event lifetime.

This demonstrates that our Dynamic DCS proposal is a

very flexible system that can be adapted to application
requirements in terms of data availability by just tuning the

epoch duration.

6 Conclusions and future works

We demonstrated in a previous work [4] that changing the

home nodes over the time is essential to extend the network

lifetime in DCS systems. This paper further enhances that
benefit demonstrating that such dynamism also enables a

long-term storage system. Therefore, this paper completes

our previous investigations and now we can clearly state
that it does not make sense to propose static DCS solutions,

but rather it is necessary to share the load associated with

being a home node among all network nodes. In this paper,
we have demonstrated that a Dynamic DCS system pro-

vides great performance results not only in terms of energy

consumption, but also in terms of long-term sensor events
storage.

This research has assumed that nodes are homoge-

neously distributed across the network. However, in many
real WSNs and WSANs deployment this is not the case,

and this might directly impact the performance of Dynamic

DCS. Therefore, as next step, we plan to investigate the
level of such impact and, in case it is necessary, to adapt

our solution so that it can be also used as a long-term

storage system in non-uniform DCS scenarios.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sensor events lifetime (time units)

C
D

F

epoch−1
epoch−5
epoch−10
epoch−50
epoch−100
epoch−500
epoch 1000

Fig. 7 Epoch duration impact on event lifetime for Dynamic DCS

Table 1 Average median event lifetime for different epoch duration
in Dynamic DCS (D-DCS), and its comparison to the Round Robin
(RR) bench mark 5,000 time units (t.u.)

Epoch
duration (t.u.)

1 5 10 50 100 500 1,000

Avg. median
D-DCS
lifetime(t.u.)

4,991 4,938 4,861 4,378 3,726 141 118

\% of RR
median
(5,000 t.u.)

99.82 98.76 97.22 87.56 74.52 2.82 2.36

Wireless Netw

123

Acknowledgments The research leading to these results has been
partially funded by the Spanish MEC under the CRAMNET project
(TEC2012-38362-C03-01) and eeCONTENT Project (TEC2011-
29688-C02-02), by the General Directorate of Universities and
Research of the Regional Government of Madrid under the ME-
DIANET Project (S2009/TIC-1468), and by the the INDECT project
(Ref 218086) of the 7th EU Framework Programme. In addition, the
work of G. de Veciana was supported by the National Science
Foundation under Award CNS-0915928.

References

1. Ahn, J., & Krishnamachari, B. (2006). Fundamental scaling laws
for energy-efficient storage and querying in wireless sensor net-
works. In Proceedings of ACM international Symposium on
mobile ad hoc networking and computing, MobiHoc ’06 (pp.
334–343). New York, NY, USA: ACM.

2. Akyildiz, I. F., & Kasimoglu, I. H. (2004). Wireless sensor and
actor networks: Research challenges. Ad Hoc Networks, 2(4):
351–367.

3. Albano, M., & Chessa, S. (2009). Distributed erasure coding in
data centric storage for wireless sensor networks. In IEEE Sym-
posium on. computers and communications, ISCC ’09 (pp.
22–27). Sousse, Tunisia, 5–8 July, IEEE.

4. Cuevas, Á., Urueña, M., & de Veciana, G. (2010). Dynamic
random replication for data centric storage. In Proceedings of the
13th ACM international conference on modeling, analysis, and
simulation of wireless and mobile systems, MSWIM ’10 (pp.
393–402). New York, NY, USA: ACM.

5. Dimakis, A. G., Prabhakaran, V., Ramchandran, K. (2006).
Decentralized erasure codes for distributed networked storage. In
IEEE/ACM transactions on networking 14(1), 2809–2816.

6. Ghose, A., Grossklags, J., & Chuang, J. (2003). Resilient data-
centric storage in wireless ad-hoc sensor networks. In Proceed-
ings of the 4th international conference on mobile data man-
agement, MDM ’03 (pp. 45–62) London, UK: Springer.

7. Joung, Y.-J., & Huang, S.-H. (2008). Tug-of-war: An adaptive
and cost-optimal data storage and query mechanism in wireless
sensor networks. In Proceedings of the 4th IEEE international
conference on distributed computing in sensor systems, DCOSS
’08 (pp. 237–251). Berlin, Heidelberg: Springer.

8. Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter
stateless routing for wireless networks. In Proceedings of the
sixth annual international conference on Mobile computing and
networking, Mobicom ’00 (pp. 243–254). New York, NY, USA:
ACM.

9. Le, T. N., Yu, W., Bai, X., & Xuan, D. (2006). A dynamic
geographic hash table for data-centric storage in sensor networks.
In IEEE wireless communications and networking conference,
WCNC ’06 (pp. 2168–2174). New York, NY, USA: IEEE.

10. Liao, W.-H., Shih, K.-P., & Wu, W.-C. (2010). A grid-based
dynamic load balancing approach for data-centric storage in
wireless sensor networks. Computer and Electrical Engineering
36(1), 19–30.

11. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., & Ander-
son, J. (2002). Wireless sensor networks for habitat monitoring. In
Proceedings of the 1st ACM international workshop on wireless
sensor networks and applications, WSNA ’02 (pp. 78–87). New
York, NY, USA: ACM.

12. Matese, A., Di Gennaro, S. F., Zaldei, A., Genesio, L., & Vaccari,
F. P. (2009). A wireless sensor network for precision viticulture:
The NAV system. Computers and Electronicsin Agriculture,
69(1), 51–58.

13. Mazzini, G., Conti, A., Verdone, R., & Dardari, D. (2008).
Wireless sensor and actuator networks. Amsterdam: Elsevier.

14. Ming, X., Yabo, D., Dongming, L., Ping, X., & Gang, L. (2008).
A wireless sensor system for long-term microclimate monitoring
in wildland cultural heritage sites. In IEEE international Sym-
posium on parallel and distributed processing with applications,
ISPA ’08 (pp. 207–214). IEEE.

15. Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R.,
et al. (2002). GHT: A geographic hash table for data-centric
storage. In Proceedings of the 1st ACM international workshop
on wireless sensor networks and applications, WSNA ’02 (pp.
78–87). New York, NY, USA: ACM.

16. Shenker, S., Ratnasamy, S., Karp, B., Govindan, R., & Estrin, D.
(2003). Data-centric storage in sensornets. SIGCOMM Computer
Communication Review 33(1), 137–142.

Author Biographies

Ángel Cuevas got his Ph.D. in
Telematics engineering (2011),
M.Sc. in Telematics engineering
(2007), and M.Sc. in Telecom-
munications engineering (2006)
at University Carlos III of
Madrid. Since Jan. 2013 he is
Visiting Professor at University
Carlos III de Madrid, after
holding a post-doc position at
Institute Mines-Telecom from
Mar. 2011. He is co-author of
more than 25 papers in top
venues like ACM CoNEXT,
WWW, IEEE/ACM Transac-

tions on Networking, ACM Transactions on Sensor Networks, IEEE
Communications Magazine, etc. He is recipient of the best paper
award at ACM MSWiM’ 10.

Manuel Urueña received his
M.Sc. degree in Computer Sci-
ence from Universidad Politéc-
nica de Madrid in 2001 and his
Ph.D. degree in Telecommuni-
cations from Universidad Carlos
III de Madrid in 2005. At pres-
ent, he is an assistant professor
in Telematics Engineering at
Universidad Carlos III de
Madrid. His research activities
range from P2P systems,
through load balancing and ser-
vice discovery protocols, to
Optical networks. He has been

involved in several national and international research projects related
with these topics, including the EU IST GCAP and the EU SEC
INDECT projects.

Wireless Netw

123

Gustavo de Veciana (S’88-
M’94-SM’01-F’09) received his
B.S., M.S, and Ph.D. in electri-
cal engineering from the Uni-
versity of California at Berkeley
in 1987, 1990, and 1993
respectively. He is currently the
Joe. J. King Professor at the
Department of Electrical and
Computer Engineering. He
served as the Director and
Associate Director of the Wire-
less Networking and Commu-
nications Group (WNCG) at the
University of Texas at Austin,

from 2003–2007. His research focuses on the analysis and design of
wireless and wireline telecommunication networks; architectures and
protocols to support sensing and pervasive computing; applied
probability and queueing theory. Dr. de Veciana has served as editor
for the IEEE/ACM Transactions on Networking. He was the recipient
of a National Science Foundation CAREER Award 1996, co-recipient
of the IEEE William McCalla Best ICCAD Paper Award for 2000,
co-recipient of the Best Paper in ACM Transactions on Design
Automation of Electronic Systems, Jan 2002–2004, co-recipient of
the Best Paper in the International Teletraffic Congress (ITC-22)
2010, and of the Best Paper in ACM International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems
2010. In 2009 he was designated IEEE Fellow for his contributions to
the analysis and design of communication networks. He is on the
technical advisory board of IMDEA Networks.

Rubén Cuevas obtained his
Ph.D. (2010) and M.Sc. (2007)
in Telematics Engineering at
University Carlos III of Madrid
(Spain). Since Sep. 2010 he is
Assistant Professor at at Uni-
versity Carlos III of Madrid. He
has been research intern at Te-
lefonica Research Lab and
Courtesy Assistant Professor at
University of Oregon in 2008
and 2012, respectively. He is
co-author of more than 30
papers in prestigious interna-
tional journals and conferences

such as IEEE/ACM Transactions on Networking, IEEE Networks,
ACM CoNEXT, or IEEE Infocom.

Noël Crespi professor, holds a
Master’s from the Universities
of Orsay and Kent, a diplome
d’ingénieur from Telecom
ParisTech, a Ph.D. and a
Habilitation from Paris VI Uni-
versity. From 1993 he worked at
CLIP, Bouygues Telecom and
then France Telecom R\&D in
1995. In 1999, he joined Nortel
Networks as Telephony Pro-
gram manager. He joined Insti-
tut Telecom in 2002 and is
currently professor and Program
Director, leading the Service

Architecture Lab. He coordinates the standardisation activities for
Institut Telecom at ITU-T, ETSI and 3GPP.

Wireless Netw

123

	Dynamic Data-Centric Storage for long-term storage in Wireless Sensor and Actor Networks
	Abstract
	Introduction
	Related work
	Dynamic Data-Centric Storage
	DCS overview
	Dynamic DCS for long-term storage

	Sensor events lifetime analysis
	Local storage
	Round robin storage
	Dynamic DCS
	Model validation and discussion

	Performance evaluation
	Homogeneous scenario
	Heterogeneous scenario
	Real WSN deployment scenario
	Epoch selection analysis

	Conclusions and future works
	Acknowledgments
	References

