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1. Introduction
TIC is an algebraic calculus of processes which allows a precise definition of timed

systems. This approach assigns a precise timing to the events of an asynchronous

cálculus, to maké it suitable for quantitative time specification. The asynchronous

calculus taken as the starting point for TIC is the basic behaviour calculus of
LOTOS [ISO8S]. Nevertheless, the calculus is general, and the same approach

could be used to introduce time in other asynchronous calculi The present work
can be considered as a timed interpretation of the basic calculus of LOTOS,
by adding timing restrictions to the events of a specification. The notation and

terminology are similar to those used in LOTOS.
Specifications written using an asynchronous calculus (in the sense of lMil83])

define the relative ordering in time of a given set of events. A time ambiguity exists

in such soecifications because there a¡e many different real systems which have
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the same relative ordering of events, but different timing. There are applications
in which the specification of the relative ordering of events gives a sumciently
complete description of the system, but in others, quantitative timing may be
an essential part of the behaviour of the system. When considering performance
aspects, timing is especially relevant.

In TIC every event must have an explicit time restriction. This may be seen
from some points of view as an overspecification. In other approaches, related
to the so called maxímum parallelism hypotlrcsís. some events are supposed to be
of negligible duration and to happen as soon as possible. This is a very imple-
mentation o¡iented hypothesis which tries to make good use of the computing
resource so that when something is ready to be done and the processor is free,
the processor shall not stay idle and will do it. Our approach is specification
oriented and t es to be implementation independent, as any FDT should be.
Thus, no underlying assumptions are made. To represent events with negligible
time separation, a zero time attribute which is a very convenient approximation
from the application point of view, can be used.

The effect of timing constraints on interleaved behaviours establishes the major
difference with respect to asynchronous calculi, where the merging of events is

defined in a way that allows all the possible combinations which maintain the
relative ordering of each part. With our definition of interleaving, the events will
be merged according to their occurrence in time,

The semantics of TIC is defined operationally by deriving a labelled tran-
sition system over which the deflnition of equivalences is possible. A notion of
Weak Timed Bisimulation has been defined and is desc¡ibed in the pape¡. Other
equivalences or relations presented in the literature also seem more or less easy
to define, although we have not studied them yet.

The present work is a continuation of [QuF87] and [QAF89] in which different
treatments of the passing of time were studied. In the first work, the calculation of
the passing of time was solved with a simple mechanism, but a proper merging in
time of the events of the interleaved behaviou¡s was not achieved. In the second
work this problem was solved by means of a new definition of interleaving,
but without achieving all the desired properties. The present approach achieves,
by means of the introduction of empty transitions and a new definition of
weak bisimulation, all the desired properties similar to those existing in untimed
LOTOS. TIC is. in fact. a timed extension of the behaviour calculus of LOTOS.
The untimed basic LOTOS calculus is a subcalculus of TIC. The main limitation
of TIC is its inability to represent as soon as possíble (asap) time requirements.
There is also a related work [Mig9l] which extends [QuF87] with an asap timing
requirement for internal actions and which has applications in performance
analysis.

This wo¡k can be situated in the f¡amework of Algebraic Calculi of processes,

which started with Milner's CCS [Mil80]. CIRCAL [Mil85], CSP[Hoa85], SCCS

[Mil83], MEIJE [AuB87], ACP [BeK85] and others followed. Some of these
calculi were of asynchronous type, such as CCS, CSP or ACP Others were of
synchronous type, such as SCCS. Some calculi have been compared with SCCS
by giving an interpretation in it, but in our case this seems impossible. We found
several dificulties when trying to interpret TIC as a subcalculus of SCCS, being
one of them the need to distinguish between passing of time and internal actions,
because SCCS combines both in a single event. Timed choice and parallelism also
present problems.

One important aim of this work has been the definition of a synchronous
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calculus where equivalence relations, such as weak bisimulation [Par81] or testing
equivalence [dNH84] which have been developed only for asynchronous calculi,
can be defined. The same applies to the confo¡mance relation of Brinksma and
Scollo [BSS86].

Some of the first works about lormal models of time are lK+851 [ReR86]
lGeB87l. The second paper [ReR86] (see also [ReR87]) presents a timed model
for CSP which includes a delay statement as the basic timing element. The
representation of simultaneity in this work has some similarities to our approach.
In lAzc89l [NRS90] [HeR90] a different approach based on the separation of
time and actions is studied; a special action representing the passing of time
is considered, whereas in [OdF90] it is the execution of the actions that takes
some positive quantity of time. Diffe¡ent possibilities concerning the instants
at which each action can be executed are discussed there. In [BeR85] timing
restrictions of tightly coupled automata with time interval constraints are studied
in a way which has a slight relation to the present approach. In lToft8, MoT90]
a timed interpr€tation of CCS is given where an order relation, which expresses

the notion of faster thqn, is introduced. Bolognesi's [BLT90, BoL9l] presents a

timed extension of LOTOS which includes the notion of timers which have an ds

soon as possíble timing. Finally, we have had recent notice of a timed extension
of ACP presented in [BaB91], which has some points in common with the
calculus here presented. The work by Bergstra and Klop focuses on th€ algebraic
characterization of strong bisimulation in ACP but it does not deal with weak
bisimulation as we do. These commonalities stress our confidence in the interest
of this aoDroach.

Our ápproach is also related to the way time was introduced in Petri Nets
by Merlin and Farber [MeF76], and other related Petri Net models. In addi-
tion to using different models, the main difference is that in timsd Petri Nets,
time constraints are associated with complete transitions, whereas here the time
constraints are associated with the individual parts of a specification.

2. The Calculus

2.1. Syntax of the Language

We will work over a class of timed concurrent processes whose observable
behaviour is defined in terms of the sequence of observed gates during execution.
As in basic-LOTOS and in many other simplified models of concu¡rency, we will
not allow the exchange of values through these gates. Consequently, only the
emission of undistinguishable signals through the gates is observable. Gates will
be denoted by a name.

We will also have internal actions which are not observable from outside,
but whose execution can change the state of the process and therefore its future
observable behaviour.

In addition, we can observe the time at which each action occurs, with respect
to a discrete scale of time. In fact we will take the set of natural numbers as our
domain lor time, at both the syntactic and the semantic levels.

Definition 1.

(i) We will consider a uniyerse of gates l4 that includes the names of the gat€s
that can appear in any process.
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We have an internal event denoted by í, such that i ('9.
The set of events á is the set I : '9 \-) Iij.

(ii)
(ii0

Definition 2. The algebra of finite basic behaviour expressions is defined by the

opeÍators in Table l. Each behaviour expression -B has an associated gate set

L(B), also defined in the table. ¡

T¡ble l. Syntax of TtC

Cate set

Idle
Action Prcfix
Timed Choice
Choicc
Parallelism
Hiding
Relabelling

stop\t)

at; B
AT; B
BLIBt
BrllGl 82
hitle G in B
R Ist / s\. .., s, / e',1

0
0
L(B)¿\a\a+i]l
L(B)uiud+il
L(Bt)tt L(Bz)
L(B t) \,) L{.82)
L(B) - G
(L(B)-ic\.." cil)

ulgr. - g,l

The basic component of the syntax is the pair formed by an event in á and a

natural number which represents an instant of time.

Definition 3. Timed events will be pairs in ¿ * N. represented by the name of the

gate followed by its occurrence time. We will denote the set of timed events by
.78..

For exam¡le. a3 indicates that event a will happen at instant 3 The time

attribute of a time event is relative to the instant at which the previous event

occurred and on which the action causally depends.

For instance, in al; c2: idtellll b2;idle, a will occur at instant 1, b at 2 and c at

3: so a occurs 2 instants after the occurrence of rl to which it is causally related'

Time att butes ofevents are non-negative numbers. A null separation between

the occurrence of two events is allowed. This has been considered admissible, not

only to allow the parallel execution of several actions at the same tlme' generated

for instance by plain interleaving, but also to capture a negligible separation

between events. lt is clear that in every case, we must be careful to prevent

the possible appearance of unbounded sequences of such events without this

restriction we- would have to admit the execution of an inÉnite number of
actions in finite time, against any physical law. But such sequences would only be

introduced by speciflcaiions including recursive calls without any positive lapse of
time, and thii cin be prevented at the syntax level by an adequate generalization

of the concept of guarded definition.
Althougú we háve not given any semantics yet, the reader will probably guess

that starti;g'ircm stop(t) ot ídle as the constants in our signature, the (finite)

application;f the rest'of the operators will generate the s-et of finite processes of
ii'c. ltr or¿"r to obtain infinité behaviours, some kind of recursive definition of



228

Table 2. Syntax of the auxilia¡y operato¡s
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Syntax Gate set ¿(-B)

Time Passing ,4se(t,B) L(B'I

Stap

processes is mandatory. This generalization ofbehaviour expressions must include
variables whose meaning will be defined by means of the least fixed points of the
defining equations.

Notation: PVar will denote the set of process variables. P,P',Pt,... will range
o\er PVat.

Definition 4. Generalized basic behaviour expressions are defined by adding pro-
cess variables in PVar as new basic expressions so that metavariables appearing
in the d€finition of finite basic behaviour expressions range over the set of gen-
eralized basic behaviour expressions. We denote by PVar( B) the set of process
variables appearing in B. Finally L( B ) will be undeflned for processes including
variables. tr

In the following definitions Bs will represent generalized basic behaviour
expressrons.

Definition 5.

(i) A system of recursive definitions of processes (srdp) is a system lF : Bl :
P¡ : B¡ I í€I I where Vi € I PVar(Bi\ c \Pt / í € Ij.

(ii) If lF : Bl is a srdp, we define the set of gates of the processes so defined as

the least solution of the syst€m of equations L(P) : L(B), where /-(B) is
defined as if B¡ were a finite basic behaviour expression, by taking as the set
of gates of each appearance of each process variable P¡ along B¡, just the
unknown l(P). n

Definition 6,

(i) An infinile basic behaviou r erpression is a pair t P :E . St wil h PVar(B ) c F.
We denote by q the class of infinite behaviour expressions. Usually an
infinite behaviour expression will be denoted by giving only the generalized
behaviour expression B if the corresponding system of equations can be
deduced from the context.

(ii) We define the label set of an infinite basic behaviour expression (lF : Bl.B.)
as the set L(B) calculated by the rules in def. 2, taking as l(P¡) fo¡ each P¡

appearing in B, the corresponding set of gates defined in def. 5. !
An auxiliary operator Age, whose syntax is defined in Table 2, is needed to

represent the passing of time over a process that does not evolve in any othet way.
We will also consider a derived (from the combination ofthe original ones and the
added Age operator) operator stop that represents any deadlocked behaviou¡. All
the classes of basic behaviour expressions of definitions 5 and 6 can be extended
by allowing also the appearance of these new operations in their definitions. The
extended classes will be known as the original ones, but suppressing from their
names the adjective "basic".

If not otherwise specified, Bs will represent infinite behaviour expressions
(1BEs) in the rest of the paper.
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2.2. Operational Semantics

The operational semantics of the calculus is defined by means of a labelled
transition system. Let us fi¡st define the empty event which is used to represent
+hc nc<(iño 

^f 
fiñc

Notat¡on:

(i) We will consider a new event e, called empty event, such lhat € 4 E.

(i¡., The set of exlended actions will be the set L : I - {,'1.
(iii) We will denote by e, e', e¡. . . an arbitrary element in .f.
(iv) The set of extended timed events is the set :f f E : 'q8 0 Q.e| . N).

Definition ?. We define the operational semantics of an IBE B, as the labelled
transition system (4,glE,TR,B) where fR is the set of labelled transitions
derived from applying the following rules: tr

Timed Deadlock:

Stop(t\ -€t' + Stop(t - t')
< 1<r

The timed deadlock Stop(t) represents a deadlock after time r. It only generates

empty transitions until time I has elapsed.
'fhe stop( t ) behaviour could have been omitted, but it has been included for the
purpose of having an explicit representation of deadlock situations,

Idle:

Idle - et --+ Idle
The idle behaviour allows the time to pass, by deriving empty transitions at any
moment. It is used for representing the graceful termination of a behaviour.
Acfion Prefix:

at', B - at "', B
The next rule defines the spontaneous passing of time in action prefix statement.
Intuitively, time is allowed to pass (empty transition) whenever it does not cause

the behaviour to deadlock.

at: B - €t' ---' a(t - {); B

Timed Choice:

< t' <t

= -:-------- < te Tal:u-at---+ó
Timed choice is an extension of the simple action prefix operator. It constrains
an action to occur at any instant of the given set T. It is a combination of action
prefix and choice ove¡ time from the semantic point of view. If the set of time
instants T is finite, timed choice can be defined in terms of action prefix and
choice. In fact, action prefix is a párticular case of timed choice, when T has only
one element; but due to the frequent use of action prefix, it has been considered
convenient to maintain this simpler syntactic form.
The spontaneous passing of time in a timed choice statement is again allowed only
when the executed emDtv transition does not cause the behaviour to deadlock.
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For T : [1 , r+] we have
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< t <t-aT;B-er-aTt;B
where T' : fnrax¡ - t.Ot. l+ f l.
Choice:

Bz at ; B't

B1lB2 - at --+ Bt,

The spontaneous passing of time in a choice statement may age the whole
composition if one of the components can be aged. It must be noted that the
Aging operator will disallow the transitions whose occurtence time has passed.

81 - et "'+ B'1 82-et + B'2

B1lB2 - et -: Age(t, BtlB2\ B1lB2 - et - Age(t, Brlb)
Parallel: The definition of the parallel operator includes two conceptually different
types of operations: synchronization and interleaving. Synchronization may occur
when both counterparts ofler the same event at the same instant,

Bt-et-Bi.B, l,-8.r. e eGt,r.el
Bt lG]182 - et ..+ B', fcllB,

Remark: Note that the spontaneous passing of time is always synchronized in
Darallel behaviours.
Éxample: (b2;idle lbllb3; id Ie) would not synchronize because both bt occur at
different instants; whereas (b2;idlellbl b2;ídle) could synchronize, generating the
event b2.

Bs - at --+ 8|,82 - e't' + Bi,t < t' <
Btllcl 82 at---, Bi)lc)lAce(t, 82\

a4G

Bz-at + B|.Bt-et'- Bt.I < t <. n4G
BILGI B) - at ' Aseu.BttllGllB; "--

Interleaving may occur when one process can evolve while the othe¡ remains
idle. But as time passes everywhere, the passing of time associated with the
executed transition must also pass in the idle component. This is the reason
for introducing the Aging operaror Age. As the Aging function disables all the
transitions whose time has passed, in the future only the transitions occurring
after the executed one (also including zero time separation,) will be allowed.

On the other hand, interleaving must be consistent with timing:if a component
must execute some action at some given instant f, it is not possible that the first
action executed by the parallel composition will be executed, even by the othe¡
component, at some later instant t/> r. This is what is expressed by the second
premise of the rule. Nevertheless we do not impose maximal parallelism: so far
as a component may execute a transition at the instant r, the other one may
execute an action at any instant ,' < ¡ even if the first component has lost in this
way some other possible transitions corresponding to instants t" < r'. Only if all
the possible transitions of the first component correspond to instants t" < t', will
it not be possible to execute as first action the one at t'.

Any parallel composition containing a blocked behaviour as a component
will also be blocked. This means that the defined semantics is very sensitive to
deadlock situations.

B¡ - at ---+ B',

B1lB2 - at "'+ B',
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Example:
(b2; ídlellcllb4; idle) would interleave. It has only one possible evolution:

(b2: idlellcllb4: itlle) - b2 + (idle lcj Age(2, (b4;idle)l

(idlellcl Age(2, (b4;ídle\) - b2 -+ (Ase(2,idle)llcl idle\

Only non empty transitions are shown. There are additional empty transitions.

Aging:

B-et'+B'- -', , -,< t<t'
Ase(t, B) - e(t' - t) --+ B'

The passing of time disallows transitions which should have occurred before the
adjusted time. Besides, ,4ge adjusts the relative time count of the behaviour to
which it is applied. Note that the effect of the Age operator is local to the first
actions executed by the aged process.
Example:

(Age(3. (ct1; idle\) - a2 -'+ idl.

Stop: This behaviour generates no transition at all. Thus, the parallel operator
is strict with respect to deadlock.

Hiding:

B-et--+B' < eec
híde G in B - et -+ hítle G in Bl

B gt 'B < o€(;
hitle G in B - ¡r - hidc G in B'

Example:

(hide b ín b|;idle) - il ---+ hídebínidle

Relabelling:

B-et"+B'
B Ic | / c'1..., c, I c',1 - els / c1.., c, I c,lt "+ B' lsl / s't...' sn / sil

The meaning ofthe "meta-action" elci /s\,..s,1g:,ll is quite obvious: it is gft if
s : g¡ fot some i e { 1, .., n} and e¿ otherwise.
Example:

(bl ; ¡cll e)lc l b,b / cl - gl, id t elc l b, b / cl

Process:

B,-et 'Bi+<í€I( P:Bl,P) et 'B'i
This is the only rule in which the system ofequations defining the named processes
is made explicit. We systematically try to avoid this cumbersome notation, using
it only in those cases in which an explicit reference to the subsumed system of
equations is needed. On the other hand, the fact that this system of equations is

never modified by th€ application of the rules justifies the avoidance of explicit
¡efe¡ences.
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Remarks:

(i) We have not identified internal and empty events, even if both of them
generate no observable actions. The reason can be found in the choice rule in
which the execution of some internal event by any of the components would
make the choice, whereas this must not be the case with empty events. The
passing of time can disallow actions whose occurrence time is in the past
but it can never disallow actions whose occurrence time is in the present or
future.

(ii) As one can observe, time is dealt with as an extension of the gate names in
nearly all cases. The only exception is interleaving in which an aging function
is used for preempli\e lime passing.

(iii) The time values appearing in the labels of the defined labelled transition
system are relative counts with respect to the previous action. However, from
these local clocks we can infer an implicit global clock in a very natural and
simple way by considering the tree of transitions generated by the transition
system. We can associate a global time stamp with each node of this tree
(representing a state of the process) that is computed by adding all the time
att¡ibutes of the arcs of the path reaching the node from the root of the tree.
An example is seen in Fig. 1, where the value of the global time clock ck is
shown for each node.

ck:3 ck-2 ck-10 ck-6

Fig. l. Global time count.

3. Strong Timed Bisimulation: Some Properties

Strong Timed Bisimulation (STB) is defined by introducing time in the classical
definition.

Definition 8.

(i) A relation SZB € 4 x 4 is a Snong Timed Bisímulation relation iff V(,B1, 82) e
STB,Vet e g{8, the following conditions hold:

o YB\ \ et + Bi ....'> 18\ Bz - et "+ Bi @tt, Bil e SrB
. vBi B, - et --+ Bi .-..> )Bi B1 - et --+ B\ \Bi,Bil € STB

(ii) We say that B1 and ,B2 ar€ strongly bisimilar iff there exists some Strong
Timed Bisimulation SZB such that (Br, -B2) e S?-8. tr

Some equational prope¡ties of the Age operator are presented in the next
proposition, which will illustrate the definition of Strong Timed Bisimilarity.

initial state, ck:0
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Notation: The equality symbol is used to represent Strong Timed Bisimilarity.

Proposition 1. These are some of the properties of Strong Timed Bisimilarity
concerning the ,49¿ operator.

Agelt,stoq) : stoqAge(t,idle) : ídle

t ! tt :> Age(t',stop(t)) : stop(t - /)
t'<t :> Age(t' , stop(t)) : 5t6p

t3t' :> Age(t,(at';B\): a(t' - t):B

t' <t -> Age(t,(af;B)) : stop

t 3t+ :> Age(t,(alt ,l+l;B)) : almax(t - t,o),t+ -tl;B
tlt+ :) Age(t,(alt ,t+7:B)) : stop

Age(t,hide G in B) : hide G ín Age(t, B)

Age(t,BtlB) : Age(t,Bt) | Age(t,82)

Age(t,BtllcllB): Ase(t, Bt) llcl Ase(t, 82\

A ee (t, B le t / g\,.., e. / si,l) : A se (t, B\ le' / e\, - e, / e "l
Age(t,(@ : F¡, r'¡ : Age(t, B¡)

Age(ty,Age(t2, B)) : Age(tt i t¡B)

(l)

(2)

(3)

(4)

(s)

(6)

(7)

(8)

(e)

(10)

(11)

(t2)

(13)

Proof Let us first relate the transitions generated by ,4ge(t,B) with those generated
by B. We have that

. lf B - at' ---' 8' with f' > t then Age(t, B) - a(t' - t\ '- B' .

o Age(t,B) has no other transitions. In particular, if B - at' --+ B' with ¡' < ¿

then Age(t,B) has no corresponding transition.

The proof of the equational properties based on this characterization is an easy
but cumbersome exercise. Let us present as examples the proofs of 10 and 13.

Equation 10: The right hand side can derive a transition only by applying either
the synchronization, or any of the intedeaving rules.

r Synchronization: We would have,4ge(t,Br)-at' "+ B\ and Age(t, B)-a{ '- B'r.

Then Br -a(r+/) -+ Btt and 81-a(t+t') -+ Bl, so that (B1ltG) B)-a(t+{\ --
(B't lcllBi), and finally Ase(t, B rllcl 82) - at' ' + (Biltc) B).

o Interleaving: If ,4ge(t,B¡-at --+ B', and, Age(t,B)-et" '- -Bi for some t" > t',
then Br -a(¡+t') -- B\ and Bt-e(t+t') --+ Bi, and as t+t" > tlt' we can apply
the interleaving rule to obtain (Br I [C]lBr) - a(t + {\ --. BlllcllAge(t + { , B),
and rhen Age(t, BlllcllB) - at' --+ B\ lcllAge(t + t', 82), and applying (1 l) we
conclude taking Bt : B\llcllAge(t + t' , Bz\, that Age(t, BtllcllBr) - (tt" '-+ B'
for some B' : B"lfcllAge(t', Age(t, B)1.
The case corresponding to the application of the other interleaving rule is
symmetrical.

On the other hand, using the characterization given at the beginning of this
proof, we have that each transition of the left hand side of (8) corresponds to a
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transition of Bt lGllBz, and the rest of the proof is just the converse of the one
just developed.

Equation 13: ,4ge(tbAge(t2,8)) - at---+ B' : Age(t2,B))-a(t+tt) - B' '=.>
B -a(t+tt+t) ---+ Bt .1..> Age(t1 +t2,B)\-at 'B'. n
Remarks: Equations (l) (1i) give us a denotational definition of the Aging
operator, equivalent to our forme¡ operational definition. This means that,4ge
is indeed a derived operator that does not generate any new semantic process

-€xcept for stop when applied to behaviour expressions (that by definition do
not include the Aging{perator). This is true even for infinite processes: if, for
instance, we have (P : B) and we conside¡ the process ,4ge(¿, P), we can take the
equation Age(t,P): Age(t,B), and if we unfold its right hand side we obtain an
expression B' in which the only appearances of the Aging operator would have
the form Age(tt, P) with t/ < f. Then we can consider the corresponding equations
Age(t',P): Age(t',8), obtaining a system whose unknowns are the processes

Age(l,P) with r' < ¡. But as this system is an ordinary one, once we forget about
the names of the unknowns, its solution is just a collection of ordinary infinite
behaviours.

Howeve¡ we can obtain new semantic processes if we allow the appearance
ol the Aging operator on the right hand side ol the system defining an infinite
behaviour. This will not happen in practice, since Age ts an auxiliary operator.
Therefore we can omit the consideration of the Aging operator when developing
proofs by structural induction.

Let us give more equational properties of the basic operators.

Proposition 2. The following pairs ol 18Es are Strongly Timed Bisimilar.

BtlB2: B2lBb (81[82)[B] : 81[(,B2[83) (14)

BnB: B, B[stop(0) : B,

hide G in stop(t) : stop(t)

Blstop: B, ídlellstop(t): idle (15)

cr€G:> hide G ínet)B:it,hideGin B

aQG:s hítle G ín at;B : qt:híde G in B

hide G in BtúBz: (híd e G in B1)l(hide G in 82)

stop(t\lst / e'b .., e,,/g:,1 : stop(t)

idtels / s\,..,sn I s;l : idte

(at ; B) Lu / e't,.., e', / e'; : ole, I e\, - e 
^ 

/ e,lt : (B [e t I e", - e, l e',1)

(BtlBz\letls\,..,e,le',1 : B,le'/ s\'."e,ls',1 ú Brlctlc\',c,,lc:l Q2')

81 lcllB2 : Bzllcl Bt

(BrltcllB, [G] -B3: Br llcl (B,l[6]lB3)

(16)

(17)

(18)

(1e)

(20)

(21)

(23)

(24)

Proof. Except fo¡ the last one, all a¡e more or less immediate checks. The difficulty
of the proof of associativity of the parallel operator is due to the application
of the interleaving rule. Let us suppose, for instance, that (Brl[C]lB:) [G]l B:
executes a transition -df ---) corresponding to -B1. Then we have Bz-e't''-
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with I < / and ,B3- s"¡" "+ with t < r". But if e'eG or e" € G it is not

trivial that we havi some e¡t'{t vtith B2l[G]LBr ¿tt'¡t¡1 "'+ and r < t"' In order to

orove it. we need first to check, by structural induction, that whenever we have

í - "t -- B' we also have for any i' < t B - rt' '+ Then we can take e' : e" : e

a¡d t' : t", obtaining 82lGllfu-e't' +. Ü

Finallv we present without full proof, the fact that strong timed bisimulation is a

congruency with respect to all the operators of our algebra'

Theorem l. Strong Timed Bisimulation is preserved by all the ope¡ators of our

algebra, including the auxilia¡y ones

Proof. We do not include the full proof for strong equivalence because we have

alreJdv ptoued several rules in ditail and we include also the proof of the

"ong.ú"n.y 
of all the operators for weak bisimulation, except for choice'

Ñeve¡t'heless, we will present the proof of congruency of the choice operato¡'

for we will see ihat {(r ¡in,2[R)1P,0, R € ?'Q:2] is a-strong bisimulation

Let PIR - ef -* S bé a transition from P[R. We distinguish two cases:

. e : cr € á. Then we have two possibilities:

- P -at + P'and then S: P'- In such a c¿se we have Q at ' g'lor some P': q'_ since

P = Q, and thus Ql/l ,rr - Q'.
- R ¿¡ . R and lhe S - R. lhis is an immedi¿le case

o e: e. There are again two possibilities:

- P - et - P' and then S :,4ge(¡,P[]1{). But as P : O we have 0 -''¡ + p' for some P' : p"
and thus QUR €t + Agel.QlR) : Age(t,PfJR)' since Age operator also p¡ese¡'ves strong

- R r¡ ' R' is slmilar 1o ¡he previous case. n

4. Expansion Theorems

Two expansion theorems are presented. The first one considers only processes

with finite choices of timed actions, whereas the second one is the generalization

in which the Timed Choice operator can also appear, and therefore includes

infinite choices.

Theorem 2. (Expansion theorem without timed choice)
Let Br : L,,n, i,t,:B', , 82 : \,r, a¡t¡, Bf two behaviours, where 1, '/ are two

finite disjoint sets, and I replesents the generalization of choice as a multi-ary

ooe¡atoi (remembet thaichoice is a commutative and associative operator) Let

irul1 : ttle'¡!¡ ie 1)) and Enrlz:Max(rt lie J)).Then,wehave

Bt lG) 82 : Lo¡';@i LcllAse(t¡Br)\ ll

la¡t¡:(Age(t¡,8) l[G] Bj) u
jeJ'

I c¡r¡;(Bjlicl B',) l) stoo(m)

'ti:oiIt:Ij

where 1': {iel la¡4G, t¡ <Entl2}.J':{ie¡la¡(G'r¡ < Entll)¡ and

m: min{End\,End2}.
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Proof. lt is again a routine check. We will merely explain the role of the stop
summand in the rüs. It covers the case in which the lhs cannot generate any
nonempty transition; in that case we have a deadlocked behaviou¡, but this is
detected only after time ru has elapsed, and one of the compon€nts becomes

deadlocked itself. If the lis is not deadlocked, then it can also execute an €t
transition for any r < n, and thus the stop summand is also correct. n

Remark: The former theorem can be generalized to cover the case in which idle
behaviours appear as summands of 81 or 82 by considering the following three
cases.

o If Bi : Btlídle the expansion of Bil[c]lB, is defined exactly as that of
BlltcllBr, but taking End¡ : qc.

c If Bi : Bzlídle the expansion of BtllGllBL is defined exactly as that of
BtllGllB2. but taking End2: ¡x¡'.

o If Bf : Btnidle and BL : Bzlídle the expansion of B\ lcllB', is defined
exacily as that of B1l[G]lAr, but taking En<]1 : ¡v}, End2 : s3 ; then the
s¿op(m) summand would be substituted by idle.

A similar extension can be developed to cover the case in which we haYe timed
deadlocked behaviours as summands of Br or B:.

Theorem 3. (Expansion theorem including timed choice)
Let h:l,ura¡Ti;Bi, 82: \,.ta¡T¡tBj two behaviours, where 1, J are two

finite disjoint sets, 4 : ltt ,t:l , Tj : ttj ,tf1, and, as in the previous theorem,

I represents multi-ary choice. Let us define

Begin, : Max({tt l,e 1}u{¡l+1 íe I, t: + r.r\j)

Begin, : Max({t1 |i€J}u\tl+11i€J' tI +.n})
Endl : Mqx(\t!li€lj
End2 : Max(Itl I i €Jl

Then we have

BtllcllB2:

Itt I att;(B'r lcllAse(t,BzD)
i€I' leTfiIta ,Besii 2)

I aíT¡ ñ lBegin2,m¡u{t!, Endz}l;@illGllAge(Begin2, B2\\) |
Itt I a¡;@ge(lBi lcllB')\
jeJrteTjñltl,Besintl

I ajT j.lBegínbmín{f , End 7}l; @ge(Begin I, B1)llGllB')\ ü

I a'¡ma x lt¡, t ¡ |, min {t{, tl }l ; @lllcll B')) | sto p (;m)

ai:4 j

where again It: {i€ I Ia¡4. G, ti < End2}, J' : {j € J la¡ Q G, t¡ 3 End 1)¡

and m: min{Endt, Endz}.



TIC: A Tlmed Calculus 237

Remarks:

(i) By convention, any summand in the expression above, including an empty
interval of time t , 1+ with ¡ > f+ , can be removed from the expression.

(ii) The choice of Begin¡ is motivated by the need to find a finite bound so

that, for instance, wheneve¡ we would execute any action from Bl at any
instant later than Begin2 we could put as a continuation of the second
component a uniform behaviour '4ge(.Begín2,82\, whatever the instant might
be. This is because if f : {¡ € "i I ri : oo}, for all ¡ > Begir" we have

Age(t,Bz\: f¡.6 c¡[0,co] ; B'r : Age(Begin2, B).
(iii) The meaning of the remaining parameters is the same as in the case not

including timed choice.

(iv) The theorem can also be generalized to cove¡ idle and timed deadlock
summands exactly as in the case not including timed choice.

Proo/.'fhe key idea underlying the proof is included in the previous ¡emarks:
when considering interleaving, we have to distinguish the different continuations
of the idle component, which initially depend on the exact instant at which the
corresponding action is executed. Fortunately this is true only until an instant is

¡eached, after which the continuation remains the same forever. Thanks to this
fact we avoid infinite sums that of course would not be admissible at the practical
level at which we desire to apply the expansion. ¡
Remark: The use of time intenals to define the set of options of a Timed Choice
allows the existence of a generalizcd expansion theorem. A more general language
allowing more or less arbitrary sets instead of these inte¡vals would have led to
an infinite number of differcnt continuations after the execution of a first action,
depending on the instant at which it is executed. This would lead us to an
inadmissible infinite expression. However, it is true that with some additional
work it would be possible to generalize somewhat the class of intervals, without
loosing the expansion theorem. For instance we could accept finite unions of
intervals, sets such as {r € N r= k mcttl n}, or llnite intersections ofboth classes

of sets. And probably some ofher regulur s¿fs would be also admissible.

We think that these expansion theorems together with the previous rules
constitute a reasonable set of rules for strong equivalence. Neve¡theless we have
not included any completeness result for two main reasons:

First. we are mainly interested in weak equivalence and in the properties
of strong and weak equivalence which ensu¡e the practical applicability of the
calculus, such as the congruency of the parallel operator. Secondly. our experi-
ence shows that completeness results for timed calculi are in general much more
complicated than the corresponding results for untimed cases and would justify
a complete work by itself. The only dctailed proof of completeness of an axiom-
atization of an equivalence between timcd behaviours known to the authors is

[OdF91], in which a timed ve¡sion of CSP is studied and in which the normal
iorms a¡e indeed much more complicated than those for ordinary CSP

5. Weak Timed Bisimulation

As in the non timed case (see Milner [Mil80]), strong bisimulation is too strong
because it is based on the observation of internal and visible actions. Internal
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actions should not be observable. In order to formalize this idea, we have to

áeriue an operational semantics showing only the ex€cution. of external actions'

ih;r; i; # important difference betwein the timed and the untimed case: in

,h";;ii-; caie int"tttul actions disappear 1we should say nearly dísappear íf,

*"*ul,'ttobestrict)'whilenowthetimededicatedtotheexecutionofinternal
actions remains as a track of the execution.

The new operational semantics will show only the execution of external

actions, tne time between them, and the time elapsed since the execution of the

iurt o"É. f¡" time associated with the internal actions is accumulated in the next

o¡r"tuuUf" action, or constitutes a palt of the time elapsed since the execution

ái tft" fu.t of theÁ. eI this is formálized by the new transition system described

below.

Definition 9.

i) OT : {$ | g e G,t € N} is the set of observable timed events'

(ii) IT: {ü ú€N}u{6tlt€N}isthesetof internal timed events We will
represent by x¿ the elements of 1r.

(iii) L;t B,B' infinite behaviour expressions, ath,...'antn € f v8 wrfh n > o:' 
we say that B - dttr...,antn -+ B' is an extended transífion iff 1-B0, "'B'
infniti behaviour expressions with B : B¡ and Bt : Bn, such that Vi €

{0,. . .,, 11¡ B¡ - a¡¡1t¡¡¡ -+ B¡¡1.

(iv) iet B - 16,g¡f¡,11,91f¡,. .'In t,¡n-tt¡ ¡1, -+ Bt be an extended transition'
' ' *h.r" fot éióft ¡ áJO,.. ,tt- r') g¡, € OT. and each 1¡ represents a possibly

empty sequence xtit,.-.,xti.ii Then, for each j e {0, ,n} we define ri by

nj

{, : t¡ +lt¡.* vj e {0,.. ., n - 1}

{,:Lt^o

Then, we say that B : Cot'o'...'g, ¡t,,r,t',, "> B is the obseruable tímed

trunsition associated with the given extended transition tr

Remark: Only external actions can appear as labels of observable timed actions'

When a transition does not contain eiiernal actions we have an empty obsettable

tiierl aictíon which corresponds to the case where n :0 The time consumption

of such a transition is détermined by the time label 1¡ Nevertheless, contrary

ü *trut trupp.". in the Untimed Caltulus, extended transitions must contain at

least one tiánsition. This is always possible because any derivative B' of any

üehauiout {in which only the basic opirators can appearl can.generate the empt}

ttár,iti* i0, becoming'lge(O, B'¡ which is strongly timed bisimilar to 'B' Thus

we have B' - 0,0 - .le"tÓ, B'\ which corresponds to the idle transition B' - B'

ortn" unti."d"culculu-s. ihe iollowing lemma formalizes our previous assertion.

Lemma l. For any infinite basic behaviour expression B, and for any extended

transition B - alt¡,...,a,,t,, --+ B' we have B' - eO "+ Age(0'B')'

Proof. It is easy to check that only the appearance. of the auxiiiary operators

stop'and Age can make the transition €0 non executable But stop never appears

in'a deriva"tive of a process that does not contain it already A behaviou¡ B
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cannot contain it, since slop is an auxiliary operator. On the other hand, the,4ge
operator only appears when the interleaving and some of the cboice rules are
applied. But the executability of e0 is always maintained. Let us take for instance
an application of the first interleaving rule:

Bt at - B;-82-e't' 'B;.1<t'¿ nan
Bl llcllB) ,tt ' Bitlc) Agett. B2t - - " "

Then, as f < t' we have Age(t,B2\ - e'(t t') + B', and by applying the result
given on the proof of prop. 2, we have that Age(t, Bz) eQ + Age(O, Age(t, B2\).

n

Definition 10.

(i) A relation ,4/TB = 
g x I ís a Weak Timed Bisiuulatíon iff V(Br,B2) €

\YTB, Vq € OI' we have

. Bt:q,t,1=, B\:> )B'2 82: t|.t,,..> B' A (B'bBi) e WTB

. 82: q,ttj =. B', .....,> 1Blt Br: q,tn + B| A @'t,Bil e WTB

(ii) We say that Br and 82 are weakly timed bisimilar, and we will wdte 81 - 82,
iff there exists some weak timed bisimulation WTB wifh (Br,Br) € WTB. E

B2B181 82
??

r 3l 
' 

1l

??bll b3l
aa

A) wbe

^^ií \3 ií \1I ? I ?-all btl a1l bll
aaaa

B) not wbe

81 B2

2

C) not wbe D) not wbe

Fig, 2. Examples of weak timed bisimulation.

Some examples illustrating this definition are presented in Fig.2, where wb¿

stands for weak timed bisimilar, empty transitions are omitted and the states
which cannot be bisimulated by the peer behaviou¡, if any, are indicated by an
asterisk. From cases B) and D), you can see that our definition of equivalence is
perhaps too strong, as possibly you would like to identify the pairs of processes
involved. [t is in fact probable that a reasonable definition of testing equivalence
would declare them to be equivalent. But in any case, it is well known that already
in the ordinary untimed case, bisimulation is stronger than testing equivalences.
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Let us see in detail why the pairs of processes compared in B), C) and D),
are non-equivalent. In B) if the second process decides to execute its internal
action corresponding to the instant 1, it forces itself merely to execute b in the
future; but the first process cannot impose such an obligation on time 1 because
it cannot make a choice until the instant 3. In C), it is reasonable to declare the
processes non-equivalent because in fact they are not even failure-equivalent: aJ
c2 is always accepted by the first process, while the second one accepts it only
sometimes. Of course this is due to their respective timing because in the non
timed case they would be bisimilar. Finally D) is the timed version of one of the
classical CCS examples showing a pair of processes that are testing equivalent
but are not weak bisimilar. The two different actions c ¿nd d of the untimed case.
have been substituted by the timed actions c2 and c3.

E) wbe

Fig. 3. Example of i-loop removal.

Another interesting example is shown in Fig.3. The example illustrates an
internal action loop elimination. This is also possible in the untimed case, but
now we have to keep the time consumption due to the executed internal actions.
We introduce a time choice to represent this time consumption, where the set of
time instants at which the action a can be executed is the set {t I t : 2mod3\.
This is a case in which the use ol one of the already proposed extensions of our
original deñnition of time choice is necessary. Thus, the effect of i-loops does not
vanish as in an untimed calculus, but is kept as a potentially unbounded time
delay.

B1

?
a{t:2nor13}l

?
. 2l

¿

B1

^uy )4aa

B4

^,R^^"/\3 "/\r "/\r i/\l.?.4.???
bll utl\l b3l a0l b3l

aaaaaa

B5B3B2

Fig. 4. Choice, internal actions and time.

Finally, Fig. 4 depicts a set of examples selected to show the interrelation
between choice, internal actions and time. In it -B1 and 82 are wbe, and 84 and
85 are also equivalent, but there are no more equivalences between the shown
processes. Equivalence of Bl and 82 indicates that the time at which the internal
decisions occur is relevant. The internal event, i.l, rn 82 can occur only after
the visible event a2, offered in choice with it. Therefore, it cannot influence the
occurrence of a2. lrr 83 the inte¡nal event, it, can occur before a2, which thus
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can be re.jected. In 84 Ili.e intemal event, il, may not occur at instant 1;in such a
case only event a would be offered at instant 2. Thus, we have an internal choice
betwe€n d2 and ó4, which is made explicit in 85.

It is interesting to note that the classic notion of weak bisimulation, applied to
the untimed versions of the depicted processes, would relate the four behaviours
in a completely different way: we would have Bi - 83, 

^nd 
82 - 84, with

85 not equivalent to any one of them. An untimed calculus, like basic LOTOS,
can be obtained in TIC by having actions with no time restdctions as shown in
definition 11, but not just by removing the timing.

We have not yet gone deeply enough into the subject of an equational char-
acterization of weak timed bisimulation. Nevertheless, we have already studied
the basic axioms from the classical theory covering intemal actions, finding that
it is possible to extend them to the timed case, although to do it, we need a trivial
generalization of lhe Aging operator to cover also negative periods of time Using
it we have

Proposition 3. The following pairs of processes are weakly timed bisimilar.

at:ít';B - at; Age(-t" B)

Ase(-t, B)litt B - ít; B

at; (Btlít' : Bz)\at;Age(.-{,Bz\ - at:(hlít':Bz)
Proof. Again they are easy but tedious checks. n

Of course, all the axioms and rules presented in the previous sections for
strong equivalence remain valid for weak equivalence.

Concerning the congruence properties of the equivalence, the situation is very
similar to that in LOTOS or in CCS: between our basic operators, only the
choice operator does not presene the equivalence. Nevertheless, it is also true
lhat our Aging operator does not preseNe it. Take for instance B1 : il|.a2;ídle -
Bz : a3',idle . Aging them two instants, we obtain Age(2, B ¡\ - stop + 4l;ídle -
Age(2, B) . But as we explained before, this kind of negative result concerning an
auxiliary operator does not matter, since it cannot appear in user's specifications.

Theorem 4. Weak Timed Bisimulation is preserved by Action Prefix, Time Choice,
Parallel Composition, Hiding and Relabelling. tr

To develop the proof we first present a characterization of Weak Timed
Bisimulations.

Proposition 4. IITB is a Weak Timed Bisimulation iff V(B1,Br) € WTB,Vgt €
OT,Yxt € 1f we have

. Bt - st ---+ B', :, lBi 82: (gtl,o + B\ (Bl,B2l e fi/rB

. 82* st-- Bi 
- 

1B\ Bt: (gt).O + B', (B'D Bil e rvrB
. Bt - xt ---+ S', .=,3. 

= 
Bi 82: \l,t =, Bi @| Bil < IVTB

. 82- xt---+ p, :, 1B't Bt: \),t =' B\ \B't, Bil € wTB

Proof. :.,> In the first case we have 81 : (gr),0 + Bi and then we just apply
the defin'ition of w¡ó. The other case is similar: we would have B¡ : 0. r - af.
and again we would apply the definition.

- 
Let B1 : q,t > Bi. This observable timed transition will be the one
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associated with some extended transition Bt -attt,...,akt¡ "'> B'r. Then we

distinguish two cases:

o a1 e G. Then we have Bt - attt + B',' - a2t2,...,a¡tp -+ Bj , so that we have

some Bí verifying 82: @1t11,0 =, B! and \Bi', B';) e WTB.
. a\:xe G. In this case Br -xtr - Bi' - aztz, . . . , aúr - Bi, and we would

have some B'.j verrfying 82 : 0, tr + B! with \B't',Bi) € WTB

And iterating we would obtain an extended transition 82 - a'r|r,. ..,a',t', + B't
whose associated observable timed transition is 82: q,t + B\, and such that
(B't'B\l e wrB. t)

Let us go now to the proof of the congruency theorem.

Proof. The only dimcult cases correspond to Parallel Composition and Hiding.

o Parallel Composition: For we will p¡ove that

wrB : {(PllGllR. 0ltcllR) P,Q,R € s, P - Q, c, eti

is a weak timed bisimulation. We will ,-rse the former characterization of weak
bisimulation. Let P [G]lR - gr - P'ltcllR/. We have three cases:

(i) g € G. Then we have P - gt "'+ P' and R - gt --+ R', and then as

Q - P,Q: (gf),0 + Q' with Q'- P', and it is easy to check that then
we have Q [G]lR : (g¡),0 =. Q'llCllR', since applying the interleaving
rule Q [G]lR can execute the internal actions of Q before its execution of
g and then synchronize to execute this g.

Remark: One could think that a separate consideration of the case must
be made whe¡e the extended transition leading from Q to Q' contains
empty events, since these are not considered by our interleaving rule.
But this is not necessary because observing how these empty transitions
are generated, it can be concluded that whenever they appear in an
extended transition followed by an observable or inte¡nal action, they
can be removed to get a new extended transition which generates the
same observable transition. This means that for any obsenable transition
B : q.0 ..> B' we can always find an equivalent extended transition free

of empty events.

(il) glG, P gt--+ P', R': Ase(t,R), and R-et' --+ R" with ¡ < l'. Then,
as in the previous case, we have some 0: \gü,0- Q' wirh Q' - P',
and then, repeating the application of the interleaving rule, and applying
property (9) of the Aging operator, we obtain the observable transition

0 tcllR : (gt),0 + Q'l[G] R'.

(iii) g f C, R-gt--+ R', P': Age(t. P), and P -et'--+ P" with r < r'.
Then, by definition of empty transitions, we have P -€t - Age(t,P),
and as P - Q we will have some observable transition Q : \),r - Q'
with Age(t, P\ - 0/. Some extended transition generating this observable
one could be decomposed in the fo¡m Q q, - Q" - r(t -t"l - Q',
where 4¡ is a possibly empty- sequence of internal actions that takes /'
instants to execute. We also have Q' : Agelt -t",Q"). And finally we
can interleave the computations R gr + R' and Q - c1¡ - , 0", obtaining

0l16llR : (gt),o ..> Age(t - t' ,Q")ltcl R', as desired.

Remark: The reason why we do not allow observable transitions generated
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by extended transitions of length zero is related to the current case. If the
(now disallowed) idle extended transition a - (l - Q could generate the
observable transition 0 : 0,0 > C, then we would have no transition
Q- eO -- Q', and then if r : 0 we could not apply the interleaving rule to
generate the desired computation Ql[C] R: (g0),0 - ,lee(o,Q") lcllR'.
A consequence of the present definition of observable transition (at first
glance a bit tricky) is that:

i0;sfop f stop
These two behaviours could be made equivalent if we allow B : 0,0 -
Age(0,8) for any B, and in particular stop:0,0 - ,4ge(0, srop). We
have not allowed this transition because it is clear that with either of the
definitions we would have:

a0;stop l[@] l0:srop I a0; stop
With the choice made, we obtain the congruency of all the basic operators
except choice, not only over basjc behaviou¡s but also over arbitrary ones.
As a matter of fact, our proof already covers the general case.
Anyway, if the reader dislikes our choice and prefers the definition which
leads to i0;s¡op ,'stop, the proof of congruency of the basic operato¡s
except choice is still possible if it is made on behaviours that are basic or
de¡ivatives of basic ones. But this proof is much more diflicult because a
careful application of lemma 1 is necessary in order to prove that sfop or
equivalent behaviours can never appear. This would lead us to a difficult
situation since we have seen that in this case consruencv is lost when
these behaviours appear.

Concerning non-observable transitions P [G]lR-:(1 --+ P'l[G]lR'with rf € JT,
we will have that either x: ¡ or -x: e. In the first case. we will be in one of
the following subcases:

(i) P-lt + P', R': Aee(t,R), and R-e¿' + R" with r < ¡'. Then we
have some Q : \),t + Q' with Qt - P'. As before, some extended
transition generating this obsenable one, can be decomposed as Q -
cl¡ + Q" - e(t - {') . p', where q¡ is a possibly empty sequence of
internal actions which needs t" instants to get executed. Then we have

QlfGllR (t¡ + Q" lcllAge(t", R), and we can apply the parallel rule,
obtaining Q" lGllAge (t", R) €(t t") - Q' lcllAse(t t",Ase(t",R\),and
flnally Q [G]lR : \),t = Q' lcllAgeQ,R).

(ii) R - t ---, R', P' : Aee(t, P), and P - et' --+ P" with ¡ < ¿'. This case is
identical to the corresponding one for the previously considered case ol
lransitions executing an observable action.

Finally, if x : €j we must apply the parallel rule. Then we would also have
P - et -+ P' and R - e¡ -' R', and the rest is as in the previous case.

Hiding: We will prove rhat WTB : l(híde G in P, hitle G ín Q) P,8€9,P -
Q) is a weak timed bisimulation.

(i) Let hide G ín P - ít ---+ hide G ín P' be an intemal transition generated by
hiding a transition of P corresponding to some action g € G. Then we have
P gt - P', and since P - Q, we have some Q' wrtb Q : \atl.O =. Q'
with P' - Q'. Then we also have hide G in Q : (l,t ,,> hide G in Q'.

(ii) Any other transition of hide G ir P is also a transition of P, and then the
corresponding t¡ansitions of Q are also transitions of hide G ín Q. tr
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As a final result, before turning to the applications of TIC, we will assert without
providing the proof, that our calculus is indeed a timed extension of the untimed
óne. The proof is again a lengthy but easy check. Let us define the mapping
between the timed and the untimed case

Definition 11.

(i) We define (the different classes of) untimed behaviou¡s as basic timed ones'

but removing time labels from the action prefix operator, and eliminating the

timed choice operator. The operational and bisimulation semantics of untimed
behaviours are defined in the usual way $ee lISO88l).

(ii) Let B be an untimed behaviou¡. We define its associated timed behaviour
Tined(B\ by substituting any appearance of an action prefix operator a; in
it, by the Timed Choice operator alO, co] ; and any appearance of a LOTOS
uop by an idle. tr

Theorem 5, Let B, 81, -B2 untimed behaviours, then we have

(t\ B - a ---, B' =>Vt e n\t lBr Bt: Timecl(B') Timed(B) - at "+ Bt

tii) T¡medtBl at-B,-)B' B': TinedlB t B-a-B'
(iii) 81 : B2 <..> limed(B1): T ímed(Bz)

(iv) 81 - 82 <..,> Timetl(B1) - Tined(B)

where : represents in each case the corresponding notion of strong bisimulation
equivalence. ú

Remark: Observe that we haYe defined untimed behaviours taking idle and

not stop as the sole constant. If you prefer to name by srop the constant in
the untimed algebra, you must take care of substituting srops by ldles when

computing the associated timed behavioursi otherwise the theorem would not
work at all. Remembe¡ that

l j s¡op
but

¡[0. cc,] ; s¡oP

On the other hand we have:
il},.rrl ; ídte

stop

l- stop

- ídle
as oesrreq.

6. Applications

Examples of application of TIC to model behaviou¡s, where precise timing con-
straints are necessary, are presented in this section. This timed calculus has been

developed with the purpose of modelling systems which have a time dependent
behaviou¡. Such behaviou¡s are understood as situations where the time at which
the events occur may influence not only the performance of a system, but also
the correctness behaviour.

The first example is a stop and wait protocol which illustrates the way time
outs are modelled in TIC. Time outs are one of the main reasons why quantitative
time is needed in asynchronous protocols.

The second example is a railroad crossing. This example is very adequate to
illustrate a timing dependent behaviour, because the correct behaYiour of the

system depends entirely on the timing of the individual actions.
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6.1. A Stop and Wait Protocol

The time-out mechanism is one of the most frequent time dependent behaviou¡s
in the protocol world. A srop and wait protocol is used to show how TIC models
such a behaviou¡. As shown in Fig.5, a whole unidirectional communication link
is specified including a transmitter process (transmitting entity), a receiver process
(receiving entity) and a line process, which is a simpliñed model of a semiduplex
line.

Fig. 5. The stop and wait protocol.

The stop and wait protocol is a very simple and unreliable protocol, but it is

small enough to allow its inclusion here. The protocol uses two types of frames:
information and acknowledgment frames. The transmitter sends an information
frame Sendlnfo and waits for an acknowledgment frame RecAck. It also has
a time-out mechanism that causes a retransmission of the previous information
f¡ame if the acknowledgment f¡ame does not arrive before a given time. Once
the acknowledgment frame has been received, new data can b€ accepted from the
user. Once it has been obtained, they can be sent in a new information frame.

The receiver waits for information frames. Each time an information f¡ame is
received, the data part is given to the user and an acknowledgment frame is sent
back. This protocol is unreliable and may duplicate information, but shows quite
clearly how a timed specification evolves in time.

The time-out mechanism and the loss of data in the lin€ because of er¡ors are
both modelled with intemal events.

LINK :: ((Transmitter ll I Recelver)
lISendInfo, SendAck, RecInfo, RecAck] Line)

Transrnitter : '
eet {o. . no fimit}

; SENDING

Transmitt€r

Sendlnfo RecAck

Receiver

Reclnfo S€ndAck

\' wai fing for a n"ft inlofmatlon ur_t -)
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SENN]NG : =
Sendlnfo a t* transmit frare +)

; ( RecAck {0..39} (* ack ar¡iYes *)
; Transnitter

tl i 40 (* tine-out *)
; SEN¡ING (*retransrni ss i on* )

)

Receiver : =
RecTnlo {o. . ro fimit}

; give o
; SenalAck 2
; Receive¡

( Sendlnfo {0. . no_limit}
; ( Reclnfo 10 (* transmission tine*)

; l,ine
tl i 1O (x transn. errors, tre.nsn. 1r1ne *)

; l'ine
)

ll SeldAck i0. . no_1init)
; ( RecAck 10 (* transnission time*)

; T,ine
[] i 10 (* transm. errors, transÍ1. tÍme x)

; Line
)

)

The timing assigned tries to model a typical point to point line, where a
fixed transmission delay exists and a va¡iable transmission time d€p€nding on the
length of the frame and the modem setup time. Fig. 6 explains the interpretation
of each one.

ee L to. . no--Limjt) Wailing lo gel user dala

Sendlnfo I
RecAck {0. .39} Waiting fo¡ RecAck before t-out

Frame Sending time

i40 Time out

Reclnfo {o. . no,linit} Waiting fo¡ info frame

eive o Give data to user immediately

SenclAck 2 Ack S€nding üme

Reclnfo 10 Line delay

RecAck 10 Line delay

íto Line delay

Fig. 6. Meaning of the events.

Event occurrence is assumed instantaneous, TIC events represent the end of
the real events. For example Sendlnfo 8 represents the instant where the last
bit goes into the line interface or Reclnfo 10 the instant of time where the last
bit is received at the other end.
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get 10..oo] get {0..co}

Sendlnfo 8

Reclnfo 1

¡ 10 (Ack lost) i10

i l0

Fig. 7, Evolution of the stop and wait protocol.

The evolution of the system is represented graphically by the tree shown
in Fig.7. The dashed lines represent a ¡ecursive definition in the transitions
generated. In the left tree all the events remain visible. In the rightmost tree all
the communication between the transmitter and the line and between the receiver
and the line is hidden. This evolution shows clearly how the information can be
duplicated by such a protocol.

The important difference between the evolution of the system obtained here
and other asynchronous calculi lies in the way the merging of events is done.
In a non timed interpretation (for example, LOTOS without time) other evo-
lutions of the system which do not make sense in a timed context would have
occurreq.

6.2. The Railroad Crossing Example

A second example of the use of TIC which has been taken from Leveson's paper
[LeS87] where it is used as a paradigm of time is presented in this section. The
example models a simple railroad crossing. The system is composed of three parts
(Fig. 8) : the train model, the computer or controlling device model and the gate
model.

The exact TIC description of the railroad crossing is given in the specifi-
cation of RailRoadc ro s s 1ng. Each process of this specification models one
part of the system: Sensors models the train approach as detected by the
sensors, Controfler mod€ls the computer o controlling device and Gate mod-
els the gate behaviour. The time attributes of the specification reflect a given
set of hypotheses about train speed, distance between trains and gate moving
tlmes.
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Traial[

EntérCros s Sensors

NearIn¿L

Controller
0utlnal

I) o wnc oroman¿

Gate

¡own

UpCommand

Leavecros

I'Iearlnd 0

Fig. 8. The railroad c¡ossing: Block structu¡e

?rocess RaifRoadcrossing : =

Sensors
INearInd, 0utInd] | Cont¡of1er

l[Domcomrnan¿l, Upcoonand] | eate
)
Inilp¡o c

?rocesg Sensors : =

TrainNoar {O..no-1iúit} (} waitíng for the traín approaching *)

(x txain feaves the crossine *)
(* sensor senils signal to controfler x)
(* stabiliza.tion delay *)

Sersors
Endpro c

?rocess Co4trofler : =

( Nearlnd {o..no 1iúit} (* controller waiting fo¡ Nearlnd signal *)

Enterorossing 3000 (x train enters the crossing *)
leavecrossing 20
out1nd 0
i 101

(* sensor s6nds signal to cont¡o11er *)

(x controller sends coü¡¡nand to gate *); Downcoúnand 0

; üpooDma,nd o

)
Endproc

Pro cea s Gate :=

tl OutInd {0..no-limit} (x controlfer waiting for out1nd signaf *)
(* controlle¡ sendls coú¡lanal to eate *)

( Downoon¡lan¿l {0..no-li¡lit} (* gate waiting for coonxand *)
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; Dow¡ f00
; Gate

[ ] Upcoúnand {0. . no-fimit}
; UP lOO
; Gate

(* gate reaches ¿lown position *)

(* gate waitine for conrBand *)
(* gate reaches up position *)

Inalpr o c

The evolution of the timed system is shown in Fig. 9. The left hand side

evolution includes all the eyents of the model. The right hand side shows an
abstraction of the evolution where the inte¡nal communication between the parts
has been removed. This simplified evolution is weak bisimulation equivalent to
the Rai lRoadcro s s ing behaviour when the internal communication between
parts is hidden, i.e. gates Nearlnd, outlnd, Downcommand and Upconmand.

The correctness of the behaviour should be determined by assuring that the
Down event occurs before the InterCrossing event. Some safety time interval
should be also assured between both events.

Tra.inNear {0. . oo} TrainNear {0. . oo}

Nearlnd

Downcommand

Down

EnterCrosslng

100

2904

Down

Int erC ro s s ing

leaveCrossing100

2900 Up loo

leaveCrossing

0utInd

UpConrnand

Up 1Oo

Fig. 9. The raihoad crossing: Evolution in time.

7. Conclusions and Furfher Work

The paper presents a calculus which is an upward compatible extension of basic
LOTOS. The calculus differs strongly from the untimed case in the definition
of interleaving of events in the presence of timing constraints. The paper also
includes the definition of timed bisimulation equivalences. The three main goals
of this development have been: 1) To give a definition of interleaving for which
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equivalences may be given, which has similar properties to the untimed cass.

2) To define the interleaving in such a way that the merge of events in time
of interleaved behaviours follows the natural evolution of events in time. 3) To
have an operational definition of the calculus, so that it is possible to extend the
definition of tools like LOLA [QPF89], to the timed case. The three goals have
been achieved, although the definition of the new interleaving operator may be a

bit complex.
From the expressiveness point of view, the compositionality in time of inter-

leaved behaviours is adequate. This means that you can compose trmed systems,
and the evolution of the composition models the natural evolution of such a sys-
tem. On the othe¡ hand, the new interleaving could look rather counterintuitive,
because interleaved behaviou¡s are not independent. Nevertheless, this definition
of the evolution of a system has given no problems in any of the studied examples.
The main limitation of TIC is its inability to represent as soon es possible (asap)
timing requirements. The introduction of asap requirements is one of the future
directions of work.

The use of null separation time between events is also a controversial point.
From the expressiveness point of view, it is a good approximation of negligible
time separation, and from the semantic point of view it is necessary for the
representation of interleaving. To be exact, it is necessary, in that the calculus
does not allow simultaneous execution of two events. The introduction of real
parallelism to represent simultaneous events could have avoided the allowance of
the zero seDaration time.

From tñe applicability point of view, the calculus has been developed to make
possible the study of the evolution of systems in time. This evolution will be
studied mainly by state exploration and testing, using tools like LOLA [QPF89],
which can be easily adapted to the timed semantics, and hopefully will have a
more or less similar performance as in the non timed case. Tesiing TIC processes
is a practical necessity, so a definition and study of testing equivalence is needed.

Although it seems thal the defined equivalences have the properties required
lrom the application point of view, the development of a complete equational
characterization of the weak timed bisimulation would be of interest because it
would provide a more complete knowledge of the properties of the equivalence,
and it would probably lead to a denotational model of the induced semantics.
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