

Arturo Azcorra University Carlos III of Madrid March 2002

© 2001 Departamento de Ingeniería Te1emática - Universidad Carlos III de Madrid.

http://www.it.uc3m.es

Contents

Problem Discussion
Description of IPv64
Advantages of IPv64
Conclusions

TODAY

• 6to4 is very suitable to interconnect IPv6 islands

Advantage of IPv64

Process as IPv6 in transit, at every IPv64 network

Description of IPv64

Problem Discussion
Description of IPv64
Advantages of IPv64
Conclusions

Design Principles of IPv64

- Make advantage of the complexity of dualstack systems
 - Maintain compatibility with other transition mechanisms

 Stimulate the migration of transit networks to IPv6 by obtaining immediate benefits from migration

IPv64 basics

- End-to-end usage of double header: [IPv4 + IPv6]
 - Concept of "Sufficiently close" IPv4 address
- Processing as IPv6 at every IPv64 router
- Processing as IPv4 at every IPv4-only router
- Simplified transit through IPv6-only networks

Format of IPv64 Packets

Double header: IPv4 header followed by IPv6 header

It is NOT plain tunneling, as the IPv6 header remains vissible to IPv64 routers

UNIVERSID AD CARLOS III DE MADRID IPv64 Transition Mechanism – March02 9

Creating IPv64 packets

- Create IPv4 sub-header of the IPv64 packet
- Obtaining the sufficiently close IPv4 source and destination addresses
 - An IPv4 address beyond which no IPv4 router will be transversed until to the IPv6 destination
- The IPv4 sufficiently close <u>source</u> address is known by context to the source system
- The IPv4 sufficiently close <u>destination</u> address is obtained from the IPv6 destination address

Identifying IPv64 packets

Bit 16 of the second word of the IPv4 header

RFC791 => Bit unused: should be set to 0 by hosts and forwarded unchanged by routers

Set to 1 => IPv64 Packet!

Processing IPv64 packets

- IPv4-only routers process IPv64 packets as conventional IPv4 packets
 - IPv64-enabled routers
 - Detect that it is IPv64 packet
 - Conventional Processing of IPv6 header:
 - Forwarding, Hop Limit and
 - > Options, diffserv, flow label, extension headers,
 - Adapt outgoing IPv4 header

Cost of IPv64

- Implementation complexity: minor over that of a dual-stack system
- Processing overhead: negligible at transit routers
- Processing overhead at hosts or local routers:
 - Obtaining the "Sufficiently close" IPv4 address
 - Only required once at each side of the end-to-end transit
 - Same requirements of tunnelling approaches
- Transmission overhead: IPv4 added header (same as tunnelling approaches)
- Minor restrictions (max. length, do not fragment, ...)

Advantages of IPv64

Problem Discussion
Description of IPv64
Advantages of IPv64
Conclusions

Advantages of IPv64

 Packet processing as IPv6 at every transit IPv64 network

 Packet processing as IPv4 at every transit IPv4 network

 Compatible with other transition mechanisms

Case Study: ADSL permanent addresses

- ADSL users provided with several permanent IPv6 addresses at their home network
- IPv4-only ISP network
 IPv64 network

Conclusions

Problem Discussion
Description of IPv64
Advantages of IPv64
Conclusions

Conclusions (I)

Does IPv64 work?

YES: available prototype of host and router
 YES: experiments have been performed

Software is available for download at: <u>matrix.uc3m.es/~ipv64</u>

Conclusions (II)

Is IPv64 worth deploying?

- IPv64 allows processing packets as IPv6 at every IPv64 router
- Because of this, it <u>stimulates the migration</u> of transit networks to IPv64, as the benefits of IPv6 packet processing are obtained for all native IPv6 and all IPv64 transition traffic
- IPv64 allows transparent transit through IPv4 networks because IPv64 packets are normally processed as IPv4
- IPv64 is complementary and <u>compatible to other transition</u> approaches
- Implementation complexity, processing overhead and transmission overhead are low (over that of a dual-stack system and tunneling approaches)

Bibliography

- "Internet Protocol Version 64 (IPv64) Specification".
 A. Azcorra, A. Garcia and M. Bagnulo.
 draft-azcorra-ipv64-04.txt. March 2002.
 - Related bibliography
 - RFC 2893. "Transition Mechanisms for IPv6 Hosts and Routers". R. Gilligan, E. Nodmark. Agosto 2000.
 - RFC 3056. "Connection of IPv6 Domains via IPv4 Clouds". B. Carpenter, K Moore. Febrero 2001.
 - RFC 2765. "Stateless IP/ICMP Translation Algorithm (SIIT)". E. Nodmark. Febrero 2000.
 - RFC 2766. "Network Address Translation Protocol Translation (NAT-PT)". G. Tsirtsis, P. Srisuresh. Febrero 2000.
 - "An overview of the introduction of IPv6 in the Internet". W. Biemolt et al. Work in progress (<draft-ietf-ngtransintroduction-to-ipv6-transition-07.txt>). Julio 2001.

Processing IPv64 packets

- IPv4-only routers process IPv64 packets as conventional IPv4 packets
- IPv64-enabled routers
 - Detect that it is IPv64 packet
 - Conventional Processing of IPv6 header:
 - **Forwarding**, Hop Limit and
 - > Options, diffserv, flow label, extension headers,
 - Adapt outgoing IPv4 header. Might require to adjust:
 - IPv4 total length (only if IPv6 packet size changed)
 - IPv4 DSCP (only if it is an edge router)
 - IPv4 address (only if NAT used)
 - Checksum (only if any other change occurred)

Sufficiently Close IPv4 Addresses

- Definition: an IPv4 address beyond which no IPv4 router will be transversed until destination
- Placed in the IPv4 header of the IPv64 packet
 - The IPv4 source address must be sufficiently close to the IPv6 source address
- The IPv4 destination address must be sufficiently close to the destination IPv6 address
- The IPv4 sufficiently close source address is known by context to the source system
- The IPv4 sufficiently close destination address must be <u>obtained</u> from the IPv6 destination address

Resolving the destination Sufficiently Close IPv4 Address

- Strategies for obtaining the destination sufficiently close IPv4 address from the IPv6 destination address
- Only required once, when building the IPv64 packet at host or local router
- Similar requirement to that of other approaches
- Several complementary mechanisms are used:
 - Configured table (useful for some particular cases)
 - Backward learning from source IPv4 address Most useful for information servers
 - Embedding IPv4 address on IPv6 address (as done in 6to4 and other approaches)
 - DNS for a domain: Domain => IPv6address/prefix -> IPv4 address (~ to MX registers)
 - Cache table using IPv6 prefixes: IPv6address/prefix -> IPv4 address