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Abstract 

BitTorrent is one of the most important applications in the current Internet. Despite of its 

interest, we still have little knowledge regarding the connectivity properties of real BitTorrent 

swarms. In this paper we leverage a dataset including the connectivity information of 250 real 

torrents and more than 150k peers to carefully study the connectivity properties of peers. The 

main topology parameters of the studied swarms suggest that they are significantly less 

resilient than random graphs. The analysis of the peer level connectivity properties reveals that 

peers continuously change more than half of their neighbours. Furthermore, we also find that a 

leecher typically keeps stable connections with a handful of neighbours with which it 

exchanges most of its traffic whereas seeders do not establish long-term connections with any 

peer so that they can homogeneously distribute chunks among leechers. Finally, we have 

discovered that a significant portion of the studied peers (45%) have an important 

locality-biased neighbourhood composition.  
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1. Introduction 

BitTorrent is one of the most used applications in the current Internet and is responsible for 

an important portion of the upstream and downstream traffic as revealed by recent reports [1]. 

The significant footprint of BitTorrent in the Internet has motivated researchers and 

practitioners to dedicate an important amount of effort to understanding and improving 

BitTorrent. However, despite this effort, we still have little knowledge regarding the 

connectivity properties exhibited by real BitTorrent swarms at both swarm and peer level. Due 

to the difficulty in collecting the required information from real swarms, most of the existing 

works that analyse connectivity properties are based on simulations [2] or experiments in 

controlled environments [3], [4]. As a result, they are likely to miss some of the effects 

affecting BitTorrent swarms in the wild. To the best of the authors’ knowledge, there is just a 

previous study that evaluates few properties of the overlay topology (i.e., swarm level 

connectivity) of real BitTorrent swarms [5].  

The analysis of the connectivity properties at the swarm level (i.e., overlay topology) and 

at the peer level (i.e., peers’ neighbourhood composition) in real BitTorrent swarms can reveal 

important information such as: (i) the resilience of a swarm to different events such as being 

partitioned [3], (ii) the efficiency of swarming and neighbour selection algorithms and (iii) the 

locality-bias exhibited by current BitTorrent swarms. Furthermore, the characterization of 

these properties is of interest to: (i) researchers and practitioners designing (improving) new 

(existing) BitTorrent clients or related algorithms; (ii) companies using BitTorrent for critical 

functions such as software release, backups distribution or content replication [6][7][8][9] and 

(iii) Internet Service Providers (ISPs) carrying BitTorrent traffic.  

In this paper, we first present a methodology to collect the connectivity information at 

both the swarm and the peer level for the entire lifespan of a real torrent. Specifically, we 

discover new torrents just after their birth by using the RSS service of the most important 

BitTorrent portal, namely The Pirate Bay. Afterwards, we exploit the Peer Exchange (PEX) 

extension of the BitTorrent protocol to gather the set of neighbours for each peer. PEX is a 

gossiping technique whose main goal is to allow peers to exchange their list of neighbours so 

that they can learn about other participants in the swarm without contacting the tracker. Note 

that PEX has been implemented by most of the existing BitTorrent clients and in particular by 

the most popular ones such as uTorrent or Azureus [10]. The information collected from PEX 

(i.e., a peer’s neighbourhood) provides the connectivity information at the peer level. 

Furthermore, by aggregating the neighbourhood information collected from every peer in a 

swarm we are able to build the overlay topology of that swarm (i.e., swarm level connectivity). 

We retrieve the information from each active peer every 10 minutes and then study the 

dynamic evolution of both the overlay topology of the swarm and the composition of each 

peer’s neighbourhood.  

We have applied the described methodology to collect the connectivity information of 250 

real torrents, including more than 150k peers, since their birth during a period of 15 days. This 

datasets constitutes the basis for our analysis, which is divided into two parts. In the first part 

we analyse one of the most important features of a graph: its resilience. Specifically, in our 

study we evaluate the resilience of real BitTorrent swarms to be partitioned. To this end we 

consider two types of events: churn and an eventual attack represented by a random node 

removal and a selective node removal processes, respectively.  
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In the second part of the analysis we focus on the connectivity properties at the peer level. 

First, we study the variability in the composition of peers’ neighbourhoods along time, paying 

special attention to the presence of stable neighbours. Second, we perform a thorough study in 

order to understand whether the level of locality observed in the composition of the peers’ 

neighbourhood is higher/lower than the expected from the random neighbour selection process 

implemented by default in BitTorrent. Furthermore, we group those peers presenting a 

significant positive deviation in the exhibited locality by their neighbourhoods into ISPs and 

countries. This simple technique allows us to discover ISPs and countries whose peers are 

more likely to show locality-biased neighbuorhoods: 

Our main contributions and findings can be summarized as follows:  

 Real BitTorrent swarms are fully resilient to be partitioned under a random removal 

process (e.g., churn). However, they are significantly less resilient than random graphs to 

a highest-degree node removal process (e.g., an attack). This result is of interest to 

researchers and practitioners that work on the enhancement of the different aspects 

(including resilience) of BitTorrent. Furthermore, our observation is also useful for those 

companies using BitTorrent for critical functions such as software release or content 

replication.  

 Both leechers and seeders change a significant portion of their neighbours continuously. 

This is a consequence of the combination of the different neighbour selection algorithms 

implemented by current BitTorrent clients.  

 Leechers keep stable connections with a handful of other peers with which they exchange 

most of the traffic. This number of users is typically larger than the commonly used 

number of unchoke slots (4). Therefore, leechers tend to multiplex their resources (i.e. 

unchoke slots) to optimize their download performance. Furthermore, seeders typically do 

not keep stable connections with any peer so that they homogeneously distribute pieces 

among the participants in the swarm. Again, this result is useful for the design and 

validation of improvements on existing BitTorrent algorithms or the design of new 

algorithms.  

 45% of the analysed peers present at least 30% more local neighbours than expected from 

a pure random neighbour selection process. Furthermore we observe an even more 

pronounced locality deviation in the set of stable neighbours (remember that the stable 

neighbours are those with which a peer exchange most of its traffic). This suggests that 

ISP locality enforcement policies (e.g. throttling), the proliferation of successful 

locality-aware P2P clients or plugins such as Ono [12] and other networking effects such 

as congestion are leading BitTorrent peers to exhibit a higher locality-bias in the 

composition of their neighbourhoods. This result is of interest for ISPs and to those 

researchers and practitioners working in the definition of locality-aware BitTorrent 

clients.  

The rest of the paper is organized as follows. Section 2 briefly introduces the neighbor 

selection mechanisms implemented in BitTorrent. Section 3 describes our measurement 

infrastructure and methodology as well as the dataset used along the paper. Section 4 evaluates 

the resilience of BitTorrent swarms and compares it with that observed for random graphs. 

Afterwards, Section 5 analyses the stability in both the overlay topology and the peers 

neighbourhood composition along time. Section 6 studies the locality-biased composition of 

peers’ neighbourhoods. Finally, Section 7 presents the related work and Section 8 concludes 

the paper. 
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2. Background of Neighbor Selection Algorithms in BitTorrent 

1) Leecher phase algorithms: The unchoking algorithm makes a leecher select N 

(typically 4) neighbours to upload chunks to every 10 seconds. These neighbours are then 

unchoked whereas the rest of the node’s neighbours are choked and will not receive data from 

the peer. The BitTorrent peer unchokes the N neighbours from whom it received most data in 

the last 20 seconds. Therefore, the unchoking algorithm tries to keep good neighbours for 

exchanging traffic with. Furthermore, every 30 seconds the BitTorrent peer performs an 

optimistic unchoke. That is, it chooses a random neighbour and uploads data to it. The 

optimistic unchoke allows nodes to discover better peers to exchange traffic with. Moreover, 

the most important BitTorrent clients such as Vuze or uTorrent utilize the optimistic connect 

[18] during the leecher phase. This algorithm drops the connection to those neighbours that 

have uploaded few or no data to the leecher during some time. These neighbours are 

substituted by new ones. The combination of the three described algorithms leads a leecher to 

identify and drop those peers from which the leecher is not obtaining enough good 

performance. 

2) Seeder phase algorithms: BitTorrent seeders apply different unchoke strategies 

depending on the implementation. The most extended strategies are: (i) proportional in which 

the seeder unchokes every 10 seconds the N leechers that have downloaded more data from it 

in the last 20 seconds and (ii) balanced in which the seeder unchokes peers following a round 

robin policy. Furthermore, seeders use the optimistic disconnect algorithm [18]. Based on this 

algorithm a seeder closes the connection to those peers to which it has not sent data for a long 

period of time (around 5 minutes). The combination of these algorithms (especially the 

balanced unchoking and the optimistic disconnect) aims to make the seeder communicating 

with as many peers as possible, rather than looking for good neighbours as occurs in the 

leecher state.  

3. Measurement Methodology 

The aim of our measurement study is to retrieve the topology graph of real BitTorrent swarms. 

For this purpose, we collect the neighbours list (or neighbourhood)
1
 of each peer in the swarm 

by using the Peer Exchange (PEX) extension of the BitTorrent protocol. In the rest of the 

section we provide a detailed description of both the measurement infrastructure and the 

methodology. For a full description of the BitTorrent ecosystem we refer the reader to [13] and 

[14]. 

3.1 Measurement Infrastructure  

To achieve the described goal, we need to build an architecture that implements mechanisms 

to (i) identify the torrent (or swarm) to be monitored, (ii) identify the peers within the swarm 

and (iii) collect the connectivity information of those peers. To this end we use a Master-Slave 

scheme in which the Master is responsible for learning new torrents from a BitTorrent portal 

and contacting the tracker that manages the swarm associated with each torrent. Furthermore, 

the Master coordinates to which IP addresses (i.e., peers) each Slave has to connect at any 

moment. On the other hand, each Slave has a list of IP addresses (i.e., peers) to monitor. The 

Slave tries to connect to each one of these peers and to retrieve the peer’s neighbours list 

among other information. In particular, our measurement infrastructure is formed by 12 virtual 

                                                      
1 In the rest of the paper we will use neighbours list, neighbours set and neighbourhood undistinguishably. 
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machines, with a single public IP address each, installed in 3 different physical machines. One 

of the VMs acts as Master whereas the other 11 are Slaves.  

3.2 Measurement Methodology  

The methodology of our measurements is based on the one presented in [15] and has several 

similarities with the methodology used in [5] and [33]. In order to learn new torrents we 

decided to use The Pirate Bay portal. This is the most important BitTorrent portal according to 

Alexa ranking
2 and some research studies [14]. The Pirate Bay offers an RSS service where 

each new torrent is announced as soon as it is uploaded to the portal. Our Master is subscribed 

to this RSS service so that it can discover new torrents after their birth. This guarantees that we 

will be able to crawl the full lifespan of a given torrent. The RSS service provides the Master 

with the .torrent file that includes the IP address of the tracker managing the swarm associated 

with the torrent along with other information not relevant to this paper. The Master, then, 

periodically queries the tracker with the maximum frequency allowed by this one (around 10 

to 15 minutes) to avoid being blacklisted. Each reply from the tracker includes: the number of 

seeders (i.e., peers with a complete copy of the file), the number of leechers (i.e. peers with an 

incomplete copy of the file) and a random set (typically 200) of IP addresses of peers 

participating in the swarm. Furthermore, the Master is responsible for coordinating the Slaves’ 

activity. The Master learns the IP addresses of peers within a swarm from the tracker and also 

from the Slaves. The Master has to schedule the connection of the different Slaves to a given 

peer. The Slaves contribute no chunks to other peers, thus, if a Slave connects a few 

consecutive times to a given peer, the latter blocks the former. In order to avoid this, the 

Master schedules the connection to each individual learnt peer in a round robin fashion so that 

a given Slave only connects to the same peer once every 11 connections (around 2 hours). This 

prevents any peer from blacklisting our Slaves.  

Each Slave receives a list of IP addresses (i.e., peers) to connect to. The Slave connects to 

each of them that is reachable, and gathers the neighbours list for those peers supporting the 

Peer Exchange eXtension (PEX). PEX is an extension to the BitTorrent protocol that allows 

peers to exchange their neighbours lists. This reduces the load at the tracker since peers are 

able to learn about other peers without asking the tracker. In particular, a Slave retrieves the list 

of connected and disconnected neighbours from the PEX messages. Note that the list of 

connected neighbours includes those nodes with which the peer has currently an established 

connection, i.e., the peer’s current neighbours. Hence, in our analysis we use exclusively the 

list of connected peers and refer to them as peer’s neighbours list (or neighbourhood). It is 

worth noting that most BitTorrent clients and particularly the most popular ones such as 

uTorrent and Vuze support PEX [10], thus we are able to retrieve the neighbourhood for 

almost every reachable peer. Furthermore, each Slave informs the Master regarding the IP 

addresses obtained through PEX. If any of these IP addresses is new, the Master adds it to the 

list of IP addresses to be crawled.  

As mentioned earlier, there are peers that are not reachable. These are nodes behind a NAT 

that do not use manual or automatic (e.g., UPnP) techniques to open ports in the NAT. 

Therefore if we fail to connect to a given IP address 5 times we declare this peer as 

unreachable. Furthermore, due to the churn phenomenon some nodes join and leave the 

swarm dynamically, so a reachable node may become unreachable, thus after 5 times failing to 

connect to a previously reachable node we consider that it left the swarm.  

                                                      
2 http://www.alexa.com/topsites 
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 3.3 Dataset Description  

We have applied the described measurement methodology to 250 consecutively published 

torrents, learnt from The Pirate Bay’s RSS service from December 20th 2010 until January 4th 

2011. From this set of torrents we were able to learn the neighbours list for more than 150k 

peers. Specifically, we are able to derive the evolution of the neighbourhood composition for 

each peer since, as explained above, we periodically retrieve every peer’s neighbours list. 

Furthermore we map the peers’ IP addresses to their country and ISP using the MaxMind 

Database [16]. Finally, it is worth mentioning that roughly 70% of peers are unreachable and 

thus, we cannot directly collect their neighbourhoods snapshots. However, these peers 

establish most of their connections to other reachable peers (i.e., it is unlikely that two 

unreachable peers establish a connection since it would require to use complex NAT-traversal 

mechanisms). Then, unreachable peers are members of the neighborhoods of reachable peers 

that our tool is able to collect. We identify the IP address of each node that has a given 

unreachable peer as neighbour. The identified IP addresses form the neighborhood of that 

unreachable peer. As indicated above, this technique only misses those connections to other 

unreachable peers (that are unlikely to be established).  

3.4 Representing BitTorrent Swarm as a Graph 

We represent a BitTorrent swarm as a collection of vertices (V) and edges (E). Each peer 

within the swarm is represented as a vertex, thus peer i is represented by vi. Therefore V = [v1, 

v2, ..., vn], where n is the torrent population. Furthermore, eij = 1 if peer i and j are connected 

and 0 otherwise. Hence, the connectivity graph (or matrix) is the representation of E in the 

form of a matrix. Note that in BitTorrent the connections are bidirectional, thus the 

connectivity matrix is symmetric. For each torrent in our dataset we have collected the 

neighbourhood of each reachable peer every 10 minutes; therefore, we are able to present a 

swarm’s connectivity matrix evolution over time in 10 minutes intervals. For each snapshot of 

the connectivity matrix we calculate the following standard parameters used in graph theory 

studies: clustering coefficient CK and characteristic path length LK. 

4. Resilience of Real BitTorrent Swarms 

In this Section we investigate one of the most relevant performance aspects, namely the 

resilience of real BitTorrent swarms. Resilience can be measured in different manners, in this 

paper we specifically analyse the resilience of real BitTorrent swarms to be partitioned and 

compare it to the resilience shown by equivalent random graphs, that are known to be resilient 

topologies.  

We explore two scenarios: nodes failures or churn modeled as a random removal process 

and an eventual attack modeled as the selective removal of the highest degree nodes. The 

implementation of BitTorrent for file-sharing over Internet includes some mechanisms that 

help to address the problem of overlay partitioning (e.g., PeerExchange, DHTs or querying the 

tracker when the size of the neighbourhood goes below a threshold). However, BitTorrent (or 

modified versions of it) is being used for multiple purposes in different contexts (e.g., 

distribution of data across datacenters or software distribution within a company) and will be 

eventually used in new contexts in the future. These specific implementations of BitTorrent 

may or may not include the previous mentioned mechanisms and may be susceptible to attacks 

or failures of the involved nodes. Therefore, understanding the resilience of BitTorrent 

overlays is of high interest in the future development of BitTorrent (or modified version of it) 
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in diverse contexts. 

4.1 Methodology  

We analyse the resilience of a real BitTorrent swarm snapshot and an equivalent (same 

number of vertices and edges) Erdos-Reni [17] random graph to two type of events: (i) a 

random removal process in which we sequentially remove nodes selected at random until the 

graph is partitioned into (at least) two separated components; and (ii) a selective removal 

process in which we sequentially remove the node having the highest degree until the graph is 

partitioned into (at least) two separated components. The first event can represent, for instance, 

a scenario in which several (random) peers fail or leave the system (i.e., churn) whereas the 

second event can represent an attack against the swarm.  

In order to quantify the resilience of a given graph to be partitioned we use two different 

metrics:  

 K, represents the total number of peers that need to be removed in order to partition the 

graph.  

 k, represents the percentage of peers that need to be removed to partition the graph. 

Therefore k = 100 K/N where N is the number of peers forming the swarm snapshot. 

Note that we will refer to Kreal

 

(kreal) and Krand (krand) as the values of K (k) associated with 

a real swarm snapshot and its equivalent random graph, respectively. Due to the computational 

cost of these experiments we perform our study considering a random set of 400 snapshots in a 

stable phase (i.e., after the initial flash-crowd phase) from the 250 torrents forming our dataset. 

In addition, to minimize the impact of abnormal peers (e.g., new incomers or nodes behind a 

NAT) we consider only those peers having a degree ≥ d. We have perform the experiments 

with d = 2, 5, 10 and 15. Although the obtained results present some quantitative differences 

for different values of d (the higher d is, the higher the number of nodes to be removed to 

partition the graph is), they are qualitatively consistent. Therefore, due to space constrains in 

this paper we present results for d = 5.  

4.2 Random Node Removal  

Given the random nature of this removal process we perform 10 simulation runs for each real 

swarm snapshot. Furthermore, for each snapshot we generate 10 Erdos-Reni random graphs 

with the same number of vertices and edges and for each of them we simulate 10 runs of the 

random removal process. Hence, for each snapshot and its equivalent random graphs we can 

calculate the average values of K and k as well as their standard deviations.  

Fig. 1(a) shows in a scatter plot the average value of krand

 

vs the average value of kreal

 

for 

all the analysed swarm snapshots. We observe that the value of k for most of the analysed 

snapshots is located in the point (100,100). This means that both real snapshots and equivalent 

random graphs are fully resilient to a random removal process. There are only a few (2%) real 

snapshots that are not fully resilient, but even in these ones more than 85% of the nodes must 

be removed to partition the graph. Finally, it is worth to note that the standard deviation for 

both kreal and krand

 

is negligible for all the studied snapshots (in particular, the standard 

deviation for the number of removed nodes to partition the graph is lower than 1 for all studied 

snapshots).  

Hence, the obtained results suggest that real BitTorrent swarms are in most of the cases 

fully resilient to a random removal process of peers that could be produced by different factors 

such as churn, peers’ failures or an attack. This result is consistent with previous results 
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obtained in a controlled environment [3].  

4.3 Highest Degree Node Removal  

In this case, the removal process for a given real snapshot is deterministic, therefore we 

perform a single run for each real snapshot. Again, we generate 10 different equivalent random 

graphs for each analysed snapshot. For each one of these random graphs we perform a single 

run of the removal process since as said before it is a deterministic process. Therefore, in this 

case we calculate the standard deviation only for Krand and krand . Again, the standard deviation 

for the number of removed nodes to partition the graph is lower than 1 for all studied 

snapshots.  

 Fig. 1(b) shows in a scatter plot the average value of krand

 

vs the value of kreal

 

for all the 

analysed swarm snapshots. We observe that random graphs are significantly more resilient to 

the considered removal process than real snapshots. In particular, krand

 

ranges roughly between 

40% and 80% whereas kreal

 

ranges between 1% and 50%.  

Moreover, we analyse whether the size of the torrent has any impact in its resilience. 

Towards this end, Fig. 1(c) and Fig. 1(d) present scatter plots of the value of Kreal and kreal

 

in 

front of the snapshot size for every analysed real swarm snapshot considering a highest-degree 

removal process,  respectively. Note that Fig. 1(c) presents a log-scaled x-axis whereas Fig. 

1(d) uses a log-log scale. On the one hand, there is a surprisingly small correlation between 

Kreal and the size of the swarm that suggests that for large swarms the number of nodes to be 

removed to partition the graph is in the same order of magnitude than in the case of small 

swarms. This low correlation leads to the results observed in Fig. 1(d) in which we see that the 

relative number of peers to be removed decreases significantly with the size of the swarm. 

Therefore, if we consider that the selective node removal process introduced in this Section 

represents an attack to a BitTorrent swarm, we conclude that the attacker would need roughly 

the same resources to perform an attack independently of the size of the swarm under attack. 

This observation is consistent with the fact that larger BitTorrent swarms are typically less 

random than small ones as shown in [29]. Since random graphs are by definition resilient, the 

less similar the swarm structure is to a random graph the less resilient we expect it to be.  

 
(a) Avg. krand vs Avg. kreal (random removal)  

 
(b) Avg. krand vs kreal (highest-degree removal) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 9, Sep. 2013                                2254 

Copyright ⓒ 2013 KSII 

 
(c) Kreal vs snapshot size (highest-degree removal) 

 
(d) kreal vs snapshot size (highest-degree removal) 

Fig. 1. Results of the resilience of real BitTorrent swarms and equivalent random graphs to random 

and highest-degree removal processes. 

4.4  Summary and Discussion  

Our results suggest that BitTorrent swarms are fully resilient to a removal process of random 

nodes, however, their resilience to a selective removal process is significantly smaller than the 

one shown by random graphs.  

 5. Stability 

In this Section we analyse the stability of BitTorrent swarms at two different levels: (i) 

overlay topology stability, we quantify the variability of the graph characteristics (clustering 

coefficient and characteristic path length) of a given torrent over time. (ii) peer’s 

neighbourhood stability, we quantify how stable the neighbourhood of a given peer is over 

time and carefully analyse the subset of stable neighbours.  

5.1 Overlay Topology Stability of Real Swarms 

We study the stability of the main topological parameters (i.e., clustering coefficient and 

characteristic path length) along the time. If the variability of those parameters is low across 

time we can conclude that the topology is overall stable. Fig. 2 presents the mean and the 

standard deviation of the clustering coefficient (characteristic path length) for each torrent 

within our dataset sorted by the mean of Ck (Lk) in ascending order. We observe that for a 

major portion of the torrents the standard deviation is relatively small compared to the mean 

value for both the clustering coefficient and the characteristic path length. This suggests that 

overlay topologies of real BitTorrent swarms present a high stability. Note, that a more 

detailed studied of the overlay topology characteristics of BitTorrent swarms can be found in 

[29]. 
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(a) CK 

 
(b) LK 

Fig. 2. Mean an standard deviation of the clustering coefficient (Ck) and characteristic path length 

(Lk) for each torrent. 

5.2 Peer’s Neighbourhood Stability 

As explained in Section 3 we have collected the neighbourhood (i.e., list of neighbours) for 

each peer every 10 minutes approximately. Then, to quantify the peer’s neighbourhood 

stability we have computed the percentage of neighbours that appear in two consecutive 

neighbourhood snapshots for every peer in our dataset. In addition, we considered separately 

those periods in which a peer is a leecher and a seeder. Fig. 3 presents the CDF for the defined 

metric. The results show that around half of leechers change 50% of their neighbours between 

two  consecutive snapshots (i.e. every 10 minutes). This percentage dramatically increases up 

to 80% for seeders. Hence, BitTorrent peers are continuously changing a significant portion of 

their neighbours. This high variability is due to two causes: (i) the churn effect (i.e., peers 

leaving and joining the swarm) and (ii) the combination of different neighbour selection 

algorithms implemented in BitTorrent clients such as the unchoke algorithm, the optimistic 

connect algorithm (used in the leecher phase) and the optimistic disconnect algorithm (used in 

the seeder phase) described in Section 2. 

  
Fig. 3. CDF of the percentage of neighbours that appear in two consecutive snapshots (10 minutes 

apart) of a given peer 

5.3 Stable Neighbours 

In the previous subsection we have shown that both seeders and leechers are constantly 

changing a significant number of their neighbours. This leads to the reported high dynamism 

in the composition of peers’ neighbourhoods. In this subsection, we change our focus and aim 

to analyse peers’ stable neighbours. We define a stable neighbour as a neighbour that appears 
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in all the neighbourhood snapshots of a given peer. Note that similar to the previous subsection 

we consider separately the leecher and seeder phases for a peer. As we have seen the main 

algorithms applied by a BitTorrent leecher are unchoke, optimistic unchoke and optimistic 

connect. The objective of these algorithms is to find a set of good neighbours that provides the 

highest possible download rate to the leecher and keep the interaction with them. Our 

hypothesis is that these algorithms converge to a set of stable neighbours with which the peer 

systematically exchange traffic with. Indeed, this hypothesis is supported by the results 

presented by Legout et al. [24] showing that peers of similar speed tend to cluster together and 

exchange traffic among them. 

In addition, seeders apply different algorithms: proportional or balanced unchoke and 

optimistic disconnect. The final objective of the combination of these algorithms (especially, 

in the case of combining balanced unchoke and optimistic disconnect) is letting the seeder to 

distribute pieces of the content homogeneously among leechers. Then according to these 

algorithms, it is expected that during the seeder phase a peer tries to reach as many peers as 

possible and thus, tends to have a few (or none) stable neighbours.  

In order to validate our hypothesis, we have collected all the neighbourhood snapshots for 

50k peers within our dataset and analysed separately the leecher and seeder phases for each 

peer
3
. Fig. 4 shows the CDF of the time that each one of the analysed peers spend in their 

leecher and seeder phases, respectively. We observe that in median leechers stay in the system 

70 mins whereas seeders stay 100 mins. On the one hand, the leecher phase time roughly 

represents the download time, although in some cases the leecher leaves the torrent before 

finishing the download. On the other hand, we observe that seeders typically stay in the system 

longer than leechers. This result is supported by previous works that shown that users 

dedicated to do professional seeding (thus presenting long seeding sessions) are responsible 

for a major portion of the content published in The Pirate Bay [15]. We refer the reader 

interested on the behaviour of professional seeders to [15]. 

 
Fig. 4. CDF of time in the torrent 

Moreover, for each peer (and phase) we have calculated two metrics: (i) the number of 

stable neighbours and (ii) the percentage of stable neighbours as the ratio between the number 

of stable neighbours and the median size of the peer’s neighbourhood in the considered phase. 

Fig. 5(a) and Fig. 5(b) depict the CDF for these two metrics for the 50k analysed peers, 

respectively. The results validate our hypothesis.  

Fig. 5(b) shows that leechers keep an important percentage (30% in median) of stable 

neighbours. These are neighbours with which the peer systematically exchange traffic. 

                                                      
3 Note that some peers can present only one of the two phases. 
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Furthermore, seeders have a much lower percentage of stable neighbours, in fact half of the 

seeders do not have any stable neighbour. Note that few seeders present a high fraction of 

stable neighbors. These are seeders located in small swarms where they connect to the same 

set of peers a long time. 

 If we analyse now the number of stable peers (Fig. 5(a)), we observe that leechers have in 

median 10 stable neighbours. This value is higher than the typical number of unchoke slots 

used by the leecher (4). This observation suggests that current BitTorrent implementations 

lead leechers to multiplex their resources (i.e., unchoke slots) in time so that they are able to 

attract a larger number of peers to obtain pieces from. Moreover, 60% of seeders presents a 

number of stable peers ≤ 1. This finding suggests that current implementations of seeding 

algorithms lead seeders to communicate with as many peers as possible. By doing so, seeders 

aim to obtain an homogeneous dissemination of pieces among participants in the swarm 

(avoiding selfish behaviours by which a peer tries to retrieve all the pieces from the seeder 

without contributing pieces to other peers).  

 
(a) Absolute 

 
(b) Relative 

Fig. 5. CDF of the absolute number and percentage of stable neighbours in a peer’s routing table 

5.4 Summary and Discussion 

First, we have shown that both leechers and seeders continuously change a significant portion 

(more than half) of their neighbours.. Surprisingly, our results reveal that the overlay topology 

properties (i.e., clustering coefficient and characteristic path length) of real BitTorrent swarms 

remain stable, despite the high dynamicity reported at the peer’s neighbourhood level. 

Second, our analysis of the set of stable neighbours leads to the following conclusions: (i) 

leechers tend to interact (i.e., exchange data) with a reduced number of neighbours, that is 

typically larger than the number of unchoke slots, in order to optimize their download rate, (ii) 

seeders present a very reduced number of stable neighbours, thus they interact with a large 

number of peers in order to guarantee the proper dissemination of pieces within the swarm. 

The results reported in this Section reveal some interesting properties regarding the 

swarming efficiency driven by current BitTorrent client implementations and constitute a solid 

basis to design future BitTorrent implementations and compare their performance with the 

existing ones. Specifically, future developments can consider aspects such as: (i) how 

modifying the dynamism in the formation of peer’s neighbourhood would affect the 

performance of the protocol in different environments (e.g., fixed vs mobile environments), 

and (ii) exploring the effects of reducing/increasing the number of stable neighbours for 

seeders and/or leechers. 
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6. Analysing Locality in Real BitTorrent Swarms 

The random bootstrapping used in P2P applications, and more specifically in BitTorrent, is 

pushing a lot of traffic to the transit links of ISPs increasing their operational costs [19], [20]. 

Although the flattening of the Internet topology [32], as well as the falling marginal costs of 

transit traffic, may diminish the importance of the traffic locality debate in many scenarios, 

some ISPs have started to implement different policies (e.g., throttling) in order to minimize 

the impact of BitTorrent traffic in their networks [11, 30, 31]. Moreover, the research 

community have proposed promising solutions such as Ono [12] or P4P [21] to make a 

BitTorrent node select (when available) neighbours within its own ISP, thus confining as 

much BitTorrent traffic as possible within the ISP. In addition, other aspects such as network 

congestion can also affect the amount of BitTorrent traffic localized within an ISP. Note that 

all these factors are likely to affect just to a subset of peers in a swarm rather than the whole 

swarm. Therefore, in this Section we study the locality phenomenon at the peer level. 

Specifically we investigate whether the locality level exhibited by a peer’s neighbourhood 

and/or set of stable neighbours is higher/lower than the expected from the random neighbours 

selection process implemented by default in BitTorrent.  

6.1 Methodology  

In this Section we consider the same 50k peers used for our analysis in Section 5C. We first 

study whether the neighbourhoods of BitTorrent peers present an ISP- or a country-biased 

composition. That is, whether the number of neighbours from the same ISP (or country) as the 

peer is higher than the expected compared to a purely random process. Then we repeat the 

analysis considering exclusively the peers’ stable neighbours (i.e., neighbours with which the 

peer systematically exchange traffic with). Note that we use the Maxmind database [16] to 

map each peer to its ISP and country. Next we describe our methodology, which is based on 

the methodology presented in [22]:  

Let us consider a peer p belonging to a torrent swarm T. We denote V(T) as all peers 

participating in T. We also define V(I,T) as a subset of V(T) which includes all peers belonging 

to p’s ISP (I) and V(C,T) as a subset of V(T) which contains all peers belonging to the same 

country (C) as p.  

On the one hand, we consider a random neighbours selection hypothesis that represent the 

expected functionality of the BitTorrent protocol. We refer to this hypothesis as H0 in the rest 

of the section. In particular, we calculate the expected (i.e., average) number of local 

neighbours that p should have from its ISP (Ei) and its country (Ec) in each of its 

neighbourhood snapshots under H0. This is given by the mean of the Hyper-Geometric 

distribution. The probability of getting x “successes” (i.e., local nodes) when drawing 

randomly W samples from a pool of N items, out of which M are “successes” is given by the 

HyperGeo(x, N, M, W).
4
. On the other hand, we calculate the actual number of local nodes 

from the same ISP (In) and from the same country (Cn) that appears in p’s neighbourhood.  

Finally, we define a simple metric named the Locality Ratio (LR) that captures whether the 

neighbourhood of a given peer is biased towards having more local nodes than expected from 

a random selection process. More specifically, we define LRI (ISP Locality Ratio) as In/Ei

 

and, 

LRC

 

(Country Locality Ratio) as Cn/Ec. Hence, a peer with an LRI > 1 and LRC

 

> 1 has a higher 

number of neighbours from its ISP and country than expected under H0, respectively.  

                                                      
4 In our case, for a given peer, N is represented by the swarm size - 1 (itself), M is represented by the number of local 

nodes (from the ISP or Country) -1 (itself) and W is represented by the peer’s neighbourhood size. 
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Prior to presenting our results, we apply a filtering technique to avoid a bias in the 

obtained results. Previous works [22], [23] reported that a given peer p can be located in an 

unlocalizable torrent
5 (i.e., swarm snapshot). Locality is, by definition, (almost) impossible for 

this peer since the number of local nodes in the considered swarm snapshot is 0 or very low. 

Therefore, we have removed from our dataset all those peers located in unlocalizable swarm 

snapshots. Specifically, we consider that a swarm snapshot is unlocalizable for a peer p if: (i) 

there are no other local peers or (ii) p’s Ei

 

(Ec) < 1 (i.e., the expected number of local nodes in 

p’s neighbourhood is very low). To validate our filtering technique we have measured the 

absolute and relative (as a percentage of whole population) number of local nodes for those 

filtered peers. The results are shown in Fig 6. For the case of ISP locality we observe that (in 

median) there are just 1.5 local nodes for the filtered peers. Furthermore, these local nodes 

represent less than 2% of their torrents population. The results for country locality are similar. 

Therefore, we can conclude that our filtering technique successfully removes peers located in 

unlocalizable torrents.  

 
(a) Absolute 

 
(b) Relative 

Fig. 6. Number of local available nodes for peers in unlocalised torrents. 

6.2 Locality-biased Peer’s Neighbourhood  

In this subsection we apply the previously described methodology to every neighbourhood 

snapshot of the 50k analysed peers. Fig. 7 shows Ei vs In

 

and Ec

 

vs Cn

 

for every considered 

neighbourhood snapshot. We observe that most peers have a locality-ISP biased 

neighbourhood (In > Ei) whereas this bias is slightly lower when we consider the country 

criteria. Therefore we can conclude that a significant portion of BitTorrent peers present a 

locality-bias neighbourhood composition. To gain more insight into this phenomenon we next 

quantify the reported bias. To this end, Fig. 8 presents the distribution of the median LRI

 

and 

the median LRC

 

of each peer across all its neighbourhood snapshots. We can observe that an 

important portion of peers (45%) have a surprisingly high LRI > 1.3. This means that they have 

30% more local neighbours from its own ISP than expected under H0. This percentage gets 

reduced when looking at the locality at the country level where only 27% of peers shows LRC > 

1.3.  

                                                      
5 We can have peers for which the torrent is unlocalizable and others for which it is not, within the same swarm. 
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(a) ISP 
 

(b) Country 

Fig. 7. Expected number of local neighbours vs actual number of local neighbours. 

 

Fig. 8. CDF of locality ratio 

Furthermore, it is interesting to analyse the demographics of the observed locality 

phenomenon in order to discover whether there are ISPs presenting a large number of peers 

with a high level of locality. Towards this end, for each ISP in our dataset we collect the 

absolute and relative number of peers having a high LRI. We refer to these peers as high 

locality peers. Specifically, we consider a peer as a high locality peer if it has a LRI > 1.3. 

Table 1 shows the 10 ISPs with the largest number of high locality peers. In addition, the table 

reports the percentage of high locality peers and the median LRI of the high locality peers for 

each one of these 10 ISPs. Interestingly, we observe the presence of major US and European 

ISP such as Comcast (US) or Virgin Media (UK) in the list.  Furthermore, it is worth 

mentioning the presence of 4 different Indian ISPs in the list. Hence, the mentioned ISPs 

present specific conditions that lead to a locality biased neighborhood composition in their 

peers. Specifically, factors such as enforced locality policies, network congestion or the 

proliferation of locality-aware BitTorrent clients may be the cause of the observed results. 

 

Table 1. ISPs with the highest number of high-locality peers at the overlay construction level (sorted 

by the number of high-locality peers) 

ISP  Median  %  

Bharti Broadband  - IN 2.22  79.75  

NIB (National Internet Backbone) - IN  1.77  42.40  

Comcast Cable - US 1.65  36.80  

PTCL Triple Play Project - PK 1.89  55.44  

CHTD, Chunghwa Telecom Co., Ltd. - TW 1.89  72.19  

Road Runner  -US 1.63  36.27  

Mahanagar Telephone Nigam Ltd.  - IN 1.97  42.86  
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RELIANCE COMMUNICATIONS - IN 1.71  38.06  

Virgin Media - UK 1.72  38.16  

SBC Internet Services - US 1.74  41.34  

 

We repeat the same analysis at the country level for peers with LRC > 1.3. The results are 

shown in Table 2. India is the country with the highest number of high locality peers at the 

country level. The US occupies the second position in the ranking and we also observe the 

presence of some European countries. It is also worth noting that more than 60% of users from 

Taiwan are high locality peers. These results are consistent with the conclusion obtained at ISP 

level. 

 

Table 2. Countries with the highest number of high-locality peers at the overlay construction level 

(sorted by the number of high-locality peers) 

Country  Median  %  

IN  1.89  25.38  

US  1.58  29.51  

GB  1.66  32.71  

RU  1.80  23.15  

PK  1.85  47.40  

CA  1.60  31.95  

TW  1.85  60.96  

PL  1.71  36.94  

FR  1.63  37.71  

SE  1.58  15.83  

6.3  Locality-biased Peer’s Stable Neighbours Set  

The ultimate objective of the different policies implemented by ISPs [11] as well as 

researchers’ proposals [12], [21] is reducing the amount of traffic crossing ISPs’ transit links. 

Therefore, it is interesting to examine whether we observe any locality effect at the 

traffic-exchange level. For this purpose, we apply the described methodology to the stable 

neighbours of the 50k analysed peers. Remind that the stable neighbours are those nodes with 

which a peer systematically exchanges traffic with.  

Fig. 9 shows box plots with the distribution of LRI and LRC

 

at both the neighbourhood and 

the stable neighbours (i.e., exchange traffic) levels. Specifically, the boxes represent the 25, 50 

and 75 percentiles of the different LR distributions. First, we observe that the set of stable 

neighbours shows a slightly higher locality-bias than the neighbourhood at both ISP and 

country levels. Second, the figure confirms that the locality effect is more marked at the ISP 

level than at the country level. 
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Fig. 9. Distribution of LRI and LRC at overlay construction and the exchange traffic levels 

Finally, we have repeated the demographic analysis considering in this case the set of 

stable neighbours. The results are presented in Table 3 and Table 4 for ISP level and country 

level locality, respectively. We conclude that the observations done at the neighbourhood level 

are also valid at the stable neighbours level: the presence of several major ISPs from India and 

several major US (Comcast) and European (Telecom Italia, Telefonica Espana) providers 

among the top 10 ISPs with a larger number of high locality peers. 

 

Table 3. ISPs with the highest number of high-locality peers at the traffic exchange level  

(sorted by the number of high-locality peers) 

ISP  Median  %  

NIB (National Internet Backbone) – IN 1.93 51.84 

Bharti Broadband  - IN 2.53 76.52 

CHTD, Chunghwa Telecom Co., Ltd. - TW 1.69  61.11 

Comcast Cable – US 1.63 31.34  

Telecom Italia  - IT 1.65 30.91 

Bredbandsbolaget AB – SE 1.55 45.83 

Telefonica de Espana - ES 1.57 25.64 

Road Runner  - US 1.77 36.00 

PTCL Triple Play Project - PK 2.28 41.18 

Mahanagar Telephone Nigam Ltd. - IN 2.47 66.67 

 

Table 4. Countries with the highest number of high-locality peers at the traffic exchange level 

 (sorted by the number of high-locality peers) 

Country  Median  %  

IN  1.93 50.83 

US  1.70 30.15 

PL  1.83 59.32 

RU  1.76 20.43 

GB  1.83 36.44 

SE  1.55 13.00 
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TW  1.71 48.00 

DE  1.56 21.65 

ES  1.58 9.94 

CN  1.68 30.91 

6.4 Summary and Discussion  

In this section, we have demonstrated that a significant fraction of the studied peers (45%) 

present at least 30% more local neighbours than those expected from a purely random 

neighbour selection process. Furthermore, this biased composition is even more marked when 

we consider the set of stable neighbours, which are those with which a peer exchange most of 

its traffic. The enforcement policies implemented by ISPs (e.g., throttling) along with the 

proliferation of successful locality-aware BitTorrent clients such as Ono [12] and other 

network effects such as congestion seem to be the cause for the observed results. Furthermore, 

our results reveal that Indian ISPs along with large American and European ISPs are those 

hosting a larger number of users presenting a higher locality-biased in their neighbourhood 

composition. Finally, our results show a higher locality-biased at the ISP than at the country 

level. This can be explained since it is likely that in a specific country just some ISPs 

implement locality-enforcing techniques, therefore when analysing the locality-biased at the 

individual ISPs we observe a larger bias than in the case of considering aggregately all the 

peers within the country.  

7. Related Work 

7.1 Stable Relationship of BitTorrent Clients  

Few works in the literature have analysed the existence of stable connections among peers in 

BitTorrent swarms. First, Legout et al. [24] used a controlled environment and few torrents to 

analyse the interaction between peers in a swarm. The authors conclude that peers with similar 

speed tend to establish stable relationships among them. This observation partially supports 

our result across hundreds of real BitTorrent swarms in which we observe that peers tend to 

keep stable connections (i.e. exchange traffic) with few of its neighbours. Second, Choffness 

et al. [25] use traces from 10K peers to identify the existence of communities of BitTorrent 

users across torrents and time. Specifically, the authors reveal that BitTorrent users with 

similar interests tend to interact over time in multiple torrents leading to the creation of 

identifiable communities.  

7.2 Resilience of BitTorrent Swarms  

To the best of the author’s knowledge the unique paper studying the resilience of BitTorrent 

swarms to be partitioned is [3]. The authors analyse similar scenarios to those considered in 

our study, the namely random node removal process and the highest-degree nodes removal 

process, in a controlled environment for a single torrent. Rather, we consider 400 swarms 

snapshots collected from 250 real BitTorrent swarms. In addition we compare the resilience of 

real BitTorrent swarms to that shown by equivalent random graphs.  

The results for the random node removal process are similar in both studies, however, they 

significantly differ for the high-degree node removal process. The emulation results from [3] 

conclude that more than 80% of nodes must be removed in order to partition a BitTorrent 
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swarm whereas our experiments reveal that the number of peers to be removed is < 50% for 

any of the real BitTorrent swarms snapshots analysed. Therefore, results in controlled 

environment seem to overestimate the resilience of BitTorrent swarms.  

7.3 BitTorrent Locality:  

Since the seminal work by Karagiannis et al. [19] that demonstrated a substantial overlap in 

the torrents downloaded by users located within a campus network, substantial efforts have 

been dedicated to understanding and implementing BitTorrent locality solutions. Systems 

implementing locality solutions such as Ono [12] or P4P [21] have been proposed showing an 

enormous potential for locality techniques.  

Some other works have performed thorough studies of the expected performance of these 

Locality solutions [22], [26], [27]. Typically these performance studies assume that current 

BitTorrent swarms present a random overlay structure. However, our analysis reveals that 

current BitTorrent swarms already show a locality-biased composition. Hence, the results of 

previous performance studies could be revisited using our conclusions.  

In addition, some works [22], [23] have shown that the demographics of a torrent directly 

impact its inherent locality level and the theoretical capacity to localize traffic. For instance, a 

torrent for a local Japanese movie is expected to confine (even under a random overlay 

construction) most of the traffic within Japanese ISPs. Instead, a blockbuster popular movie is 

expected to be consumed by a large number of users across the world leading to a poor traffic 

locality but offering a large room for improvement using locality techniques. Furthermore, 

these cited works report the presence of unlocalizable torrents for a peer, i.e. torrents in which 

there are not other nodes from the same ISP, thus making locality impossible in practice for 

that peer.  

However, to the best of the authors’ knowledge little effort has been dedicated to 

characterizing the level of locality exhibited by current BitTorrent swarms. To the best of the 

authors knowledge just Otto et. al [28] addressed this issue by analysing the inter-country and 

inter-AS BitTorrent traffic using a dataset including traces for 500K users. In our study instead 

we analyse the locality-biased composition of 50K peers’ neighbourhoods as well as their 

stable neighbours. Furthermore, we report those ISPs and countries in which we observe a 

more significant locality effect. We believe that the results in both studies are complementary.  

8. Conclusions 

In this paper we present a comprehensive study of the overlay topology structure and the 

connectivity properties at peer level of real BitTorrent swarms. For this purpose we leverage 

information collected from 250 real torrents and more than 150k peers. Our results 

demonstrate that real BitTorrent swarms are resilient to churn (i.e., random node removal 

process). However, real swarms are significantly less resilient to possible attacks (i.e., 

highest-degree node removal process) than equivalent random graphs. Furthermore, our 

analysis of the composition of peers’ neighbourhoods reveal that current BitTorrent 

implementations make both leechers and seeders modify a significant portion of their 

neighbourhoods in short periods of time. In addition, a leecher (typically) keeps stable 

connections with just a handful of its neighbours with which it exchange most of its traffic. In 

contrast, seeders do not keep long-term connections with other peers in order to guarantee the 

homogeneous distribution of pieces among the participants in the swarm. Finally, our results 

reveal that a significant fraction of peers present a clear locality-biased composition of both 
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their neighbourhoods and their set of stable neighbours. This suggests that locality-enforcing 

policies of some ISPs, the proliferation of locality-aware BitTorrent clients and some other 

network effects such as congestion are localizing an important part of BitTorrent traffic within 

some ISPs. In particular, our results show that some large US and European ISPs along with 

several Indian ISPs host a large portion of peers with an important locality-biased 

neighbourhood composition. 

These insights seem to be of interest and usefulness for: researchers and practitioners 

working on the improvement of BitTorrent related algorithms, companies that use BitTorrent 

to perform critical tasks such as software release or content replication and ISPs carrying 

BitTorrent traffic.  
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