
TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES
Trans. Emerging Tel. Tech. 2015; 26:179–194

Published online 11 August 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/ett.2863

RESEARCH ARTICLE

Torii: multipath distributed Ethernet fabric protocol
for data centres with zero-loss path repair
Elisa Rojas1, Guillermo Ibanez1, Jose Manuel Gimenez-Guzman1*, Diego Rivera1 and
Arturo Azcorra2

1 Departamento de Automatica, University of Alcala, Alcalá de Henares, Spain
2 IMDEA Networks, Leganés, Spain

ABSTRACT

This paper describes and evaluates Torii, a layer 2 data centre network fabric protocol. The main features of Torii are
being fully distributed, scalable, fault-tolerant and with automatic setup. Torii is based on multiple, tree-based, topological
media access control addresses that are used for table-free forwarding over multiple equal-cost paths, and it is capable of
rerouting frames around failed links on the fly without needing a central fabric manager for any function. To the best of our
knowledge, it is the first protocol that does not require the exchange of periodic messages to work under normal conditions
and to recover from link failures, as Torii exchanges messages just once. Moreover, another important characteristic of
Torii is that it is compatible with a wide range of data centre topologies. Simulation results show an excellent distribution
of traffic load and latencies, similar to the shortest path protocols. Copyright © 2014 John Wiley & Sons, Ltd.

*Correspondence

J.M. Gimenez-Guzman, Departamento de Automatica, University of Alcala, 28805 Alcala de Henares, Madrid, Spain.
E-mail: josem.gimenez@uah.es

Received 26 March 2014; Revised 8 July 2014; Accepted 12 July 2014

1. INTRODUCTION

Data centres are nowadays one of the pillars of the Internet,
whether or not consciously, being them used by most of
users of the information systems. Data centre networks are
increasingly relying on Ethernet and flat layer 2 networks
due to its excellent price/performance ratio and config-
uration convenience. But Ethernet layer 2 networks do
not scale. The main limitations for scalability are the flat
address structure of Ethernet media access control (MAC)
addresses and the need of blocking active links to prevent
broadcast frame loops. The use at data centres of known
and regular topologies such as fat trees has provoked the
appearance of protocols specifically designed for these
topologies that take advantage of the known network topol-
ogy to implement layer 2 routing and forwarding without
the limitations of IP and layer 2 protocols. Among them,
protocols that use a hierarchical and topologically signifi-
cant address structure that permits straightforward routing
are becoming more and more important because of its sim-
plicity, performance and excellent scalability. PortLand [1]
and, more recently, Torii, first proposed in [2], exemplify
centralised and distributed versions of this approach. The
majority of these proposals take advantage of topologies

constituted by multiple complementary trees [3] that allow
load balancing and multipathing [4]. However, just a few
proposals benefit from creating multiple paths between
different hosts.

PortLand is an outstanding architecture proposal for
scalable data centres focused on the scale out [5] model
and on topologically significant addresses. It uses the so-
called FatTree (which is in fact a folded Clos) network
topology based on interconnection of equal size pods of
scalable size as the basic network component. PortLand
uses a centralised control (fabric manager) and location-
based pseudo MAC addresses. Addresses are assigned by
a Location Discovery Protocol executed at the switches,
and Up/Down [6] turn prohibition is enforced to prevent
frame loops. Paths are computed and routes installed at
switches by the central element; in case of link failure, the
central element installs the new routes at switches. How-
ever, this centralised route computation and installation at
switches limits network scalability and reduces reliabil-
ity. In contrast, our objective is to define a distributed,
lightweight protocol for data centres that does not need for-
warding tables, tolerates link failures gracefully and that is
able to distribute traffic load evenly with no need of any
centralised server.

Copyright © 2014 John Wiley & Sons, Ltd. 179



E. Rojas et al.

In order to address the main challenges for the current
data centre architectures, we briefly list and define the most
important ones as follows:

� Scalability. Data centre architectures should be easy
to build and configure, for example, wiring should not
be too complex. The forwarding state should be also
as low as possible because data centres usually inter-
connect thousands of final hosts. Finally, data centres
should have the logic as distributed as possible in
order to avoid congestion on a central manager and
increase reliability.

� Flexibility. The topologies used in data centre archi-
tectures should be as flexible as possible and not only
restricted to one single configuration so that adminis-
trators can easily expand and adapt their data centres
for future demands.

� Fast repair. Data centres require high availability, and
therefore, link or node failures should be tackled as
soon as possible.

In this paper, we define and describe Torii-hierarchical
local MAC (HLMAC) (from now on, Torii), a fully dis-
tributed protocol that makes forwarding in fat trees and
other hierarchical data centre topologies, simpler and more
scalable. The protocol improves PortLand with simpler and
fully distributed mechanisms applied to the same topology,
but Torii is also extensible to real fat trees [7]. This protocol
uses multiple simultaneous topological, tree-based, pseudo
MAC addresses, inspired in TRE [8] to provide simple
multipath forwarding, direct frame routing without tables
and on-the-fly alternative path selection after link failure.
These multiple addresses encode topological information
of any port, making possible simple, hash-based, multi-
ple path routing and load balancing without forwarding
tables. Torii uses NAT of MACs at edge bridges to replace
universal addresses by local (pseudo MAC) addresses.

The main contributions of this paper are: (i) Torii’s
addresses assignment and address-based (tableless) for-
warding; (ii) a performance evaluation of Torii against the
shortest path routing protocols regarding load distribution
and latencies; and (iii) a comparison with other data cen-
tre proposals and the contributions of Torii. The rest of the
paper is structured as follows. In Section 2, the automatic
addresses assignment mechanism is explained, whereas in
Section 3, we describe the broadcast/unicast forwarding
and path repair. In Section 4, we consider implementation
issues and scalability of Torii, and in Section 5, we perform
the evaluation of Torii and compare it with the shortest path
routing protocols. Section 6 is devoted to the related work
in the field, and finally, we recapitulate and conclude the
paper in Section 7.

2. AUTOMATIC ADDRESSES
ASSIGNMENT

Opposite to PortLand [1] or VL2 [9], which use a sin-
gle topological address per host, the Torii protocol assigns
multiple topological tree-based HLMAC addresses. The
key point is that each topological address precisely codes
an alternative path to reach the host, making simple both
multiple path routing and also rerouting of packets upon
link failure via alternate paths on the fly.

For the sake of simplicity, we use PortLand’s topology
(Figure 1) to describe the address assignment, as it repre-
sents a typical hierarchical data centre network with three
levels (core, aggregation and edge) and divided into four
pods. Thus, for the topology under study, the first (upper)
layer bridges are assigned just one HLMAC, the second
layer bridges get two HLMAC addresses (one per link to
upper layer bridges) and so on in powers of two. HLMAC
addresses are local (private) MAC addresses, so their U/L
bit (universal or globally unique/locally administered) is
set to 1. The 46 bits available for addressing purposes (after

Figure 1. Multiple hierarchical addresses (HLMAC) assignment for Torii.

180 Trans. Emerging Tel. Tech. 26:179–194 (2015) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/ett



E. Rojas et al.

removing the U/L and multicast bits) encode by default up
to six different hierarchical levels, with 6 bits for the first
level and 8 bits for every other level. The HLMAC address
of a bridge is expressed in the dotted form a.b.c : : : as the
chain of designated port IDs a, b, c, : : : traversed in the
descending path from the root bridge to the bridge to which
the address is assigned.

Each node gets one or more topological tree addresses,
existing a correspondence between the number of alterna-
tive HLMAC addresses and the number of core switches.
There will be at least as many alternative HLMAC
addresses at the edge switches as core switches in the
topology, that is, as many different paths as core switches.
This is because every HLMAC prefix allows forwarding of
frames over a tree rooted at a different core switch, then
the HLMAC prefixes can be used to distribute traffic, on a
hash base, among all available core switches. This address
assignment method not only provides multiple alternative
paths between pairs of hosts but also, at the same time, the
multiple HLMAC addresses assigned to a host are directly
inferable from each other just by changing the core pre-
fix, simplifying multiple path routing and path repair on
link failure. For example, for the first host on the left of
Figure 1, which gets assigned 1.1.1.1., 2.1.1.1., 3.1.1.1. and
4.1.1.1. as HLMAC addresses, the only change is the core
prefix 1, 2, 3 and 4, respectively. Note that all HLMAC
addresses have the standard MAC address size (6 bytes),
but for the sake of simplicity in notation, the bytes at the
end, filled with zeroes, are omitted.

After the initial assignment, there will be no changes
even when node or link failures occur, because Torii knows
the complete topology and it is able to circumvent failed
links or nodes. Therefore, this address assignment is done
just right after the system is started up and this procedure
is not necessary to be repeated unless there is an update in
the network, as for example, when new switches are added.

In order to assign these addresses, the Torii protocol
uses an extension of the Rapid Spanning Tree Protocol,
as defined in HURP [10], to build a spanning tree and to
assign those hierarchical addresses to the bridges. Once
the root bridge is connected on top of the core bridges
(a function that may be implemented as a couple of root
bridges for reliability reasons), which gets 0 as HLMAC
address, the process of building the spanning tree from
the root to the leaves starts and core bridges get assigned
the addresses 1, 2, 3 and 4. This iterative procedure of
address assignment consists of Bridge Protocol Data Units
(BPDUs) being sent by the parent bridge. Each BPDU con-
tains the bridge HLMAC address (i.e. the HLMAC address
of its root port) and the number of the designated port
transmitting the BPDU.

3. FORWARDING AND ROUTING

Frame routing is directly performed by decoding the des-
tination address, that is, no forwarding tables are installed
in any of the switches of the network. Once the HLMAC
addresses are set, Torii switches need to distinguish
between broadcast/multicast and unicast frames, and they
also need to identify the direction of the frame: ‘going up’
or ‘going down’, which is obvious by looking at the frame
input port (lower side and upper side, respectively). Once
those two parameters are known, the logic applied at each
switch of the topology is shown in the algorithm defined
in Figure 2.

3.1. Broadcast forwarding

First of all and looking at the pseudocode, when host
A sends a broadcast frame, the switch serving that host
chooses a prefix according to the result of applying a
hash function to the source address and destination address

Figure 2. Forwarding and routing in Torii.

Trans. Emerging Tel. Tech. 26:179–194 (2015) © 2014 John Wiley & Sons, Ltd. 181
DOI: 10.1002/ett



E. Rojas et al.

Figure 3. Broadcast frame from host A. The broadcast address remains the same whilst the A source address is translated into
1.1.1.1 at edge bridge in the frame when prefix 1 has been chosen by a hash.

fields of the frame header (to prevent disordering of frames
belonging to the same flow). That prefix determines the
core switch that will be used to carry out the broadcast.
For instance, if prefix 1 is chosen, whilst the broadcast des-
tination address (FF:FF:FF:FF:FF:FF) is kept unchanged,
the frame source address A is translated (NAT of MACs)
into the corresponding hierarchical HLMAC address (see
Figure 3, in which A source address is translated into
1.1.1.1. by the edge bridge). Broadcast frames from a
specific host may use different prefixes to obtain load dis-
tribution and path diversity, because a hash function can be
based on any flow-related parameter.

Once the prefix is selected and the address translation
from global MAC to local HLMAC addresses is done, the
frame is directed up to the matching core switch and then
replicated down to every link except the one associated
to the input port as shown in Figure 3. Because only one
core switch is used, there are no down-up turns and the
communication remains loop-free.

Finally, if the received frame at the destination edge
switches is an ARP Request message, the chosen prefix
HLMAC is replaced by its original address A (the infor-
mation is known thanks to the ARP message) and both
addresses (the HLMAC address and the original MAC
address A) are saved in a table for future translations.

Torii protocol does not include special features to pro-
cess multicast frames, so the same forwarding mechanism
explained for broadcast frames is also applied to multi-
cast frames. As it can be seen, broadcast forwarding is
performed across the spanning tree as it occurs in classi-
cal Ethernet. However, the difference between Torii and
the Spanning Tree Protocol is the possibility of choos-
ing one of the multiple (four in the figure) trees available
to distribute the traffic. To improve scalability, an ARP
proxy function may be implemented distributed at edge
bridges [11], learning from all ARP Request and ARP
Reply frames, or centralised, as in PortLand.

ARP messages in the Torii protocol are broadcast like
standard ARP messages, being the only difference in the
fact that the ARP Request broadcast packet in the up
direction is forwarded only via one link in its upward

path towards a single core switch; standard broadcast with
flooding is performed for downwards forwarding. Flood-
ing in Torii is thus enhanced compared with the standard
ARP broadcast procedure. For that reason, we can con-
sider that the impact of ARP in Torii is always lower than
the one we have in standard layer 2 protocols. In [12], the
authors study the scalability of the ARP protocol, assum-
ing that the amount of ARP traffic scales linearly with the
number of hosts. For example, for a network comprised
by 25 000 hosts, from [12], we can derive that we would
expect 11 706 ARPs per second or 5.9 Mbps of ARP traf-
fic to arrive at each host at peak. As data centre links
are currently 1 Gbps and are evolving towards 10 Gbps
technologies, we can consider this traffic negligible. The
cost of processing ARP messages at switches is negligible,
but for end hosts, it can be quite high because every host
must process every ARP Request messages received, so
the use of ARP proxies is recommended at edge switches
in big data centres in order to minimise the impact on
host performance.

3.2. Unicast forwarding

In the case of unicast frames, a hash function is also applied
to select the prefix (i.e. the core bridge). Unicast com-
munications can be bidirectional (paths are congruent or
symmetric, same path used in both directions) or not, both
cases are acceptable for Torii. In any case, the forwarding
path is always determined by the destination address and
its core prefix.

Once the unicast frame arrives at the source edge switch,
this switch translates both addresses (NAT of MACs). The
origin address is translated into the corresponding HLMAC
address (which is known by the edge switch, because it is
responsible of assigning it to its hosts) and the same hap-
pens with the destination address (its HLMAC address is
always known by a previous ARP Request/Reply message,
which will be always sent before any unicast frame). For
instance, in Figure 4, prefix 1 was chosen, and because of
this, the origin B is translated into 1.3.1.2., whereas the

182 Trans. Emerging Tel. Tech. 26:179–194 (2015) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/ett



E. Rojas et al.

Figure 4. Unicast frame from B to A. Both addresses (A and B) are translated at the edge switches, which were already known from
the previous ARP messages. In this case, A is translated into 1.1.1.1 and B into 1.3.1.2.

destination A is translated into 1.1.1.1., which is known by
the previous ARP Request message (see Figure 3).

If the learnt HLMAC address at the edge switch had
a different prefix when the ARP Request/Reply message
was received, the corresponding HLMAC address would
be easily deduced. For example, if prefix 2 had been cho-
sen instead of 1 (for load balancing purposes), B would be
2.3.1.2. and A address could be deduced as 2.1.1.1. from
the previously learnt A HLMAC address 1.1.1.1. (conveyed
in the previous ARP Request message as in Figure 3), just
by changing the core prefix, because only the prefix part of
the HLMAC address differs among the HLMAC addresses.
This is an advantage of Torii’s address assignment, which
makes all HLMAC addresses completely deducible from
any other once a single HLMAC address is already known.

After the prefix is selected and the MAC address transla-
tion is done, the frame is forwarded up or down according
to the destination HLMAC address. This is done by check-
ing the current switch HLMAC address and the destination
HLMAC address. The main difference with the broadcast
forwarding is that the frame does not always need to travel
to the core switch to finally reach the destination, because
sometimes, there will be shorter paths, for example, if the
hosts share the edge switch or the pod. At switch 1.3., the
frame with destination 1.1.1.1. is known to be located in
another pod (because 1.1.1.1. does not contain the prefix
1.3.) and that switch is aware that the frame needs to be
sent to the port connected to switch 1. then switch 1. will
send the frame through its port 1 to reach switch 1.1. and
so on.

Finally, at the destination edge switch, if the frame is an
ARP Reply message, the two-address tuple (the destina-
tion MAC address and the translated HLMAC address) is
saved in the address translation table. In this way, due to the
ARP Request and Reply messages, necessarily exchanged
before any communication, origin and destination edge
switches will be capable of translating the addresses of
successive unicast frames received.

In this example, notice that unicast frames will always
use the same prefix in both source and destination HLMAC

addresses. Therefore, unicast frames having source and
destination HLMAC addresses with different prefixes
could be used for special purposes such as notifying an
action (for example, a failed link when found) to any switch
in the topology. Nevertheless, a free bit in the HLMAC
address could also be reserved for these special events (see
Section 4.2 for further details).

3.3. Path diversion

We describe now the path diversion, which is the mecha-
nism applied to frames when their path to the destination is
broken by link or bridge failure.

When a link fails, no messages are exchanged and the
assigned HLMAC addresses remain exactly the same, only
the switches connected to that link will know that the link
is down and no longer usable to forward frames. There-
fore, when a frame arrives at a switch and its destination
HLMAC address indicates that it should be sent through
the port attached to the failed link, the path diversion
procedure starts.

Torii’s path diversion mechanism consists of assigning
a different path to the frame on the fly, once the frame
arrives at the point where the current route is broken. All
the switches in the network, but the core ones, have two
or more HLMAC addresses, which means that all those
switches have two or more different routes through two or
more different core switches. Thus, switches can decide
unilaterally a different route for the frame just by assign-
ing it a different HLMAC address, which can be directly
deduced on the fly from its current HLMAC address just
by using a different prefix (because an important feature of
Torii is that all assigned addresses just vary in the prefix).
Once the new HLMAC address is decided, indirectly, the
path is changed without needing to change any table nor
previous learning, neither sending any notification to any
other switch.

As there is no need to follow a specific new path, the
first and closest alternative path available is selected. By
closest, we mean the alternative path that requires fewer

Trans. Emerging Tel. Tech. 26:179–194 (2015) © 2014 John Wiley & Sons, Ltd. 183
DOI: 10.1002/ett



E. Rojas et al.

Figure 5. Unicast frame from A to B. Link from switch 1. to 1.3. is down, when the frame arrives at 1., it is forwarded back to 1.1. until
it reaches its new closest alternative path, which is the one with prefix 2.

Figure 6. Example of the path diversion procedure with multiple link failures.

steps back, sometimes none, to continue the forwarding.
Therefore, the frame is forwarded back (if necessary) until
it reaches the new path and it is then forwarded by using
the new path as shown in Figure 5, in which the frame is
forwarded back from 1. to 1.1., where it found a path to
reroute the frame through core switch 2. (from 2. it will
later go to 1.3. and 1.3.1., or 2.3. and 2.3.1. and reach the
destination as usual).

In order to avoid loops or any other problem whilst
rerouting traffic, diverted frames are forwarded back step
by step and always in the same order. The reason why
frames are forwarded back instead of to any other switch
is that previously used switches have much less probabil-
ity of having failed than any other random switch still to
be selected. In Figure 6, we show the steps followed by the
frame that found a failed link as in Figure 5, (link 1.$ 1.3.
is down). First of all, it goes back to switch 1.1. to bounce
later to core switch 2., but if link 1.1.$ 2. is down, it goes
back again until switch 1.1.1. Once in switch 1.1.1., it tries
to go to switch 3.1., but if link 1.1.1.$ 3.1. is also down,
it needs to use the remaining core switch 4., for which it
needs to do a Z reroute, which means that the frame will go

from 1.1.1. to 1.1. to 3.1.2. to 3.1. and finally to 4. Although
forwarding back, there is no need to change anything in the
frame and switches knowing that the frame is being for-
warded back because they received it in the port through
which it should be sent. However, the Z reroute needs to
be indicated because otherwise, the switch receiving it will
consider the frame as a normal one. Therefore, the pre-
fix of the source HLMAC address is temporarily set to 0,
which forces the receiving switch (1.1.) to send the frame
down again instead of up (send it to 3.1.2. instead of to 1.)
and later is set to the prefix of the new path (in this case
4). Finally, if the path through core switch 4. is also bro-
ken (which means 4 of 20 links in the topology failed, i.e.
20 per cent of failed links), the frame is discarded because
we consider that there are too many failures in the network
and diverting traffic stops being functional.

3.3.1. Notification messages.

It is important to notify the edge switches to prevent
the use of the failed path and start using a new one.
The path diversion mechanism just redirects temporarily
frames through an alternative path so that they are not

184 Trans. Emerging Tel. Tech. 26:179–194 (2015) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/ett



E. Rojas et al.

lost, whilst edge switches need to be notified in order to
stop the effort of path diversion, but they do not neces-
sarily have to choose the same path that was used by the
path diversion mechanism. In this manner, the path diver-
sion mechanism acts locally for lossless communication,
whereas edge switches can make more global decisions for
the new paths taking into consideration other affected flows
from directly connected hosts that traversed the currently
failed path.

Notification messages are only exchanged in case of
failure, so its impact on network performance is expected
to be negligible. There are two types of notification mes-
sages: one for the destination edge switch (which is the
same frame being diverted) and one for the source edge
switch (which is a copy of the frame being diverted).
In the case of unicast frames, because the edge switches
need to be notified to avoid the selection of the failed
path, the source HLMAC address will be translated
into the new HLMAC address, whereas the destination
address will remain unchanged. In this way, the redi-
rected frame serves also as a notification of the link
failure to the destination as well, because its HLMAC
prefixes will not coincide, then it will be considered a
special frame; if this frame is forwarded back to the
source, it will also indicate the failure to the source. Alter-
natively, this notification could also be done by using
a dedicated bit of the HLMAC address instead of the
prefix (Section 4.2).

The notification indicates to both switches, the one serv-
ing the destination host and the one serving the source
host, not to use the failed path (shown in the destination
prefix) and start using a new one instead. For instance,
in Figure 7, the source is translated into 2.1.1.1., whereas
the destination remains as 1.3.1.2. However, because it
is processed as a failure notification frame, it is sent to
2.3.1.2. through core switch 2., that is, the frame does
not follow the path of destination for routing but con-
versely, the destination with the prefix of the source. The
frame still contains the information to be delivered and at

the same time indicates that the path through core switch
1. failed to the destination edge switch. The same hap-
pens to the frame forwarded back to the source, which is
known to be only a notification because the prefixes are
different and is known to be forwarded back because it
is received at the port through which it should be sent
to the destination. After both notifications are received,
both edge switches know about the failed link and will
not assign again that path after hashing but an alternative
one instead.

This path failure notification lasts for a configurable
timer. Once the timer expires, frames will start using the
old path again, thus activating the path diversion mecha-
nism again if the failure still persists.

It is important to notice that there is only one extra
message forwarded back to notify the source when a path
fails and it is optional. This is because the rerouted frame
to the destination is a notification itself, whilst notifying
source might not be necessary specially when there is traf-
fic in the other direction (if so, the frames in the opposite
direction will notify our source edge switch). Therefore,
if no notification to the source edge switch is configured,
then the overhead in the network is null. However, if some
traffic is purely unidirectional in the network, we might
configure notifications to the source edge switches (other-
wise frames will be continuously diverted, but losslessly
rerouted), in which, in the case of the whole network,
there would be one single message per failed path and
active source edge switch (Nfail � Nedge messages, where
Nfail is the number of concurrent failed paths and Nedge is
the number of edge switches in the network with active
flows originating on them), for example, in the case of
the single failure shown in Figure 7 and considering that
all edge switches are emitting traffic at that moment, the
number of messages would be 8. Therefore, when path
repair is needed, not only alternative paths are decided
on the fly, but also, there is no significant overhead in
the network.

Figure 7. Unicast frame from A to B. Once the frame is back to 1.1., the source HLMAC address is translated into the new path
HLMAC address (from 1.1.1.1. to 2.1.1.1.) and sent to core switch 2. The destination HLMAC address remains the same, 1.3.1.2., but
the frame is interpreted as a redirection notification frame so it is sent towards the new HLMAC address: 2.3.1.2. It will also be sent

to the destination and optionally back to the source to notify both edge switches of the failed path.

Trans. Emerging Tel. Tech. 26:179–194 (2015) © 2014 John Wiley & Sons, Ltd. 185
DOI: 10.1002/ett



E. Rojas et al.

4. IMPLEMENTATION OPTIONS
AND SCALABILITY

4.1. Use of virtual machines (VMs) at hosts

In the current data centres, multiple VMs are active at
the same time on each physical host. IEEE 802.1Qbg
(Edge Virtual Bridging) [13] standard group was created
to simplify management of virtualized machines and its
virtualized interconnections. The approach is to intercon-
nect all virtual network terminations (one per VM) via the
edge port of the physical bridge, instead of interconnect-
ing them internally, in order to facilitate VM visibility to
the physical bridge. The reflective relay function imple-
ments VM intercommunication similar to a bridge: unicast
frame forwarding between two VMs, broadcast forwarding
to all other VMs of the host and replication of unknown
unicast frames. The VSI Discovery Protocol implements
mechanisms to inform the physical bridge about the cre-
ation/deletion of a VM. The commands are as follows:
Pre-associate (to inform the switch of the VSI and port-
profile of an intention to associate), Associate (to execute
the previously requested pre-association) and Diassociate.

4.1.1. Address assignment to virtual machines

at a host.

Every VM gets assigned a specific MAC address by
the virtualization kernel. In the most generic case, Torii
would assign only one HLMAC address per physical host,
but there is a room in HLMAC address range to assign
one HLMAC per VM. In practice, Torii only uses the first
4 bytes of HLMAC addresses, so the last 2 bytes can be
used to distinguish among VMs of the same host by assign-
ing them one at a time when the VM sends its first ARP
message. Therefore, every host could have up to 216 � 1 D
65535 VM working at the same time (because 0 is not used
for HLMAC addresses). Eight bits, allowing up to 256 VM
addresses per host, would suffice for years to come.

4.2. Other HLMAC address
assignment alternatives

In this proposal, Torii takes 1 byte of the six of the HLMAC
addresses per hierarchical level, which means that 4 bytes
and the remaining 2 bytes could be used for specific per-
VM addressing. Nevertheless, if more hierarchical levels
were needed, fewer bits could be assigned per level and
many alternatives could be used depending on the topol-
ogy requirements, without changing the basics of the Torii
protocol. Moreover, free bits could be used as flags to indi-
cate whether a frame is a notification or not as already
mentioned instead of other combinations of bytes.

4.3. Layer 2 mobility

Virtual machine mobility is a common place in data centres
and used for multiple purposes such as increasing server

utilisation, redundancy and replication, server migration
and others. Regarding layer 2 mobility, when a host (or
VM in a host) A communicating with another B, moves
from one edge switch to a different one, frames follow the
next procedure.

(1) If the frame goes from A to B.
If the new edge switch has B’s HLMAC address,

the frame is forwarded towards it, with the new A’s
HLMAC address, because we consider that A should
had emitted a gratuitous ARP message immediately
after connecting to the new switch.

If not, the edge switch should emit a special frame
(ARP Request) to obtain B’s HLMAC address and
discard any frame meanwhile. The second option
would be to broadcast any frame following the ARP-
alike frame, so that they are not lost.

(2) If the frame goes from B to A.
Several options are possible with different costs

regarding broadcast messages, depending on the
requirements. In this case (frame from B to A), the
frame will reach the old edge switch and this last
should broadcast the frame towards the other edge
switches (all frames so that they are not lost or just
a single one to make the notification). The new edge
switch would then note down B’s HLMAC address
and send a special message (ARP Reply) towards
B with the new A’s HLMAC address. If 802.1Qbg
EVB is used, the Associate message can be used by
Torii edge bridges to issue a gratuitous ARP mes-
sage to inform all the network of the new HLMAC
address of a VM being connected. Previous edge
bridge of host A takes note of the new HLMAC of the
migrated VM and may forward received frames to its
new destination.

Both cases require broadcasting of frames in order to
support lossless frame deviation. However, alternatively,
broadcasting could be reduced by discarding frames whilst
the mobility of A is notified if the design requires it. The
key aspect regarding layer 2 host mobility with Torii is that
only the edge switches need to update information in rela-
tion with the host change of point of attachment,and only
in some cases, and this can be requested by a simple ARP
message and without any kind of address manager.

4.4. Beyond the FatTree topology

In the previous sections, we have introduced Torii and
explained its forwarding and path diversion mechanisms
by using the well-known topology of PortLand, the so-
called FatTree. However, one of the main characteristics
of Torii is its applicability to many different data centre
topologies, thus being more flexible than those architec-
tures that require specific topologies. In the succeeding
text, we briefly compare the suitability of different data
centre topologies for Torii.

186 Trans. Emerging Tel. Tech. 26:179–194 (2015) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/ett



E. Rojas et al.

4.4.1. True fat tree topologies versus

PortLand (Clos).

The topology used in PortLand is based on the scale out
model, that is, it uses many commodity switches with equal
capacity links, and although named as FatTree (in relation
with the fat tree topology), it is better described as a Clos
network [14]. The difference between both concepts is that
a fat tree [7] increases the capacity of its links the closer
they are to the core switches, whereas in a Clos network,
all links have the same capacity. True fat trees are very
well suited for Ethernet data centre networks, thanks to
the built-in aggregation capability of the Ethernet switches
(capable of using and aggregating links of 100 Mbps,
1 Gbps, 10 Gbps, etc). Therefore, in practice, the use of
one or the other will depend on the most desirable feature:
lower cost using cheap off-the-shelf components (Clos net-
work) or much less wiring complexity (fat tree). It is worth
noting that wiring costs and complexity escalate rapidly
when all links have the same capacity because the number
of links grows an order of magnitude. In fact, fat trees are
particularly convenient for simpler wiring once there are
four core switches, because four core switches provide the
network with enough multipath forwarding, and in case of
a link failure, there will still be three alternative paths to be
used. Choosing one or the other will always depend on the
design requirements.

4.4.2. AB FatTree and Diamond.

The AB FatTree (proposed in F10 [15]) and the Dia-
mond [16] topologies are both variants of the PortLand
FatTree. The former aims to improve the fault toler-
ance, whereas the latter aims to shorten paths between
final hosts. In both cases, core switches are defined as
in PortLand: there are levels of hierarchy and no cross-
links between same-level switches. Therefore, Torii can

be applicable in these topologies whilst exploiting their
advantages in comparison with PortLand.

4.4.3. BCube and DCell.

These topologies ([17] and [18], respectively) have the
peculiarity of using final servers as routing devices as well
as the switches. Torii can also be applicable to these topolo-
gies, but first, we should define the core switches (i.e. the
highest hierarchy switches), which would be every switch
in every DCell/BCube group.

4.5. Scalability

Once we have explained the applicability of Torii to dif-
ferent topologies, in this section, we address the scalability
of Torii by comparing it directly with PortLand, which is
already a quite scalable data centre proposal. Scalability is
an important issue in Ethernet networks, as described in
[19]. For the comparison, we will use different hierarchical
topologies, which are applicable to Torii and at the same
time define common examples of data centre topologies of
two, three and four levels of hierarchy. In Figure 8, differ-
ent types of topologies are shown with different levels of
hierarchy (2, 3 and 4). In each topology, the upper level
represents the number of core switches, whereas the lower
level represents the edge switches. All of these topologies
are applicable to Torii, but only the ones on the blue frame
are applicable to PortLand; they are the so-called FatTree
topology for k D 4 (up) and k D 6 (down), k being the
number of ports per switch.

4.5.1. Forwarding state per switch.

In Torii, edge switches store a lookup table to trans-
late MAC to HLMAC for source and destination hosts and
its length corresponds to the number of active VMs, not

Figure 8. Examples of hierarchical data centre topologies.

Trans. Emerging Tel. Tech. 26:179–194 (2015) © 2014 John Wiley & Sons, Ltd. 187
DOI: 10.1002/ett



E. Rojas et al.

the total number of VMs in the network. These translation
tables work as ARP proxies at the same time.

Torii switches do not need forwarding tables at all
because frames are routed just by decoding a part of
the destination address at every stage. For every frame
received, output port is obtained as a logic operation
result, so no table is strictly required because switches in
Torii only need to store the HLMAC addresses that were
assigned to them, which are limited by the number of core
switches (i.e. up to nine entries in the worst case shown in
the previous figure), independently of the active VMs. In
PortLand, forwarding state depends on the number of ports
of the switches. In particular, as stated in [1], ‘required state
for network connectivity is modest, growing with k3=2 for
a fully configured fat tree built from k-port switches’ (k
being the number of ports of the switches).

Therefore, although Torii switches will need to store
up to 10 entries in the worst cases (10 core switches
are enough to allocate thousands of VMs for most data
centre networks), PortLand entries increase with k3=2.
Thus, although PortLand increases its size and its for-
warding tables, Torii can reduce the number of link and
switches by aggregating them and fattening the network
(see Section 4.5.4).

4.5.2. Number of messages for routing

and recovery.

In Torii, the only messages interchanged for routing are
those performed upon initialization to assign the multiple
HLMAC addresses. Upon link failure, there is no need to
recompute and modify routing tables at switches, frames
are rerouted automatically in a distributed way. Although
Torii works in a distributed manner, it is also possible
to have a centralised maintenance as an option. In Port-
Land, the Location Discovery Protocol is used to discover
the network topology and obtain the addresses. Upon link
failure, it is reported to a centralised fabric manager that
recomputes and modifies the routes at switches.

4.5.3. Number of broadcast messages.

Distributed ARP proxy at every edge switch is possible
in Torii and efficient as shown in [11]. ARP Request mes-
sages (standard or gratuitous) sent from hosts feed these
edge proxies. Thus, the number of broadcast messages in
the network will depend on the number of edge switches.
A centralised proxy scheme as in PortLand is also possible.

In PortLand, broadcast of ARP Request messages is
prevented with the use of a centralised ARP proxy. This
proxy must serve the whole data centre, serving responses
to all ARP Request messages. According to [11], typ-
ical ARP Request rates for a Yahoo data centre are
0.028 requests/source/second on average and 0.25 on peak
(although it also states that ARP traffic has a very high vari-
ability). This means on average of 2800 requests/second
and a peak of 25000 requests/second for a network
with 100000 hosts, so the centralised ARP proxy could
become overwhelmed.

4.5.4. Number of VMs and size of the network.

The main limitation of PortLand is its strict require-
ment for the use of the so-called FatTree topology with
an enormous number of equal capacity links. For the size
mentioned at [1] of 100 000 hosts and in order to support
a throughput of 100 per cent, the network would consist
of 74 pods, each composed of 74 switches and 1369 core
switches. Besides the non-standard value for the number of
switch ports, the cabling volume and complexity for such
a network would be excessive [5].

Torii can aggregate links and reduce the number of ports
and switches, so that the network does not grow as a func-
tion of powers of k (the number of ports of the switches),
but it slightly changes whilst links become fatter (higher
capacity) to support a higher throughput.

5. PERFORMANCE EVALUATION

A quantitative performance evaluation has been conducted
by simulating the aforementioned three-level data cen-
tre network (Figure 9) running Torii. We compare Torii
with the basic shortest paths routing protocol (SP) using
Dijkstra algorithm [20] without equal-cost multiple path
routing. Our objective was to have the first confir-
mation that Torii performance was similar to SP and
likely better as Torii uses hash-based multipath routing.
More concretely, we have used OMNeT++ [21] dis-
crete event simulator version 4.2.2 in conjunction with
INET framework version 2.0.0 [22]. The implementation,
coded in C++, relies on the MACRelayUnit module (from
inet/linklayer/etherswitch). The base has been modified so
that it acts as a Torii switch. In these simulations, we have
used UDP traffic between different and random hosts in
the data centre topology. Note that we have not considered

Figure 9. Link classification for load distribution.

188 Trans. Emerging Tel. Tech. 26:179–194 (2015) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/ett



E. Rojas et al.

Figure 10. Load distribution for SP and IAT D 0.1 s.

TCP traffic because its complex behaviour (with mecha-
nisms like slow start, flow control and congestion control)
could mask the comparison between Torii and SP. The traf-
fic model used is taken from [23, 24]. A flow generator
(flow interarrival times are exponentially distributed with
mean IAT, ranging from 0.1 and 1.6 s) installs flows in
the network by randomly selecting a pair of source and
destination hosts. Each flow carries on average 34.8 MB
of data (following a truncated Pareto distribution between
8 MB and 8 GB) at 0.5Mbps (30 per cent of flows), 1Mbps
(60 per cent) or 10Mbps (10 per cent). With these through-
put values, flow sizes and flow interarrival rates, we can
compute the mean number of simultaneous active flows
(N) used in the simulations using Little’s Law, that is,
N D T=IAT , T being the mean flow duration, which is
computed as the quotient between the mean flow size and
the mean throughput. From the aforementioned data, the
mean number of simultaneous active flows ranges from
99.4 to 1590.9, which is a range large enough to evaluate
the system under very different load conditions. Each sim-
ulation runs for 10 000 s and packet size is 1500 bytes.
We have chosen packet sizes of 1500 bytes as it is the
most representative packet size due to the maximum trans-
fer unit used in Ethernet networks. However, we have
experimented with different packet sizes obtaining the
same conclusions.

The performance evaluation and comparison of Torii
versus SP has been carried out in two steps. In the first one,
we study how the traffic load is distributed across the net-
work, and in the second one, we study the average delay
of packets.

5.1. Load distribution

Load distribution capabilities for both SP and Torii
have been studied by means of the link utilisation. If
we analyze the structure of the three-level data cen-
tre network under study, we can notice three different
types of links: core, aggregation and edge links (EL).
Although core links (CL) comprise all the links between
a core bridge and a bridge from the aggregation level,

aggregation links (AL) are those that connect aggregation
and edge bridges. Finally, EL are the links that connect
edge bridges to hosts. In Figure 9, we show this link
classification, marking CL in red, AL in blue and EL
in green.

Because of the symmetry of the network, we can notice
that an ideal load distribution would rely on having the
same link utilisation in all the CL and a similar reasoning
holds for AL. Note that these conditions do not include that
the utilisation of CL must be the same to that of AL, that
is, the utilisation of CL and AL can be different (and in
fact it will be). Also, note that we are not considering EL,
as its behaviour is the same independently of the use of SP
or Torii, as the utilisation of this part of the network is not
affected by the routing mechanisms.

In Figures 10 and 11, we show link utilisation for the
proposed scenario with IAT D 0.1 s and for SP and
Torii, respectively. As it can be shown from both figures,
EL utilisation is not affected by the protocol used, and at
the first sight, it seems that the traffic is distributed bet-
ter along links in Torii than in SP, considering that the
ideal case would be that link utilisation would be the same
for all the CL and the same behaviour for the AL. To
study this performance in more detail, we have consid-
ered the mean and coefficient of variation (CV, the relation
between the standard deviation and the mean value) of the
link utilisation for all the CL and similarly for the AL.
In Figure 12(a), we show the mean utilisation for the CL
and AL for both protocols and for different IATs. As it
can be shown and could be expected, CL transport the
same amount of data independently of using SP or Torii
so the mean utilisation is the same across all links. The
same conclusion arises from the AL. For this reason, the
study of the CV of the links that belong to the same group
(CL or AL) will indicate us how well is load distributed
along those links, being better distributed as the CV is
lower. In Figure 12(b), we show that CV for different val-
ues of IAT, concluding that load is balanced much better
in Torii than in SP as CV is 3–4.5 times higher in SP than
in Torii.

Trans. Emerging Tel. Tech. 26:179–194 (2015) © 2014 John Wiley & Sons, Ltd. 189
DOI: 10.1002/ett



E. Rojas et al.

Figure 11. Load distribution for Torii and IAT D 0.1 s.

10 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

10

6

8

12

14

7

9

11

13

IAT

M
ea

n 
ut

ili
za

tio
n

Shortest Path CL
Shortest Path AL
Torii CL
Torii AL

(a) Mean utilization.

10 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.1

0.3

0.5

0.7

0.05

0.15

0.25

0.35

0.45

0.55

0.65

IAT

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n 
(C

V
)

Shortest Path CL
Shortest Path AL
Torii CL
Torii AL

(b) Coefficient of variation.

Figure 12. Comparison of SP and Torii for different IATs (expressed in seconds).

Table I. Average delay comparison (expressed in milliseconds).

Shortest path Torii

Mean Standard deviation 95th percentile Mean Standard deviation 95th percentile
IAT D 0.1 s 0.522 0.023 0.554 0.512 0.018 0.541
IAT D 0.2 s 0.507 0.024 0.565 0.506 0.026 0.548
IAT D 0.8 s 0.509 0.036 0.602 0.500 0.033 0.587
IAT D 1.6 s 0.503 0.029 0.569 0.499 0.029 0.566

0.5 0.560.540.520.48 0.490.47 0.51 0.53 0.55
0

1

0.2

0.4

0.6

0.8

0.1

0.3

0.5

0.7

0.9

Average delay (ms)

P
ro

ba
bi

lit
y

Shortest Path
Torii

Cumulative Distribution Function

(a) IAT=0.1s.

0.50.42 0.44 0.46 0.48 0.52 0.54 0.56 0.58
0

1

0.2

0.4

0.6

0.8

0.1

0.3

0.5

0.7

0.9

Average delay (ms)

P
ro

ba
bi

lit
y

Shortest Path
Torii

Cumulative Distribution Function

(b) IAT=1.6s.

Figure 13. Cumulative distribution function for the average delay.

190 Trans. Emerging Tel. Tech. 26:179–194 (2015) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/ett



E. Rojas et al.

5.2. Delay

The next comparison between SP and Torii consists of
the comparison between the average delay experienced by
packets at every destination. In Table I, we show the mean
value, standard deviation and 95th percentile for the aver-
age delay obtained for different values of IAT and for SP
and Torii. From that table, we can conclude that Torii is
able to slightly outdo SP in terms of the average delay
of packets. Intuitively, if we consider a relation between
the shortest path and the minimum delay path, SP should
behave very well in terms of latency, as it chooses the short-
est path for all packets. In the first sight, we can perceive
that Torii is able to achieve those good delay values of
SP. And moreover, it is able to slightly improve those val-
ues because the Torii is able to better distribute the load in
the network, so the queueing delay experienced in Torii is
expected to improve that of SP.

In Figure 13, we show the cumulative density function
of the average delay for both protocols and for the extreme
IAT considered, 0.1 and 1.6 s. In both cases, we conclude
that the delay is similar, but in some cases, it is better for
Torii, even considering that the average delays for SP were
expected to be very low.

6. RELATED WORK

Different approaches to implement a data centre fabric
have been recently proposed to overcome the limitations
of Spanning Tree Protocol and the configuration complex-
ity of Multiple Spanning Tree Protocol. Generic protocols
such as TRILL RBridges [25] and SEATTLE [26] are also
applicable to arbitrary topologies, whereas Torii is applica-
ble to hierarchical data centre topologies with pods (Clos
or fat tree networks) and PortLand is only applicable to
the FatTree topology. TRILL and SEATTLE use link-state
routing protocols in layer 2, whereas Torii and PortLand
use topological addresses for routing. A comparison of
some of the aforementioned protocols with other recent
data centre proposals is shown in [1], where the advan-
tages of PortLand become apparent, with the exception of
the use of a central manager for address resolution path
computation and path repair.

In the case of proposals of data centre fabrics with
specific network topologies that are previously known,
PortLand [1] uses pseudo MAC addresses assigned by
a discovery protocol with hash-based load distribution
and Up/Down turn prohibition to prevent loops, but it is
severely limited by the central manager performance. VL2
[9], whose manager is distributed, uses valiant load bal-
ancing to distribute the traffic among the network with
significant complexity due to encapsulation, it does not
optimise forwarding state and the efficiency of valiant
load balancing is severely reduced if per-flow load balance
is performed to avoid frame disordering. DCell [18] and
BCube [17] are data centre architectures based on specific
topologies alternative to the Clos network [14] and the so-
called FatTree first proposed in [27], which offers the best

performance according to [3]. However, these two propos-
als are only applicable to specific data centre topologies
and need specific routing protocols and probing, wiring is
complex for DCell, which at the same time has a lower
bisection bandwidth than fat tree topologies, and repair
seems to be slow for both of them. Finally, Diamond [16]
presents an improved fat tree network that shows better per-
formance in terms of route paths length and edge to edge
delay, but its routing protocol FAR needs some link-state
information and two tables for forwarding, whilst Torii is
also applicable to that topology and it is tableless.

In addition to the aforementioned discussion, Torii is not
only fully distributed (with no manager at all) and its for-
warding state is very low (switches only store HLMAC
addresses assigned at the beginning and no extra peri-
odic messages are needed, nor any other type of link-state
messages) but also has multiple paths between final hosts
in order to efficiently balance the network’s load and
on-the-fly path repair. Furthermore, Torii is perfectly com-
patible with proposals related to automatic assignment of
addresses, such as DAC [28] (which shows excellent per-
formance when applied to BCube for example), GARDEN
[29] (although being centralised is a clear disadvantage)
and ALIAS [30]. These schemes can be enhanced with
Torii to obtain tableless routing and instant repair, which
are not possible with other routing protocols.

Minimising reconfiguration time is crucial. Concerning
repair times, convergence times for a rearrangement after a
link failure is also crucial in data centre networks, because
a single point of failure might cause some resources to be
unavailable during that time and that might not be accept-
able at all in some circumstances. In this case, the Aspen
Trees proposal [31] considers these times as fundamental,
because the value of this convergence time for link-state
routing protocols such as OSPF or IS-IS is in the range
of tens of milliseconds [32] up to several seconds [31],
and it provides decreased convergence times to improve
the data centre’s availability at the expense of scalability.
Torii directly forgets about convergence times because it
has zero unavailability during reconfiguration due to its
path diversion capability. Torii’s mechanism used for deal-
ing with failures is very similar to the one proposed in
[15], which can be considered the state-of-the-art tech-
nique to recover from network failures in data centres. For
that reason, and in addition to the explanations given in
Section 3.3, we can conclude that from a fault tolerance
perspective, Torii is expected to behave very well.

Regarding the origins of HLMACs, hierarchical MAC
addresses, as a way to circumvent the scalability restric-
tions of flat Ethernet addresses, they were first proposed in
UETS [33]. Hierarchical addresses with tree-based topo-
logical significance are used in HURP [10] and other proto-
cols [8]. Another examples are MOOSE [34] protocol and
Path-Moose [35], which use locally assigned hierarchical
addresses based on a bridgeID:hostID structure. BridgeID
in MOOSE protocols must be assigned by a separate pro-
tocol that must ensure unique BridgeID assignment, and

Trans. Emerging Tel. Tech. 26:179–194 (2015) © 2014 John Wiley & Sons, Ltd. 191
DOI: 10.1002/ett



E. Rojas et al.

T
a

b
le

II
.

C
om

pa
ris

on
am

on
g

di
ffe

re
nt

ro
ut

in
g

pr
ot

oc
ol

s
fo

r
da

ta
ce

nt
re

ne
tw

or
ks

.

Pr
ot

oc
ol

N
et

w
or

k
to

po
lo

gi
es

A
dd

re
ss

in
g

an
d

m
es

sa
ge

ex
ch

an
ge

Ta
gs

,e
nc

ap
su

la
tio

n
Fo

rw
ar

di
ng

st
at

e
R

ep
ai

r
S

ca
la

bi
lit

y

Po
rt

La
nd

M
ul

ti-
ro

ot
ed

tr
ee

To
po

lo
gi

ca
la

dd
re

ss
M

A
C

ad
dr

es
s

tr
an

sl
at

io
n

O
.#

po
rt

s/
M

an
ag

ed
by

fa
br

ic
C

en
tr

al
is

ed
fa

br
ic

m
an

ag
er

(k
po

d-
ba

se
d)

Lo
ca

tio
n

D
is

co
ve

ry
Pr

ot
oc

ol
at

ed
ge

br
id

ge
s

m
an

ag
er

k-
po

d-
ba

se
d

m
od

el
�

Pe
rio

di
c

(C
om

pl
ex

w
iri

ng
)

V
L2

C
lo

s
to

po
lo

gi
es

To
po

lo
gi

ca
la

dd
re

ss
IP

ad
dr

es
s

tr
an

sl
at

io
n

at
O
.#

ho
st

s/
M

an
ag

ed
by

V
L2

D
is

tr
ib

ut
ed

V
L2

di
re

ct
or

y
Li

nk
-s

ta
te

ro
ut

in
g

pr
ot

oc
ol

To
R

br
id

ge
s

di
re

ct
or

y
sy

st
em

sy
st

em
�

Pe
rio

di
c

Lo
ad

ba
la

nc
in

g
m

ec
ha

ni
sm

D
C

el
l

D
C

el
ln

et
w

or
k

To
po

lo
gi

ca
la

dd
re

ss
D

C
N

pr
ot

oc
ol

he
ad

er
O
.#

ho
st

s/
Lo

ca
lr

er
ou

tin
g

an
d

Fu
lly

di
st

rib
ut

ed
D

C
el

l-r
ou

tin
g

an
d

Lo
ca

ll
in

k-
st

at
e

Lo
ca

ll
in

k-
st

at
e

ro
ut

in
g

C
om

pl
ex

w
iri

ng
ro

ut
in

g
pr

ot
oc

ol
(s

er
ve

rs
al

so
fo

rw
ar

d
pa

ck
et

s)
�

Pe
rio

di
c

B
C

ub
e

B
C

ub
e

ne
tw

or
k

To
po

lo
gi

ca
la

dd
re

ss
Pa

th
en

co
de

d
in

O
.#

po
rt

s/
N

ei
gh

bo
r

m
ai

nt
en

an
ce

Fu
lly

di
st

rib
ut

ed
B

C
ub

e-
ro

ut
in

g
an

d
ne

ig
hb

or
pa

ck
et

he
ad

er
pr

ot
oc

ol
(s

ev
er

al
A

ct
iv

e
pr

ob
in

g
fo

r
lo

ad
m

ai
nt

en
an

ce
pr

ot
oc

ol
se

co
nd

s)
ba

la
nc

in
g

�
Pe

rio
di

c

D
ia

m
on

d
D

ia
m

on
d

ne
tw

or
k

To
po

lo
gi

ca
la

dd
re

ss
IP

ad
dr

es
s

tr
an

sl
at

io
n

at
O
.#

po
rt

s/
C

B
ro

ad
ca

st
in

g
lin

k
fa

ilu
re

Fu
lly

di
st

rib
ut

ed
Li

nk
in

fo
rm

at
io

n
ex

ch
an

ge
ed

ge
br

id
ge

s
O
.#

&
lo

ca
tio

n
in

fo
to

al
ls

w
itc

he
s

C
om

pl
ex

w
iri

ng
�

Pe
rio

di
c

ofl
in

kf
ai

lu
re

s/

F1
0

M
ul

ti-
ro

ot
ed

tr
ee

To
po

lo
gi

ca
la

dd
re

ss
M

A
C

ad
dr

es
s

tr
an

sl
at

io
n

O
.#

po
rt

s/
O

n-
th

e-
fly

pa
th

C
en

tr
al

is
ed

fa
br

ic
m

an
ag

er
(k

po
d-

ba
se

d)
Lo

ca
tio

n
D

is
co

ve
ry

Pr
ot

oc
ol

at
ed

ge
br

id
ge

s
di

ve
rs

io
n

(z
er

o
tim

e)
k-

po
d-

ba
se

d
m

od
el

�
Pe

rio
di

c
(C

om
pl

ex
w

iri
ng

)

To
rii

M
ul

ti-
ro

ot
ed

tr
ee

an
d

M
ul

tip
le

tr
ee

-p
at

h
co

de
d

ad
dr

es
se

s
M

A
C

ad
dr

es
s

tr
an

sl
at

io
n

O
.#

co
re

sw
itc

he
s/

O
n-

th
e-

fly
pa

th
Fu

lly
di

st
rib

ut
ed

fa
t

tr
ee

s
w

ith
po

ds
w

ith
ex

te
nd

ed
R

ST
P

at
ed

ge
br

id
ge

s
di

ve
rs

io
n

(z
er

o
tim

e)
B

ro
ad

ca
st

re
ac

hi
ng

ho
st

s
(n

o
k-

po
d-

ba
se

d
re

qu
ire

d)
�

E
xc

ha
ng

ed
ju

st
on

ce
(M

iti
ga

te
d

w
ith

A
R

P
pr

ox
y)

TR
IL

L
A

rb
itr

ar
y

Li
nk

-s
ta

te
ro

ut
in

g
pr

ot
oc

ol
E

xt
ra

en
ca

ps
ul

at
io

n
O
.#

ho
st

s/
Li

nk
-s

ta
te

pr
ot

oc
ol

Fu
lly

di
st

rib
ut

ed
(e

xt
en

de
d

IS
-IS

)
Pe

r
ho

p
re

ta
g

�
Pe

rio
di

c

S
E

AT
TL

E
A

rb
itr

ar
y

Li
nk

-s
ta

te
ro

ut
in

g
pr

ot
oc

ol
N

on
e

O
.#

ho
st

s/
Li

nk
-s

ta
te

pr
ot

oc
ol

Fu
lly

di
st

rib
ut

ed
�

Pe
rio

di
c

192 Trans. Emerging Tel. Tech. 26:179–194 (2015) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/ett



E. Rojas et al.

that BridgeID has no topological meaning. However, Torii
is the first protocol that uses multiple tree-based addresses.

A summary of the comparison among all the mentioned
protocols is shown in Table II.

7. CONCLUSION

Torii is a simple and efficient layer 2 protocol for data cen-
tre networks. Torii is fully distributed, given that multiple
addresses are automatically assigned without duplicates
with no need of a centralised address manager mod-
ule, being this centralised module a requirement in Port-
Land. Torii also accepts a wider range of topologies than
other data centre architectures and allows simpler wiring,
which enhances scalability and flexibility for network
management. Another advantage regarding scalability is
that routing and path repair are performed based solely on
the destination tree-based HLMAC address used, without
requiring routing tables at switches, allowing high speed
forwarding. In case of a link failure in a path, the bridge
instantly selects an alternative path to reach the destination
host and also notifies both edge switches serving origin and
destination so that the no longer valid path is not chosen
again, for a while, that is, convergence times after repair
could be considered zero, which is an optimal situation
for data centre networks because they require high avail-
ability of resources for their communications. The multiple
addressing allows load balancing based on a hash func-
tion that can be designed specifically for different topology
requirements and traffic models without changing Torii’s
main logic. Torii is more flexible because it is applica-
ble to many different data centre topologies and not as
specific as PortLand, VL2, F10, DCell or BCube, whilst
preserving the simplicity of the address assignment. The
independence of Torii from IP addresses allows single-IP
subnet addressing and maximises virtual server mobility in
data centres. When comparing with SP, results show a very
good behaviour of Torii in terms of load distribution and
packet delays slightly better than SP.

ACKNOWLEDGEMENT

This work was supported in part by a grant from
Comunidad de Madrid through Project MEDIANET-CM
(S-2009/TIC-1468).

REFERENCES
1. Mysore RN, Pamboris A, Farrington N, Huang N,

Miri P, Radhakrishnan S, Subramanya V, Vahdat A.
PortLand: a scalable fault-tolerant layer 2 data center
network fabric. ACM SIGCOMM Computer Communi-

cation Review 2009; 39(4): 39–50.
2. Rojas E, Ibanez G. Torii-HLMAC: a distributed,

fault-tolerant, zero configuration fat tree data center
architecture with multiple tree-based addressing and

forwarding. In IEEE GLOBECOM, Anaheim (CA),

2012; 2523–2528.

3. Liu L, Ling Z, Zuo Y. Low-delay node-disjoint multi-

path routing using complementary trees for industrial

wireless sensor networks. KSII Transactions on Internet

and Information System 2011; 5(11): 2052–2067.

4. Bruni C, Priscoli FD, Koch G, Pietrabissa A,

Pimpinella L. Network decomposition and multi-path

routing optimal control. Transactions on Emerging Tele-

communications Technologies 2013; 24(2): 154–165.

5. Vahdat A, Al-Fares M, Farrington N, Mysore RN,

Porter G, Radhakrishnan S. Scale out networking in the

data center. IEEE Micro 2010; 30(4): 29–41.

6. Schroeder MD, Birrell AD, Burrows M, Murray H,

Needham RM, Rodeheffer TL, Satterthwaite EH,

Thacker CP. Autonet: a high-speed, self-configuring

local area network using point-to-point links. IEEE Jour-

nal On Selected Areas in Communications 1991; 9 (8):

1318–1335.

7. Leiserson CE. Fat-trees: universal networks for

hardware-efficient supercomputing. IEEE Transactions

on Computers 1985; 34(10): 892–901.

8. Ibanez G, Garcia-Martinez A, Carral JA, Arco JM,

Azcorra A. Evaluation of tree-based routing Ethernet.

IEEE Communication Letters 2009; 13(6): 444–446.

9. Greenberg A, Hamilton JR, Jain N, Kandula S, Kim C,

Lahiri P, Maltz DA, Patel P, Sengupta S. VL2: a scal-

able and flexible data center network. ACM SIGCOMM

Computer Communication Review 2009; 39(4): 51–62.

10. Ibanez G, Garcia-Martinez A, Carral JA, Gonzalez PA,

Azcorra A, Arco JM. HURP/HURBA: zero-

configuration hierarchical Up/Down routing and bridg-

ing architecture for Ethernet backbones and campus

networks. Computer Networks 2010; 54(1): 41–56.

11. Elmeleegy K, Cox AL. EtherProxy: scaling the Ethernet

by suppressing broadcast traffic. In IEEE INFOCOM,

Rio de Janeiro (Brazil), 2009; 1584–1592.

12. Myers A, Ng TSE, Zhang H. Rethinking the service

model: scaling Ethernet to a million nodes. In Third

Workshop on Hot Topics in Networks (HotNets- III),

San Diego (CA), 2004.

13. 802.1Qbg - Edge Virtual Bridging. Available from:

http://www.ieee802.org/1/pages/802.1bg.html [March

2014].

14. Clos C. A study of non-blocking switching networks.

Bell System Technical Journal 1953; 32(2): 406–424.

15. Liu V, Halperin D, Krishnamurthy A, Anderson TE.

F10: a fault-tolerant engineered network. In NSDI,

Lombard (IL), 2013; 399–412.

16. Sun Y, Chen J, Lu Q, Fang W. Diamond: an improved

fat-tree architecture for large-scale data centers. Journal

of Communications 2014; 9(1): 91–98.

Trans. Emerging Tel. Tech. 26:179–194 (2015) © 2014 John Wiley & Sons, Ltd. 193
DOI: 10.1002/ett



E. Rojas et al.

17. Guo C, Lu G, Li D, Wu H, Zhang X, Shi Y, Tian C,
Zhang Y, Lu S. BCube: a high performance, server-
centric network architecture for modular data centers.
ACM SIGCOMM Computer Communication Review
2009; 39(4): 63–74.

18. Guo C, Wu H, Tan K, Shi L, Zhang Y, Lu S. Dcell:
a scalable and fault-tolerant network structure for data
centers. ACM SIGCOMM Computer Communication
Review 2008; 38(4): 75–86.

19. Caro LF, Papadimitriou D, Marzo JL. Ethernet label
spaces dependency on network topology. European
Transactions on Telecommunications 2010; 21 (6):
491–503.

20. Dijkstra EW. A note on two problems in connexion with
graphs. Numerische Mathematik 1959; 1: 269–271.

21. OMNeT++: Available from: http://www.omnetpp.org/
[March 2014].

22. INET framework: Available from: http://inet.omnetpp.
org/ [March 2014].

23. Prasad RS, Dovrolis C. Beyond the model of persistent
TCP flows: open-loop vs closed-loop arrivals of non-
persistent flows. In 41st Annual Simulation Symposium
(ANSS), Ottawa (Ont.), 2008; 121–130.

24. Kvalbein A, Dovrolis C, Muthu C. Multipath load-
adaptive routing: putting the emphasis on robustness
and simplicity. In 17th IEEE International Conference
on Network Protocols (ICNP), Princeton (NJ), 2009;
203–212.

25. Perlman R, Eastlake D, Dutt D G, Gai S, Ghanwani A.
Rbridges: base protocol specication. Technical report,
Internet Engineering Task Force, 2009.

26. Kim C, Caesar M, Rexford J. Floodless in seattle: a
scalable ethernet architecture for large enterprises. ACM
SIGCOMM Computer Communication Review 2008;
38(4): 3–14.

27. Al-Fares M, Loukissas A, Vahdat A. A scalable, com-
modity data center network architecture. ACM SIG-
COMM Computer Communication Review 2008; 38(4):
63–74.

28. Chen K, Guo C, Wu H, Yuan J, Feng Z, Chen Y,
Lu S, Wu W. Generic and automatic address con-
figuration for data center networks. ACM SIGCOMM
Computer Communication Review 2010; 41(4): 39–50.

29. Hu Y, Zhu M, Xia Y, Chen K, Luo Y. GARDEN: generic
addressing and routing for data center networks. In
IEEE 5th International Conference on Cloud Comput-
ing, Honolulu (HI), 2012; 107–114.

30. Walraed-Sullivan M, Mysore RN, Tewari M, Zhang
Y, Marzullo K, Vahdat A. ALIAS: scalable, decentral-
ized label assignment for data centers. In ACM SOCC,
Cascais (Portugal), 2011; 6:1–6:14.

31. Walraed-Sullivan M, Marzullo K, Vahdat A. Scalabil-
ity vs. fault tolerance in aspen trees. Microsoft Research
technical report MSR-TR-2013-21, February 2013.

32. Miercom. Lab testing summary report. September 2011
(report 111013). Product Category: Ethernet Fabric.
Products Tested: Shortest Path Bridging (SPB) Pro-
tocol: Available from: http://www.miercom.com/pdf/
reports/20111027.pdf [March 2014].

33. Morales J, Ibanez G. Ethernet fabric routing
(UETS/EFR) - a hierarchical, scalable and secure ultra-
high speed switching architecture. In THCSN conference
INFOCOM, Barcelona (Spain), 2006; 1–5.

34. Scott M, Crowcroft J. MOOSE: addressing the scala-
bility of Ethernet. In Eurosys Poster Section, Glasgow
(Scotland), 2008.

35. Ibanez G, Marsa-Maestre I, Lopez-Carmona MA,
Perez-Ibanez I, Tanaka J, Crowcroft J. Path-moose: a
scalable all-path bridging protocol. IEICE Transactions
on Communications 2013; E96-B(3): 756–763.

194 Trans. Emerging Tel. Tech. 26:179–194 (2015) © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/ett


	Torii: multipath distributed Ethernet fabric protocol for data centres with zero-loss path repair
	ABSTRACT
	INTRODUCTION
	AUTOMATIC ADDRESSES ASSIGNMENT
	FORWARDING AND ROUTING
	Broadcast forwarding
	Unicast forwarding
	Path diversion
	Notification messages


	IMPLEMENTATION OPTIONS AND SCALABILITY
	Use of virtual machines (VMs) at hosts
	Address assignment to virtual machines at a host

	Other HLMAC address assignment alternatives
	Layer 2 mobility
	Beyond the FatTree topology
	True fat tree topologies versus PortLand (Clos)
	AB FatTree and Diamond
	BCube and DCell

	Scalability
	Forwarding state per switch
	Number of messages for routing and recovery
	Number of broadcast messages
	Number of VMs and size of the network


	PERFORMANCE EVALUATION
	Load distribution
	Delay

	RELATED WORK
	CONCLUSION
	REFERENCES



