
Mobile Traffic Forecasting for Maximizing
5G Network Slicing Resource Utilization

Vincenzo Sciancalepore∗, Konstantinos Samdanis†, Xavier Costa-Perez∗,
Dario Bega‡§, Marco Gramaglia‡§, Albert Banchs‡§

∗ NEC Europe Ltd. † Huawei Europe ‡ IMDEA Networks Institute § Universidad Carlos III de Madrid

Abstract—The emerging network slicing paradigm for 5G
provides new business opportunities by enabling multi-tenancy
support. At the same time, new technical challenges are intro-
duced, as novel resource allocation algorithms are required to
accommodate different business models. In particular, infras-
tructure providers need to implement radically new admission
control policies to decide on network slices requests depending
on their Service Level Agreements (SLA). When implementing
such admission control policies, infrastructure providers may
apply forecasting techniques in order to adjust the allocated
slice resources so as to optimize the network utilization while
meeting network slices’ SLAs. This paper focuses on the design
of three key network slicing building blocks responsible for (i)
traffic analysis and prediction per network slice, (ii) admission
control decisions for network slice requests, and (iii) adaptive
correction of the forecasted load based on measured deviations.
Our results show very substantial potential gains in terms of
system utilization as well as a trade-off between conservative
forecasting configurations versus more aggressive ones (higher
gains, SLA risk).

I. INTRODUCTION

In addition to the clear advantages in terms of, among
others, enhanced bandwidth, reduced latency or extended
coverage, the introduction of future 5G networks will have
a significant impact on how operators manage their infrastruc-
ture. In contrast to the relatively monolithic architectures of
3G and 4G, by building on the recent advances in network
softwarization, 5G networks will be highly modular and de-
signed to be future-proof.

5G networks will hence allow higher flexibility: network
virtualization can boost the introduction of very diverse ser-
vices to be deployed on-demand using shared infrastructure.
This feature enables new business opportunities for Mobile
Network Operators (MNO); indeed, hosting different services
with possibly conflicting requirements on the same infras-
tructure is currently not achievable with the current one-size-
fits-all architectures. However, it also introduces new critical
challenges; the network slicing concept [1] is expected to be
one of the technical solutions to these challenges.

Network slicing allows MNOs to open their physical net-
work infrastructure platform to the concurrent instantiation of
multiple logical self-contained networks, orchestrated in dif-
ferent ways depending on their specific service requirements;
such network slices are (temporarily) owned by the respec-
tive tenants. The availability of this vertical market provides
new monetization opportunities of the network infrastructure,
since (i) new players may come into play (e.g., automotive
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industry, e-health,. . . ), and (ii) a higher infrastructure capacity
utilization can be achieved by admitting network slice requests
and exploiting multiplexing gains. In the above context, the
technical enablers for network slicing admission control need
to be investigated.

The 5G Network Slice Broker [2] is a novel network
element that builds on the capacity broker functional block
considered by 3GPP for advanced RAN sharing [3]. It maps
incoming Service Level Agreement (SLA) requirements as-
sociated to network slice requests into physical resources.
Tenants hence obtain a “slice” of the appropriate Radio Access
Network (RAN) elements. The architectural specifications for
this new network paradigm are currently under definition and
the necessary algorithms yet to be devised.

Although very conservative mappings may be considered
for mission critical services that need ultra-high availability,
enhanced admission control algorithms that leverage mul-
tiplexing gains of traffic among slices are the key to the
optimization of network utilization and monetization. To this
end, the ability to predict the actual footprint of a particular
network slice is essential to increase the maximum number of
slices that might be run on the same infrastructure.

Building on this idea, in this paper we design three key
network slicing building blocks: (i) a forecasting module that
predicts network slices’ traffic based on past traffic and user
mobility, (ii) a network slicing admission control algorithm
and (iii) a network slicing scheduler algorithm in charge
of meeting the agreed SLAs and report deviations to the
forecasting module.

The remaining of the paper is organized as follows. In
Section II we review the state-of-the-art solutions, before
presenting our framework building blocks in Section III. In
Section IV we establish the basis of our slice forecasting
model, whereas in Section V we formulate the admission
control problem as a geometric knapsack, providing that this
problem is NP-Hard. In Section VI we explain the slice
scheduling process and how its feedback is used to adjust the
forecasting process. In Section VII we discuss the simulation
results and, finally, we conclude the paper in Section VIII.

II. RELATED WORK

The support for multi-tenancy in 3GPP LTE networks is
related to early proposals on active RAN sharing, which
enables network sharing based on contractual agreements.
A study on virtualization for wireless and mobile networks
considering preliminary proposals such as the GENI project
as well as early LTE base station virtualization is elaborated
in [4]. Two active network sharing architectures are specified
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in 3GPP, the Multi-Operator Core Network (MOCN), allowing
each operator to share eNBs connected on a separate core
network, and the Gateway Core Network (GWCN), where
operators share additionally the Mobility Management Entity
(MME) [5]. A complementary network sharing management,
which enables MVNOs to control the allocated resources,
is designed in [6]. Our proposal exploits the experience of
early deployments, while being compatible with the 3GPP
specifications.

A RAN sharing solution applying proportional fairness
criterion is proposed in [7]. To share resources among different
operators under diverse radio conditions, [8] introduces the
Network Virtualization Substrate (NVS), a two-step process
where the infrastructure first allocates resources to the virtual
instances of eNBs and then each tenant customizes scheduling
within its eNB instance [9]. In our work we adopt a similar
two-step process, allocating slices via a broker entity that
performs admission control based on the requested SLAs.

Our approach builds on the concept of a signaling-based
network slicing broker solution by implementing a capacity
forecasting algorithm that considers guaranteed and best-effort
traffic in addition to user mobility. A study that explores
different options of network sharing based on a centralized
broker is provided in [10], considering mobility means, spec-
trum transfer policies and resource virtualization to optimize
the usage of MNO’s limited resources. Unlike our proposal,
such a study introduces new 3GPP interfaces to accommodate
the broker functionality. A scheme that integrates the capacity
broker with a minimum set of enhancements on the 3GPP
architecture is documented in [11]. Such capacity broker
forecasts the network capacity when allocating guaranteed and
best-effort slices, considering their respective SLAs. Our ap-
proach enhances previous solutions by introducing algorithms
that dynamically evaluate network slices SLA requests, while
maximizing the infrastructure resources utilization.

III. SYSTEM DESIGN

This paper builds on the concept of a 5G network slice
broker in the context of the 3GPP network sharing manage-
ment architecture [6] for establishing network slices through
signaling. The 5G network slice broker is introduced in the
network management system of the infrastructure provider to
exploit 3GPP conventional monitoring procedures for gather-
ing global network load measurements. Such information can
assist the forecasting process, facilitating admission control
while considering the specified network slice SLAs. To support
a signaling-based slice allocation, certain 3GPP interfaces
need to be enhanced (Type 5 and Itf-N) to enable the in-
stantiation and configuration of network slices, indicating the
time duration, the required resource amount, and additional
requirements, such as, e.g., the slice SLA. We refer the reader
to [2] for further architectural details.

Fig. 1 depicts the 5G Network Slice Broker building blocks
addressed in this paper. Network slice requests are collected
within a fixed negotiation time window. When the time win-
dow is closed, network slice requests are processed and eval-
uated. A key aspect for an efficient network slice admission
control mechanism is to accurately predict the tenants’ traffic
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Fig. 1: Block diagram of the 5G Network Slice Broker.

evolution in the near future. This is achieved through a Slice
Forecasting module in charge of analyzing the network slices
traffic patterns and providing forecasting information to the
Admission Control module, as explained in Section IV. When
no forecasting solution is applied (w/o forecasting) or during
the training period (for adjusting the forecasting algorithm
parameters), the only information used are the SLA requests.
Based on this information, Admission Control policies are
applied in order to select which network slice requests will
be granted for the next time window. To this end, two
different algorithms are devised, with different performance
and complexity features, as explained in Section V. The list
of granted slice requests is sent to the Slice Scheduling module,
which allocates network slice physical resources and monitors
(with a penalty history function) the served traffic levels and
potential SLA violations. Such a function is used to provide
feedback to the forecasting module and thus adaptively adjust
the system, as explained in Section VI.

IV. SLICE FORECASTING

Information on forecasted traffic patterns is used to predict
future slice load and thus maximize the system resource
utilization. The effectiveness highly depends on the accuracy
of the forecasting algorithm: the more accurate, the more
aggressive we can be in leasing available resources while
keeping a small probability of violating slice SLAs. While
the first aspect is deeply analyzed in this section, we refer the
reader to Section VI for more details on SLA violations and
dynamic forecasting parameters adjustments.

A. Tenant traffic analysis: characterization and forecasting

Traffic predictions are performed on an aggregate basis for
every tenant. Each tenant i might ask for a different network
slice request tailored to its specific service requirements.
Indeed, the forecasting process can easily categorize the traffic
requests based on the associated service requirements, thereby
performing a prediction separately per slice. In our analysis,
we first assume that traffic requests are uniformly distributed
within the whole network. However, in Section IV-B we extend
this assumption by considering multi-cellular environments
where tenant traffic requests are significantly affected by the
user mobility.

We assume different classes of traffic based on specific
SLAs, as shown in Table I. We let the traffic volumes
of tenant i for traffic class k (e.g., satisfying particular
service requirements) be a realization of a point process,

ζ
(k)
i =

∑T
t=0 δt r

(k)
i (t), where δt denotes the Dirac measure
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for sample t. We express traffic requests r
(k)
i (t) in terms

of required resources (note that these resources could be
easily translated into different metrics, such as latency or
throughput demands). Given the periodic nature of traffic
requests, the traffic forecasting is based on an observed

time window TOBS, and is given by the vector r
(k)
i =

(r
(k)
i (t− TOBS), r

(k)
i (t− (TOBS + 1)), · · · , r(k)i (t)). Then, the

forecasting function fHW provides forecasted traffic volumes

for time period [t + 1, t + TWINDOW], denoted as r̂
(k)
i =

(r̂
(k)
i (t + 1), r̂

(k)
i (t + 2), · · · , r̂(k)i (t + TWINDOW)). For fixed

traffic patterns, the system exhibits a periodic behavior, which
translates into seasons of length WS that are repeated over

time. Within a single season we assume that process ζ
(k)
i is

stationary and ergodic. Thus, we can use the Holt-Winters
(HW) forecasting procedure to analyze and predict future
traffic requests associated to a particular network slice. We

denote a specific predicted traffic request r̂
(k)
i (t) by r̂

(k)
i,t . We

rely on the additive version of the HW forecasting problem as
the seasonal effect does not depend on the mean traffic level of
the observed time window but instead it is added considering
values predicted through level and trend effects. Following
HW standard procedure, we can predict such requests based
on the level lt, trend bt and seasonal st factors, as follows:

r̂
(k)
i,t+TWINDOW

= lt + bth+ st+TWINDOW−W where

lt =α(r
(k)
i,t − st−W)+(1− α)(lt−1 + bt−1),

bt =β(Lt − lt−1) + (1− β)bt−1,

st = γ(r
(k)
i,t − lt−1 − bt−1) + (1− γ)st−W .

(1)

While the set of optimal HW parameters α, β and γ
can be obtained during a training period employing existing
techniques [12], we focus on the forecasting errors and how the
forecasting inaccuracy may affect our network slicing solution.

We define the one-step training forecasting error e
(k)
i,t as follows

e
(k)
i,t = r

(k)
i,t − r̂

(k)
i,t = r

(k)
i,t − (lt−1 + bt−1 + st−1), (2)

which is computed during the training period of our fore-
casting algorithm (when predicted values are compared with

the observed ones). Given that our process ζ
(k)
i is ergodic

and assuming an optimal HW parameter set, for any pre-
dicted value at time z we can derive the prediction interval[
l̂l
(k,χ)

i,z , ĥh
(k,χ)

i,z

]
wherein future traffic requests lie for that

particular network slice with a certain probability χ
(k)
i . Then,

it holds that

Pr
{
l̂l
(k,χ)

i,z ≤ r̂
(k)
i,z ≤ ĥh

(k,χ)

i,z

}
= χ

(k)
i , ∀z ∈ [t+1, t+TWINDOW]

(3)

where ĥh
(k,χ)

i,z (or l̂l
(k,χ)

i,z ) = r̂
(k)
i,z + (−)Ωχ

√
V ar(e

(k)
i,z ) and

V ar(e
(k)
i,z ) ≈

(
(1 + (z − 1)α2[1 + zβ +

z(2z − 1)

6
β2]

)
σ2
e .

In the above equation, Ωχ denotes the one-tailed value of a

standard normal distribution such that we obtain χ
(k)
i proba-

bility and σ2
e is the variance of one-step training forecasting

error, i.e., σ2
e = V ar(e

(k)
i,t ), over the observed time window.

TABLE I: Network slice traffic requirements [13]

k T (k) Type and QCI
0 10 ms GBR - 65
1 50 ms GBR - 3
2 100 ms GBR - 1
3 150 ms GBR - 2
4 300 ms non-GBR - 6
5 1000 ms non-GBR - 9

Due to the penalties imposed by traffic SLAs, we focus only
on the upper bound of the prediction interval as it provides
the “worst-case” of a forecasted traffic level. From Eq. (3), a
larger prediction time window TWINDOW, e.g., a higher number
of predicted values z, leads to a lower accuracy and behaves
closer to the real network slice demand (limited network slice
resources utilization). Conversely, an accurate forecasting with
a lower error probability can result in severe penalties in case
it does not guarantee the desired slice SLAs. Therefore, we

adjust the forecasting error probability χ
(k)
i according to the

service requirements and to the number of prediction points the
forecasting process needs to perform. For instance, best-effort
traffic requests having no stringent requirements can tolerate
a prediction with a longer time pace that results in imprecise

values. This makes the upper bound ĥh
(k,χ)

i,z very close to

the real (future) values r
(k,χ)
i,z regardless the error probability

χ
(k)
i as the number of z values to predict is limited. Hence,

we might select a low forecasting error probability χ
(k)
i for

this service type. On the other hand, when guaranteed bit rate
traffic is considered, the corresponding SLA must be fulfilled
in a shorter time basis, which makes our forecasting process
much more complex, requiring significantly more predicted
values z. To achieve this, our system models such a type of

traffic with a higher forecasting error probability χ
(k)
i .

We implement the above mathematically as follows. Ac-
cording to the traffic classes defined in Table I, traffic class
k = 0 provides a forecasted horizon shorter than the other
traffic classes, and hence a larger number of values z must
be predicted. To achieve this, we can derive an upper bound
for the forecasting probability error per tenant i for this
traffic class. We calculate the maximum potential gain be-
tween the slice request and the forecasted traffic requests

as d̂
(k)
i = max

z∈TWINDOW

(
R

(k)
i − r̂

(k)
i,z

)
. We then compute the

forecasting error probability as follows

χ
(k=0)
i : Ωχ

√
V ar(e

(k=0)
i,z ) = d̂

(k=0)
i . (4)

As soon as the potential gain d̂
(k=0)
i becomes very large, we

cap the one-tailed value Ωχ to 3.49, resulting in χ
(k=0)
i =

99.9%. Conversely, for the best-effort traffic (k = 5) we

compute the forecasting error probability χ
(k=|K|)
i = 50%,

due to its more relaxed service. For the other traffic classes k,

intermediate forecasting error probabilities χ
(k)
i are calculated

from (4) by deriving d̂
(k)
i values from the upper and the lower

bound values. However, note that forecasting error probability
values are dynamically evaluated and adjusted based on the
SLA violations experienced during the slice scheduling pro-
cess, as explained in detail in Section VI-B.
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B. User mobility and traffic model periodicity
We next extend our forecasting model to dynamic scenarios

where user mobility is considered and the traffic periodicity
assumption no longer holds. We consider a multi-cellular
environment covering the whole area. In order to design
forecasting algorithms that are accurate under realistic settings,
we rely on human-based mobility patterns. Specifically, we
employ the well-accepted SLAW mobility model [14] for
user motions. According to this model, users move among a
number of waypoints, which are distributed over the network
area according to self-similarity rules forming a given number
of clusters. Clusters with more waypoints can be seen as
hotspots attracting more users. While performing a flight (a
movement from one waypoint to the other within the same
trip), based on some given probabilities users choose a set
of clusters which are dynamically and randomly replaced
during the flight. Then, users start moving between a subset
of waypoints residing within the selected clusters according to
a least-action trip planning (LATP) with αSLAW = 3. Traffic
requests come randomly during the user trip. Assuming that
users stop when reaching a waypoint for a pause-time, we can
model the value of the flight-time (xL) and pause-time (xP ) as
a random value drawn from a heavy-tailed distribution function
defined in terms of Fourier transformations as

fL(x) = fP (x) =
1

2π

∞∫
−∞

e−iu x−|ρu|αDISTR
du (5)

where ρ is the scale factor and αDISTR depends on the
distribution considered (pause-time or flight-time).

Given a uniform user speed distribution, the traffic model
of the considered users is dominated by a heavy-tailed dis-
tribution whose components can be decoupled, as showed
in Eq. (5). Under these conditions, the system exhibits a
periodic behaviour (like in the previous section). Without
loss of generality, we can obtain a periodic traffic vector

as follows. Let M denote the period and r
(k)
i = {rt} a

generic traffic vector. Then, the forecasting process applies a
Discrete Fourier Transform (DFT) to retrieve the M -periodic

samples Rw =
∑M−1

n=0 rte
−iw 2π

N t, where w = 0, · · · ,M − 1.
Note that Rw is a complex number translating the sinusoidal
component of rt. Then, the forecasting process can obtain
all single time-series components derived by each of those
frequency samples by applying the Inverse Discrete Fourier

Transform (IDFT), e.g., rn = 1
N

∑M−1
w=0 Rwe

2πi
Nwn , where

n = 0, · · · , N − 1, which provides a periodic traffic vector

r
(k)
i = (r

(k)
i (n), r

(k)
i (n+ 1), · · · , r(k)i (n+M)).

V. ADMISSION CONTROL: DESIGN AND VALIDATION

A 5G Network Slice Broker might decide on the network
slice requests to be granted for the subsequent time window
TWINDOW based solely on the current resource availability.
However, if forecasting information is taken into account,
the resources consumed by network slice requests might be
accurately reshaped to fit additional slice requests into the
system (see Fig. 2).

A mathematical approach is proposed next address the
admission control problem for both cases. First, we prove its
NP-Hardness and suggest a baseline algorithm for allocating
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Fig. 2: Admission control problem as geometric knapsack
problem.

network slice requests when no forecasting information is
available. Then, we design the Forecasting-aware Network
Slicer algorithm to efficiently perform the admission control
phase exploiting accurate traffic pattern predictions.

A. Problem Formulation

In our problem formulation, we first assume that network
slice instantiations require a constant amount of resources,
and then we show that, when relaxing such an assumption
by considering different forecasted traffic levels, the problem
becomes more complex but still tractable for our admission
control process.

Let us define a network slice request as σ
(k)
i = {R,L, i, k}

where i identifies the tenant, R is the amount of resources
required, L is the time duration of the slice and k is the
traffic class. Hereafter, we simply refer to a tenant request as

R
(k)
i (Li). Recalling that our main objective is to accommodate

network slice requests within a fixed time window TWINDOW

while maximizing the network resource utilization, we next
derive our model.

Let us assume a rectangular box with fixed width W and
height H representing the resource availability within a fixed
time window. In particular, the box width corresponds to
TWINDOW and box height corresponds to the total amount of
resources Θ. Let us assume a set of items I, where each
item i ∈ I corresponds to a network slice request having
width wi (corresponding to slice duration Li) and height hi

(corresponding to the amount of resources Ri). In addition,
each item provides a profit ci that corresponds to the amount
of resources needed (here we are assuming that a slice request
pays an amount of money proportional to the number of
resources granted 1). Then, the objective of our admission
control problem is to find a subset of items I ′ ⊆ I that
maximizes the total profit

∑
i∈I′ ci, i.e., the total amount of

used resources, as shown in Fig. 2.

Lemma 1. Let the overall system resource availability be a
box with height Θ and width T , and let each item i ∈ I be the
network slice request σi with height Ri and width Li. Then,
the admission control problem is mapped into a Geometric
Two-dimensional knapsack problem with the objective of filling

1This assumption could be relaxed to reflect a different economic model
within the multi-tenancy framework, which is out of the scope of the paper.
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up our system capacity with network slice requests while
maximizing the network resource utilization.

Let us now consider tenant requests that are characterized

by a set R̂
(k)
i,z = ĥh

(k,χ)

i,z representing the predicted amount
of needed resources at time z for a traffic type k (provided
by the forecasting phase as a function of the forecasting error

probability χ
(k)
i ). This results in time-variant resource requests

with shapes that are no longer rectangular.

Lemma 1a. Let the overall system capacity be a box with
height Θ and width T , and let each item i ∈ I be the
network slice request σi with irregular shapes, identified by
different height values R(k)

i,z and width Li. Then, the admission
control problem is mapped into a Flexibile Geometric Two-
dimensional knapsack problem, with the objective of maximiz-
ing the network resources utilization whilst accommodating
network slice requests.

An illustrative example is provided in Fig. 2, wherein
different amounts of resource values are forecasted for a
single network slice request. It may be observed that when
the forecasting is accurate, i.e., the predicted values are close
to the real traffic ones (as it is the case for slice i = 4,
where real traffic is shown with the red points), there is more
room to accommodate additional slices (such as slice i = 6
in the example). Please note that in our case the (flexible)
geometric two-dimensional knapsack problem is constrained
by the orientation law of the considered items. In particular,
each item i has a fixed orientation, which can not be changed
to fit in the box 2. We can formulate our admission control
problem as follows 3

Problem ADM-CONTROL:

maximize
∑
i∈I

ci · xi

subject to
∑
i∈I

wi · xi ≤ W ; (relaxed)

S(xi) ∩ S(xk) = ∅, ∀i 	= k;
S(xi) ⊂ S, ∀i ∈ I;
xi ∈ [0, 1], ∀i ∈ I;

where S(xi) corresponds to the geometrical area of the item
i (either rectangular or irregular) whereas S is the area of
the box, i.e., |S| = T · Θ. The given constraints impose that
items cannot overlap with each other and must be contained
within the total space of the box. The solution of this problem
provides a set of xi values, each of which is a binary value
indicating whether the item i is admitted into the system or
rejected for the next time window TWINDOW, i.e., a list of
granted slice requests in Fig. 1.

B. Complexity Analysis
We now analyze the complexity of the admission con-

trol problem, while in the next section we provide prac-

2Although some state-of-the-art work calls such a problem constrained
geometrical knapsack problem, we prefer to omit the “constrained” word as
it may refer to additional constraints on the relationship between items stored
in the box, which are out of the scope of this work.

3In addition to the constraints included in our probelm formulation, the
Flexibile Geometric Twodimensional knapsack problem also includes an
additional constraint on weight capacities. For the sake of simplicity, we have
omitted this constraint in our problem.
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Fig. 3: Admitted slice requests within a time windows while
collecting slice requests with GBR traffic requirements (k = 0)
and best-effort traffic requirements (k = 5).

tical algorithms for this problem. In order to analyze
the complexity, we formulate the following decision prob-
lem DEC-ADM-CONTROL: given an arbitrary value V , n
items with a value ci and a given area ai enclosed within
a two-dimensional shape identified by R

(k)
i,z and Li, and

a box with capacity S delimited by Θ and T , is there a
subset I ∈ {1, 2, · · · , n} such that items do not overlap and∑

i∈I ci ≥ V ?

Lemma 2. Considering all items with full flexible dimensions,
we can identify one single weight wi per item representing
the area required. Then, if the utility value ci = wi the
decision problem DEC-ADM-CONTROL reduces to a “Subset
Sum Problem”.

Theorem 1. The decision problem DEC-ADM-CONTROL is
NP-Complete and Problem ADM-CONTROL is NP-Hard for
any type of traffic k along the network slice request.

Sketch of Proof: We use a reduction from the subset sum
problem based on Lemma 2. We apply a polynomial re-
duction to the decision problem DEC-ADM-CONTROL con-
sidering only items with full flexible dimensions collapsed
into a weight wi and utility value equal to the weights
ci = wi. This reduces the problem to a Subset-Sum prob-
lem, known to be NP-COMPLETE. When considering items
with fixed resource provisioning, i.e., items with constrained
shape values, it is even more difficult to find a solution
to Problem DEC-ADM-CONTROL, which proves the NP-
Completeness. Based on this, we have that for all ε >
0 approximating the solution for Problem ADM-CONTROL,
|I| = n within n1−ε is NP-Hard. This proves that our
Problem ADM-CONTROL is NP-Hard.

Theorem 1 suggests that no optimal polynomial time algo-
rithm can solve our admission control problem. Interestingly,
note that the admission control problem is easier when only
best-effort slice requests are processed (although it is still NP-
Hard). Moreover, with best-effort or less-demanding traffic, the
number of request that can be admitted is higher, as confirmed
by the results of Fig. 3. In this figure, we consider two different
traffic classes, a traffic class with class requirements GBR
(k = 0) and best-effort (BE) class (k = 5), and depict the
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Fig. 4: System utilization with different utility functions.

number of admitted slice requests as a function of the demands
of each class to the 5G Network Slice Broker. We observe
that the total number of admitted slices increases with the
number of best-effort slice requests, showing that best-effort
slice requests are preferred due to the higher flexibility. This
is further supported by Fig. 4(a), which shows the contour
of the total system utilization when different number of slice
requests are issued to the network. We observe that utilization
is maximized when the number of BE slice requests is high,
reaching values as high as 90% in the best case. The results
provided above show a preferential treatment to the less
demanding traffic classes, which may negatively affect the
performance of the other classes. In order to overcome this
problem, in the following we provide a smart mechanism
which ensures no traffic inter-class prioritization. We define
the utility value in Problem ADM-CONTROL for each slice
requests as ci = LiRi

(T (k))η
, with η ∈ {0, 1}. For η = 0, the

utility value for all classes is equal to the amount of data
required within the slice, whereas with η = 1 we provide a
higher priority to service classes with more strict requirements.
In Fig. 4(b) we show the contour of the system utilization for
η = 1. With this setting, we improve the inter-class fairness
level (as shown in the top-right part of the picture), but this
comes at the price of degrading the overall utilization (which
does not exceed 55% in the best case).

C. Heuristic algorithm design
The admission control needs to optimize the total utility

function while coping with different network slice requests,
following the formulation in Problem ADM-CONTROL. We
distinguish the following two types of network slice requests:
(i) regularly shaped, when no forecasted information is consid-
ered, and (ii) irregularly shaped, depending on the predicted
load at each point in time. For both request types, we may
have different flexibility degrees depending on the traffic class
considered. In the following, we propose algorithms for the
two types of network slice requests. The first type is handled
through a Network Slices Packer algorithm, a revised and
improved version of [15]. The second type of network slice
problem admits at least the same solution of the first class
but, if properly explored, it could provide a higher resources
utilization.

Network Slices Packer. We consider rectangular shapes
for network slice requests with different traffic requirements.
When traffic class k = 0, the regular shape of the network slice
is strictly defined and no flexibility is allowed for allocating
the traffic requests. Conversely, when less-demanding slice

Algorithm 1 Network Slices Packer: Algorithm to admit network

slice requests σ
(k)
i within the system capacity Θ for the next time

window TWINDOW.

Input: Σ = {σ(k)
i },Θ, TWINDOW, S

Initialization: C ← ∅,F1 ← ∅,F2 ← ∅, E ← ∅
Procedure

1: for all Cl ←
(Σ
2

)
do

2: if Cl fits into S then
3: C ← C ∪ Cl
4: end if
5: end for
6: for all Cl ∈ C do
7: {v(Cl ∪Bl), s(Cl ∪Bl)} ← Solve the knapsack problem P (Cl)
8: end for
9: l∗ = argmax

l∈C
{v(Cl ∪Bl)}

10: if v(Cl∗) ≥ v(Cl∗∪Bl∗)
2

then
11: return Cl∗
12: else
13: F1 ← Cl∗
14: F2 ← Bl∗
15: if s(F1) ≥ |S|

2
then

16: return Bl∗
17: else
18: Sort F2 in non-increasing order of their profits and traffic class k
19: while s(F1) <

S

2
do

20: e = pop(F2)
21: F1 ← {F1 ∪ e}
22: end while
23: if v(F2) ≥ v(Cl∗∪Bl∗)

2
then

24: return v(F2)
25: else
26: E ← max{v(F1 \ e); v(F2)}
27: return E
28: end if
29: end if
30: end if

requests k > 0 are considered, the slice might be reshaped,
delaying the slice traffic, to efficiently fit into the network.

We make the assumption that each tenant is not allowed
to ask more than the half of the resource availability of the
infrastructure provider, i.e., Ri ≤ Θ

2 . This implies that at
least 2 network slices can be possibly accommodated. The
algorithm pseudocode is given in Algorithm 1. Among all
possible pairs of network slice requests, only those fitting the
available system capacity are taken into account (line 2). For
each 2-slice set (Cl), we formulate a 0-1 knapsack problem
to maximize the total profit considering that the profit of each
item is given by the area of the slice (Ri ·Li). The item set to
evaluate for the knapsack problem includes the 2-slice set (Cl)
and all the other slices (Bl). Following the FPTAS proposed
in [16], we retrieve the best solution, i.e., a set of network slice
requests (Cl∗ ∪Bl∗) among all knapsack problems (line 9). If
the total profit v(·) assigned to the 2-slice set requests Cl∗ is
greater than the half of the best profit retrieved after running all
knapsack problems, we keep Cl∗ as the best feasible set (line
10-11). Otherwise, we split the optimal set into two subsets
F1 and F2 (line 13-14). If the total space covered by the items
in F1 is greater than the half of the total system capacity area
(line 15), this implies that the second subset F2 will cover less
then the half of the available system capacity 4, and provide
a total profit greater than the half of the optimal solution. In

4Based on the Steinberg’s theorem, if the sum of the item areas are less than
the half of the box, they can be packed. See A. Steinberg, “A strip-packing
algorithm with absolute performance bound 2”, SIAM Journal on Computing.
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this case, the subset F2 = Bl∗ could be easily (in polynomial
time) packed into the system capacity (line 16). Otherwise, we
move the item with the greatest profit and the highest traffic
class k, i.e., the most flexible one from F2 to F1 until the
space of F1 is greater than the half of the system capacity
(lines 19-22). Then, if the total profit of F2 is greater than
the half of the optimal one (line 23), the algorithm ends and
we keep F2 as the optimal set. Otherwise, we choose the set
providing the largest total profit after comparing F2, without
the latest added element, with F1.

The proposed algorithm provides a performance ratio of at
most 5

2 + ε. The first 5 rows of our algorithm are executed
O(n2) times, corresponding to the number of knapsack prob-
lems P (Cl) to be solved. Given that the knapsack problem
solution can be solved with O(n log n) computational time,
the complexity of the Network Slices Packer is dominated by
O(n3 log n).

Forecasting-aware Network Slicer. When the forecasted
information is available, the admission control gets more room
to fit more network slice requests, while still meeting the slice
SLAs guarantees. The algorithm is inspired in the concept of
simulated annealing [17]. The additional complexity is due to
the feasibility check of admitting a given set of items into the
system, as packing items in a different order might influence
the solution optimality in the next attempts.

We adopt a coding scheme called sequence pair [18] to
represent candidate solutions of Problem ADM-CONTROL.
With this scheme, a solution is represented by a pair of
permutations of |I| items {π+, π−}. The π+ permutation
indicates the spatial relation between items on the horizontal
axis, i.e., if i is before j it should be allocated on the left
of j. Similarly, π− refers to the vertical axis. With this
representation, the simulated annealing algorithm can easily
change the permutations by checking at every step kk whether
the new locations are (i) feasible and (ii) provide a greater
objective function value, i.e., ΔF = Fkk+1(x)−Fkk(x) > 0.
Additionally, solutions with lower objectives are also accepted
with a certain admission probability Pra(ΔF ) = ΔF

Tr , where
Tr is the temperature obtained by the logarithmic cooling
function Trk = Tr0

ln(1+kk) and Tr0 is the initial temperature.

The Forecasting-aware Network Slicer algorithm starts by
sorting in non-increasing order the slice requests according to
their profits (ci) and traffic class (k). At each step kk, the
algorithm decides to shuffle permutations π+, π−, add a new
item into both sets or remove an existing one. The algorithms
stops when the temperature Tr has reached a zero value and
no better solutions are found in the successive steps. While
this algorithm asymptotically finds the global optimal solution,
the running time might not be affordable. In Section VII,
we propose some techniques to improve the computational
efficiency and analyze the resulting complexity.

VI. SCHEDULING NETWORK SLICE TRAFFIC

Once the decision of which network slices to admit has
been taken, we need to properly schedule the traffic of those
slices. To this end, in the following we present a novel
network slice scheduler that pursues the following two goals:
(i) serving the tenant traffic of the granted network slices,

and (ii) providing the required feedback to the forecasting
process, yielding a closed-loop solution that drives the system
to optimal performance (see Fig. 1).

A. Multi-class slice scheduler
We start by designing a scheduling algorithm that accounts

for the different slice SLAs. We denote a traffic request from

tenant i for traffic class k by r
(k)
i,z . We consider 6 traffic classes

as described in Table I. Each traffic class is characterized by a
time window T (k) identifying the time duration within which a
class should see the rate it has been guaranteed [z; z+1], which
is shorter for high-demanding traffic requirements and larger
for best-effort class. The scheduler ensures that the amount of
committed resources is served within the given time window.

The key objective of our novel network slice traffic sched-
uler is to minimize consumed resources while guaranteeing
the traffic SLAs within a network slice. When forecasted in-
formation is available, the scheduler expects slice traffic levels

below the predicted traffic bounds i.e., r
(k)
i,z ≤ R̂

(k)
i,z , ∀z ∈ Li.

If forecasted traffic bounds are underestimated and the traffic
demands exceed the expected values, the allocated resources
may grow to a value as large as the value agreed during

the slice request admission, i.e., R
(k)
i . In this case, slice

allocations may overlap and traffic class requirements might
not be satisfied incurring in slice SLA violations.

We formulate the scheduler problem as a general mini-
mization problem addressing all traffic class SLAs. We let

s
(k)
i,j denote the scheduled traffic corresponding to the resource

served at time j for each network slice, within the set of

admitted slices x
(k)
i available from the admission phase. The

problem is formulated as follows

Problem SLICER-SCHEDULING:

minimize s
(k)
i,j

subject to

(
zk+t̄+T (k)∑
j=zk+t̄

s
(k)
i,j

)
≥ r

(k)
i,z x

(k)
i , ∀z∈[0, ⌈ Li

T (k)

⌉−1
]
;

∑
i∈N

s
(k)
i,j ≤ Θ+ P

(k)
i,j , ∀j ∈ L;

s
(k)
i,j ∈ R+, ∀i ∈ N , j ∈ L, k ∈ K;

where Θ is the total capacity of the system, given by the

total amount of resource blocks, whereas P
(k)
i,j is the penalty

incurred for not having satisfied a particular tenant slice
traffic SLA, i.e., a SLA violation. The network slice scheduler
keeps track of SLA violations to promptly trigger dynamic
forecasting parameters adjustments (as explained next).

B. Online Reinforcement Learning
As explained above, forecasting process failures may lead

admission control to overbook available network resources,
yielding SLA violations. A monitoring procedure is designed
to keep track of the number of such violations and provide

as feedback to the forecasting phase the penalty value P
(k)
i,j

in Problem SLICER-SCHEDULING. From Eq. (4), we can
derive the forecasting error probability for a generic traffic
class k as follows

χ
(k)
i : h

(k)
i Ωχ

√
V ar(e

(k)
i,z ) = d̂

(k)
i (6)
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Fig. 5: System performance comparison with and without
forecasting preprocessing.

where h
(k)
i is the penalty history function, defined as h

(k)
i =

e
nm

WS+nm assuming nm as the number of times the penalty is
null and WS as the length of the season considered in the fore-
casting process. The penalty history function drives the system
from a setting where a higher forecasting error probability may
be experienced to a more conservative setting, where no SLA
violation occurs. Thus, in case of forecasting failures, a larger
forecasting error probability is derived pushing the system
towards a more conservative setting, with smaller gains.

VII. PERFORMANCE EVALUATION

We carried out an exhaustive simulation campaign to vali-
date our framework. Our system is evaluated through an ad-
hoc simulator developed in MATLAB R©with a dual Intel(R)
Xeon CPU 2.40GHz 4-cores and 16GB RAM. A summary of
the simulation parameters used is provided in Table II. The
system includes |B| = 7 base stations ([19]) and |I| = 10
tenants ([1]). The average number of users associated with
a tenant is E[|Ui|] = 100, which are distributed uniformly.
When they move, a SLAW model is applied [14]. Tenant slice
requests may range between the 5% and the 25% of the total
system capacity, while their duration ranges between 1000 and
3600s. Pi,k defines the probability that a slice request reaches
the network within a time window. At the beginning of each
TWINDOW the admission control procedure is invoked. Based on
the forecasting information, network slice requests are granted
for the next time window and the associated slice traffic served.

A. Dynamics and SLA violations
A dynamic analysis of our system is provided here. Since

no other work in the literature has proposed a solution

TABLE II: System parameters ([19])
Parameters Values Parameters Values

|I| 10 |B| 7 (21 sectors)
|K| 6 E[|Ui|] 100
Θ 200 RBs ISD 250m

TOBS 3600 s η 0
TWINDOW 7200 s Pi,k

1
|I||K|

Li {1000; 3600} s Ri {Θ ∗ 0.05;Θ ∗ 0.25}
αSLAW 3 Av. Speed 1.5m/s
ρSLAW 2.5 αDISTR 1.5
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Fig. 6: System utilization gain for different network scenarios.

for addressing network slice request accommodation, we
benchmark our proposal against a legacy solution wherein
no forecasted information is available during the admission
control phase. The results are shown in Fig. 5(a) for a
long simulation period of 720 minutes in terms of system

utilization Ul = Θ − ∑
i,k s

(k)
i,j , ∀j ∈ TWINDOW, based on

Problem SLICER-SCHEDULING. After a prior training pe-
riod, the forecasting process provides useful information to the
admission control block. Based on such information, network
slice requests are properly reshaped and more traffic requests
are efficiently accommodated into the network capacity. The
gain after the second time window is about 20%. While no
SLA violation occurs, the forecasting process moves from a
conservative behaviour to a more aggressive by reducing the
safe margin, i.e., the forecasting error probability from Eq. (6),
which visibly brings more gain in terms of system utilization.
However, due to the randomness of the traffic requests issued
to the system, forecasted information might underestimate the
real traffic level resulting in a SLA violation, as shown in
Fig. 5(b). This promptly triggers the penalty history function

h
(k)
i which increases the forecasting error probability in the

next time window, thereby keeping the SLA violation under
control. Interestingly, our solution boosts the system utilization
up to 100% while incurring a small SLA violation per tenant
request (about 1.8% in a very short period).

B. System Capacity Utilization

The effectiveness of the forecasted information is evaluated
through a number of network scenarios. In Fig. 6, we consider
4 scenarios where the infrastructure provider decides to lease
different portions of its own available resources, (i.e., Θ) from
50 to 200. The results are obtained for the forecasting case
and the legacy option, after averaging them over 12 hours

time period. We plot the relative gain GF =
(

ŪlF
ŪlL

− 1
)
%,

where Ū lF and Ū lL are the average utilization value of the
forecasting and legacy solution, respectively.

We observe that the relative gain increases (i) with the
number of tenants, and (ii) with the system capacity. Indeed, a
small number of tenants implies a few network slice requests
which can easily be fully accommodated, leading to a small
relative gain. As soon as the network becomes congested, i.e.,
some network slice requests must be rejected, the utilization
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TABLE III: Empirical complexity analysis

No. of tenants 10 20 30
No. of slice req. 30 - 60 60 - 120 90 - 180
Algorithms slices time slices time slices time

[no.] [sec] [no.] [sec] [no.] [sec]
Network 9.584 78.1 11.337 215.7 13.226 497
Slices Packer
Forecasting-aw. 9.607 129.5 13.061 714 15.81 3514.4
Network Slicer (11.897) (600) (13.307) (600)

of our proposal outperforms the legacy scheme (GF  0)
due to a wider distribution of network slice request values.
On another angle, when the system capacity increases, there is
more room to accommodate the network slices into the system,
which leads to better performance. This provides an incentive
to the infrastructure provider to lease much network resources
as possible, to improve the overall system utilization.

C. Algorithm Complexity

We finally provide an empirically study of the computational
cost for the two admission control algorithms proposed. For a
fair comparison, we apply the algorithm to the same instances
of the problem and average the results over several instances
(100). We only compare the case where regular network slice
shapes are considered.

In Table III, we show the results for different number of
tenants present in the system. The results are expressed in
terms of number of slices admitted into the system capacity
and time elapsed for getting a response to an admission
request. The average number of network slice requests within a
single instance of the problem ranges from 30 (with 10 tenants)
to 90 (with 30 tenants). Interestingly, the Forecasting-aware
Network Slicer algorithm outperforms the Network Slices
Packer, but it also experiences a longer computational time. We
apply a time limit TZ = 600s to avoid the process starvation.
Given the long-term execution (every 30 minutes) of those
admission control algorithms, this time bound is still accept-
able for the overall system implementation. Nonetheless, the
Forecasting-aware Network Slicer algorithm shows reasonable
results in an affordable computing time.

Conversely, when irregular shape patterns are considered,
the time complexity of the Forecasting-aware Network slicer
further increases. This may become a significant drawback
when the number of network slice requests is greater then 50.
We overcome this problem in the following way. We first apply
the network slices packer algorithm for the case with regular
shapes. This provides an initial state for the Forecasting-aware
Network slicer, which then starts exploring the neighbouring
solutions to check whether they fit into the system capacity. In
this way, we are able to reduce the computational time of the
Forecasting-aware Network slicer by 20%, making it suitable
for realistic deployments.

VIII. CONCLUSIONS

In this paper we have presented a comprehensive solution
that involves network slicing traffic forecasting, admission
control and scheduling for a 5G Network Slice Brokering
system. The forecasting solution designed builds on Holt-
Winters theory to predict future traffic levels per network
slice, considering different service classes, and is effective in
maximizing the number of requests that can be admitted by the

an admission control decision engine. The admission control
solution has been mapped into a geometric knapsack prob-
lem and two low-complexity algorithms have been designed
for regular and irregular network slice requests, respectively.
The network slice scheduling solution keeps track of SLA
violations per slice and feeds this back to the forecasting
engine such that it can adaptively adjust its behavior. Our
main findings can be summarized as follows: i) Holt-Winters
theory can be effectively applied to network slicing traffic
forecasting both for regular and irregular slice requests, ii)
elastic traffic network slice requests help in increasing the
maximum achievable system utilization, iii) the forecasting
benefits increase as the number of network slice requests and
system capacity increases, and iv) low SLA violation risk
levels result in very significant system utilization gains.
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