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Abstract—The economic sustainability of future mobile
networks will largely depend on the strong specialization of its
offered services. Network operators will need to provide added
value to their tenants, by moving from the traditional one-size-
fits-all strategy to a set of virtual end-to-end instances of a
common physical infrastructure, named network slices, which
are especially tailored to the requirements of each application.
Implementing network slicing has significant consequences in
terms of resource management: service customization entails
assigning to each slice fully dedicated resources, which may
also be dynamically reassigned and overbooked in order to
increase the cost-efficiency of the system. In this paper, we adopt
a data-driven approach to quantify the efficiency of resource
sharing in future sliced networks. Building on metropolitan-
scale real-world traffic measurements, we carry out an extensive
parametric analysis that highlights how diverse performance
guarantees, technological settings, and slice configurations impact
the resource utilization at different levels of the infrastructure
in presence of network slicing. Our results provide insights
on the achievable efficiency of network slicing architectures,
their dimensioning, and their interplay with resource man-
agement algorithms at different locations and reconfiguration
timescales.

Index Terms—Network slicing, resource management, NFV.

I. INTRODUCTION

THE NEXT generation of mobile networks is expected
to become a dominant General Purpose Technology

(GPT) that will generate trillions of global economic out-
put [1] by enabling increasingly diversified mobile services.
As a consequence, network operators will be demanded to
support traffic characterized by steadily more heterogeneous
Key Performance Indicator (KPI) and Quality of Service
(QoS) requirements. These trends are driving the design of
5G networks towards a strong differentiation of guarantees,
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as well exemplified by recent ITU specifications that sep-
arate Enhanced Mobile Broadband (eMBB), Ultra Reliable
Low Latency Communications (URLLC) and Massive
Machine Type Communication (mMTC) as macroscopic
categories [2].

In fact, clear needs for tailored KPI and QoS require-
ments are already evident in today’s mobile services, which
encompass, e.g., high-quality video streaming, connected
objects communication, low-latency mobile gaming, jointly
with best effort traffic. Current state-of-the-art LTE mobile
networks use a QoS approach to traffic differentiation [3],
with several QoS Class Identifier (QCI) levels that map
to delay and error rate levels [4], or especially tailored
Medium Access Control (MAC) mechanisms that co-exists
with the legacy general-purpose MAC layer [5]. However,
these approaches are still insufficient to accommodate the
diversity of requirements of modern applications, which makes
alternative network deployments emerge. For instance, mobile
communications in industrial environments rely on proprietary
architectures that ensure reliability levels not attainable with
public mobile networks [6]; or, an incumbent provider like
Google started deploying its own radio access infrastructure
and transit network to run its many services under hard QoS
guarantees [7].

Network Virtualization and Slicing: In this context, a key
item in the agenda for 5G networks is to achieve much
improved service differentiation. Promises of attaining this
objective heavily rely on the diffusion of software-based
networking solutions, which enable network virtualization:
they allow evolving the traditional hardbox-based infrastruc-
ture into a cloudified architecture where once hardware-only
network functions (e.g., for spectrum management, baseband
processing, mobility management) are implemented as soft-
ware Virtual Network Functions (VNFs) running on a general-
purpose telco-cloud [8]. Network virtualization enables the
deployment of multiple virtual instances of the complete
network, named network slices. Slices are then easily cus-
tomized, and create on top of the physical infrastructure a
set of logical networks, each tailored to accommodate fine-
tuned Service Level Agreements (SLAs) reflecting the needs
of different service providers.

Network Slicing and Resource Management: Network slic-
ing has profound implications on resource management. When
instantiating a slice, the operator needs to allocate sufficient
computational and communication resources to the associ-
ated VNFs. In some cases, these resources may be dedi-
cated, becoming inaccessible to other slices [9]. Alternatively,
smart assignment algorithms can be employed to dynamically
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Fig. 1. Network slicing types. Deeper strategies use dedicated resources
customized to services across a wider portion of the end-to-end network
architecture.

allocate resources to slices based on the time-varying demands
of tenants [10], [11]. This grants the flexibility to modify the
share of resources assigned to each tenant, multiplexing log-
ical slices into the software or hardware assets while trying
to abide by tenant requirements. However, it also adds com-
plexity, and may hinder resource isolation, the corresponding
guarantees to tenants, or the ability to deploy fully customized
slices.

The above shows that there is an inherent trade-off among:
(i) service customization, which favours the deployment of
specialized slices with tailored functions for each service and,
possibly, dedicated and guaranteed resources; (ii) resource
management efficiency, which increases by dynamically shar-
ing the resources of the common infrastructure among the
different services and slices; and, (iii) system complexity,
resulting from deploying more dynamic resource alloca-
tion mechanisms that provide higher efficiency at the cost
of employing elaborated operation and maintenance func-
tions [12].

Slicing Strategies and Trade-Offs: This trade-off is fun-
damentally affected by the strategy adopted to implement
network slicing, as illustrated in Figure 1. In its simplest real-
ization, slices are limited to the core network (type-A slice in
Figure 1): the allocation of resources to slices only involves
cloud resources, and mostly becomes a Virtual Machine (VM)
or container resource assignment problem [13]. In this case,
the level of service customization granted by slices is low,
since it is restricted to core network functions; yet, high effi-
ciency can be achieved at low complexity, as a large portion
of the network remains shared among all services and tenants.

More dependable slicing would offer customized func-
tions, possibly involving dedicated resources, also at the
radio access, through, e.g., cloud RAN (C-RAN) paradigms.
Here, basic radio-access slices allow for tailored MAC-layer
scheduling [14] across a large number of antennas (type-B
slice). Moving down the protocol stack, advanced slices imple-
ment customized baseband processing (i.e., encoding and
decoding operations) in the Base Band Units (BBUs), pos-
sibly providing tenants with a guaranteed bandwidth at the air
interface (type-C slice). These approaches provide the abil-
ity to customize scheduling strategies, but they also reduce
the possibility of radio resource sharing and/or increase the
system complexity.

At fronthaul, resource isolation becomes a hardware
problem [15]. A first case for slicing is one where tenants
share antenna sites but are granted their own dedicated spec-
trum (type-D slice); we have virtually independent protocol
stacks and full isolation, and sharing is limited to the physical
hardware. Otherwise, tenants may require dedicated end-to-
end resources down to the antennas (type-E slice); this results
into slices that tell apart full, end-to-end virtual networks.

All slicing strategies described above may be applied inde-
pendently of the kind of deployed network slice (e.g., eMBB,
URLLC or mMTC), as the latter maps to the orthogonal mea-
sures taken in each slice to fulfill specific tenant requirements
(e.g., guaranteed band for an URLLC slice, or shared core
functions for a mMTC slice). In general, slicing strategies
at the higher network layers provide a lower level of cus-
tomization, yet they retain higher opportunities for resource
sharing without additional complexity. Indeed, when slicing
occurs at high layers (e.g., type-A), the operator cannot offer
full customization, but it can easily employ highly dynamic
allocation schemes for the lower layers; in contrast, achieving
such an efficient resource allocation is much more challeng-
ing when considering network slicing schemes with stringent
requirements (i.e., strategies involving the lower layers down
to type-E slicing). For instance, when all slices have a com-
mon MAC layer, an efficient sharing of radio resources is
easy, yet MAC functions are alike across services; con-
versely, if each slice implements a customized MAC protocol,
efficiently sharing radio resources among services is more
difficult.

Our Contributions: From a system standpoint, the technol-
ogy supporting different types of slices is well understood
or even already available: there exist several cloud resource
orchestrators for both commercial and open-source telco-cloud
platforms [16]; and, a variety of solutions have been proposed
to dynamically allocate resources across network slices [13].

However, the implications of network slicing in terms of
efficient network resource utilization are still not well under-
stood. Efficiency intuitively grows as one moves away from
the radio access infrastructure (type-E slicing) towards the
network core (type-A slicing); but we lack any more detailed
characterization of the aforementioned trade-offs between cus-
tomization, efficiency, and complexity. This is an important
gap, since insights on the efficiency gains in network slicing
are crucial to take informed decisions on resource configura-
tion strategies: if efficiency is preserved with solutions that
assign resources to slices more or less statically, high cus-
tomization levels can be achieved at a reduced complexity;
however, if the price in efficiency is high, more elaborate (and
expensive) solutions may be desirable.

Our aim is to shed light on the trade-offs between cus-
tomization, efficiency, and complexity in network slicing, by
evaluating the impact of resource allocation dynamics at dif-
ferent network points. Our analysis offers insights that help
determining in which cases the gain in efficiency is worth the
sacrifice in customization/isolation and/or the extra complex-
ity, and when a specific resource assignment algorithm pays
off. Since resource management efficiency in network slic-
ing highly depends on the traffic patterns of different services
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Fig. 2. Mobile network architecture. Nodes map to different equipment
depending on the level �, and form a hierarchy. The mobile traffic in each
slice (e.g., a or b) is increasingly aggregated as it flows from radio access to
network core.

supported by the various slices, we build on real-world service-
level measurement data collected by a major operator in a
production mobile network, and:

(i) quantify the price paid to guarantee resource isola-
tion to diverse types of network slices, under different QoS
requirements and for alternative resource allocation policies;

(ii) unveil the effect of dynamically applying such poli-
cies, which allows the operator to periodically re-orchestrate
resources or aggregate more than one service into the same
slice;

(iii) study a number of specific use cases for slice deploy-
ment, so as to gain insight about the efficiency of network
slicing deployments in scenarios of practical interest.

The results included in this paper can be used as insights for
rule of thumb calibrations of network slicing deployments, and
to evaluate the solution space for smart resource assignment
algorithms under dynamically changing conditions.

II. NETWORK SCENARIO AND METRICS

In the following we expose our network model, as well
as our representation of the slice QoS requirements and their
associated resource allocation strategy. We also introduce the
metrics we adopt to evaluate the resource sharing performance.

A. Network Slicing Scenario

Let us consider a mobile network providing coverage to
a geographical region where mobile subscribers consume a
variety of services. The network operator implements slices
s ∈ S , each dedicated to a different subset of services.

We assume that each slice can be implemented according
to any of the strategies in Figure 1. To capture such a general
scenario, we model the mobile network architecture as a hier-
archy composed by a fixed number of levels (� = 1, . . . ,L)
ordered from the most distributed (� = 1) to the most central-
ized (� = L), as illustrated in Figure 2. Every network level
� is composed by a set C� of network nodes, each serving a
given number of base stations. In the two extremes, we have
� = 1, where network nodes in C1 have a bijective mapping
to individual antennas, and � = L, where CL contains a sin-
gle network node controlling all antennas in the whole target
region. In between, for 1 < � < L, the number of network
nodes in C� decreases with �, whereas that of base stations
served by each such node increases accordingly. Note that, in

general, a node c ∈ C� will operate on data flows that are
increasingly aggregated with �, which, as we will see, has a
significant impact on resource management.

This hierarchical representation allows considering a vari-
ety of node types, along with their associated (possibly virtual)
network functions. At the most distributed level (� = 1), each
node runs functions that operate at the antenna level, e.g.,
concern spectrum or airtime resources. In intermediate cases
(1 < � < L), nodes are at first in charge of a small number of
antenna sites, e.g., C-RAN datacenters running VNFs such as
dedicated baseband processing or radio resource management.
As � grows, VNFs are pushed further towards the network
core, into telco-cloud datacenters that tunnel traffic to and
from large sets of antenna sites: there, VNFs customize VM
resources for large traffic volumes associated to the services
delivered by each tenant to subscribers in wide geographical
areas. In the limit case (� = L), all traffic in the target region is
managed in a fully-centralized fashion at a single datacenter.

Ultimately, the layered network model allows generaliz-
ing our analysis to diverse VNFs, by studying the system
performance at different network levels. This also implicitly
accommodates all of the network slicing strategies outlined in
Figure 1. Slices of type-D and type-E deal with the lowest
network layers that are implemented at the antennas, hence
correspond to � = 1. Slices of type-A refer to VNFs operating
at higher network layers that are deployed at centralized cloud
datacenters, hence correspond to high values of the network
level �. Slices of type-B and type-C are concerned with VNFs
at radio access, i.e., at base stations (� = 1), or at higher
architectural levels (1 < � < L) in a C-RAN implementation.

Note that we do not require that a single network deploys
virtualization technologies at all network levels. Instead, by
taking a large number of levels and considering each of them
in isolation, this approach lets us cover a wide range of
deployment options and provide insights for all of them.

B. Slice Specifications

Network slicing primarily aims at letting the operator fulfill
the QoS requirements requested by each tenant. To model such
requirements, we consider discrete-time demands associated to
slices, by averaging traffic over time slots denoted by t. Let
vc,s(t) be the traffic demand associated to slice s at node c
during slot t, as in Figure 3. We capture the QoS requirements
of s as a slice specification z defined by two features.

1) Guaranteed Demand δ: The operator engages to guar-
antee that the total traffic demand of the slice is fully serviced
for a portion at least δ ∈ [0, 1], which can be expressed in
terms of time or traffic. In the first case, the operator assures
that the slice demand is fulfilled during a fraction δ of time
slots, as in Figure 3a. In the second case, the slice demand is
serviced for a fraction at least δ of its volume, as in Figure 3b.

2) Overbooking Penalty π: The operator can decide to over-
book network resources to multiple slices, transparently to the
tenants [17]. Similar to common practices in the airline or
hotel industries, this management model allocates the same
resources to multiple tenants, expecting that some will ulti-
mately not use all of their booked capacity; if this is not the
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Fig. 3. Example of resource allocation to a slice s at node c, under guaranteed demand δ = 0.9 and overbooking penalty π = 0.2, during one reconfiguration
period n. (a) The slice specification is expressed in terms of time slots, hence the discrete-time traffic of the slice, vc,s (t), is serviced for 90% of the time
slots, denoted by the filled (yellow) temporal interval below the abscissa. Due to overbooking, demand δ is violated in 20% of the total time slots, highlighted
by the (red) pattern intervals below the abscissa. (b) The slice specification is expressed in terms of traffic, hence vc,s (t) is serviced for 90% of its volume,
denoted by the filled (yellow) area under the time series. Due to overbooking, demand δ is violated for 20% of the total volume, highlighted by the (red)
pattern region. In both (a) and (b), horizontal solid lines denote the minimum allocated capacity satisfying the guaranteed demand constraint, rδc,s (t), and
the capacity actually allocated based on the operator’s overbooking strategy, rzc,s (t).

case, and services actually require all of the reserved capacity,
overbooking leads to violations of the guaranteed demand δ.
Through overbooking, the operator can maximize its revenues
by properly balancing the cost of allocated resources and the
penalty associated with violations [17]. In our model, we do
not adopt a specific overbooking strategy; instead, we consider
that the strategy selected by the operator produces violations
for a portion π ≤ δ of the total traffic demand. This implies
that only a fraction of traffic δ− π is actually serviced by the
slice, while the portion π of violated demand is treated as best-
effort traffic by the operator. This approach can capture any
overbooking strategy, and lets us investigate how violations of
δ affect savings in allocated resources. We remark that π may
be a fraction of time slots or a fraction of traffic volume, con-
sistently with the representation of δ: the two situations are
illustrated in Figure 3a and Figure 3b, respectively.

C. Resource Allocation to One Slice

We denote a slice specification characterized by a guaran-
teed demand δ and an overbooking penalty π as z = (δ, π),
which becomes more stringent for higher values of δ and
smaller π. The operator shall then ensure that enough resources
are dedicated to the slice so as to meet z. We now expound
the expression of the resources allocated to a slice s by the
mobile network operator under a generic z = (δ, π).

In presence of algorithms that enable a dynamic reconfigura-
tion of VNFs, the resource allocation can be re-modulated over
time. In practice, however, the periodicity of reconfiguration is
limited by the technological constraints of the slicing strategy
adopted (see Figure 1). For instance, when network slicing is
performed at the antenna level, times in the order of minutes
are needed to turn on and off the radio-frequency front-end
and reset the transport network. When dealing with radio
resource management algorithms (i.e., dynamic spectrum or
multi-provider scheduling), re-assignments are constrained by
signalling overhead. Or, in the case of VM orchestration, the
timescale is limited by instantiation and migration delays [18].

Let us assume that τ is the minimum amount of time steps
needed for resource reallocation, which we refer to as a recon-
figuration period. We denote by n ∈ T the nth reconfiguration
period within the set T of all reconfiguration periods that com-
pose the system observation time; n can be then seen as the

set of τ time steps it encompasses, i.e., n = {t , . . . , t+τ−1}.
During period n, we name rδc,s(n) the minimum amount of
resources that allow meeting the guaranteed demand δ for
slice s at node c. Equivalently, r zc,s(n) is the amount of
resources that fulfill z, accounting for both δ and the over-
booking penalty π. The formalism is the same when δ is a
fraction of time or traffic, as shown in Figure 3. Then, our
objective is the computation of r zc,s(n), which represents the
resources actually allocated by the operator to slice s at node c,
based on vc,s(t) and z. Since calculations are different depend-
ing on whether δ (hence π) is expressed in terms of time or
traffic, below we discuss these two instances separately. For
the sake of readability, in the following we drop the c, s, and
n notation, and refer to a generic slice, network node, and
reconfiguration interval; hence v(t) and r z stand for vc,s(t)
and r zc,s(n), respectively.

1) Time Slot Fraction δ: In this case, the allocation of
resources in the target reconfiguration period is such that
the offered load v(t) exceeds r z for a fraction δ − π of
the time slots in the reconfiguration period, as shown in
Figure 3a. This can be formalized as P(v(t) ≤ r z ) = δ − π,
∀ t, where P(·) denotes the probability of the argument.
Let fv be the Probability Density Function (PDF) of the
demand, i.e., fv (x ) = P(v(t) = x ). Then, the Cumulative
Distribution Function (CDF) of the demand v(t) in the recon-
figuration period is Fv (x ) =

∑x
y=0 fv (y) = P(v(t) ≤ x ).

Therefore, the original condition above is Fv (r
z ) = δ − π,

and the minimum r satisfying the actual guaranteed demand
is r z = F−1

v (δ − π). Figure 4(a) illustrates this concept in a
practical example.1

2) Traffic Volume Fraction δ: When the operator guaran-
tees (and overbooks) a fraction of traffic, we do not reason
in time slots anymore, but account for the effective demand
volume associated to each time slot. For this purpose, we intro-
duce a water-filling function, that computes the overall fraction
of served traffic as a function of the assigned resources r.
Specifically, we define G(x ) =

∑
t (min(v(t), x ))/

∑
t v(t),

for all time slots t in the target reconfiguration period. Through
the above expression of G(x ) ∈ [0, 1], the value of x maps

1Traffic volumes in Figure 4 as well as in the rest of the result reported in
the paper are normalized with respect to the minimum average traffic recorded
at a 4G antenna sector in our reference scenarios presented in Section III.
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Fig. 4. Example of resource allocation to a slice with specification z = (δ, π) = (0.9, 0.1) when δ is a fraction of time slots (a) or of traffic volume (b).
Left (a,b): weekly time series of the mobile traffic demand for a slice s at a network node c. The horizontal lines denote the minimum resources rδ and rz

to be allocated when τ = 1 week. Central (a): representation of fv (x). Right (a,b): Fv (x) and G(x), with cuts at δ and δ − π that identify the needed
resource rδ and rz , respectively.

to the upper limit of a water-filling algorithm. The min-
imum r z satisfying the actual guaranteed demand is then
r z = G−1

v (δ − π). Figure 4(b) illustrates this concept in a
practical case.

Note that in both cases above, the expressions of r assume
that the amount resources needed to serve a given slice is
directly proportional to the mobile traffic demand in that slice.
While this clearly holds for some types of resources (e.g.,
radio), we acknowledge that it may be a strong simplification
in other settings. We argue, however, that it is a reasonable
assumption for many practical VNFs. Moreover, this choice
allows us to investigate through a unified framework differ-
ent network levels �, where resources map to diverse physical
assets (such as spectrum, airtime, CPU time, computational
power, or memory) depending on �.

D. Multiplexing Efficiency

Having computed r zc,s(n) according to either model in
Section II-C, we can define the amount of dedicated resources
that the operator allocates to network slices at network level �,
over the entire system observation period, as

D
z
�,τ =

∑

s∈S

∑

c∈C�

∑

n∈T
τ · r zc,s(n). (1)

Equation (1) covers the demand that receives dedicated
resources within slices. However, under overbooking, a frac-
tion π of traffic is penalized, i.e., is treated as best-effort. Such
traffic is not isolated anymore, and can be aggregated into a
single time series described, at node c and during period n, as

vc(t) =
∑

s∈S
max

{
0,min

{
rδc,s(n), vc,s(t)

}
− r zc,s(n)

}
.

t ∈ n, (2)

This equation computes the penalized traffic in a slice s as
the difference between the resources dedicated to the slice,
r zc,s(n), and those that would be actually needed to accom-
modate the guaranteed demand, rδc,s(n). As exemplified in
Figures 4(a) and 4(b), rδc,s(n) can be computed by the strat-
egy in Section II-C, as F−1

v (δ) or G−1
v (δ), for the cases where

δ is a fraction of time slots or traffic volume, respectively.
Then, the shared resources required to serve all traffic penal-
ized by overbooking are, trivially, rc(n) = maxt∈n vc(t).
Finally, we can calculate the total amount of resources that
the operator needs to allocate at network level �, in order to

meet specifications z, as

R
z
�,τ = D

z
�,τ +

∑

c∈C�

∑

n∈T
τ · rc(n). (3)

Equation (3) returns the total amount of resources that the
operator needs to provision at network level � in order to
satisfy its commitments with all tenants, when dynamically
re-configuring2 the allocation with periodicity τ , and accord-
ing to its designated overbooking strategy. In order to unveil
the implications of this value, we compare it against a perfect
sharing benchmark. In perfect sharing, the allocated resources
correspond to those required when there is no isolation among
different services, hence traffic multiplexing is maximum.

Let uc(t) =
∑

s∈S vc,s(t) be the total demand for mobile
data traffic at node c, summed over all slices. We then denote
by r̂δc (n) the resources needed to accommodate uc(t) during
reconfiguration period n. For the sake of fairness, the same
requirement δ on guaranteed demand is enforced here as well.3

Thus, adopting the methodology presented in Section II-C,
r̂δc (n) can be computed as F−1

u (δ) or G−1
u (δ), where Fu(x )

and Gu (x ) are the CDF of the total demand u(t), t ∈ n ,
expressed in time slots and traffic volume, respectively. The
resources allocated under perfect sharing are then computed as

P
δ
�,τ =

∑

c∈C�

∑

n∈T
τ · r̂δc (n). (4)

Taking the above benchmark, we define the multiplexing
efficiency as the ratio between the resources required with
perfect sharing and those needed under network slicing, i.e.,

E
z
�,τ = P

δ
�,τ/R

z
�,τ . (5)

In summary, Ez
�,τ quantifies the efficiency of network slicing

in terms of resource management at network level �, under
resource reconfiguration intervals of duration τ , and with slice
specification z = (δ, π). As E

z
�,τ approaches one, the total

amount of slice-isolated resources tends to that assured by a
perfect sharing. As slicing the network becomes increasingly
capacity-demanding, the efficiency drops instead towards zero.

Let us illustrate the operation of multiplexing efficiency
in Figure 5, when δ is expressed as a fraction of time slot
(top) or of traffic volume (bottom). The left column depicts
the time series of the mobile traffic demand for a set S of

2Equation (3) maps to the special case where no reconfiguration is possible
at level �, when τ is the total system observation time, i.e., |T | = 1.

3We remark that the notion of overbooking penalty is meaningless under
perfect sharing, as all traffic is aggregated and treated as best-effort already.
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Fig. 5. Examples of multiplexing efficiency, when δ = 0.9 expressed in
time slots (top) and traffic volume (bottom).

five slices, observed at a single network node c, during one
reconfiguration interval n (τ = 1 week). A slice specification
z = (δ, π) = (0.9, 0) commits the operator to allocate, for
each slice s, at least the capacity marked by the grey horizontal
lines, which are computed as discussed in Section II-C. Their
sum, in thick gold, denotes

∑
s∈S r zc,s(n) + rc(n), i.e., the

value that, once multiplied by τ , returns the resources specified
by Equation (3), at a single node c and during reconfiguration
interval n. The right column, instead, shows the time series of
the traffic demand aggregated over all slices in S . By apply-
ing the specification z, we get a value r̂ zc (n), highlighted by
the horizontal thick gold line. Its multiplication by τ gives
the equivalent capacity needed under perfect sharing as per
Equation (4). Then, the multiplexing efficiency is the ratio
between the values highlighted by the thick gold lines on the
right and left plots, respectively. In this toy example, the value
on the left is only slightly higher than that on the right, hence
E ∼ 1 and resource isolation is efficient. This is not necessarily
the case in practical scenarios, as we will detail later.

III. REFERENCE SCENARIOS

We evaluate the efficiency of resource management in a
sliced network by considering two modern metropolitan-scale
network scenarios. As mentioned in Section I, today’s mobile
services already offer a variety of requirements that makes
it meaningful to investigate the impact of slice isolation on
network efficiency with present traffic.

Our two reference urban regions are a large metropolis of
several millions of inhabitants, and a typical medium-sized
city with a population of around 500,000, both situated in
Europe. Service-level measurement data was collected in the
target areas by a major operator with a national market share
of around 30%. Details are in Section III-A. On top of this,
we model the hierarchical network infrastructures in the target
regions by assuming a deployment of nodes that balances load
and reduces latency. This is discussed in Section III-B.

A. Mobile Service Demands

The real-world demands generated by individual mobile
services in the two reference regions were collected during

Fig. 6. Percentage of the mobile traffic generated by the selected services.
Different colors denote downlink and uplink traffic. Left: large metropolis.
Right: medium-sized city.

Fig. 7. PDF of the traffic demands across all antenna sectors. Left: large
metropolis. Right: medium-sized city.

three months in late 2016. The information was gathered
by monitoring individual IP data sessions over the GPRS
Tunneling Protocol User plane (GTP-U), and running Deep
Packet Inspection (DPI) and proprietary fingerprinting algo-
rithms to infer the mobile service associated to each 2G/3G/4G
data session. The data was aggregated geographically (per
antenna sector) and temporally (over 5-minute time intervals)
by the operator, so as to make the data non-personal and to
preserve user privacy; all operations were carried out within
the operator premises, under control of the local Data Privacy
Officer (DPO), and in compliance with applicable regulations.

The resulting measurement data describe downlink and
uplink traffic for hundreds of prominent mobile services con-
sumed in the target regions. Building on such information, we
define potential slices by identifying mobile services that meet
two requirements: (i) they generate a substantial offered load
(above 0.1% of the total network traffic), sufficient to justify
a dedicated network slice; and (ii) they have clear KPIs and
QoS requirements. We identify 38 services that meet the cri-
teria above, and associate them to a different network slice
each.

Our choice of services represents well the heterogeneous
nature of today’s mobile traffic. It encompasses many popular
services, such as YouTube, Netflix, Snapchat, Pokemon Go,
Facebook or Instagram, and covers a wide range of classes
with diverse network requirements, including mobile broad-
band (e.g., long-lived and short-lived video streaming), low-
latency (e.g., gaming, messaging), and best effort (e.g., Web
browsing, social media), which are representative forerunners
of 5G services [19]. Figure 6 provides basic information on
our selection of services. It outlines the downlink-dominated,
highly skewed traffic split among the services, whose percent
traffic can differ of more than two orders of magnitude.

A strong diversity also emerges in the way the selected
services are consumed across the geographical space within
the two urban regions. Figure 7 portrays the PDF of the total
offered load at individual antenna sectors, which again spans
several orders of magnitude. The main cause of heterogeneity
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Fig. 8. Antenna deployments in the target regions. Left: large metropolis.
Right: medium-sized city.

is the radio access technology: our measurement data captures
2G, 3G, and 4G access, and 4G antennas accommodate much
larger fractions of the demand and generate the rightmost bell-
shaped lob of the distributions. Still, 10-time differences in the
traffic volume appear even across 4G antenna sectors, implying
substantial location-based demand variability.

B. Hierarchical Network Structure

The deployment of antennas in the target regions is shown
in Figure 8, which highlights the diversity of the case studies
in terms of network infrastructure, owing to the different geo-
graphical span and user population density of the two areas.
While we do not have information on the architecture of the
mobile networks beyond the radio access, we model the hierar-
chical structure exemplified in Figure 2 after current proposals
for cloudified network slicing [8], as follows.

At the generic level �, the operator deploys a number
N� = |C�| of nodes, each responsible for a subset of the
antenna sites at the radio access level. Every node will thus
run VNFs (whose nature will depend on �) on the mobile data
traffic incoming from or outgoing to its associated antennas.
We assume that the operator deploys generic level-� nodes
and links based on two criteria: (i) the offered load shall
be similar at all nodes; (ii) the subset of antennas served
by a same node shall be geographically contiguous. The
first criterion ensures load balancing, and the second reduces
latency between antenna sites and nodes. Jointly, these crite-
ria represent a plausible strategy that aims at maximizing the
performance of network slicing. We remark that the result-
ing node deployment is static and does not change during our
experiments; instead, the node resources allocated to each slice
may change under dynamic resource allocation schemes.

Under these criteria, the problem of associating the level-�
nodes with the original antenna sites in Figure 8 is a spe-
cial case of balanced graph k-partitioning. Let us consider a
graph where each vertex v ∈ V maps to one antenna site, and
has an associated cost c(v) equal to the mobile traffic demand
recorded at the site; also, let an edge e = {u, v} ∈ E con-
nect vertices u and v only if the corresponding antenna sites
are geographically adjacent.4 The problem of level-� node-to-
antenna site association translates into dividing the graph into
N� sub-graphs, such that the sum of costs of nodes in each

4Multiple notions of adjacency are possible. We opt for one that leverages
the common practice of approximating antenna coverage areas via a Voronoi
tessellation: two sites are then adjacent if they share one Voronoi cell side.

Fig. 9. Association of antenna sites to level-� nodes in the large metropolis
scenario. The plots refer to � = 8 (16 nodes, left), � = 9 (8 nodes, middle)
and � = 10 (4 nodes, right).

partition is balanced. We introduce decisions variables

euv =

{
1 if e is a cut edge
0 otherwise

∀e ∈ E , (6)

xv ,k =

{
1 if v is in partition k
0 otherwise

∀v ∈ V , ∀k , (7)

and formulate an Integer Linear Programming (ILP) problem:

min
∑

euv∈E
euv (8)

s.t.
∑

v∈V
xv ,k · c(v) ≤ (1 + ε) ·

∑
v∈V c(v)

N�
, ∀k (9)

∑

v∈V
xv ,k · c(v) ≥ (1− ε) ·

∑
v∈V c(v)

N�
, ∀k (10)

∑

k

xv ,k = 1, ∀v ∈ V . (11)

euv ≥ xu,k − xv ,k , ∀e ∈ E , ∀k (12)

euv ≥ xv ,k − xu,k , ∀e ∈ E , ∀k (13)

The objective function given by Equation (8) aims at min-
imizing the number of cut edges that join vertices in separate
partitions, so as to generate graph subsets that are as com-
pact as possible. Our goal in terms of load balancing is
ensured by the constraints given by Equations (9) and (10),
which bound the load difference among the various subsets
of antennas: each partition is forced to have a total cost that
is within a fraction ε from the ideal case of a perfectly even
cost

∑
v∈V c(v)/N�. The constraint given by Equation (11)

ensures that each vertex is in exactly one partition, while those
given by Equations (12) and (13) determine the value of deci-
sion variables euv based on whether vertices u and v belong
to a same partition as defined by xu,k and xv ,k .

The resulting optimization problem is NP-hard. We use
a suitably configured version of the Karlsruhe Fast Flow
Partitioner (KaFFPa) heuristic [20] to solve it. In doing so,
we allow for ±10% imbalance among the load served by
nodes at every level �, i.e., ε = 0.1 in Equations (9) and (10).
Figure 9 shows three examples of antenna site partitioning
among network nodes, for a selection of levels � in the large
metropolis scenario. Table I summarizes instead the main
features of the partitions obtained in our two urban scenarios.

IV. DATA-DRIVEN EVALUATION

Our performance evaluation is organized as follows. First,
we investigate worst-case settings where very stringent slice
specifications are enforced and no reconfiguration is possible
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TABLE I
HIERARCHICAL NETWORK STRUCTURES. ROWS ARE (i) THE LEVEL

� ∈ {1, . . . , 12}, (ii) THE CORRESPONDING NORMALIZED MOBILE

TRAFFIC PER NODE, AND (iii)-(iv) THE NUMBER OF NODES N�
SERVING EACH URBAN REGION AT NETWORK LEVEL �. AT

� = 1, NODES MAP TO 4G ANTENNA SECTORS, AND THE

TRAFFIC PER NODE IS AN AVERAGE. FROM � = 2 TO

� = L, WE CONSIDER THE PARTITIONS OBTAINED

BY SOLVING THE OPTIMIZATION PROBLEM

GIVEN BY EQUATION (8)

Fig. 10. Efficiency of slice multiplexing versus the normalized mobile traffic
served by one node (bottom x axis) at level � (top x axis) in the two reference
urban scenarios. Results are for a static resource assignment, i.e., |Tτ | = 1,
and slice specification z = (δ, π) = (1, 0). Dots denote � = 1 and triangles
� = L, for each scenario. Scattered grey points around � = 1 denote the
efficiency and traffic measured at all level-1 nodes (i.e., individual 4G antenna
sectors) separately.

(Section IV-A). We then relax these constraints, and assess effi-
ciency as slice specifications are moderated (Section IV-B), as
well as under a dynamic orchestration of network resources
(Section IV-C). We then investigate the impact of a vary-
ing number of slices on efficiency (Section IV-D), and finally
explore a number of meaningful, specific case studies among
all possible system configurations (Section IV-E).

A. Slicing Efficiency in Worst-Case Settings

The least efficient sliced network scenario implies (i) strict
slice specifications, where the mobile network operator com-
mits to guarantee the whole traffic demand (δ = 1) for all
slices, (ii) no possibility of overbooking (π = 0), and (iii) a
static allocation of resources without option for reconfigura-
tion over time (τ spans the whole three-month observation
time in our measurement dataset, and |Tτ | = 1). With this
configuration, the operator trades efficiency for simplicity: it
replicates physical resources for different slices, and statically
allocates to each slice the resources needed to meet the asso-
ciated offered load. This strategy yields the lowest efficiency
in terms of occupied physical resources, but does not require
any advanced solution for dynamic resource management to be
implemented in the network. It could be a pragmatic approach
to practical network slicing, if the loss of efficiency is small.

Figure 10 portrays the multiplexing efficiency of slicing as
a function of the network hierarchy level � (top x axis); for the
sake of clarity, the latter is mapped to the normalized mobile

traffic demand observed by a level-� node (bottom x axis), as
per Table I. The two curves refer to our two reference urban
scenarios, and outline the fluctuation of the efficiency as one
moves from resources at the antenna level (dot on the left) to
those in a fully centralized cloud (triangle on the right). These
results, and all others unless stated otherwise, refer to the case
where the 16 mobile services that generate the most network
traffic are allocated to independent slices each; the rationale
for this choice will be apparent when discussing the effect of
a varied number of slices, in Section IV-D.

The curves in Figure 10 confirm the intuition that the effi-
ciency grows as one moves from very distributed resources at
the antenna level to more centralized ones. This trend roots in
the temporal dynamics of traffic in the difference slices: the
demands for each slice are typically very bursty at individual
antenna sectors, whereas aggregating demands over a grow-
ing number of base stations results in increasingly smoother
time series. The coefficients of variation of the traffic time
series substantiate this conjecture: their values range in [1.487,
2.363] for � = 1 and in [0.511, 0.587] for � = L, with
intermediate levels resulting in midway ranges. The erratic,
high activity peaks that occur at the antenna level (� = 1)
force the allocation of substantial static resources in order to
accommodate the per-slice traffic. For higher � values, peak-
to-average ratios are instead substantially reduced, mitigating
these effects and increasing the overall efficiency.

In addition to the qualitative trend with �, Figure 10 lets us
appreciate the following quantitative results on the efficiency.

• The efficiency is very low (∼0.19) at the antenna level:
ensuring physical resource isolation across slices in
absence of dynamic reconfiguration capabilities would
require more than 5 times the capacity of a legacy archi-
tecture where no network slicing is implemented. The
grey points highlight that such a poor efficiency affects
all 4G antenna sectors, independently of their specific
offered load.

• The efficiency grows slowly when aggregating traffic at
the network edge (� = 2 to � = 6). Some gain starts to be
appreciable as one moves above � = 7 in our reference
scenarios, i.e., at network nodes that accommodate the
demands from many tens of antenna sectors at least.

• However, in absolute terms, even when considering that
all traffic generated in each of our two urban scenarios is
aggregated at a single level-L node (L = {12,10} in the
large metropolis and medium-sized city, respectively, see
Table I), the efficiency stays fairly low, at 0.54–0.74.

We note that, although the method presented in Section II-C
operates on individual levels separately, Figure 10 offers a
complete view of end-to-end efficiency across the network, and
the result covers all of the different types of slices presented
in Section I. For instance, a type-A slicing in Figure 1 limits
the analysis to the rightmost part of the plot: implementing
the most basic form of slicing requires roughly doubling the
resources deployed in the network core cloud with respect to
a legacy non-sliced case. More complicated slices that reach
deeper into the network architecture encompass larger portions
of the curves in Figure 10. As an example, let us image that a
type-C slice in Figure 1 corresponds to a network level � = 6
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Fig. 11. Efficiency of slice multiplexing, in the same settings of Figure 10,
separating downlink and uplink. Left: large metropolis. Right: medium-sized
city.

in a specific infrastructure layout: then, the plot details the loss
of efficiency that the operator can expect at all intermediate
nodes, down to a threefold increase of required resources at
the C-RAN datacenters that lie at the very edge of the slice.
Furthermore, when considering an end-to-end network slice,
we have that the slice can be associated to resources located
at different levels of the network infrastructure (e.g., some
resources at the antenna � = 1 and others at the core � = L).
In this case, the resulting overall efficiency of the network
slice is the combination of the individual efficiencies of the
resources deployed at different levels.

The results can be further disaggregated for the downlink
and uplink directions, as shown in Figure 11. Downlink traffic
dominates the total demand, as previously seen in Figure 6:
therefore, the associated efficiency curves are very close to
those in Figure 10. However, the trend of efficiency during
uploads is sensibly different from the global one: slicing traffic
in uplink tends to become remarkably (40% to 60%) less effi-
cient as one moves towards more centralized network levels.
We argue that the reason lies in the small uplink traffic volume,
which results in bursty time series with high peak-to-average
ratios, even upon aggregation over multiple antennas.

The distinct trends for downlink and uplink are especially
important in the light of the different costs associated to the
demands in the two directions. By looking at the sheer traf-
fic load, the overall resource assignment should be driven
by the downlink behavior, since it currently dominates the
aggregate data volumes, as per Figure 6. However, specific
applications, hence slices, heavily rely on uplink traffic: for
instance, the fact that efficiency at the antenna level is also
low in uplink means that services with strong requirements on
access network latency (e.g., mobile gaming) are as hard to
accommodate as downlink bandwidth-eager ones (e.g., video
streaming). As another example, baseband processing at a vir-
tualized radio access is remarkably more CPU-intensive for
uplink traffic [21]: the very low efficiency recorded in uplink at
the network edge can make resources assignment challenging
when dealing with type-C, type-D or type-E slices in Figure 1.

An interesting final remark on the results in
Figures 10 and 11 is that we do not observe substantial
differences between the two reference cities. Minor dis-
crepancies only emerge for high values of �, and can be
easily imputed to the intrinsic topological and demographic
differences that characterize the two scenarios. The affinity of
results in the two different urban regions is in fact a constant
across all results, as it will be observed in the remainder of
this section.

B. Configuring Slice Specifications

Severe slice specifications may represent a major cause
for the poor efficiency recorded in Section IV-A. To gain
insight on this, we investigate the impact that the QoS require-
ments imposed on each slice have on the opportunities for
multiplexing slice demands. Note that here we still con-
sider a static allocation of resources, and no possibility of
reconfiguration.

Figure 12 offers a complete overview of sensible resource
configuration schemes, in which we vary the overall QoS that
each tenant is provided by the operator. Consistently with our
system model, different QoS levels are reflected by diverse
values of δ and π, hence we explore the impact of those two
parameters on the multiplexing efficiency. The first configura-
tion is depicted in the top-left pair of plots in Figure 12, which
portray efficiency as a function of the guaranteed demand δ
expressed as a time slot fraction, with no overbooking (π = 0).
As one would expect, efficiency grows when not all the traf-
fic demand for each slice has to be served. The increase is
much more evident in the case of antenna-level resources
(� = 1) than in the network core (� = L). The good news
is that a large fraction of the gain is achieved close to δ = 1,
i.e., a slight reduction from a fully guaranteed demand may
yield a large gain: in the best case, reducing δ from 1 to
0.99 raises efficiency from 0.35 to 0.6 (a 71% increase) when
� = 7 in the medium-sized city scenario. The bad news is
instead that efficiency values that are actually serviceable for
the operator are only reached when significant amounts of
traffic are not accommodated: figures above 0.8 (implying
that implementing network slicing requires no more than 25%
additional resources) are achieved in all configurations only
when δ = 0.9, and 10% of the demand is denied.

Trends are similar when the same slice specification param-
eters (varying δ, and π = 0) are defined as a traffic volume
fraction, in the top-right pairs of plots in Figure 12. The
major differences are at the antenna level (� = 1), where the
multiplexing efficiency is substantially lower than in the case
of δ and π expressed as time slot fractions. Indeed, imposing
QoS constraints in terms of time slots or traffic volume leads
to comparable efficiency when all time slots contribute a sim-
ilar amount of traffic volume, and the demand is even over
time. Centralized cases with high � are closer to this situation.
However, we already noted in Section IV-A that demands are
much more irregular close to the radio access: here, most of
the traffic volume is contributed by high activity peaks, and
volume-based thresholds must still accommodate a significant
portion of such peaks, instead of ignoring them completely
as in the time slot-based case. Thus, volume-based service
specifications at the antenna level force the operator to deploy
a substantial amount of resources per slice even under more
relaxed guaranteed demands.

Statistics are very different when including overbooking in
the picture. The bottom part of Figure 12 illustrates the impact
of the overbooking penalty (π), when the full demand is guar-
anteed, i.e., δ = 1. The plots refer again to pairs of scenarios,
under slice specifications expressed in terms of time slots
(bottom-left pair) and traffic volume (bottom-right pair). In
almost all settings, the multiplexing efficiency quickly rises
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Fig. 12. Efficiency of slice multiplexing versus slice specifications. Top: efficiency versus guaranteed fraction δ of time slots (left pair) and traffic volume
(right pair), with π = 0. Bottom, efficiency versus overbooking penalty π and δ = 1 in time slots (left pair) and traffic volume (right pair). Thick dashed
and solid lines represent the extreme network levels � = 1 and � = L, while thin solid lines are for an intermediate network level, for the large metropolis
(purple) and medium-sized city (gold).

beyond 0.8 by just having 3% of the slice traffic not served in
isolation. The only exception occurs for traffic volume-based
guarantees at the antenna level: in this case, the efficiency gain
with π is lower, yet the improvement with respect to the case
where δ is varied (top-right pair) is dramatic. These results let
us conclude that an overbooking that leads to serving a small
portion of traffic peaks in a best-effort fashion is an interesting
strategy for the operators, maintaining high standards (δ = 1)
with a reasonable increment of resources (≤ 25%).

C. Slicing Under Dynamic Resource Orchestration

All previous results refer to cases where resources are
statically allocated. We now investigate the multiplexing effi-
ciency of network slicing when the operator can orchestrate
network resources in an adaptive way, by re-allocating them
to different slices over time. As discussed in Section II-C,
this is equivalent to considering a resource reconfiguration
interval τ that is shorter than the system observation time
in our system model. Specifically, we assume that the oper-
ator can reconfigure the resources at each network level �
with a fixed periodicity τ which depends on the capabilities
of the underlying virtualization technology. In our study, the
operator allocates resources optimally to meet all slice spec-
ifications in each reconfiguration interval of duration τ . This
is equivalent to assuming the availability of an oracle algo-
rithm that, at the beginning of a reconfiguration interval, has
perfect knowledge of the future demand for each service over
the rest of the interval. Then, the operator can reserve for
each slice the minimum amount of resources to abide by the
requirements, as detailed in Section II-C and exemplified in
Figure 3.

Our baseline result, in Figure 13, refers to τ = 30 minutes,
which can be regarded as a fairly high resource reconfiguration
frequency for several scenarios. For instance, VNF manage-
ment in the network core cloud has typically larger time
scales of hours or even days [22]. At radio access, instead,

Fig. 13. Efficiency of slice multiplexing (left y axis) and percent gain over
static assignment (right y axis) versus the normalized mobile traffic served by
one node (bottom x axis) at level � (top x axis) in the two reference urban sce-
narios. Results are for a dynamic resource assignment where re-configurations
occur with periodicity τ = 30 minutes, under slice specification z with δ = 1
and π = 0.

faster dynamic reassignments are technically possible; how-
ever, forecasting the demand over short time scales of minutes
is challenging and easily leads to slice specification viola-
tions, hence reconfiguration intervals in the order of hours
are more credible [14]. In these settings, dynamic allocation
mechanisms and a perfect prediction of the demand over the
future 30 minutes can substantially improve the efficiency
of slice multiplexing. Indeed, when comparing the curves in
Figure 13 with their equivalent in Figure 10, the gain is evi-
dent. We explicitly portray the benefit as the grey region in
Figure 13: it ranges between 90% (� = L) and 250% (� = 1).
The cause of such a significant advantage roots in that differ-
ent mobile services allocated to separate slices tend to peak
at different times of the day, as discussed in details in recent
analyses of mobile service dynamics [23]. The temporal diver-
sity of peaks across slices lets a perfect orchestrator reuse the
same resources to cover time-disjoint high-activity periods in
multiple slices, hence increasing the system efficiency.

Despite the much higher gain at the antenna level, there is
still a large gap between the efficiency at the radio access and
in the network core. An order-of-minute dynamic orchestration
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Fig. 14. Efficiency of slice multiplexing versus the resource reconfiguration
periodicity τ . Thick dashed and solid lines denote the extreme network levels
� = 1 and � = L, the thin solid line follows an intermediate network level.
Left: large metropolis. Right: medium-sized city.

of resources allows for near-perfect slice multiplexing at a dat-
acenter that fully centralizes the traffic in our large metropolis
scenario. In contrast, efficiency is bounded at around 0.6 for
levels close to � = 1, i.e., at individual antenna sectors or
at nodes serving small groups of a few antennas each. This
implies that the operator still has to nearly double the capacity
to isolate slices at network levels close to the radio access.

A more comprehensive picture is provided by Figure 14,
which encompasses a wide set of reconfiguration intervals τ ,
from the 30-minutes case we just analyzed in detail up to
3 months, i.e., the entire timespan of the dataset, which
maps to the static resource configuration case considered in
Section IV-A. As one could expect, the multiplexing effi-
ciency of slices is decreased as τ grows, since the system
becomes less flexible. Interestingly, the loss of efficiency is
steeper at lower values of τ : reducing the frequency of real-
location from once every 30 minutes to once every day yields
an efficiency loss comparable to that caused by increasing τ
from one day to 3 months. This is consistent with the typical
duration of human activities, in the order of tens of minutes,
which reflects on similar timescales of mobile service demand
fluctuations [23]. Therefore, predicting traffic and allocating
resources at longer periodicity rapidly reduces the system effi-
ciency: either the operator is able to deploy virtualization
technologies that enable such a reconfiguration frequency, or it
is probably not worth considering dynamic resource allocation
at all.

D. Varying Number of Slices

Up to now, we assumed that the slicing strategy adopted
by the operator involved assigning one slice to each of the 16
services that generate the most traffic. In fact, the mapping
of services into specific network slice instances is a business-
driven choice that is based on several factors, such as the
requirements of the services in terms of isolation, the specific
policies implemented by the operator [24], or the practice of
the tenants, which may decide to group multiple services into
a same slice for economic reasons. The number of slices and
the demands associated to each will have an impact on the
overall multiplexing efficiency, which we investigate next.

We first analyze a business-driven scenario where network
slices are dedicated to sets of services of a same category,
i.e., streaming, social media, Web, cloud, gaming, messaging
and miscellanea, respectively. Here, we set δ = 1 and π = 0

Fig. 15. Efficiency of slice multiplexing with per-category slicing. The plot
semantics are the same as in Figure 14.

Fig. 16. Efficiency of slice multiplexing as a function of the number of slices
k+1 (on the x axis), when the k services with the highest traffic load have
a dedicated slice and the remaining services are aggregated into a common
slice. Thick dashed and solid lines denote the extreme network levels � = 1
and � = L, while the thin solid line follows an intermediate network level.
Left: large metropolis. Right: medium-sized city.

for all slices. In this scenario, we study the impact of the
system reconfiguration dynamics, as displayed in Figure 15.
Trends are similar to those observed for a per-service slicing in
Figure 14. Despite a higher efficiency in general, the fractional
gain brought by increasingly faster resource orchestration is
comparable under the two different slicing policies.

We then explore different slicing strategies according to
a hierarchical scheme where the k services that generate
the highest traffic loads acquire a dedicated slice each. The
demands for all remaining services are instead aggregated into
a common, non-customized, slice. Figure 16 shows the result-
ing multiplexing efficiency as a function of the total number
k+1 of slices in the network, when the reconfiguration period
τ is set to 1 hour, δ = 1 and π = 0 for all slices. Increasing
the number k of isolated mobile services entails a reduction of
efficiency: this is expected, since a larger k moves traffic from
the common slice, within which multiplexing is perfect, to
dedicated slices that require isolated resources. Interestingly,
however, the loss of efficiency is accumulated in the first half
of the plots, i.e., considering a number of slices larger than
16 does not affect efficiency anymore. Therefore, most of the
resource utilization cost for the operator comes from the very
few mobile services that generate the largest demands, and
multiplexing efficiency is only increased when such services
are treated as best-effort traffic. Incidentally, these results also
motivate our choice of focusing on 16 slices in previous exper-
iments: this setting maps to a lower bound on performance in
terms of efficiency with our dataset.

E. Case Studies

To conclude our evaluation, we investigate the multiplexing
efficiency under network slicing in a number of specific case
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TABLE II
CASE STUDIES. EACH ROW MAPS TO ONE CONFIGURATION. COLUMNS

REPORT THE CORRESPONDING SERVICE CATEGORY, NUMBER OF

SLICES, NETWORK LEVEL, RECONFIGURATION INTERVAL,
SLICE SPECIFICATION PARAMETERS, AND MULTIPLEXING

EFFICIENCY IN THE LARGE METROPOLIS (LM)
AND MEDIUM-SIZED CITY (MC) SCENARIOS

studies. This analysis lets us detail particular settings of practi-
cal interests, and complements the previous results where each
system parameter was studied in isolation. Each case study
focuses on a specific service category (e.g., video streaming),
where we assume that different applications (e.g., YouTube,
iTunes, DailyMotion, Netflix, etc.) are allocated to isolated
slices. The detailed configurations and the associated effi-
ciency results are provided in Table II, for both the large
metropolis and medium-sized city scenarios. Our analysis
below addresses one network level in each case study, high-
lighted in bold in Table II. For the sake of completeness,
the table also includes additional levels for each scenario,
which allow appreciating, for each case study, the efficiency
of end-to-end slicing across the network architecture.

Case Study #1 – High QoS at the Access Network: The
first case study focuses on slicing at the antenna level, and on
capacity-demanding services such as video streaming and Web
access. These are challenging settings for the operator, who
must provide high-quality support for a large volume of bursty
traffic; a quite fast reconfiguration (τ = 1 h) is thus a rea-
sonable relief. The efficiency is nonetheless low if hard-QoS
requirements (δ = 1) are to be met, e.g., for video streaming
slices: the operator shall commit up to threefold the resources
needed in a non-sliced scenario – a high cost considering that
radio access resources such as spectrum or RAN processing
capacity can be very expensive. In less strict slices like those
dedicated to Web access, paying minimal overbooking penal-
ties (π = 0.02) is an appealing option, as it may reduce costs
considerably by raising efficiency to 0.71.

Case Study #2 – Large Traffic Flows in the Core: This case
study shifts the focus to datacenters in the network core, and
targets social media services that generate high demands but
are less latency-dependent. The large traffic volumes observed
at this level allow achieving high efficiency (above 0.90) under
loose QoS (δ = 0.99, π = 0.05), and with limited reconfigu-
ration possibilities (τ = 10 h). These results further prove the

benefits of centralization for the effective implementation of
network slicing.

Case Study #3 – Computing at the Edge: Gaming services
with strong QoS requirements are likely candidates to be
among the first services to be delivered over edge deploy-
ments [25], hence they represent a sensible target for MEC-
level slicing. We consider 6 popular mobile games, to which
we allocate dedicated slices with firm specifications (δ = 1,
π = 0). Although we allow for quite fast reconfiguration
(τ = 4h), the price that the operator has to pay is high
in both urban scenarios: the required resources are almost
doubled with respect to a non-sliced network. Similar consid-
erations hold for messagging services, although in this case
QoS requirements can be moderated to δ = 0.99 π = 0.03,
with a 20-30% efficiency gain with respect to the gaming case.

V. RELATED WORK

Multi-service networks [26] are a key building block for
the implementation of the network slicing paradigm [27] that,
in turn, will enable new business models such as multi-
tenancy [12] and finally pave the way to 5G. At this stage, the
bulk of the work on next generation network sharing archi-
tectures is already available, ranging from novel visions of
the network [8] to specific architectures proposals [28]. More
specifically, research work already addressed the extension to
multi-service settings of fundamental parts of the 5G system,
such as the Radio Access Network (RAN) [29], [30], the core
network [31], or the management and orchestration compo-
nents [32]. Such research effort is already making its way into
standardization: 3GPP considered multi-service and network
slicing aspects for the next Release 15 [33].

On top of the architectural research work, enabling multi-
service networks has also been considered from an algorithmic
point of view. The focal point of research in this area has been
RAN resource allocation [11], [34], [35], as oversubscribing
spectrum is especially difficult. However, resource sharing has
also been tackled for other kinds of virtualized functions [13].

Despite the attention that multi-service networks, network
slicing and multi-tenant networks have been receiving for
the last few years, little attention has been paid to how
such network slices will behave in practical scenarios.
Understanding the system efficiency in the wild has only been
possible in reduced scenarios involving very few devices [11],
or by making assumption on the real patterns, modelling user
movements and service requests with random processes [36].
The only works that employ a data source comparable to ours
are the one in [37] and our seminal work in [38].

VI. DISCUSSION AND CONCLUSION

Our data-driven analysis unveils how real-world service
usage patterns may affect the deployment of a key paradigm
for future-generation mobile networks such as network slicing,
and the impact it has on resource management. Specifically,
we retain the following main takeaway messages.

Multi-Service Requires More Resources: Building a network
that is capable of providing different services (possibly asso-
ciated to several tenants) will necessarily reduce efficiency
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in resource utilization. We quantify this loss in almost one
order of magnitude if considering distributed resources (such
as spectrum), yet the efficiency loss stays as high as 20%
even in large datacenters in the core network. These figures
translate into high costs for the infrastructure provider, who
must compensate for them by aggressively monetizing on the
new business models enabled by a multi-service scenario (e.g.,
Network Slice as a Service, Infrastructure as a Service).

Traffic Direction Is a Factor: Uplink and downlink traf-
fic exhibit similar efficiency trends across network levels, but
uplink exacts a much higher efficiency degradation to meet
equivalent QoS requirements. Although uploads account for a
small fraction of the overall load, the lower efficiency of uplink
may entail additional challenges for the operators. Indeed,
uplink QoS requirements are key to specific services such as
mobile gaming, and it is likely that multiple instances of such
services belonging to different tenants have to be served in a
resource-isolated fashion in parallel.

Loose Service Level Agreements May Not Help: Although
slice specifications may be moderated, the overall efficiency
grows only when guarantees on the serviced demand are very
much lowered, up to a point that they may not be suitable for
certain services (needing, e.g., “5 nines reliability”, or strict
bandwidth requirements over very short time slots).

Overbooking Is a Key Strategy: While downgrading the
requirements in terms of served fraction of traffic only helps
when brought to extreme levels, flexibly serving small portions
of the individual slice demands via a non-customized common
slice provides high benefits. Therefore, overbooking solutions
that only marginally underserve slices may yield substantial
economic gains for the operators, as they allow trading off
substantial resource deployment costs with negligible penalty
fees due to slight SLA violations. This corroborates the impor-
tance of recent approaches for practical end-to-end resource
overbooking in sliced 5G networks [17].

Guaranteeing Traffic Volumes at the Antenna Is Costly:
If operators define SLAs in terms of assured traffic vol-
umes, they shall note that meeting the QoS requirements will
need substantial additional resources at the radio access, even
if guarantees are loose and overbooking is in place. SLAs
defined in terms of guaranteed time slots allow much more
flexibility in balancing efficiency and QoS for each network
slice.

Dynamic Resource Assignment Must Be Rapid: The design
of dynamic resource allocation algorithms is crucial to increase
the efficiency of future sliced networks. However, substantial
gains will only be attained if the virtualization technologies
enable a fast enough re-orchestration of network resources.
While current Management and Orchestration (M&O) frame-
works provide such capabilities, intelligent algorithms able
to forecast mobile service demands and anticipate resource
reconfiguration are also required, Artificial intelligence and
machine learning are promising techniques to accomplish
this [39], and are also being brought into the network man-
agement landscape by standards [40].

Aggregating Services Is Beneficial: Aggregating similar
services into a same slice increases the system efficiency sig-
nificantly, yet it comes at the price of losing the ability to

customize treatment to each service. This implies that opera-
tors may face a business trade-off between providing dedicated
support to highly remunerative, popular services, and incur-
ring high management costs to implement the associated
slices.

Urban Topography has Limited Impact: The fact that all
of our results are very consistent in two urban areas with
a quite different nature lets us provide general insights that
hold beyond one particular scenario. More precisely, as usage
demands are eventually driven by human factors, we expect
that our considerations might apply to other metropolitan
regions in (and possibly beyond) Europe.

Efficiency Under Uncertain Load Demands: Our analy-
sis concerns resource management efficiency under known
loads, as slices are allocated the exact resources needed to
meet the corresponding service demands. This lets us investi-
gate the impact of the limited reconfigurability of resources,
which forces the operator to provision a constant amount of
resources during the following reconfiguration period. In a real
system, however, the network slices demands are not known
a priori, and resources have to be allocated based on a fore-
cast of the expected demand during the next re-orchestration
interval. This introduces a second source of inefficiency, i.e.,
the inaccuracy of traffic predictions, which imposes some
overprovisioning in the allocated capacity to combat the uncer-
tainty associated with the future load information. This second
aspect has been recently analyzed by the authors in [41],
where an approach is developed that forecasts the capacity
needed to accommodate the traffic of a slice. Figures about
the expected global performance of a practical system can
then be obtained by summing the effects of both sources of
inaccuracy. For instance, if the resource reconfiguration peri-
odicity imposes allocating 100% extra resources (which is
a typical case according to the results in the previous sec-
tions), and capacity predictors entail 10% overprovisioning
(a likely number according to [41]), then the overall addi-
tional resources required will amount to 110%. This extra
capacity can then be served with a mixture of guaranteed
demand and overbooking, as discussed in Section II. While
a thorough analysis of the overall efficiency resulting from
considering both effects is left as future work, it is worth men-
tioning that, according to the results presented in this paper and
in [41], it is expected that the overall efficiency will be dom-
inated by the resource allocation dynamics analyzed in this
paper.

To conclude, ours does not pretend to be a fully com-
prehensive analysis, rather one that lays the foundations to
a better understanding of the new trade-offs introduced by
network slicing in terms of resource management efficiency.
The empirical bounds we derived represent a starting point
for deeper investigations of an unexplored subject with strong
implications for the future generations of mobile networks.
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