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Abstract— This paper addresses the slicing of radio access
network resources by multiple tenants, e.g., virtual wireless
operators and service providers. We consider a criterion for
dynamic resource allocation amongst tenants, based on a
weighted proportionally fair objective, which achieves desirable
fairness/protection across the network slices of the different
tenants and their associated users. Several key properties are
established, including: the Pareto-optimality of user association
to base stations, the fair allocation of base stations’ resources, and
the gains resulting from dynamic resource sharing across slices,
both in terms of utility gains and capacity savings. We then
address algorithmic and practical challenges in realizing the
proposed criterion. We show that the objective is NP-hard,
making an exact solution impractical, and design a distributed
semi-online algorithm, which meets performance guarantees
in equilibrium and can be shown to quickly converge to a
region around the equilibrium point. Building on this algorithm,
we devise a practical approach with limited computational
information and handoff overheads. We use detailed simulations
to show that our approach is indeed near-optimal and provides
substantial gains both to tenants (in terms of capacity savings)
and end users (in terms of improved performance).

Index Terms— Wireless networks, multi-tenant networks,
RAN-sharing, network slicing, resource allocation.

I. INTRODUCTION

DRIVEN by the capacity requirements forecasted for
future mobile networks as well as the decreasing mar-

gins obtained by operators, infrastructure sharing has estab-
lished itself as a key business model for mobile operators
to reduce the deployment and operational costs of their
networks (e.g., [1] reports a 280% increase in deals within
the last 5 years). While passive and active sharing solutions,
ranging from exclusive allocation of resources to roaming
agreements, are used and have been standardized, these sharing
approaches are based on fixed contractual agreements with
Mobile Virtual Network Operators (MVNO) over long time
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periods (typically on a monthly/yearly basis). In this paper,
we focus on a structured dynamic slicing approach which
enables a much more efficient sharing of network resources,
as envisioned by the 3GPP Network Sharing Enhancements for
future mobile networks which the authors contributed to [2].
Following [3], our approach divides the infrastructure into
network slices, assigning a different slice to each operator,
and implements the sharing of network resources among
operators by dynamically allocating resources to slices. Such
a novel network slicing approach is expected to result in
new business models and revenue sources for infrastructure
providers (see, e.g., [3]). Indeed, this approach supports not
only classical players (mobile operators) but also new ones
such as Over-The-Top (OTT) service providers that may buy
a slice of the network to ensure satisfactory service to their
users (e.g., Amazon Kindle’s support for downloading con-
tent or a pay TV channel including a premium subscription).
In the literature, the term tenants is often used to refer to
the different types of players, and multi-tenancy refers to
approaches enabling dynamic network slicing and resource
sharing for multiple tenants. For simplicity, hereafter we
use the term operator in a broad sense to refer to classical
(virtual) operators as well as the new players enabled by this
approach.

In designing a practical solution for dynamic resource
sharing among slices we face multiple challenges. To start
with, we need a sharing criterion that not only allocates
resources to operators (and their corresponding slices) fairly,
but also, shares the resources of each operator fairly among
its users. Furthermore, the criterion should allow for flexible
sharing “levels” to meet operators’ heterogeneous require-
ments; for practical purposes, these levels should be coarse-
grained, rather than based on instantaneous resource needs.
When allocating resources to an operator, one should take
into account the numbers and locations of active users on
the network–indeed some locations may see higher demand
and (consequently) the associated resources might be scarce.

Beyond the criterion itself, designing an algorithm to imple-
ment it, while realizing timely adaptation to network changes,
is also very challenging. Given the amount of information
involved (including the channel quality of each user) and
its dynamic nature, the algorithm should be as distributed
as possible. Also, since the algorithm may be triggered fre-
quently (whenever a user joins, leaves or changes its location),
it should be computationally efficient. When adapting to net-
work changes, the algorithm should control the number of
handoffs triggered, as those may represent a high overhead.
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Key Contributions

This paper proposes a criterion for slicing the network
infrastructure amongst operators and an algorithm to allocate
resources accordingly. The key contributions are as follows.
In Section II, we introduce a criterion for dynamic resource
sharing among operators; while the criterion has been pro-
posed before, we provide a characterization supporting its
use in a multi-tenant network setting. These properties are
developed in Section II-C, providing insights on the optimality
and fairness of the resulting allocations, and the benefits
are studied in Section II-D, by characterizing the capacity
savings by means of a closed-formula. We show that the
criterion not only improves overall network utility but also that
of each individual operator, thus guaranteeing that operators
are not harmed by the sharing of resources amongst slices.
In Section III-A, we show the criterion corresponds to an
NP-hard problem, motivating the need to devise an efficient
approximation algorithm which is introduced in Section III-B.
The proposed algorithm is semi-online, distributed, incurs low
computational complexity, and has been specifically designed
to control overheads associated with handoffs and/or mobile
user reassociations; we rely on several intermediate ana-
lytical results to drive the key design choices underlying
our algorithm. Section IV provides a comprehensive perfor-
mance evaluation based on detailed simulations, showing that
(i) operators can save up to 80% capacity while providing
the same quality to their users, and (ii) for a fixed capacity,
we improve user performance in terms of file download times
by up to 30%, among other results.

Related Work

We next review and contrast our work to the state-of-the-
art in (i) resource allocation based on proportional fairness,
and (ii) resource sharing among operators.

Considerable research effort has been devoted to address the
problem of fair resource allocation in networks. In wireline
networks, fair resource allocation based on utility function
maximization has been extensively studied following the sem-
inal work of [4]. Building on this work, further algorithms
for congestion control in multi-path environments have been
proposed [5], [6]. Not unlike our work, these algorithms
are distributed. However, they allow users to decide among
multiple routes while we focus on a wireless setting where
each user can only use one resource (her base station).

In the specific context of wireless networks, several
approaches have been proposed [7]–[9] to the problem of
resource allocation and user association based on weighted
and unweighted proportional fairness, respectively. The
unweighted case has been largely studied in the literature
in different contexts (e.g., power control [10], interference
avoidance [11]). Bu et al. [7] and Son et al. [11] analyzed
the complexity of the problem and proved the existence of
polynomial time algorithms which provide an exact solution,
and [9] designed a distributed algorithm with convergence
guarantees. In contrast to the above, the resource allocation
criterion proposed in this paper relies on weighted proportional
fairness, with operator-specific weights; this is a more difficult

problem as it is NP-hard [7] and the convergence of distributed
greedy algorithms cannot be guaranteed [12].

Weighted proportional fair resource allocation in the context
of wireless networks has also been studied from different
angles. In [8], an algorithm with tight worst-case performance
bounds is proposed, while [13] proposes an heuristic algo-
rithm. In contrast to the distributed approach proposed in this
paper, both algorithms are centralized and require the availabil-
ity of the full network state information, which may be very
challenging to gather in a timely manner. Hou and Chen [14]
and Hou and Gupta [15] propose a Gibbs-sampling mechanism
based on simulated annealing that converges to an optimal
solution. However, the convergence of such mechanisms is
known to be very slow and for this reason the authors resort
to a more practical greedy solution. For the proposed greedy
solution, the authors neither provide performance bounds
nor analyze convergence; additionally, the overhead is not
controlled, which limits their practical deployment. All the
approaches mentioned above address the problem of a single-
operator network, in contrast to our work which focuses on
the slicing and sharing of resources among multiple operators.

Multi-operator network sharing has been studied from many
different angles, including planning, economics, coverage, per-
formance, etc. (see e.g. [16]–[18]). This paper focuses specif-
ically on the design of algorithms for resource sharing among
operators, which has been previously addressed by [19]–[23];
however, all these works differ substantially from ours in terms
of scope, criterion or approach. In [19] and [20], the optimiza-
tion of the network utility follows a different criterion from
the one in this paper, weighted proportional fairness, which
(as we show) provides many desirable properties. The works
of [21] and [22] present a proportional fair formulation similar
to ours; however, they do not provide a rationale for their
choice, in contrast to the solid analytical arguments provided
here. Furthermore, [21] does not address the algorithm design,
while [22] uses a general non-linear solver that incurs a
very high computational complexity (as confirmed by our
results of Section IV-D). Finally, [23] follows a game theoretic
approach where operators bid for resources, which results in a
fundamentally different problem from the one addressed here.

In summary: (i) while there has been substantial research on
proportional fair resource allocation, its application to multi-
operator settings and the associated problems have not been
studied, and (ii) in spite of the substantial work devoted to
proportional fairness in general settings, there is a gap in the
systematic study of distributed mechanisms for joint resource
allocation and user association that build on analytical results.

II. RESOURCE ALLOCATION CRITERION

In this section, we formulate the optimization problem
that will drive (i) the association of users to base stations,
and (ii) the allocation of base stations’ resources to users.
Hereafter, we refer to this optimization as the multi-operator
resource allocation (MORA) criterion. We show analytically
that the criterion satisfies desirable properties in terms of opti-
mality and fairness, and develop a simple model to evaluate
the potential sharing gains of our network slicing approach.
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A. System Model

We start by presenting our system model which was devel-
oped with LTE/LTE-A systems in mind, but is generally
applicable to cellular systems. Consider a network consisting
of a set B of base stations (or sectors in case of sector
antennas) that are shared by a set of operators O. At any
given time, we let U denote the set of users sharing the
network and Uo, o ∈ O the subsets of users belonging to
each operator. An allocation of resources involves two sets of
variables: (i) the association of users to base stations, denoted
by x = (xub : u ∈ U , b ∈ B), where each user u is
associated with a single base station, i.e., xub = 1 for one
of the base stations and 0 otherwise, and (ii) the allocation of
the resources of each base station among its associated users,
denoted by f = (fub : u ∈ U , b ∈ B), where fub is the
fraction of the base station b’s resources which are allocated
to user u.1 Note that in our model we ignoring the discrete
nature of such resources, and assume that fu,b can take any
value in the continuous range [0,1].

We let c̃ub denote the average rate per resource unit seen by
user u at base station b under current radio conditions,2 and let
Cb be the base station’s total amount resources. Given that the
user is allocated a fraction fub of the base station’s resources,
her rate is given by fubCbc̃ub. For notational convenience,
we define the achievable rate of the user as cub := c̃ubCb,
which yields the following rate allocation:

ru(x, f) :=
∑

b∈B
xubfubcub.

Note that the definition of cub actually represents an abstrac-
tion of the underlying physical resources, accounting for
the various physical layer techniques (such as, e.g., power
control or MU-MIMO) as well as the interference from
different sources (including that of neighboring base stations).
In line with similar analyses in the literature [19], [21], [22],
[24]–[26], we shall assume that cub is fixed for each user and
base station pair.

B. MORA Criterion

In line with previous approaches [19], [21], [22], the under-
lying assumption behind our criterion is that operators share
the cost of deploying and/or maintaining the infrastructure, and
the resources received by each operator should be based on the
level of its (financial) contribution to the shared network:
if an operator contributes twice as much as another, it should
roughly get twice the resources. To this end, each operator is
assigned a network share so ∈ [0, 1], to represent its level of
contribution to the network. Without loss of generality, these
shares are normalized so that

∑
o∈O so = 1.

The proposed criterion allocates resources across operators
dynamically, tracking changes in the numbers and locations
of operators’ mobile users and the associated transmission
rates cub. When doing this, we need to make sure that

1For instance, in LTE/LTE-A fub denotes the fraction of physical Resource
Blocks, in FDM the fraction of bandwidth and in TDM the fraction of time

2Note that such average rates depend on the choice of modulation and coding
scheme(s) selected for the user, after averaging out short-term fluctuations.

(i) network resources are fairly shared among the various
operators according to their share, and (ii) at the same time,
the resources allocated to a given operator are fairly shared
among the users of that operator. To achieve this, we follow
an approach akin to that in [27]3: we maximize the overall
network utility resulting from aggregating operator utilities,
where the utility of an operator is in turn the aggregation of
its users’ utilities. To this end, we define the overall network
utility as the sum of operators’ utilities weighted by the shares,

W (x, f) =
∑

o∈O
so Uo(x, f),

and the operator utility as the sum utility of the operator’s
users normalized by the number of users (where a user’s utility
is logarithmic in its rate),

Uo(x, f) =
1
|Uo|

∑

u∈Uo

log(ru(x, f)),

By weighting the operator utilities with the shares, we give
higher priority to operators with larger shares, and by nor-
malizing with the number of users, we avoid that operators
with more users are better off. For instance, with this choice,
under uniformly loaded base stations an operator with twice
the share of another one will get twice as many resources,
independent of the number of users of each. Combining the
above equations, one can rewrite the network utility as follows:

W (x, f) =
∑

o∈O

∑

u∈Uo

wu log(ru(x, f )), (1)

where the user weights wu are defined as the operator network
share divided by the current number of users of the operator,
i.e., wu = so/|Uo| (in simple terms, the network share of an
operator is divided equally amongst its current users).4

With the above, we can now formulate the MORA optimiza-
tion problem as follows. Such optimization corresponds to the
weighted proportional fair criterion (see e.g. [4]) extended to
a multi-operator setting that considers utilities of the operators,
rather than the ones of the individual users5:

max
x,f

W (x, f), (2a)

subject to: ru(x, f) =
∑

b∈B
xubfubcub, ∀u (2b)

∑

b∈B
xub = 1 and xub ∈ {0, 1}, ∀b, u (2c)

∑

u∈U
fubxub ≤ 1 and fub ≥ 0, ∀b, u. (2d)

In the sequel we shall let xMORA, fMORA denote a (possibly
not unique) optimal solution to this optimization problem.

3Reference [27] addresses a similar problem to ours in the context of users
and flows, as it aims at allocating resources fairly to users while preserving
fairness among the flows of each user.

4While our definition of network utility coincides with that for weighted
proportional fairness, the criterion proposed here is fundamentally different:
we consider resource allocation across time and vary the weights with the
number of users, while weighted proportional fairness typically focuses on a
static scenario and relies on fixed weights.

5Note that (2c) ensures that a user is associated with one (and only one)
base station.
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This formulation provides the optimal resource allocation at
a given time under the current cub values (given by the
selected modulation-coding schemes); in a dynamic setting,
such allocations would be re-evaluated when any of the cub

values change, due to changes in the (average) channel quality.
Note that, once MORA returns the user association x and

resource allocation f , physical layer techniques (such as
MU-MIMO or power control) are employed to optimize per-
formance, under the constraint that users are provided with
rates proportional to the ru values given by MORA.

C. Properties of MORA Resource Allocation

Next, we show that the MORA criterion satisfies some
desirable properties both in the way base stations’ resources
are allocated to associated users, and the way users are
associated with base stations.

1) Per-Base Station Resource Allocation: Let us first con-
sider a general setting, where user associations to base sta-
tions are fixed, to see how MORA allocates base station
resources. Let x∗ be the fixed (not necessarily optimal)
user to base station association. If we optimize the resource
allocation f for this user association, i.e., maxf W (x∗, f)
subject to (2b) and (2c), it can be seen from [8, Lemma 5.1]
that the resulting resource allocation is unique and given by
fM (x∗) = (fM

ub (x∗) : u ∈ U , b ∈ B), where

fM
ub (x∗) =

wux∗
ub∑

v∈U wvx∗
vb

. (3)

Further if x∗ = xMORA, then fM (x∗) = fMORA, i.e., we
have MORA optimal allocation of network resources.

The above result is fairly intuitive. Users associated with
a given base station are allocated resources proportionally to
their weights wu. This can be viewed as follows. The share
of an operator represents the total budget of the operator.
When assigning a weight wu = so/|Uo| to users, this share is
distributed among the operator’s users, and hence the user’s
weight represents the budget of a user. As the resources
allocated to a user are inversely proportional to the sum
of weights at her base station, the sum of weights can be
viewed as the cost of a unit of resource at the base station.
Thus, operators with users associated with heavily loaded base
stations will have to pay a higher cost (e.g, increase their
network share or limit their overall number of users) or receive
fewer resources.

The above shows that the number of active users that
operators have on the network and their spatial distribution
will impact the resources allocated under MORA. Indeed, allo-
cations across base stations are coupled together through |Uo|,
i.e., an operator with a large number of active users will have
lower weights and likely lower per-user allocations. At the
same time, the resources obtained by an operator heavily
depend on the load at base stations to which its users will
be associated with.

2) User Association: Next we study the MORA user
associations. Building on the optimality of our formu-
lation, we can show that the resource allocation result-
ing from MORA is Pareto-optimal, which means that for

any alternative allocation (x′, f ′) for which ru(x′, f ′) >
ru(xMORA, fMORA) for some u, we necessarily have
rv(x′, f ′) < rv(xMORA, fMORA) for some v �= u. Indeed,
if this was not the case then W (x′, f ′) would be larger
than W (xMORA, fMORA), which contradicts the fact that
the optimal MORA allocation (xMORA, fMORA) maxi-
mizes W (x, f).

Thus, Pareto optimality in this context means that if under
some other user association choice, a user sees a higher
throughput than that under MORA then there must be another
user which sees a lower throughput allocation. Note that
this need not always be the case. Consider, for instance,
a network with |U| users, such that the largest cub of each
user corresponds to a different base station. While the optimal
allocation would associate each user to the base station with
largest cub, a criterion based on local decisions that looks at
users one by one may lead to a different association. The above
result guarantees that this will not happen under MORA.

D. Gains and Savings

In the following we evaluate the benefits of MORA. To that
end, we introduce a simple baseline – static slicing (SS),
a proxy for not sharing resources at all.6

1) Static Slicing (SS) Baseline: Suppose each operator
contracts for a fixed slice/fraction so of the network resources
at each base station for its exclusive use. The operator can
of course still optimize its users associations, xo = (xub :
u ∈ Uo, b ∈ B), and allocation of resources fo = (fub :
u ∈ Uo, b ∈ B), so as to maximize its utility. Specifically each
operator o ∈ O can determine its user association and resource
allocations based on:

max
xo,fo

Uo(xo, fo)

subject to ru(xo, fo) =
∑

b∈B
xubfubcub, ∀u ∈ Uo,

∑

b∈B
xub = 1, ∀u ∈ Uo,

∑

u∈Uo

fubxub ≤ so, ∀b ∈ B,

xub ∈ {0, 1}, fub ≥ 0, ∀b ∈ B, ∀u ∈ Uo. (4)

This is similar to MORA except limited to the operator o’s
current users Uo and the resource constraint corresponds only
to the fixed slice so allocated to the operator at each base
station. Although the user associations and resource allocations
under static slicing are independently optimized by each
operator, we shall let xSS , fSS be a (possibly not unique)
optimal choice across all operators under static slicing. Also
paralleling our discussion of MORA, it is easy to show that
if one fixes a feasible user association x∗, (4) is convex and
yields resource allocations given by

fS(x∗) := (f∗
ub(x

∗) : ∀u ∈ U , ∀b ∈ B),

6By slicing we refer to the way resources are shared (or sliced) among
operators (while resource allocation refers to the allocation of resources to
specific users). In contrast to the dynamic nature of MORA-based slicing,
static slicing divides the infrastructure in fixed fractions.
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where

f∗
ub(x

∗) =
x∗

ubso∑
v∈Uo

x∗
vb

1{u ∈ Uo}, (5)

i.e., this is again a weighted proportionally fair allocation of
the operators’ slice of the base station resources.

2) Operator Utility Gains and Protection: The overall net-
work utility under MORA is clearly larger than that under the
more constrained allocations possible under SS. This however
does not guarantee that a given operator’s utility under MORA
is greater than that under SS. Below we show that for the same
user association an operator utility under MORA exceeds that
under SS, indicating that beyond the overall network utility,
we have that each operator is indeed better off. This shows
that MORA effectively protects operators when sharing their
resources with other operators, which is very important to
ensure that operators accept this criterion. Note that the result
is completely general and holds for any possible scenario.7

Theorem 1: For a given user association x, MORA’s
resource allocation fM (x) (see Eq. 3) achieves a higher utility
than that of SS given by fS(x) (see Eq. 5), i.e., for all o ∈ O

Uo(x, fM (x)) ≥ Uo(x, fS(x)).

3) Capacity Savings: Next we consider the capacity savings
resulting from operators sharing infrastructure. Specifically we
compare the spectrum capacities, i.e., total amount of resource,
required to achieve the same average utility per operator under
MORA and SS. The aim is to give some intuition on the typical
savings one might expect and its dependence on the network
load, number of operators and their shares. For tractability we
will examine a scenario where traffic is spatially homogenous
and operators’ network shares are proportional to their load.

We consider a network model in which there is a fixed total
number of users |U| of which each operator contributes a fixed
number of users proportional its network share so, i.e., no =
so|U| which are assumed to be integer valued. Each operator’s
users are randomly (uniformly) distributed amongst the |B|
base stations, so the number of users of operator o associated
with base station b, is given by a random variable No,b,
such that No,b ∼ Binomial(no,

1
|B| ). The total number of

users at base station b is denoted by a random variable
Nb =

∑
o∈O No,b ∼ Binomial(|U|, 1

|B|). We also assume
for simplicity that users have the same capacity cub = c
to the base stations with which they associate.

Note that under the above traffic model all users u have
the same weight wu = so

no
= 1/|U|. Thus expected overall

network utility under MORA is given by:

W̄ = E

[
∑

o∈O

∑

b∈B
Nobwu log

(
c

Nb

)]

= E

[
∑

b∈B

∑

o∈O

Nob

|U| log
(

c

Nb

)]

= E

[
∑

b∈B

Nb

|U| log
(

c

Nb

)]
=
|B|
|U|E

[
Nb log

(
c

Nb

)]
,

7The proofs of the theorems are provided in the Appendix.

where the last equality follows by using the uniformity of
traffic across base stations. Moreover, under our model the
network utility W̄ is the average utility across all users,
which by symmetry is equal to the expected utility of a given
operator o under MORA, i.e., ŪMORA

o = W̄ .
Now applying Taylor’s approximation to the function

x log(c/x) at E[Nb] we obtain

Nb log
(

c

Nb

)
≈ E[Nb] log

(
c

E[Nb]

)
+

[
log

(
c

E[Nb]

)
− 1

]

· (Nb − E[Nb])− 1
2E[Nb]

(Nb − E[Nb])2,

which in turn gives

E

[
Nb log

(
c

Nb

)]
≈ E[Nb] log

(
c

E[Nb]

)
− 1

2E[Nb]
Var(Nb).

Since Nb ∼ Binomial(|U|, 1
|B| ) we have that Var(Nb) =

|U|
|B| (1− 1

|B| ) ≈ |U|
|B| , and so

ŪMORA
o ≈ log

(
c

E[Nb]

)
− |B|

2|U| . (6)

Let Δo denote the extra capacity that operator o would
require under SS to achieve the above utility. The expected
utility experienced by operator o under SS is given by

ŪSS
o = E

[
∑

b∈B

No,b

no
log

(
soc(1 + Δo)

No,b

)]

=
|B|
no

E

[
No,b log

(
soc

No,b

)]
+ log(1 + Δo).

Again using a Taylor expansion this can be approximated
as

ŪSS
o ≈ log

(
soc

E[No,b]

)
− |B|

no

Var(No,b)
2E[No,b]

+ log(1 + Δo).

Noting that Var(No,b) ≈ so
|U|
|B| = no

|B| we have that

ŪSS
o ≈ log

(
c

E[Nb]

)
− |B|

2no
+ log(1 + Δo). (7)

Finally equating the expected utilities, i.e., (6) and (7),
we obtain the following estimate of the necessary extra capac-
ity Δo required when static slicing rather than MORA is used:

log(1 + Δo) ≈ |B|2no
× (1− so). (8)

where under our traffic load model no = so|U|.
This result gives a clear intuition on the possible savings

resulting from sharing the infrastructure with MORA dynamic
slicing. In particular, the savings increase exponentially in the
product of two terms. The first is inversely proportional to
the average number of users operator o has per base station,
i.e., no/|B|; indeed, if the operator has a large number of
users, its multiplexing gain is already high without sharing
the infrastructure, and hence there is little gain from sharing.
The second term is large when the operator has a small
network share: if its share is high, the operator is using most
of the network resources and there is little sharing.



CABALLERO et al.: MULTI-TENANT RAN SLICING: STATISTICAL MULTIPLEXING OF SPATIAL LOADS 3049

In summary, capacity savings will be highest when
infrastructure is shared by a large number of operators each
with a small number of users per base station. With current
trends towards small cells, the number of users per base station
is expected to be small, suggesting that infrastructure sharing
may be particularly beneficial.

III. APPROXIMATION ALGORITHM FOR MORA

The analysis in previous section and simulations to be
presented in the sequel suggest that MORA resource allocation
across operators not only has desirable characteristics but will
make efficient use of resources while protecting operators from
one another. Unfortunately, as we show below, the complexity
and information overheads associated with doing so for are
already high for a static system, and excessive when operators’
mobile users and associated channels are subject to constant
change. In this section we further discuss the state-of-the-art
algorithms to tackle MORA, and then propose an approxima-
tion algorithm based on a sequence of theoretical results and
insights that support the design.

A. Complexity and State-of-the-Art Algorithms

The optimization problem underlying MORA is a non-
linear integer programming problem, which can be shown to
be NP-hard and hence there is no polynomial time algorithm
unless P = NP .

Theorem 2: The MORA problem is NP-hard.
There have been a number of works in the literature

devoted to solving problems similar to MORA. In particu-
lar, [8] proposes an approximation algorithm for the single
operator case with guaranteed performance bounds. However,
their approach is still computationally demanding; indeed,
the results in Section IV-D, show that for a network with
only 100 users, the algorithm takes 20 seconds on a dual-
core 2.8GHz processor. Given that this would need to be
executed every time cub values change or new users enter/leave
the network,this seems computationally impractical. Moreover
the proposed approach is centralized, so there would be a
substantial information overhead to gather the cub of each user
to each potential base stations, given the amount of data and
dynamic nature of mobile users.

In the multi-operator setting, [22] proposes an approach
based on using a standard non-linear solver to address a
problem similar to MORA. Unfortunately the approach is
also very complex and centralized. Indeed, our evaluation of
this proposal in Section IV-D, shows that the time required
to execute this algorithm increases sharply with the number
of users, making it impractical at about 50 users. Moreover,
[22] does not provide any analytical performance bounds.

In summary, to make dynamic multi-operator resource shar-
ing possible, a new radically simplified approach is required.
It should have low computational complexity and be based on
distributed operation requiring only local information, to allow
near real-time operation.

B. Algorithm Design

In the following, we devise an algorithm for MORA that
can be used in practical deployments. In contrast to previous

approaches, our algorithm involves a low computational com-
plexity and relies on data that can be gathered from neighbor-
ing base stations, allowing for a distributed implementation.8

Given the user dynamics, i.e., joining, moving and leaving
the network, an offline algorithm that computes an optimal
resource allocation for a fixed set of users is impractical.
Instead, we will pursue an approach that tracks users dynam-
ics, and occasionally adjusts resource allocations by modifying
current or new users’ associations. Since reassociations of
current users correspond to handoffs, their number should be
kept to a minimum. To design such an algorithm, we need to
answer

• Do we really need to reassociate users?
• Where should users be (re)associated to?
• In which order should users be reassociated?
• How many reassociations do we need?

For each of these questions, in the following we provide
some theoretical analysis that eventually leads to our proposed
algorithm. In all cases, once a user association x is set,
resources at each base station are allocated according MORA’s
resource allocation fM (x).

1) Need for Reassociations: Following the standard termi-
nology of online algorithms, we say that an algorithm is online
if, upon a user joining the network, it only decides how to
associate the new user, without triggering any reassociations
of existing users. We say the algorithm is semi-online if it can
further trigger reassociations of a limited number of users.
Thus our first question is whether an online algorithm would
suffice. The following theorem suggests that the performance
of an online algorithm can be arbitrarily bad, motivating us to
consider semi-online approaches.

Theorem 3: Consider an online algorithm that triggers no
reassociations of existing users. Let (x′, f ′) denote the solution
resulting from this algorithm and (xMORA, fMORA) a MORA
optimal solution. Then, W (xMORA, fMORA)−W (x′, f ′) can-
not be bounded.

2) Criterion for (Re)associations: Next we address the
question regarding how to associate, or reassociate, users to
base stations. In particular, consider a Distributed Greedy
algorithm wherein we iteratively examine (in arbitrary order) if
there is a user which could change her association to increase
her rate, and if this is the case, she chooses to re-associate
with the base station providing the largest rate. The following
result characterizes the performance of this algorithm if an
equilibrium is reached.

Theorem 4: Let (x′, f ′) be an equilibrium allocation for
the Distributed Greedy algorithm, and (xMORA, fMORA)
a MORA optimal solution, then9

W (x′, f ′) ≥W (xMORA, fMORA)− log(e).

There exists an instance of the problem for which it holds that
W (x′, f ′) = W (xMORA, fMORA)− log (2).

8Note that, while the algorithm implementation is distributed, the logic is
centralized: i.e., we assume that the algorithm is run centrally by a single
entity, without the intervention of the different operators.

9To gain some intuition on this bound, we note that a log(e) gap is
equivalent to reducing the throughput of each user by a factor of e.
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Note that the above bound of log(e) is fairly close to
the log(2) bound provided by [8]. This is quite remarkable,
considering that the algorithm proposed in [8] is centralized
and much more complex. Furthermore, the theorem shows that
the bound is rather tight, as there exists a problem instance
that provides a gap of log(2), which is quite close to the log(e)
bound.

While the above theorem bounds network utility in
equilibrium, we have not established the convergence of this
algorithm to an equilibrium. The convergence of this type
of algorithms has received substantial attention in the litera-
ture [12], [28], [29]. Indeed, since the throughput of user u is
an increasing function of cub/

∑
v∈U wvxvb, the Distributed

Greedy algorithm can be viewed as a congestion game in
which the load at a base station is given by the sum of
weights of the users at the base station, lb =

∑
v∈U wvxvb,

and a user seeks to minimize aublb, where aub = 1/cub. This
game falls in the category of a singleton weighted congestion
game with player-specific multiplicative constants and linear
variable cost. Based on the lack of a counter-example and
the existence of polynomial-time algorithms for special cases,
[28] conjectures that this type of games have an equilib-
rium (see [28, Conjecture 3.7]). Based on the simulations
we have run for numerous instances of the game, we fur-
ther conjecture that the Distributed Greedy algorithm (which
implements a best response dynamics) converges to this
equilibrium.

In particular, Distributed Greedy satisfies W (x′, f ′) ≥
W (xMORA, fMORA) − log(e), while [8] proposes
an algorithm that provides a throughput larger than
ru(xMORA, fMORA)/(2 + ε) to all users, which translates
into W (x′, f ′) ≥ W (xMORA, fMORA)− log (2 + ε); hence,
the algorithm of [8] provides only a slightly tighter bound
than Distributed Greedy.

3) Order of Reassociations: While our analysis of the Dis-
tributed Greedy algorithm suggests a user should (re)associate
to maximize her rate, it does not indicate in which order user
reassociations should be considered to speed up convergence.
To address this, we consider the Greedy Largest Gain algo-
rithm, which operates as the Distributed Greedy algorithm
but at each iteration updates the association of the user
achieving the highest gain, i.e., the one achieving the largest
rnew
u /rold

u , where rold
u is the user’s current throughput and

rnew
u is the throughput she would receive under the improved

association.
The following theorem shows that the Greedy Largest Gain

algorithm exhibits a desirable convergence property. In partic-
ular, one can guarantee that at each iteration the network utility
increases until it reaches W (xMORA, fMORA)−2 log(e), and
from then on it never decreases below W (xMORA, fMORA)−
(2 + maxu wu) log(e). Note that Distributed Greedy does not
exhibit this kind of behavior: if we select users in an arbitrary
order, the network utility may decrease at any iteration (as the
increase in utility of the reassociated user may be smaller than
the decrease experienced by the other users).

Theorem 5: Let (xi, f i) be the solution at the
ith iteration of the Greedy Largest Gain algorithm and
(xMORA, fMORA) a MORA optimal solution. Then W (xi, f i)

increases at each iteration until W (xi, f i) ≥
W (xMORA, fMORA) − 2 log(e), and thereafter it never
decreases below W (xMORA, fMORA)−(2+maxu wu) log(e).

4) Proposed Algorithm: Greedy Local Largest Gain. Based
on the above considerations we now propose our algorithm for
MORA, the Greedy Local Largest Gain algorithm. We shall
first describe how it operates at a high level, and then provide
a more detailed algorithmic description. When a user joins
the network, she greedily joins the base station providing
the largest throughput. However, as we have seen, we may
need to consider triggering user reassociations. To limit their
number and associated handoffs overheads we constrain these
to at most m. For the first m − 1 reassociations, users
choose the base station that provides the largest throughput,
but in the mth the user chooses the base station so as to
maximize the network utility W (x, f). In each of these steps,
we select which user to reassociate (if any) based on Greedy
Largest Gain criterion, but instead of considering all users in
the network, involving possibly a high overhead, we restrict
the selection locally to users associated with only two base
stations (see below).

In a dynamic and time-varying setting, the algorithm needs
to consider the following cases: (i) a user joins the network,
(ii) leaves, or (iii) changes her location. The algorithm for
a joining user is detailed in the pseudocode of Algorithm 1.
The rationale is as follows. In the optimal allocation, users
are somehow balanced among base stations, users’ weights
playing a role in this balance. When a new user joins the
network, the balance is broken and the base station with which
the user associates may have too many users. Hence, in the
first step we reassociate one of the users of this base station.
In the next step, the base station that received the reassociated
user may have too many users; however, depending on the
weights of the joining and reassociated users, the original
base station may still have too many users as well. Hence,
we consider the users from the two base stations as candidates
for reassociation. We repeat this, considering users from two
base stations, in the subsequent steps. Finally, in the last
step, to avoid that the reassociation of a user harms the
overall performance, we select the base station association
that maximizes the overall network utility rather than the
throughput of the reassociated user.

When a user leaves the network, the algorithm is quite
similar (pseudocode omitted for space reasons). When she
moves, her cub values to the neighboring base stations may
change; if, as a result of these changes, at some point the
user would receive a larger throughput in a new base station,
we reassociate her to this base station. Then, the old base
station executes the same algorithm as when a user leaves the
network while the new base station executes the algorithm
corresponding to a joining user.

5) Controlling the Number of Reassociations: The remain-
ing question is how to set the limit on the number of
reassociations m, which determines the trade-off between the
performance of the algorithm and reassociation overhead. Such
trade-offs have been analyzed for a similar setting in [30],
which aims to distribute tasks among servers (where each
task can only be associated to a restricted set of servers)
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Algorithm 1 GLLG User Joining
Definitions:
rv,b : throughput of user v if she associates to b;
rv : current throughput of user v;
Ub : set of users associated to b, (u ∈ U s.t. xu,b = 1);
U{c∪p} : set of users associated to c or p;
Wu,q : network utility if user u associates to q;
Input: x
User v joins the network:
b′ = argmax

b∈B
rv,b;

xv,b′ = 1← Associate user v with base station b′;
[u∗, p∗] = argmax

(u,p)∈Ub′×B
ru,p

ru
;

if ru∗,p∗/ru > 1 then
Associate user u∗ with base station p∗, xu∗p∗ = 1;

else
stop

c = p∗ (current base station);
p = b′ (previous base station);
for m− 1 times do

[u∗, q∗] = argmax
(u,q)∈U{c∪p}×B

ru,q

ru
;

if ru∗,q∗/ru > 1 then
Associate user u∗ with base station q∗, xu∗q∗ = 1;
c← q∗; p← previous base station of user u∗;

else
stop

W ← current network utility;
[u∗, q∗] = argmax

(u,q)∈U{c∪p}×B
Wu,q

W ;

if Wu∗,q∗/W > 1 then
Associate user u∗ with base station q∗, xu∗q∗ = 1;

in such a way that the maximum load across all servers is
minimized. This problem is similar to ours, with tasks and
servers corresponding to users and base stations respectively,
in the particular case where all users have the same wu and cub.
Not unlike their setting, the performance in this case is opti-
mized when base station loads are as balanced as possible (i.e.,
the highest load is minimized). According to the analysis
of [30], the performance in terms of the highest load with
our algorithm (which has a limit of m reassociations) over the
highest load with the optimal algorithm (with no constraint m)

is given by O(e1− m
ln|B| ). This shows that algorithm’s perfor-

mance improves rapidly (exponentially) in m, and suggests a
small m suffices to achieve near-optimal network utility.

To further explore the impact of m on network utility,
we present the following simulation results (see Section IV
for a description of the simulation setup). Here, W (m) is the
network utility achieved for a given m value, W (∞) is the
utility with unconstrained overhead, W (0) is the utility with
no reassociations, and GW (m) .= 1− W (m)−W (∞)

W (0)−W (∞) represents
the normalized utility gain with m reassociations, showing
how close we get to the unconstrained overhead utility.
Fig. 1 depicts this gain as a function of m for different

Fig. 1. Normalized utility gain as a function of m.

scenarios. As can be seen, utility gains increase very sharply.
Furthermore, for m = 3 the gains are already very close to
their maximum value; based on this, we set m equal to 3 (this
is indeed the value used in the experiments of Section IV).
With this setting, the proposed algorithm only introduces a
small overhead, since our approach may trigger up to three
handovers for every handover performed by a “traditional”
solution [31].

IV. PERFORMANCE EVALUATION

Next, we evaluate the performance of our proposed
approach. The mobile network scenario considered is based on
the IMT Advanced evaluation guidelines for dense ‘small cell’
deployments [32]. It consists of base stations with an intersite
distance of 200 meters in a hexagonal cell layout with 3 sector
antennas (thus in this setting users will associate with sectors
rather than the base stations we used in our algorithm descrip-
tion). The Signal Interference to Noise Ratio (SINR) is com-
puted as in [25], SINRub = Pbgub/(

∑
k∈B,k �=b Pkguk + σ2),

where Pb is the transmit power and gub denotes the channel
gain between user u and base station b, which includes path
loss, shadowing, fast fading and antenna gain. Following [32],
we set Pb = 41 dBm, σ2 = −104dB, path loss equal to
36.7 log10(dist) + 22.7 + 26 log10(fc) for carrier frequency
fc = 2.5GHz, and antenna gain of 17 dBi. The shadowing
factor is given by a log-normal function with a standard
deviation of 8dB (as in [25]) updated every second, and fast
fading follows a Rayleigh distribution dependent of the user
speed and the angle of incidence (as in [33]). Achievable rates
are then computed with the Shannon formula, BW log2(1 +
SINRub), for the average SINRub given by fading and shad-
owing [24] and a channel bandwidth of BW = 10MHz [24].
Finally, the modulation-coding scheme is selected according
to the SINRub thresholds reported in [34]. Unless otherwise
stated (i) users move according to the Random Waypoint
Model (RWP) with speeds uniformly distributed between
0.2 and 4 m/s and pause intervals between 0 and 10 seconds,
(ii) network size |B| is 57 sectors, (iii) all operators have the
same share, and (iv) the number of users of each operator is
proportional to so, i.e., |Uo| = |U| · so. Confidence intervals
are below 1%.
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Fig. 2. Utility gains for different approaches as a function of the network size.

A. Utility Gains

We start by evaluating the gains in terms of the overall
network utility. We consider a scenario with a user density
of 10 users/sector and 3 operators, and plot W (x, f) as a
function of the network size |B|. In this setting, we com-
pare the performance of our algorithm for dynamic sharing,
Greedy Local Largest Gain (‘GLLG’), against the following
approaches:

i) SINR-based Static Slicing (‘SINR SS’): the resources of
each sector are statically divided among operators and
users associate with the based station with highest SINR;

ii) Distributed Greedy Static Slicing (‘DG SS’): resources
are also sliced statically and user associations fol-
low the Distributed Greedy algorithm discussed in
Section III-B.2;

iii) Distributed Greedy (‘DG’): this is the algorithm for
dynamic sharing presented in Section III-B.2;

iv) Centralized (‘Centralized’): this is the centralized algo-
rithm proposed in [8].

The results are exhibited in Fig. 2. We draw the following
conclusions: (i) significant gains result from both improving
user association (DG SS vs. SINR SS) and sharing resources
dynamically (DG vs. DG SS); (ii) the Distributed Greedy
approach of Section III-B.2 performs almost at the same
level of the baseline approach of [8] (DG vs. Centralized);
and (iii) the proposed approach performs closely to these two
approaches, although it pays a small price for reducing the
handoff overheads (GLLG vs. DG).

In addition to the overall network gain, it is also interesting
to look at the gains of the individual operators. Theorem 1
showed that the difference in operator’s utility under MORA
and SS is positive as long as we have the same user association
in both approaches; however, we would expect this to hold in
general, i.e., even when we have different user associations.
To this end, we have evaluated the difference between the
operator’s utility under MORA and SS over a large number
of different scenarios and settings. We have observed that in
all cases, MORA always provides better performance than
SS to all individual operators, which confirms that MORA
effectively protects all operators, ensuring gains to all of them.

Fig. 3. Capacity savings for different scenarios as a function of the number
of operators.

Fig. 4. Validation of the theoretical results on capacity savings.

B. Capacity Savings

We next evaluate the benefits of our approach to operators
based on the capacity savings they would achieve. Specifi-
cally, consider a network operated under our algorithm for
dynamic sharing, where the capacity (i.e., total amount of
resource) of each base station is given by CGLLG, and let
Cbaseline be the base stations’ capacity required to achieve
the same network utility under two baselines: (a) static slic-
ing with SINR-based user association, and (b) static slicing
with enhanced user association (i.e., using our algorithm for
user association). These two baselines allow us to study
the potential gains earned due to a smarter user association
and the gains achieved by dynamic resource sharing. Fig. 3
illustrates the corresponding capacity savings, computed as
Δ = (Cbaseline − CGLLG)/CGLLG, for different numbers of
operators, |O| ∈ {2, . . . , 6}, and three different user densities,
|U|/|B| = 5 (low density), |U|/|B| = 10 (medium) and
|U|/|B| = 15 (high). The results show that substantial gains
can be realized, and that gains increase with the number
of operators and decrease with per-sector user load. The
latter is indeed rather intuitive, since under light user loads
static slicing performs poorly while MORA obtains substantial
benefits from statistical multiplexing.

In order to gain additional insight into the impact of the
various factors, Fig. 4 displays the influence of the share
of the operator (so) and the average load per base station
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Fig. 5. Improvement on the user throughput.

sector |U|/|B| in the percent of extra capacity required to
achieve the same utility (Δ) with the static slicing with
enhanced user association baseline. Results are also compared
with the analytical result of Section II-D.3, confirming that the
theoretical analysis result holds in real conditions.

Note that in the above experiments all operators always
have the same share so. To illustrate the behavior of MORA
under heterogeneous shares, we evaluated the performance of a
scenario with |U|/|B| = 5 and 2 operators under the following
share settings: (i) s1 = s2 = 1/2 and (ii) s1 = 2/3 and
s2 = 1/3. The gains obtained for operators 1 and 2 in the
former case are G1 = G2 = 11.1%, while in the latter case
they are G1 = 5.3% and G2 = 21.6%, respectively. Thus, this
result shows that overall performance remains similar under
heterogeneous shares, but gains are unevenly distributed.

C. User Performance

To illustrate the gains from a user perspective, we compare
the per-user throughput achieved by our approach against the
two baselines: static slicing with SINR-based user associ-
ation (‘Baseline 1’), and static slicing with enhanced user
association (‘Baseline 2’). The resulting box-and-whisker plots
are shown in Fig. 5 for different user densities and numbers of
operators. We observe that our approach provides substantial
gains both in terms of the median values as well as the various
percentiles. Furthermore, as expected, gains increase with the
number of operators but decrease with per-sector user load.

To complement the previous results, we compare the file
download times achieved by our approach against a base-
line scenario (static slicing with enhanced user association),
when base stations have the same capacity in both cases and
users are constantly downloading files. Let us define the file
download time gain as GD = (DSS −DGLLG)/DSS , where
DSS is the average file download time with the static slicing
approach and DGLLG with ours. The gains achieved are shown
in Fig. 6 as a function of the file download size, for different
user densities and numbers of operators. We observe the gains
are substantial, and fairly independent of the file size.

D. Computational Complexity
As mentioned in Section III-A, one of the key advantages of

the proposed approach over the state-of-the-art is its reduced

Fig. 6. Improvement on the file download time for different file sizes.

Fig. 7. Computational complexity of our approaches and state-of-the-art
algorithms.

computational complexity. To quantify this, we have measured
the time required to execute the following algorithms in a
dual-core 2.8GHz processor: (i) our algorithm for dynamic
sharing (‘GLLG’); (ii) the Distributed Greedy approach of
Section III-B.2, which has unconstrained overhead (‘DG’);
(iii) the centralized algorithm of [8] (‘Centralized’); and (iv)
the non-linear solver used by [22] (‘Non-linear Solver’). Fig. 7
shows the resulting execution times (in seconds) as a function
of the number of users for a fixed network size |B| = 57 and
|O| = 4 operators. The results confirm that the algorithms of
[8] and [22] are impractical, especially if we take into account
that they have to be triggered every time the channel quality
of a user changes. By contrast, the execution time of our
Distributed Greedy algorithm remains very low, and it remains
even lower for our GLLG approach (due to the constraint that
GLLG imposes on the number of handovers).

E. Impact of Non-Uniform Load Distributions
All the results shown so far have been based on the

RWP mobility model, which is known to distribute load
uniformly across space. To understand the impact of non-
uniform load distributions, we have evaluated the capacity
savings over a baseline (static slicing with enhanced user
association) under the SLAW model [35], which is a non-
uniform human walk mobility model. To show different
levels of non-uniformity, we have parameterized the SLAW
model with five configurations of increasing non-uniformity,
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Fig. 8. Capacity savings for different levels of non-uniformity under the
SLAW mobility model.

Fig. 9. Capacity savings for different levels of non-uniformity when operators
follow different patterns.

from C1 to C5, whose parameters {waypoints, clustering
range, alpha distance, inverse self-similarity} are set as fol-
lows: C1 = {100, 20, 5, 0.95}, C2 = {85, 40, 4.5, 0.85},
C3 = {75, 60, 4, 0.75}, C4 = {65, 80, 3.5, 0.65} and C5 =
{50, 100, 3, 0.55}. The results, given in Fig. 8, show that
(as expected) capacity savings decrease if loads are non-
uniform, since when users concentrate around some areas
the expected number of users per sector in those areas
increases and thus multiplexing gains are reduced. However,
the decrease is very gradual, which shows that non-uniformity
has a limited impact.

The above experiment assumes that all operators follow the
same mobility pattern. Alternatively, we may assume different
patterns for different operators, which may be the case for
instance if we consider services of different nature. To evaluate
the performance under such case, we have run additional
simulations in which each operator follows a different instance
of the SLAW model, with different waypoints. The results,
given in Figs. 9, show that in this case gains increase (rather
than decrease) with non-uniformity, as each operator may have
its users concentrated in different areas, thereby maximizing
the benefit from resource sharing.

V. CONCLUSIONS

In this paper we have addressed the problem of multi-
tenant resource slicing. While there has been substantial work
towards addressing this problem, most has focused on architec-
tural issues, leaving algorithmic aspects open to consideration.

The design of algorithms for dynamic resource sharing across
slices is challenging as it involves user association decisions
(a difficult problem in itself) as well as multi-operator sharing
policies. Our main contribution has been to show that, despite
its complexity, it is possible to design practical solutions that
scale to large networks and can track network load dynamics.
Indeed, our analytical results provide strong evidence that the
resulting allocations are near-optimal, and our simulations con-
firm robust benefits to operators (in terms of capacity savings)
as well as to users (in terms of improved performance).

APPENDIX

Proof of Theorem 1

For a given user association x the utility of operator o under
SS is maximized when the resource blocks of each operator at
each base station are equally distributed among the operator’s
users. This yields

Uo(x, fS(x))

=
∑

b∈B

∑

u∈Uo

1
|Uo|xub log

(
1∑

b∈B
∑

v∈Uo
xvb

so∑
o′∈O so′

cub

)

=
1
so

∑

b∈B

∑

u∈Uo

wuxub log

(
1∑

b∈B
∑

v∈Uo
xvb

so∑
o′∈O so′

cub

)

where the weights are wu = so

|Uo| , u ∈ Uo.
If we multiply the numerator and denominator inside the

log() by wu, and take into account that wu = wv for u, v ∈ Uo

and
∑

o′∈O so′ = 1, the above can be rewritten as

Uo(x, fS(x)) =
1
so

∑

b∈B

∑

u∈Uo

wuxub log(wucub)

− 1
so

∑

b∈B

∑

u∈Uo

wuxub log
(∑

b∈B
∑

v∈Uo
wvxvb

so

)
.

The utility of operator o with MORA allocation is given by

Uo(x, fM (x)) =
1
so

∑

b∈B

∑

u∈Uo

wuxub log
(

wucub∑
v∈U wvxvb

)
,

which can be rewritten as

Uo(x, fM (x)) =
1
so

∑

b∈B

∑

u∈Uo

wuxub log(wucub)

− 1
so

∑

b∈B

∑

u∈Uo

wuxub log

(
∑

v∈U
wvxvb

)
.

From the above, if we can show that

∑

b∈B

∑

u∈Uo

wuxub log
(∑

b∈B
∑

v∈Uo
wvxvb

so

)

≥
∑

b∈B

∑

u∈Uo

wuxub log

(
∑

v∈U
wvxvb

)
, (9)

the theorem is proved.
To show the above, we consider the maximization of

function
∑

b∈B yb log(xb) over xb subject to
∑

b∈B xb = 1.
By applying Lagrange multipliers, it can be easily seen that
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this function is maximized for xb = yb/
∑

b′∈B yb′ . Since
both the left and right-hand sides of (9) conform to this
constrained optimization problem, and the left-hand side of (9)
corresponds to its optimal solution, the inequality of (9)
follows. �

Proof of Theorem 2

The reduction is via the 3-dimensional matching prob-
lem which is known to be NP-complete. Recall that the
3-dimensional matching problem is stated as follows. Let us
consider disjoint sets C = {c1, . . . , cn}, D = {d1, . . . , dn}
and E = {e1, . . . , en}, and a family T = {T1, . . . , Tm}
of triples with |Ti ∩ C| = |Ti ∩ D| = |Ti ∩ E| = 1 for
i = 1, . . . , m, with m ≥ n. The question is whether T contains
a matching, i.e., a subfamily T ′ for which |T ′| = n and
∪Ti∈T ′Ti = C ∪D ∪ E.

Our reduction is as follows. We call the triples that contain
cj triples of type j. Let tj be the number of triples of type j for
j = 1, . . . , n. Base station i corresponds to the triples Ti for
i = 1, . . . , m. We create two types of users, element users and
dummy users. We have 2n element users, u ∈ {1, . . . , 2n},
corresponding to the 2n elements of D ∪E. There are tj − 1
dummy users of type j for j = 1, . . . , n. Note that the total
number of dummy users is m− n, u ∈ {2n + 1, . . . , m + n}.
Element users can connect to the base stations that correspond
to a triple that contains this element, with a transmission rate
of R. Dummy users of type j can connect (also with a trans-
mission of R) to the base stations that correspond to triples of
type j. Element users have a weight wu = 1/(2m) and dummy
users have a weight wu = 1/m. We claim that a matching
exists if and only if the network utility with the MORA
criterion is W = (n/m) log(R/2) + ((m− n)/m) log(R).

The value of the objective function is bounded above by the
following optimization problem:

max
f

2n∑

u=1

1
2m

log(fuR) +
m+n∑

u=2n+1

1
m

log(fuR),

subject to
∑2n

u=1 fu +
∑m+n

u=2n+1 fu = m, where fu is the
fraction of resources assigned to user u (the first term of the
summation corresponds to the element users and the second
term to the dummy users).

By applying the Lagrange multiplier method, it can be easily
seen that the above optimization problem is solved when fu =
1/2 for the element users and fu = 1 for the dummy users.
This gives an upper bound on W equal to (n/m) log(R/2)+
((m−n)/m) log(R). This corresponds to a global maximum,
and thus any other set of fu values yields a smaller W .

Assume that there is a matching. For each Ti = (cj , dk, el)
in the matching, we associate element users dk and el with
base station i. For each j, this leaves tj − 1 idle base stations
corresponding to tripes of type j that are not in the matching.
We associate the tj −1 dummy users of type j to these tj −1
base stations. This assignment has an objective function of
W = (n/m) log(R/2)+((m−n)/m) log(R), which is equal
to the upper bound given above. In case there is no matching,
it is not possible to have the 2n element users sharing n base
stations with fu = 1/2 each, and therefore we cannot achieve

the distribution of fu values that maximizes W . According
to the above result, this imples that we obtain a smaller W
value. Therefore, a matching exists if and only if MORA gives
W = (n/m) log(R/2) + ((m − n)/m) log(R), which proves
the theorem. �

Proof of Theorem 3
We prove the theorem by means of the following exam-

ple. Let us consider a scenario with |B| base stations in
which |B|2 users join the network. All users have the same
weight and can associate with any of the |B| base stations
with cub = 1. Independently of the criterion followed to
associate new users, after all users have joined there must
be a base station with at least |B| users. Now, suppose
all users but these |B| leave the network. For this sce-
nario, the network utility provided by the online algorithm
is W (x′, f ′) =

∑|U|
i=1

1
|B| log( 1

|B| ) = − log(|B|). The opti-
mal solution is that each user associates with a different
base station, which yields W (xMORA, fMORA) = log(1).
Thus, we have W (xMORA, fMORA)−W (x′, f ′) = log(1) +
log(|B|), which grows to ∞ as |B| → ∞.

Proof of Theorem 4

Since in an equilibrium of the Distributed Greedy algorithm,
each user is associated with the base station that maximizes ru,
the following holds for all u:

∑

b∈B
x′

ubwu log
(

wucub∑
v∈U x′

vbwv

)

≥
∑

b∈B
x∗

ubwu log
(

wucub∑
v∈U x′

vbwv + wu

)
, (10)

where the base station for which x′
ub = 1 is the one with

which user u is associated under Distributed Greedy, and the
base station for which x∗

ub = 1 is the one with which it is
associated under the optimal allocation (i.e., x∗ = xMORA).

At the base station for which x∗
ub = 1 we have∑

v∈U x∗
vbwv ≥ wu, so the following also holds:

∑

b∈B
x′

ubwu log
(

wucub∑
v∈U x′

vbwv

)

≥
∑

b∈B
x∗

ubwu log
(

wucub∑
v∈U x′

vbwv +
∑

v∈U x∗
vbwv

)
.

Let us define the load at a base station as the sum of weights
of the users at the base station, lb =

∑
v∈U wvxvb. Then,

the above can be rewritten as
∑

b∈B
x′

ubwu log
(

wucub

l′b

)
≥

∑

b∈B
x∗

ubwu log
(

wucub

l′b + l∗b

)
,

where l′b and l∗b are the load at base station b with the Distrib-
uted Greedy algorithm and the optimal allocation, respectively.

From the above it follows that

wu log(ru (x∗, f∗))− wu log(ru(x′, f ′))

≤
∑

b∈B
x∗

ubwu log
(

wucub

l∗b

)
−

∑

b∈B
x∗

ubwu log
(

wucub

l′b + l∗b

)
,
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where f∗ = fM (f∗). The above can be expressed as

wu log(ru(x∗, f∗))− wu log(ru (x′, f ′))

≤ −
∑

b∈B
x∗

ubwu log
(

l∗b
l′b + l∗b

)
.

Summing the above over all users yields

W (x∗, f∗)−W (x′, f ′) ≤ −
∑

u∈U

∑

b∈B
x∗

ubwu log
(

l∗b
l′b + l∗b

)
.

From the above,

W (x∗, f∗)−W (x′, f ′)

≤ −
∑

b∈B
log

(
l∗b

l′b + l∗b

)�
u∈U x∗

ubwu

= −
∑

b∈B

∑

u∈U
x′

ubwu log
(

l∗b/l′b
1 + l∗b/l′b

)�
v∈U x∗

vbwv
�

v∈U x′
vb

wv

= −
∑

b∈B

∑

u∈U
x′

ubwu log
(

l∗b/l′b
1 + l∗b/l′b

)l∗b /l′b
.

Given that (x/(1 + x))x > 1/e for x ≥ 0, we obtain the
following bound:

W (x∗, f∗)−W (x′, f ′) ≤
∑

b∈B

∑

u∈U
x′

ubwu log(e) = log(e).

Since x∗ = xMORA and f∗ = fMORA, this proves the first
part of the theorem.

To find an instance for which the network utility difference
between MORA and Distributed Greedy Algorithm is log(2),
consider the following scenario. Consider a network with
2 base stations B = {1, 2} and 2 operators O = {1, 2} with
equal shares, s1 = s2 = 0.5. Each operator has one user:
User 1 belongs to Operator 1 and User 2 to Operator 2. Let the
achievable rates be c1,1 = c2,2 = R and c1,2 = c2,1 = R/2,
i.e, user 1 sees a higher rate with base station 1 and user 2
with base station 2. Clearly, the optimal MORA solution is
to associate user 1 with base station 1 and User 2 with base
station 2, i.e., xM

1,1 = 1 and xM
2,2 = 1,. This leads to a network

utility W (xM, fM) = 0.5 log(c1,1) + 0.5 log(c2,2) = log(R).
Distributed Greedy Algorithm only reassociates a user if

this increases her rate. Let user 1 be associated with base
station 2 and user 2 with base station 2. Since none of
the two users can increase her rate by reassociating, they
will not reassociate with the Distributed Greedy Algorithm,
and hence this algorithm will result in a user association
decision x′ such that x′

1,2 = 1 and x′
2,1 = 1. This yields

a network utility W (x′, f ′) = 0.5 log(c1,2) + 0.5 log(c2,1) =
log(R/2) = log(R)− log(2) = W (xM, fM)− log(2), which
proves the second part of the theorem. �

Proof of Theorem 5

The proof of the theorem is based on the following steps:
Step 1: we first show that while there is some user for which

rnew
u ≥ e · rold

u , W (xi, f i) increases at each iteration until we
converge to a region that satisfies rnew

u ≤ e · rold
u for all u.

Step 2: we then show that if rnew
u ≤ e · rold

u ∀u, it follows
that W (xi, f i) ≥W (xMORA,xMORA)− 2 log(e).

Step 3: we further prove that if a subsequent iteration i
yields rnew

u ≥ e · rold
u for some user u, then it must be that

W (xi, f i) ≥W (xMORA,xMORA)− (2 + maxu wu) log(e).
Step 4: finally, we prove that after an iteration such as the

above, in the subsequent iterations W (xi, f i) increases, until
we converge once again to a region where rnew

u ≤ e · rold
u ∀u.

We next prove each of the above steps.
Step 1: While there is some user for which rnew

u ≥ e · rold
u ,

W (xi, f i) increases at each iteration until we converge to a
region that satisfies rnew

u ≤ e · rold
u for all u.

To prove the above, we consider a variation of the Greedy
Largest Gain in which a user only moves to a new location
if rnew

u ≥ e · rold
u , and show that this algorithm is guaranteed

to converge. To show this, we prove that the network utility
function W (x, f) is a generalized ordinal potential for the
algorithm variation. Consider the ith iteration in the algorithm
corresponding to a reassociation of user u, and let (xi−1, f i−1)
denote the configuration before this iteration and (xi, f i)
the configuration after the iteration. By construction of the
algorithm, the following is satisfied:

ru(xi, f i) ≥ e · ru(xi−1, f i−1).

Let b be the new base station user u associates with, and a
her previous base station. Then,

W (xi, f i)−W (xi−1, f i−1)

=
∑

v∈U
xi

vawv log

(∑
y∈U xi

yawy + wu∑
y∈U xi

yawy

)

+
∑

v∈U\{u}
xi

vbwv log

( ∑
y∈U\{u} xi

ybwy∑
y∈U\{u} xi

ybwy + wu

)

+wu log(ru(xi, f i))− wu log (ru(xi−1, f i−1))

= lia log
(

lia + wu

lia

)
+ li−1

b log

(
li−1
b

li−1
b + wu

)

+ wu log(ru(xi, f i))− wu log (ru(xi−1, f i−1)).

Since lia log
(

lia+wu

lia

)
≥ 0, we have

W (xi, f i)−W (xi−1, f i−1)

≥ wu log

(
li−1
b /wu

1 + li−1
b /wu

) l
i−1
b
wu

+ wu log
(

ru(xi, f i)
ru(xi−1, f i−1)

)

> wu log(1/e) + wu log(e) = 0, (11)

so that W (x, f) is a generalized ordinal potential. This implies
that the potential game corresponding to the algorithm varia-
tion has the finite improvement property; therefore, the algo-
rithm variation converges in a finite number of iterations to
a solution that satisfies rnew

u ≤ e · rold
u ∀u. Also, from (11)

it follows that W (xi, f i) > W (xi−1, f i−1), i.e., the network
utility increases at each iteration.

As the Greedy Largest Gain algorithm always selects the
user with the largest rnew

u /rold
u , it will select a user for which

rnew
u ≥ e · rold

u , as long as there is one that satisfies this con-
dition, and hence will follow the same steps as the algorithm
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variation that we have considered above. This implies that
there will be some iteration i in which the Greedy Largest
Gain algorithm will reach a solution (xi, f i) that satisfies
rnew
u ≤ e · rold

u ∀u and, until reaching this solution, W (xi, f i)
will increase at each iteration.

Step 2: If rnew
u ≤ e · rold

u ∀u, it follows that W (xi, f i) ≥
W (xMORA,xMORA)− 2 log(e).

Let (xi, f i) be the solution at the ith iteration which satisfies
rnew
u ≤ e · rold

u ∀u. Equation (10) for this solution can be
rewritten as
∑

b∈B
xi

ubwu log
(

wucub∑
v∈U xi

vbwv

)

≥
∑

b∈B
xMORA

ub wu log
(

wucub∑
v∈U xi

vbwv + wu

)
− wu log(e).

Starting from the above equation and applying the same
reasoning as in the proof of Theorem 4 yields W (xi, f i) ≥
W (xMORA, fMORA)− 2 log(e).

Step 3: If a subsequent iteration i yields rnew
u ≥ e ·

rold
u for some user u, then it must be that W (xi, f i) ≥

W (xMORA,xMORA)− (2 + maxu wu) log(e).
Let us that for some iteration i of the algorithm such that

it holds rnew
u ≤ e · rold

u ∀u for the solution before this
iteration, and rnew

u ≤ e · rold
u , for some u, for the solution

after the iteration. Let (xi−1, f i−1) be the solution before
iteration i and (xi, f i) the solution after the iteration. As we
have seen above, for the former it holds W (xi−1, f i−1) ≥
W (xMORA, fMORA) − 2 log(e). Let us consider that at iter-
ation i user u moves to base station b. Then,

W (xi, f i)−W (xi−1, f i−1)

≥
∑

v∈U
xi−1

vb wv log

( ∑
t∈U xi−1

tb wt∑
t∈U xi−1

tb wt + wu

)

= wu log

( ∑
t∈U xi−1

tb wt/wu

1 +
∑

t∈U xi−1
tb wt/wu

)�
t∈U x

i−1
tb

wt
wu

≥ −wulog(e) ≥ −max
u

wulog(e).

Thus,

W (xi, f i) ≥W (xMORA, fMORA)− (2 + max
u

wu) log(e).

Step 4: After an iteration such as the above, in the subse-
quent iterations W (xi, f i) increases, until we converge once
again to a region where rnew

u ≤ e · rold
u ∀u.

Let us consider that before iteration i there is some u for
which rnew

u ≥ e · rold
u . Then,

W (xi, f i)−W (xi−1, f i−1)
≥ wu log(rnew)− wu log(rold)

+
∑

v∈U
xi−1

vb wv log

( ∑
t∈U xi−1

tb wt∑
t∈U xi−1

tb wt + wu

)

> wu log(e)− wu log(e) ≥ 0.

Therefore, if at some iteration we get rnew
u ≥ e · rold

u

for some u, then for that iteration it will hold W (xi, f i) ≥
W (xMORA, fMORA)− (2 + maxu wu) log(e), and from this

point on W (xi, f i) is going to increase until we reach
W (xi, f i) ≥W (xMORA, fMORA)− 2 log(e) again. �
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