
JCCM?: Flexible Certificates for smartcards
with Java Card

Ma
¯ Celeste Campo, Andrés Maŕın, Arturo Garćıa, Ignacio Dı́az,

Peter T. Breuer, Carlos Delgado, Carlos Garćıa

Universidad Carlos III de Madrid
Avd. Universidad 30 28911, Leganés

eticket@it.uc3m.es

Abstract. Smartcards and PKCS #11 are an appealing solution for
combined storage and certificate management at the enduser level. Many
applications use PKCS #11 primitives for security reasons: a popular
browser, like Netscape Navigator contain a PKCS #11 cryptographic
module that plays a critical role in secure web surfing and e-mail signing
and encryption. Nevertheless, most market-ready solutions ([SMARTSIGN],
[GPKPKCS#11], [SLBCBPKCS#11]) use non-programmable cards or
else do not exploit the card’s programmable capabilities. Instead they
utilize cryptographic functions built into the card. This results in appli-
cations having the card manufacturer’s semantics instead of PKCS #11
semantics.
In this article we present our work: Java Card Certificate Management
(JCCM). JCCM moves PKCS #11 middleware into the card it-
self. This results in greater flexibility and less implementation de-
pendence for applications. We have developed JCCM for two cards: the
GemXpresso RAD 211is and the Cyberflex for Linux Starter’s
Kit 2.1. We have also developed the corresponding dynamic library for
Netscape enabling our endusers to use JCCM in their daily.

1 Introduction

The number of users with Internet access keeps growing, and so do their security
needs. The increasing number of sites offering sensitive information (like bank
accounts) via HTTPS [HTTPS] protocol is an example. International e-mail,
the “intelligence is in the net”-approach in network computing and e-business
demand stronger security. Browsers do implement secure web surfing and digital
signed and encrypted e-mail using digital certificates ([X.509]), but they lack
corresponding secure certificate storage mechanisms.

Smartcards are tamper-proof devices, where tamper-resistance is a term
with practical connotation that takes into account the cost/benefit relation of
the attacks. Given unlimited funds we could break the security of a card. In
[USENIX 99] some sophisticated chemical and physical attacks are described,
? This work has been partially supported by the project E-TICKET CYCYT

No2FD1997-1269-C02-01(TEL)



2 C. Campo, A. Maŕın, A. Garćıa, I. Dı́az, C. Delgado, C. Garćıa

together with effective and low-cost countermeasures. The article concludes that
they see no really effective short-term protection against carefully planned in-
vasive tampering (involving focused ion-beam tools). “Zeroization” mechanisms
for erasing secrets when tampering is detected require a continuous power sup-
ply that the credit-card form factor does not allow. The attacker can thus safely
disable the zeroization mechanism before powering up the processor.

2 The PKCS #11 Standard

RSA Laboratories has developed, in cooperation with representatives of indus-
try, academia and government, a family of standards called Public-Key Cryp-
tography Standards, or PKCS for short. These standards cover RSA encryption,
Diffie-Hellman key exchange, password-based encryption, an extended-certificate
syntax, cryptographic message syntax, private key syntax, and certification re-
quest syntax, as well as selected attributes.

Table 1. A significative set of Cryptoki functions

General purpose Slot and token Cryptographic functions
funtions management functions C_EncryptInit

C_Initialize C_GetSlotList C_Encrypt

C_Finalize C_GetSlotInfo C_DecryptInit

C_GetInfo C_GetTokenInfo C_Decrypt

Objects management C_GetMechanismList C_SignInit

functions C_SetPIN C_Sign

C_CreateObject Session management C_VerifyInit

C_CopyObject functions C_Verify

C_DestroyObject C_OpenSession C_DigestInit

C_GetAttributeValue C_CloseSession C_Digest

C_SetAttributeValue C_CloseAllSessions C_GenerateKey

C_FindObjectsInit C_GetSessionInfo C_GenerateKeyPair

C_FindObjects C_Login C_WrapKey

C_FindObjectsFinal C_Logout C_UnwrapKey

The PKCS #11 specifies an application programming interface (API) for
cryptographic services, called Cryptoki, short for “cryptographic token inter-
face”. Cryptoki isolates an application from details of the cryptographic device,
which is called “token’. Portable cryptographic tokens, such as smartcards, are
inserted in “slots”, which correspond to a physical reader or other device in-
terface. A token stores objects and can perform cryptographic functions on it.
Cryptoki defines three classes of object: data, certificates, and keys. A data
object is defined by an application. A certificate object stores a certificate.
A key object stores a cryptographic key and it further specialices in concrete
types for the various cryptographic algorithms, such as RSA public and private



JCCM: Flexible Certificates for smartcards with Java Card 3

key. Cryptographic operations are performed in the context of sessions, which
represent and established communication path with a token present in a slot.

The Cryptoki API consists of a number of functions, encompassing slot and
token management and object management, as well as cryptographic functions.
Table 1 shows a significative set of these functions.

3 Netscape and PKCS #11

Netscape incorporates a security architecture that allows for web surfing and
signed and encrypted e-mail. This security architecture, well-known as the “Netscape
Security Library” (NSL), makes use of PKCS #11 cryptographic modules in
order to offer the appropriate high level functionality. Netscape contains an in-
ternal module PKCS #11 that constitutes a fairly complete implementation of
the standard: it includes mechanisms based on RSA as well as some symmetrical
key mechanisms. The internal module offers a logical vision of the computer as
a cryptographic device: it uses the file system for persistent storage of Cryp-
toki objects and the CPU for cryptographic processing. Thanks to this module,
Netscape is able to offer the capabilities mentioned above, but it has a prob-
lem: the use of the file system to store certificates and keys breaks the premise
of safe storage of sensitive data. The solution adopted by Netscape is pass-
word protecting data stored on disk and to allow the incorporation of external
PKCS #11 modules, which then serve as specialized interfaces to cryptographic
hardware, as in the case of our JCCM module. Another peculiarity of the NSL
is that it allows the simultaneous presence of several PKCS #11 modules: our
module can coexist with the internal module, and therefore it is not necessary
to implement the mechanisms already supported; mechanisms oriented towards
data encryption are not implemented (symmetric key) because the data transfer
rate between the computer and the card makes it unsuitable for the encrypting
arbitrary volumes of data.

A trace of all the calls to our library needed to sign a mail from Netscape is
shown below. The trace has been simplified and includes only the exit trace line
for each Cryptoki functions called.

– Lines 1 to 10 : Library boot and initial data exchange. Lines 1 to 5, they are
called when starting Netscape before we initiate any operation. Line 6, the
token was present in the reader. Line 7, that obtains data about the token
and its capabilities (lines 8 to 9). Finally, line 10, a session begins with the
token.
1 Mar 2 12:06:20: C_GetFunctionList Returns (CKR_OK) 0x0
2 Mar 2 12:06:20: C_Initialize Returns (CKR_OK) 0x0
3 Mar 2 12:06:20: C_GetInfo Returns (CKR_OK) 0x0
4 Mar 2 12:06:20: C_GetSlotList Returns (CKR_OK) 0x0
5 Mar 2 12:06:20: C_GetSlotList Returns (CKR_OK) 0x0
6 Mar 2 12:06:21: C_GetSlotInfo Returns (CKR_OK) 0x0
7 Mar 2 12:06:21: C_GetTokenInfo Returns (CKR_OK) 0x0
8 Mar 2 12:06:21: C_GetMechanismList Returns (CKR_OK) 0x0
9 Mar 2 12:06:21: C_GetMechanismList Returns (CKR_OK) 0x0

10 Mar 2 12:06:21: C_OpenSession Returns (CKR_OK) 0x0



4 C. Campo, A. Maŕın, A. Garćıa, I. Dı́az, C. Delgado, C. Garćıa

– Lines 11 to 14 : 32 seconds are spent from line 10 to 11; they correspond to
the time spent in writing the e-mail. These lines correspond to the request for
the PIN and the corresponding call to C_Login(). The elapsed time between
lines 13 and 14 correspond to the manual introduction of the PIN.

11 Mar 2 12:06:53: C_GetSlotInfo Returns (CKR_OK) 0x0
12 Mar 2 12:06:53: C_GetSessionInfo Returns (CKR_OK) 0x0
13 Mar 2 12:06:53: C_GetSessionInfo Returns (CKR_OK) 0x0
14 Mar 2 12:06:57: C_Login Returns (CKR_OK) 0x0

– Lines 15 to 66 : The rest of the trace corresponds to the calls made by
Netscape in order to generate a digital signature for a e-mail. The two last
lines correspond to the signature. The time used for this operation (lines 65
to 66) is only 2s, whereas the total time for the signature (lines 15 to 66) is
26s. Those extra 24s are used in certificate searches and data transfer from
the token.

15 Mar 2 12:06:59: C_FindObjectsInit Returns (CKR_OK) 0x0

16 Mar 2 12:06:59: C_FindObjects Returns (CKR_OK) 0x0

17 Mar 2 12:06:59: C_FindObjectsFinal Returns (CKR_OK) 0x0

18 Mar 2 12:07:00: C_FindObjectsInit Returns (CKR_OK) 0x0

19 Mar 2 12:07:00: C_FindObjects Returns (CKR_OK) 0x0

20 Mar 2 12:07:00: C_FindObjectsFinal Returns (CKR_OK) 0x0

21 Mar 2 12:07:07: C_GetAttributeValue Returns (CKR_OK) 0x0

22 Mar 2 12:07:07: C_GetAttributeValue Returns (CKR_OK) 0x0

23 Mar 2 12:07:08: C_GetSessionInfo Returns (CKR_OK) 0x0

24 Mar 2 12:07:08: C_GetAttributeValue Returns (CKR_OK) 0x0

25 Mar 2 12:07:08: C_GetAttributeValue Returns (CKR_OK) 0x0

26 Mar 2 12:07:12: C_FindObjectsInit Returns (CKR_OK) 0x0

26 Mar 2 12:07:12: C_FindObjects Returns (CKR_OK) 0x0

27 Mar 2 12:07:12: C_FindObjectsFinal Returns (CKR_OK) 0x0

28 Mar 2 12:07:12: C_GetMechanismList Returns (CKR_OK) 0x0

29 Mar 2 12:07:12: C_GetMechanismList Returns (CKR_OK) 0x0

30 Mar 2 12:07:16: C_FindObjectsInit Returns (CKR_OK) 0x0

31 Mar 2 12:07:16: C_FindObjects Returns (CKR_OK) 0x0

32 Mar 2 12:07:16: C_FindObjectsFinal Returns (CKR_OK) 0x0

33 Mar 2 12:07:17: C_GetAttributeValue Returns (CKR_OK) 0x0

34 Mar 2 12:07:17: C_GetAttributeValue Returns (CKR_OK) 0x0

35 Mar 2 12:07:17: C_GetSessionInfo Returns (CKR_OK) 0x0

36 Mar 2 12:07:17: C_GetAttributeValue Returns (CKR_OK) 0x0

37 Mar 2 12:07:17: C_GetAttributeValue Returns (CKR_OK) 0x0

38 Mar 2 12:07:18: C_FindObjectsInit Returns (CKR_OK) 0x0

39 Mar 2 12:07:18: C_FindObjects Returns (CKR_OK) 0x0

40 Mar 2 12:07:18: C_FindObjectsFinal Returns (CKR_OK) 0x0

41 Mar 2 12:07:18: C_GetSlotInfo Returns (CKR_OK) 0x0

42 Mar 2 12:07:18: C_GetSessionInfo Returns (CKR_OK) 0x0

43 Mar 2 12:07:18: C_GetSessionInfo Returns (CKR_OK) 0x0

44 Mar 2 12:07:18: C_FindObjectsInit Returns (CKR_OK) 0x0

45 Mar 2 12:07:18: C_FindObjects Returns (CKR_OK) 0x0

46 Mar 2 12:07:18: C_FindObjectsFinal Returns (CKR_OK) 0x0

47 Mar 2 12:07:18: C_GetAttributeValue Returns (CKR_OK) 0x0

48 Mar 2 12:07:19: C_GetAttributeValue Returns (CKR_OK) 0x0

49 Mar 2 12:07:19: C_GetSessionInfo Returns (CKR_OK) 0x0

50 Mar 2 12:07:19: C_GetAttributeValue Returns (CKR_OK) 0x0

51 Mar 2 12:07:19: C_GetAttributeValue Returns (CKR_OK) 0x0

52 Mar 2 12:07:19: C_FindObjectsInit Returns (CKR_OK) 0x0

53 Mar 2 12:07:19: C_FindObjects Returns (CKR_OK) 0x0



JCCM: Flexible Certificates for smartcards with Java Card 5

54 Mar 2 12:07:19: C_FindObjectsFinal Returns (CKR_OK) 0x0

55 Mar 2 12:07:19: C_GetSessionInfo Returns (CKR_OK) 0x0

56 Mar 2 12:07:20: C_GetAttributeValue Returns (CKR_OK) 0x0

57 Mar 2 12:07:20: C_GetAttributeValue Returns (CKR_OK) 0x0

58 Mar 2 12:07:20: C_FindObjectsInit Returns (CKR_OK) 0x0

59 Mar 2 12:07:20: C_FindObjects Returns (CKR_OK) 0x0

60 Mar 2 12:07:20: C_FindObjectsFinal Returns (CKR_OK) 0x0

61 Mar 2 12:07:22: C_GetAttributeValue Returns (CKR_OK) 0x0

62 Mar 2 12:07:23: C_GetAttributeValue Returns (CKR_OK) 0x0

63 Mar 2 12:07:23: C_GetAttributeValue Returns (CKR_OK) 0x0

64 Mar 2 12:07:23: C_GetSessionInfo Returns (CKR_OK) 0x0

65 Mar 2 12:07:23: C_SignInit Returns (CKR_OK) 0x0

66 Mar 2 12:07:25: C_Sign Returns (CKR_OK) 0x0

It is necessary to point out that this penalty is only incurread the first time
that the certificate and the associated private key is used; the generation of a
digital signature for the next and subsequent messages takes only 6s.

4 Smartcards and Java Card

Smartcards, besides being practical tamper-proof devices have ever-increasing
computation and storage capabilities. They can be integrated in a natural way
with the users’ applications, for instance a favourite browser, through the use of
[PKCS#11].

Smartcards are present in a number of solutions on the market. Most of these
solutions use the standard [PKCS#11] for certificate management, i.e., they
provide the users with dynamic libraries that can be accessed by applications in
order to handle security. The bad news is that these solutions ([SMARTSIGN],
[GPKPKCS#11], [SLBCBPKCS#11]) tend to offer the applications a subset of
PKCS #11 semantics, reduced to that provided by the smartcard manufacturer.

Java Card is a reduced version of Java. In particular the virtual machine is
very restricted. There is no garbage collector, and every object is instantiated
in persistent memory until the end of the life-cycle of the “cardlet” (Java ap-
plication running in a card). With respect to language, Java Card restricts the
available packages and datatypes. The programmer has to deal with a simplified
Object class, no String class, and only 16 bit integers.

We have implemented our system in Java Card because this technology has
several unique benefits:

– Platform independence: this allows us to run our cardlet Cryptoki on differ-
ent vendors’ cards.

– Uses the Java language: which enables high programmer productivity and
all the advantages of object-oriented programming.

– Multi-application capable: multiple applications can run on a single card.
– Compatible with Existing Smart Card Standards, such as ISO7816.



6 C. Campo, A. Maŕın, A. Garćıa, I. Dı́az, C. Delgado, C. Garćıa

5 JCCM: Java Card Certificate Management

We have designed and implemented a system named Java Card Certificate Man-
agement (JCCM). JCCM moves part of PKCS #11 code inside a Java Card. The
JCCM cardlet is responsible for object management in conformance to Cryp-
toki, implementing the corresponding Cryptoki functions. This is one of the key
issues in the JCCM design: the cardlet handles management layer in Cryptoki
objects, implementing the full management functionality defined in Cryptoki,
that is: creation, lookup, copy and deletion of objects, and cryptographic func-
tions. The set of cardlet Cryptoki APDU’s (Application Data Unit) is in Table
2.

Table 2. Set of cardlet Cryptoki APDU’s

General purpose Session management

Ident DownLoadObj Init
Object management DownLoadObj Attr
Login DownLoadObj Create
Logout DownLoadObj Copy
Cryptographic DownLoadObj SetAttr
Sign DownLoadObj Find

GetAttr
DeleteObj

Another key issue in our design is the dynamic memory management in
smartcards. EEPROM memory is the place where persistent objects live. It is a
very limited resource and must be handled carefully. Cryptoki object manage-
ment functions need to allocate and free memory, and we have implemented a
simple memory management layer for this reason. This layer defines a spool of
memory blocks that are to be marked used or free. The first two bytes of a mem-
ory block contain a free/used bit and a 15-bit block length (215 Bytes=32KB),
sufficient to include full available EEPROM in the current Java Cards. These im-
plementation details are hidden from the calling functions. Memory management
also merges small blocks into larger ones to avoid fragmentation.

PKCS #11 represents objects as arrays of attributes. Attributes are fixed-size
structures formed by three fields: attribute type, value pointer and the length of
the value. A JCCM cardlet uses a similar scheme. An object structure is formed
by three fields:

– The “next object” pointer, 2 bytes. All the objects that are created in the
card are maintained in a linked list.

– Number of attributes of the object, 1 byte. This field can be deduced based
on the size of the block in dynamic memory, but it has been chosen to
include it: typically the card will store solely two objects, a certificate and a
associated private key.



JCCM: Flexible Certificates for smartcards with Java Card 7

– A variable number of structures of attributes, so many as number of at-
tributes has the object.

An attribute object has the following fields:

– Type of attribute, 4 bytes. It is the binary value defined in the standard.
– An attribute pointer, 2 bytes. The value is stored in its own block of dynamic

memory. The length of this field is obtained from the head of the block of
dynamic memory in which it is stored.

PTR OBJ

NUM ATTR

ATRIBUTO n

ATRIBUTO 1
TIPO

PTR VALORVALOR

Fig. 1. Objects structure

A Java class encapsulates each of these structures; the class ObjPatr for the
objects and the class AttrPatr for the attributes. These classes cannot be instan-
tiated due to the lack of garbage collection mentioned in the Section 4, they have
only static methods and members. They are used to map the array of dynamic
memory to the corresponding object structure: they also have methods to set/get
the value of each field and to release the associated dynamic memory. These two
classes extend the class Patr, that supplies basic access to fields of type multi-
byte. Before using one of these classes to access a structure stored in dynamic
memory it is necessary to establish the address of the structure by means of a
call of setAddr(short addr), which sets the reference address used by all the
methods that access the members of the structure (get...(),set...()).

6 JCCM Implementation

We have developed the corresponding dynamic library for Netscape that enables
our final users to use JCCM in their security operations. The implementation
has been done in Linux, using PC/SC Muscle and Netscape. We are porting now
to Netscape for Microsoft Windows.

To demonstrate device independence, we have ported JCCM to cards from
two different manufacturers: Gemplus GemXpresso RAD 211is and Schlum-
berger Cyberflex for Linux Starter’s Kit 2.1. The differences we found are
twofold: the cryptographic capabilities are not standard in Java Card 2.0 (there
were no Java Card 2.1 kits on the market when we begun to develop JCCM),



8 C. Campo, A. Maŕın, A. Garćıa, I. Dı́az, C. Delgado, C. Garćıa

so we are forced to use proprietary hooks, and the way to load software differs
between the cards.

– GemXpresso RAD 211is [GemXpresso RAD 211 UG] uses Visa Open
Platform for cardlet uploading. DES and 3DES are available, but not RSA.
We need to transfer the private key to the computer to perform digital
signing with RSA.

– Cyberflex for Linux Starter’s Kit 2.1, [Cyberflex SDK] uses a propri-
etary application (based on TCL/TK) for software loading. RSA via Schlum-
berger’s extension javacardx.crypto.

With respect to the cardlet itself, there are some differences; for example,
the maximum size of the responses. The source code contains some compilation
directives which adapt the code to the cards and it has to be precompiled to
obtain java code that is then optimized for the card in question. A comparison of
both cards is in Table 3. The size of the cardlet in the GemXpresso is much larger
than in the Cyberflex, but in both cards there is room enough for storing up
to 4 certificates (each certificate takes 1KB). GemXpresso is significantly faster
storing and retrieving certificates (almost twice as fast as Cyberflex), perhaps
because of better efficiency of the virtual machine implementation.

Table 3. Cardlet comparison

Card Size of Cardlet Storage (ms) Retrieval (ms)
(Bytes) Private key Public key Certificate Certificate

GemXpresso 6437 20312 12998 16228 8934
Cyberflex 3992 38122 28180 34036 16155

References

[ISO/IEC 7816-4] “ISO/IEC 7816-4: Integrated circuit(s) cards with contacts. Part 4:
Interindustry commands for interchange”, ISO/IEC, 1995.

[ISO/IEC 7816-3] “ISO/IEC 7816-3: Integrated circuit(s) cards with contacts. Part 3:
Electronic signals and transmission protocols”, ISO/IEC, 1997.

[JCADG 2.1] “Java Card Applet Developer’s Guide. Java Card Version 2.0”, SUN
Microsystems, Agosto de 1998.

[JCADG 2.0] ‘Java Card Applet Developer’s Guide. Java Card Version 2.1”, SUN Mi-
crosystems, Agosto de 1999.

[GemXpresso RAD 211 UG] “GemXpresso RAD 211 User Guide Version 1.0”, Gem-
plus, Octubre 1999

[GemXpresso RAD 211 CRM] “GemXpresso RAD 211 Card Reference Manual Ver-
sion 1.0”, Gemplus, Octubre 1999



JCCM: Flexible Certificates for smartcards with Java Card 9

[Cyberflex PG] “Cyberflex Access Developer’s Series. Programmer’s Guide”, Schlum-
berger, Septiembre 1999.

[Cyberflex SDK] “Cyberflex Access Software Developer’s Kit 2 - Release Notes”,
Schlumberger, Noviembre 1999.

[HTTPS] “HTTP Over TLS”, Rescorla, E., IETF RFC 2818, Mayo 2000.
[X.509] “Internet X.509 Public Key Infrastructure Operational Protocols: FTP and

HTTP”. R. Housley, P. Hoffman. IETF RFC 2585, Mayo 1999.
[USENIX 99] “Design Principles for Tamper-Resistant Smartcard Processors” by

Oliver Kömmerling, Markus Kuhn, Workshop on Smartcard Technology Proceed-
ings, Chicago, Illinois, USA, Mayo 10-11, 1999

[SC SDK] ‘Smart Card Developer’s Kit”, Scott B. Guthery, Timothy M. Jurgensen.
Macmillan Technical Publishg. 1998.ISBN 1-57870-027-2.

[SC APP. DEV. JAVA] ‘Smart Card. Application Developement Using Java”, Uwe
Hansmann, Martin S. Nicklous, Thomas Schack y Frank Seliger, Springer, 2000.
ISBN 3-540-65829-7.

[PKCS#11] “PKCS #11 v2.10: Cryptographic Token Interface Standard”, RSA Lab-
oratories Inc., Diciembre 1999 (003-903052-210-000-000).

[PKCS#1] “PKCS #1 v2.1: RSA Cryptography Standard”, RSA Laboratories Inc.
[PKCS#5] “PKCS #5 v2.0: Password-Based Cryptography Standard”, RSA Labora-

tories Inc.
[PKCS#8] “PKCS #8 v1.2: Private-Key Information Syntax Standard”, RSA Labo-

ratories Inc.
[STALL99] ‘Cryptography and Network Security: Principles and Practices”, Stallings,

W., 2ed, Prentice-Hall Inc., 1999
[SMARTSIGN] “Smart Sign”, Tommaso Cucinotta,

http://sourceforge.net/projects/smartsign
[GPKPKCS#11] “GemSAFE Products”, Gemplus,

http://www.gemplus.com/products/software/gemsafe/index.html
[SLBCBPKCS#11] “Cyberflex Access SDK”, Schlumberger,

http://www.cyberflex.com/Products


