TCP Fast Open: initial measurements

Anna Maria Mandalari
University Carlos Il of
Madrid, Spain

ABSTRACT

In mid-2011 a new mechanism that enables data ex-
change during TCP’s initial handshake has been pro-
posed by Google. The technique is called TCP Fast
Open (TFO). TFO decreases application network la-
tency by one full round-trip time. In this paper, we
evaluate to which degree the current Internet paths sup-
port TFO and how often we encounter cases of inter-
ferences from eventual middleboxes along those paths.
By expanding the traditional crowdsourcing focus from
the human element, we develop a methodology to use
a numerous group of end-user devices as measurement
vantage points. We find that the 41,3% of the paths we
test allowed for a successful TFO communication.

1. INTRODUCTION

Latency nowadays plays a key role in producing a
successful Internet product and making content easily
reachable. It is critically important for trading in fi-
nancial markets [6], telemedicine, teleconferencing and
cloud services.

To ensure low latency, several TCP mechanisms have
been revisited in the last years. For example, lower
speed links can be treated increasing the initial window
of 10 segments (IW10) [4] or techniques for reducing the
delays in communications has been started [2].

Google proposed a protocol to allow clients to send
data in the initial SYN request, without waiting for a
full TCP handshake, saving an entire Round-trip time
(RTT). This mechanism is called TCP Fast Open (TFO)
19].

Tweaking TCP to reduce latency in the Internet seems
the right direction, but the real question is how the In-
ternet reacts to all these tweaks. Internet has become

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

CoNEXT Student Workshop’15, December 01 2015, Heidelberg,
Germany

© 2015 ACM. ISBN 978-1-4503-4066-3/15/12. .. $15.00
por: http: //dx.doi.org/10.1145/2842665.284356 1

Marcelo Bagnulo
University Carlos Il of
Madrid, Spain

Andra Lutu
Simula Research
Laboratory, Norway

extremely difficult to evolve in terms of protocols and
performance [5]. This is due to the presence of mid-
dleboxes (i.e., switches, routers, firewalls, NATs and
proxies). This made the community to react and put
in motion different mechanism to find solutions to the
identified problems, e.g., an IETF research group was
proposed to study this phenomenon [1].

In this paper we measure in the wild whether TFO is
supported by the Internet paths. To this end we recruit
TFO users from Microworkers crowdsourcing platform.
We create a tool called EzploreTFO that allows users
to connect to our TFO server.

Leveraging the access to these active users and their
equipment we find that the 41,3% of the paths we test
allowed for a successful TFO communication. We present
a first step analysis of the deployability of TFO and we
demonstrate that early results are not promising, reduc-
ing the possibility to decrease the latency due the TCP
handshake.

2. MEASUREMENT SETUP

In standard TCP connections, the Three-way Hand-
shake (3WHS) process employs one RTT before the
server’s application receives the data and two RTTs for
the server response. TFO should speed up the exchange
of information between client and server and reduce of
one RTT the 3WHS. Sending the initial SYN with data,
TFO could reduce the loading of pages up to 40% [9].

According with the TFO standard [3], at the begging
of a TCP connection, the client creates a SYN packet
with the TFO option enabled. This option corresponds
to a TFO cookie request. In this first connection, no
data are sent into the SYN packet. Once the server
receives the SYN with the TFO cookie request and it
supports TFO, it generates a message authentication
code (MAC) for the client, using the IP address of the
client and its secret key. Then, it sends the cookie to the
client in the SYN-ACK packet, using the same TFO op-
tion and it establishes a standard TCP connection. The
client, receiving the TFO cookie, caches it and the cor-
respondence to the server’s IP that sent it. The client
will use the cookie to establish a TFO connection to the
same server in the next connection. When the client
tries to connect to the server again, it sends a SYN


http://dx.doi.org/10.1145/2842665.2843561

packet containing the TFO option enabled, the cookie
previous cached that corresponds at the server’s IP, and
the application data. When the server receives the SYN
packet with the TFO option, the cookie and the data, it
generates the cookie and compares it to the cookie sent
by the client. If the cookie matches, the server sends a
SYN-ACK, acknowledging the SYN and the data, con-
secutively it sends the data to the client.

In this work, we apply the methodology model de-
scribed in [8] to collect a unique dataset capturing the
manner in which the Internet ecosystem reacts to the
deployment of TFO. To this purpose we create a tool
namely TFOFEzplorer and we recruit users from the Mi-
croworkers crowdsourcing platform [7]. TFOEzxplorer is
composed by a client (from now on, TFO Client (TC)),
a target server that supports TFO protocol (from now
on, TFO Server (TS)) and a script needed to be run in
the TC machine (from now on, TFO Script (TSC)). Us-
ing a crowdsourcing platform to recruit vantage points
we are not able to guarantee the repeatability of exper-
iment, for this reason we perform a single measurement
per port.

We store and analyze in detail the server side packet
exchanges to 68 different ports, namely 10 well-known
ports, 56 registered ports and 2 ephemeral ports. If an
error occurs in some ports, we analyze the behavior of
the TCP with respect to the middleboxes active along
the path. The TFOEzplorer allows us to control the
client, capturing automatically the packets in the TC’s
machine and sending the files containing the results of
the experiment directly to our server to be analyzed.

3. RESULTS

We collect and analyze the results from 46 users from
18 different countries and 22 different ISPs. Each user
tries to establish TFO connections in a large number of
ports to our TS.

Considering that each TC performs 68 connections
to our TS three times (twice to perform a complete
TFO connection and one to send data in the initial
SYN packet), we build a dataset for a total of 9,568
connections

Table [I| shows the results from workers that attempts
to connect to our TS, using TFO. Analyzing the data,
we check for the following behaviors: TC is able to per-
form a TFO connection (label Successful); middleboxes
drop packets with unknown TCP options and we receive
the SYN without option (label No option SYN); mid-
dleboxes drop packets with unknown TCP options and
we do not receive the SYN without option (label No op-
tion no SYN); middleboxes drop packets with data in
the SYN packet and we receive the SYN without data
(label No data SYN); middleboxes drop packets with
data in the SYN packet and we do not receive the SYN
without data (label No data no SYN).

'The data set and the code are freely available on http:
//www.it.uc3m.es/amandala/tfocampaign.html

Table 1: TFO connection

TFO behavior Number of workers Number of workers (%)
Successful 19 41,3
No option SYN 18 39,13
No option no SYN 0 0
No data SYN 8 17,39
No data no SYN 1 2,18

Table 2: Data in the SYN

TFO behavior Number of workers Number of workers (%)

Successful 23 50
No data SYN 23 50
No data no SYN 0 0

Results show that only the 41,3% of the packets with
the TFO experimental option are able to arrive to our
TS. The 39,13% of the SYN packets arrive with the
option removed.

TFO allows for payloads to be carried in SYN frame.
Once the client has the cookie, it tries to send the data
in the SYN. In this case, only the 67,86% of the packets
are received by our TS. The remainder of the packets
arrive with no data in the SYN. In this case, middle-
boxes block the connection completely after processing
the SYN packet with data, causing a connection time-
out and the TC switches to a standard TCP connection,
retransmitting the SYN packet with no option and no
data.

If, for example TFO connection fails in port 80, then
it fails in all other ports. We detect only three TCs
that succeed to perform a TFO connection in the Well-
known and the Ephemeral ports, but that fail in some
Registered ports.

Table [2| shows the results considering that case when
TCs send data in the initial SYN with no TFO option
set. In this case, the 50% of the SYN packets containing
data is received by our TS, the rest of the packets are
dropped by middleboxes, forcing a SYN retransmission
client side.

4. CONCLUSIONS AND FUTURE WORK

In this paper we evaluate the interaction of TFO with
the elements of the path. Lessons learned from this
study can help in designing robust TCP protocol exten-
sions in the presence of middleboxes. Only the 41,3% of
the paths we test allowed for a successful TFO commu-
nication. Once the client is able to receive the cookie,
the 32,14% of the packets are received with no data in
the SYN. In the case in which we force data in the SYN
without the TFO option, the percentage of success is
50%.

For future work, we are planning to expand our mea-
surement campaign and recruit more measurement agents.
TFO requires client and server specific Linux kernel sup-
port (i.e. 3.74). Thus, using the current measurement
methodology we propose it is challenging to support
TFO by default. We are overcoming this issue by build-
ing crafted packets and running the code in devices that
do not have necessarily TFO mechanism enabled by de-
fault.


http://www.it.uc3m.es/amandala/tfocampaign.html
http://www.it.uc3m.es/amandala/tfocampaign.html

S. REFERENCES

[1] https://www.ietf.org/mailman/listinfo/hops.
IETF, 2015.

[2] B. Briscoe, A. Brunstrom, D. Ros, D. Hayes,

A. Petlund, I. Tsang, S. Gjessing, and

G. Fairhurst. A Survey of Latency Reducing
Techniques and their Merits. In ISOC Workshop
on Reducing Internet Latency, Sep, 2013.

[3] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain.
TCP Fast Open. Technical report, RFC 7413 |
December, 2014.

[4] J. Chu, Y. Cheng, N. Dukkipati, and M. Mathis.
Increasing TCP’s initial window. 2013.

[5] M. Handley. Why the internet only just works. BT
Technology Journal, 2006.

[6] J. Hasbrouck and G. Saar. Low-latency trading.
Journal of Financial Markets, 16(4):646-679, 2013.

[7] M. Hirth, T. Hof}feld, and P. Tran-Gia. Anatomy
of a crowdsourcing platform-using the example of
microworkers.com. In Innovative Mobile and
Internet Services in Ubiquitous Computing (IMIS),
2011 Fifth International Conference on, pages
322-329. IEEE, 2011.

[8] A. M. Mandalari, M. Bagnulo, and A. Lutu.
Informing protocol design through crowdsourcing;:
the case of pervasive encryption. ACM SIGCOMM
Workshop on Crowdsourcing and crowdsharing of
Big (Internet) Data (C2B(I) D), Aug. 2015.

[9] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and
B. Raghavan. TCP Fast Open. In Proceedings of
the Seventh Conference on emerging Networking
EXperiments and Technologies, page 21. ACM,
2011.



	Introduction
	Measurement setup
	Results
	Conclusions and future work
	References

