
COPYRIGHT NOTICE

This work has been submitted to the IEEE for possible publication. Copyright may be 
transferred without notice, after which this version may no longer be accessible. 



Measuring ECN++
Good News for ++, Bad News for ECN over Mobile

Anna Maria Mandalari
University Carlos III of Madrid

Email: amandala@it.uc3m.es

Andra Lutu
Simula Research Laboratory

Email: andra@simula.no

Bob Briscoe
Simula Research Laboratory

Email: bob@simula.no

Marcelo Bagnulo
University Carlos III of Madrid

Email: marcelo@it.uc3m.es

Özgü Alay
Simula Research Laboratory

Email: ozgu@simula.no

Abstract—After Explicit Congestion Notification (ECN) was

first added to the Internet Protocol in 2001, it was hit by

a succession of deployment problems. Studies in recent years

have concluded that path traversal of ECN has become close

to universal. In this article, we test whether the performance

enhancement called ECN++ would face a similar deployment

struggle as base ECN. For this, we assess the feasibility of

ECN++ deployment over mobile as well as fixed networks. In the

process, we discovered bad news for the base ECN protocol—

more than half the mobile carriers we tested wipe the ECN field

at the first upstream hop. This throws into question whether

previous studies used representative vantage points. This article

also reports the good news that, wherever ECN gets through,

we found no deployment problems for the ‘++’ enhancement

to ECN. The article includes the results of other in-depth tests

that check whether servers that claim to support ECN actually

respond correctly to explicit congestion feedback.

Given that our results challenge accepted beliefs, this article

reports the main findings accompanied by the measurement data.

INTRODUCTION

Explicit Congestion Notification (ECN) [1] is a way to mark
packets to indicate that the capacity of a link is approaching
exhaustion. ECN was standardized as a straight replacement
for loss signals, but increasingly ECN is also being recognized
as critical for low delay. Despite early evidence of its positive
impact [2], a succession of unfortunate incidents stalled ECN
deployment for 15 years: some firewalls treated all TCP/ECN
connection attempts as port scanning attacks [3]; TCP/ECN
connection attempts were mistakenly discarded by certain
home router models and one popular model crashed; and when
routinely wiping the Diffserv field between networks, a bug
also wiped the IP/ECN field.

In recent years, ECN adoption on end-systems has ac-
celerated, with the majority of servers supporting ECN [4].
Currently, motivated by an increasing need to reduce queuing
delay in modern networks, solutions such as DCTCP [5] in
data centers or L4S [6] in public networks are further driving
interest in ECN. In 2016, Apple enabled client negotiation of
TCP ECN in a random subset of iOS and macOS devices. In
March 2017 they presented a measurement study [7] showing

almost universal path traversal support for ECN. Other recent
measurement studies [4], [8] report consistent findings.

The original ECN specification for TCP [1] prohibited
retransmitted packets and control packets from using ECN.
This was unfortunate, because TCP performance, particularly
short-flow completion time, is much more sensitive to loss
of certain control packets, such as the SYN at the start of a
connection [9].

A new performance enhancement called ECN++ [10] pro-
poses safe ways to remove all the original prohibitions on
using ECN on each type of TCP packet. As with any new
protocol, ECN++ can experience deployment problems, either
because existing networks and servers protect themselves
against out-of-the-ordinary behavior, or because optimizations
have been built around a narrow and unchanging interpretation
of the way protocols work. In particular, DoS attacks were
(erroneously) considered more likely with ECN on SYN.
Thus, some security devices might block it, impacting the
deployment of the ++ enhancement for ECN.

This study sets out to measure how much existing networks
and servers would mangle or block the ECN++ updates to
TCP/IP. We test ECN and ECN++ support in both fixed and
mobile networks. In particular, we test 18 mobile carriers
and collect information for a total of 26 million end-to-
end communications, testing 6.5 million different paths. This
is, to the best of our knowledge, the largest measurement
study of ECN in mobile networks so far (even Apple had
only tested three mobile carriers). Although we only set out
to measure ECN++ support, our measurements from mobile
vantage points challenge the accepted belief that path traversal
of ECN itself is free of problems.

The article offers the following main contributions:

Bad news: More than half of the mobile carriers we tested
bleach (clear) the ECN field at the first upstream IP hop.
This contradicts the impression of hardly any ECN traver-
sal problems that has been reinforced by all recent studies.
Nonetheless, our testing with fixed connectivity is consistent
with these previous studies.



But not awful news: Bleaching ECN is benign1, the
connection continues, but without the benefits of ECN. We
find no evidence of the ECN capability being blocked.

Good news: Wherever ECN gets through, we find no
problems for ECN++. Although the bad news for the base
ECN protocol is also bad for ECN++, at least this suggests
that, as ECN traversal problems are fixed, ECN++ traversal
should improve in tandem.

Good news: We also find no problems with how servers
respond to ECN-marking, but we do find some interesting
congestion behaviors unrelated to ECN.

ECN BACKGROUND

ECN [1] can be deployed in any buffer in any network
element. A bottleneck buffer will mark the standardized ECN
field increasingly often as it detects early signs of increasing
load. These ECN markings then propagate to all the hosts
receiving data through the buffer. In turn, the receivers feed
back these signals to the respective hosts that are sending them
data. The aim is that data senders will use this feedback to
regulate the load on the bottleneck buffer.

ECN is intimately tied to Active Queue Management
(AQM) technology. With AQM, buffers drop a small propor-
tion of packets at the first sign of queue growth to fool TCP
senders into thinking the buffer is full and backing off. ECN
allows AQM to keep the queue short without dropping packets.

ECN in IP

Codepoint IP/ECN field Meaning
not-ECT 00 Not ECN-capable transport
ECT(0) 10

�
ECN-capable transportECT(1) 01

CE 11 Congestion experienced

TABLE I: The ECN field in IP

The ECN field has two bits, hence it supports the 4
codepoints in Table I. Before using ECN, the standard requires
a data sender to have checked that the receiver has logic for
feeding back ECN markings. Each transport protocol does this
differently. If at least one end does not support ECN, there is
not an ‘ECN-capable transport’ (ECT) so the sender must set
not-ECT in all packets, which is also what legacy hosts send by
default. According to [1], ECT(0) and ECT(1) are equivalent
and either can be set by the sender to signify the packet is
ECT, which means “ECN-capable but not ECN-marked”.

Network elements have to check the ECN field before using
ECN. If it is not-ECT (00), they must use drop rather than the
CE codepoint to indicate congestion. As subsequent packets
arrive where the ECN field is nonzero, an ECN-capable buffer
can set the CE codepoint (11) increasing the probability to
indicate increasing congestion.

1Nonetheless, if other links precede the cellular hop (e.g. a home router or
bus/train connected over cellular), any CE-marking introduced in the home
or vehicle network would be wiped, which would fool ECN sources into
overrunning their local network.

ECN in TCP
Three flags in the main TCP header are assigned to ECN.

They are called NS, CWR and ECE for Nonce Sum, Con-
gestion Window Reduced and Echo Congestion Experienced.
These names are not descriptive of their usage in most
circumstances, so this article will represent them as a 3-bit
codepoint, as shown in the ‘flags’ column of Table II.

Table II succinctly supports the following explanations of
standard ECN (this section), Accurate ECN and ECN++.For
the present explanation of standard ECN, ignore the AccECN
rows at the bottom and the ECN++ column on the right. Also,
the NS TCP flag is not used for standard ECN (always zero).

For the example of an ECN client contacting an ECN server,
the table should be read down the rows as follows. The client
sends an ‘ECN setup SYN’ with TCP ECN flags 011 and the
server responds with an ‘ECN setup SYN/ACK’ with TCP
ECN flags 001. Only 00 is allowed in the IP ECN field of
both these handshake packets, as shown in the ‘Allowed IP
ECN’ column.

Once the TCP connection is established, ECN feedback
proceeds independently in either direction for the two half-
connections. Regular data packets have 000 in the TCP ECN
flags and, according to the IP ECN column, the data sender
can set either ECT codepoint (XX means theoretically any
of the 4 values in Table I are allowed). Then, if congestion
is experienced along the path, the buffer will set the CE
codepoint on some of these packets.

The data receiver will then feed this back by setting the
Echo CE (ECE) flag in the TCP header of acknowledgement
(ACK). The data sender then confirms receipt of a new ECE
flag by setting the CWR flag on the next segment, which
confirms that it has reduced its congestion window (cwnd). For
reliability against loss of an ECE message, the data receiver
is required to set the ECE flag repeatedly on every ACK until
it receives the CWR.

Accurate ECN
Because the original ECN scheme repeats the ECE flag for

a whole round trip for reliability, more than one CE mark
within a round trip cannot induce any more feedback. Since
2010, it has become well-known [5], [6] that queuing delay
can be reduced to extremely low levels if more accurate
feedback gives the extent, not just the existence, of CE-
marking. AccECN [11] adds more accurate ECN feedback to
TCP. We introduce it in our testing, but we do not expect
to find it in the wild yet because standardization is not yet
complete.

The handshake for a client and server supporting AccECN
feedback can be seen in the AccECN setup SYN and SYN/
ACK rows of Table II. We will not step through the table again,
except to highlight differences. The 110 combination of TCP
ECN flags allows feedback on the SYN/ACK in the event that
the SYN arrives at the server with a CE mark, otherwise the
SYN/ACK uses 010. This enables the SYN to be ECN-capable
(see ECN++ in § ). Once an AccECN connection is established,
an AccECN data receiver uses the ECN TCP flags as a 3-bit



Feedback Packet TCP ECN flags (NS:CWR:ECE) Allowed IP ECN
mode Description flags ECN ECN++
Non-ECN All ECN disabled 000 00 00

ECN

SYN ECN setup SYN 011 00 00
SYN/ACK ECN setup SYN/ACK 001 00 XX

Data
Regular 000 XX XX
Echo CE 001 XX XX
CWnd Reduced 010 XX XX

Control & RTX Same as data packet 00 XX

AccECN

SYN AccECN setup SYN 111 00 XX

SYN/ACK AccECN setup SYN/ACK 010 00 XX
—Ditto— with CE Echo 110 00 XX

Data CE counter XXX XX XX
Control & RTX 00 XX

TABLE II: Allowed IP ECN field for all types of TCP packet in all three feedback modes. X means 0 or 1

counter to continually repeat feedback of a count of how many
CE-marked packets it has received over the half-connection.

ECN++
When ECN was first standardized, SYNs and SYN/ACKs

were precluded from being ECN-capable at the IP layer.
IP/ECN was similarly prohibited for pure ACKs, window
probes, and retransmissions (termed ‘Control and RTX’ in
Table II). In 2005, the IETF sanctioned an experiment allowing
IP/ECN on the SYN/ACK, termed ECN+ [9].

The ECN++ proposal is more ambitious than ECN+. It has
found ways to safely allow each type of TCP control packet or
retransmission to use IP/ECN, including FIN (finish) and RST
(reset) packets as seen in the rightmost column of Table II.
ECN++ can be used with either standard ECN feedback or
AccECN feedback. Except, the SYN can only be ECN-capable
in the IP header if it requests AccECN feedback in the TCP
flags (111). This is because only AccECN provides space in
the SYN/ACK for feedback in the event that the SYN gets
CE-marked.2

RELATED WORK

The extent to which the Internet deploys and supports ECN
has been a topic visited repeatedly over the past 15 years [4],
[7], [8], [12].

Measurements of server-side support usually focus on the
population of web servers as ranked by Alexa. While quantify-
ing ECN server-side support in 2004, Medina et al [12] found
that as little as 2.1percent of the servers tested supported ECN.
Ten years later, Trammell et al [4] report an acceleration in
the deployment of ECN-capable servers, finding 56.17percent
of ECN-capable servers. In this article, we corroborate the
acceleration of ECN deployment for wired networks and Alexa
servers, and we extend the study to mobile networks and
ECN++.

Regarding support of ECN by the network elements on the
end-to-end path, in 2013, Kühlewind et al [8] tested 22,487
hosts and reported that in 0.9percent of cases ECN was not
usable due to middleboxes along the path. Later, in 2015,
Trammell et al [4] finds that when testing 326,743 hosts

2If the server does not support AccECN at all, for safety the client has to
behave as if it had received feedback of a CE on the SYN.

capable of negotiating ECN, for 0.02percent of them (107
hosts) a device on the path mangles the TCP/ECN flags. We
note that all these above-mentioned efforts report on measure-
ments performed mostly in fixed networks. Only recently, in
March 2017, Apple [7] reported 100percent positive results
after testing from vantage points connected to ‘a few’ mobile
carriers, which on further investigation meant three carriers.

EXPERIMENTS

The goal of our experiments is to test how the ECN++
modifications to TCP/IP just described above would be treated
in the current Internet, particularly over mobile networks. In
order to do that, we designed two series of experiments. The
first series of tests explores how the different ECN++ related
fields are treated by the currently deployed base of network
elements and servers. The second series of tests measures how
the congestion control algorithms running in deployed servers
react to ECN congestion signals. In both cases, we design our
experiments to measure how equivalent non-ECN and ECN
packets are treated in order to compare them with the ECN++
measurement results.

ECN++ Support

The experiments test support for ECN++ exchange TCP
control packets and pure ACKs with different values in the
ECN-related fields and check how those packets are treated
by the network and by servers. We next describe the tests
performed for each type of packet.

TCP SYN and TCP SYN/ACK: To test support for ECN++
in the SYN and the SYN/ACK, we design the experiments
to exchange packets containing the values used by ECN++
in the ECN field of the IP header and in the TCP ECN
flags. We design two types of experiments, namely, client-side
experiments and client/server experiments. In the client-side
experiments, we only control the client that sends the TCP
SYN packets against existing servers in the Internet (Alexa
top 100k servers). This allows us to learn information about a
large number of paths and about support for ECN++ in both
network elements and servers.

While client-side measurements provide a lot of information
about support for ECN++ in the SYN packet, it usually
provides little information about support for ECN++ in the



SYN/ACK packet, since the SYN/ACK packet is generated
by a server that is out of our control and does not support
ECN++.

In the client/server experiments we control both the clients
and servers of the connection, but not proxies. This allows
us to perform exhaustive testing of all possible combinations
of AccECN and ECN++ fields both in the SYN and the
SYN/ACK. However, these experiments are limited to a few
servers that we control, which also constrains the number of
paths traversed.

a) Client-side experiments: To observe how the ECN
field in the IP header is treated by network elements we use
Tracebox.3 Tracebox uses the same principle as traceroute
(i.e., sends packets with increasing TTL and receives an ICMP
TTL exceeded error message from the router that discards the
original packet when the TTL reaches zero). Tracebox uses
information about the original packet returned in the ICMP
error message to identify any changes in the IP header.

We run Tracebox sending TCP SYN packets with different
codepoints in the ECN field of the IP header enumerated in
Table II. We executed these tests with all possible combina-
tions of the CWR and ECE flags. With this test, we check
whether the ECN field is modified, and if so at which hop
along the path it is modified.

While Tracebox is very powerful for seeing how the fields
in the IP header are treated, it cannot detect the changes in the
ECN flags in the TCP header. This limitation stems from the
fact that most routers implement RFC792 [13] which requires
them to return only the first 64 bits of the IP payload of the
packet (leaving out all the ECN related flags later in the TCP
header) while a few routers implement RFC1812 [14] which
requires them to return the full packet if possible. Because of
this, we implement a test that directly sends SYN packets from
the clients we control to the Alexa top 100k servers with the
different values for the ECN codepoints and TCP flags used
by ECN and ECN++ as described in the rows corresponding
to SYN packets in Table II.

This test enables us to check, through the reception of the
SYN/ACK, if the SYN was delivered to the server and the
server processed it. We can further identify how many servers
use RFC3168 [1] (Classic ECN) and how many servers use
RFC5562 [9] (ECN+).

b) Client/server experiments: In these experiments we
control the client and the server side. We implement both a
client and a server side of the test that exchange every allowed
ECN++ packet sequence. We also test for the case where ECN
is not used. We test for the possible SYN-SYN/ACK packet
sequences involving the different codepoint/flag combinations
described in the SYN and SYN/ACK rows of Table II. We
measure whether the fields sent arrive at the other end, to
check for middlebox interference (e.g. proxies).

Data packets, pure ACKs and FINs: We designed these
experiments to show how the ECN++ FIN and pure ACK
packets are treated by the network and the servers. We also

3http://www.tracebox.org/

measure how ECN-enabled data packets are treated to establish
a baseline for comparison. Like previous experiments, we
perform both client-side and client/server experiments (i.e., we
perform these experiments with the Alexa top 100k servers and
with our own servers).

In the experiments, the client uses Tracebox with
PureACKs, Data packets, and FINs with the different com-
binations of the ECN codepoints and TCP flags included in
the rows describing data packets, and ‘Control and RTX’ in
Table II. In all cases, the client establishes a standard ECN
TCP connection before sending the test packets.

Response to Congestion Signal

We execute a number of client-side experiments to deter-
mine how the deployed base of ECN-enabled servers respond
to ECN congestion signals. In particular, we want to learn if
the congestion response to a CE marked packet echoed through
one or more packets with the ECE flag set is equal to the
response to three duplicate ACKs. We test for the case when
a data packet is marked with CE (regular ECN) and the case
when the CE marked packet is the SYN/ACK (ECN+ case).
The approach we use is similar to the one used by TBIT [15].
For a given server, we measure the Initial Window (IW) of the
TCP connection. After learning this, we establish a new TCP
connection to the same server and we pretend that the first data
packet sent by the server has experienced congestion (either
pretending the packet is lost and by sending 3 duplicated ACKs
or by sending the ACK for that packet with the ECE flag
set) and we measure the resulting congestion window after
such a congestion signal, learning the response to congestion
from the server in these two situations (CE mark, or packet
loss). In particular, we are able to learn if the response is the
same for the two congestion signals. We also perform this test
pretending that the packet that encountered congestion is the
ACK of the TCP three way handshake (3WHS), allowing us
to test the congestion response for servers that support ECN+.

Experimental Setup

We perform all the experiments we designed and described
above between January and May 2017. For the client-side
experiments, we use both the MONROE platform (mobile
carriers) and PlanetLab (wired service providers). The MON-
ROE platform4 is the first open source and open access
hardware-based platform for independent, multihomed, large-
scale experimentation in commercial mobile environments.
The platform comprises hundreds of nodes multihomed to
three of the mobile providers in each of 4 EU countries (Spain,
Italy, Sweden, Norway). For the purpose of this study, we
instrument 11 MONROE nodes distributed in all the countries
with MONROE coverage. We measure the following mobile
carriers: Vodafone (IT), TIM (IT), WIND (IT), Orange (ES),
Yoigo (ES), Movistar (ES), Telia (SE), Telenor (SE), Three
(SE), Telia (NO), Telenor (NO). To test wired providers, we

4https://www.monroe-project.eu/

http://www.tracebox.org/
https://www.monroe-project.eu/


instrument 54 PlanetLab5 nodes distributed in 25 networks
over 22 countries.

All experiments test two TCP ports, namely port 80 and
port 443. We execute all the tests both from the MONROE and
Planetlab nodes. In all cases, we test only IPv4 hosts. We run
the experiments we describe for TCP SYN, TCP SYN/ACK
and Data packets, pure ACKs and FINs towards the Alexa
top 100k web servers and to our own servers. We run the
experiments for the response to congestion signal towards the
Alexa top 500k web servers, allowing us to also measure
support for ECN in the wild. MONROE nodes resolve the
Alexa top-N websites using Google’s public DNS resolver; not
the mobile carrier’s default resolver. This enables us to build a
vast and complex dataset, which we open to the community.6
We collect information for a total of 26 million end-to-end
communications, testing 6.5 million different paths.

FINDINGS

In this section, we describe the main findings of our
measurement study.

Bad news: 7.5 out of 11 Mobile operators tested bleach

ECN in outgoing packets. Using Tracebox in the MONROE
nodes we find that 7 out of 11 Mobile operators bleach the
ECN field in the IP header for all ECN codepoints in all
packets going from the client to the Internet, for all types
of packets tested (SYN, data packets, pure ACKS and FINs)
and for both ports (80 and 443).

?? shows the results for ECN and ECN++ bleaching.
The operators bleaching ECN are: Yoigo (ES), Orange (ES),
Vodafone (IT), TIM (IT), Wind (IT), Telia (NO), Telia (SE).
In all the bleaching cases, we observe that the ECN field is
cleared in the first hop (i.e., the mobile operator is clearing it
in its radio access).

One mobile operator (Movistar (ES)) bleaches the IP/ECN
field only for port 80 and not for port 443. Using the
client/server experiments, we learn that Movistar is using a
web proxy that does not support ECN.7 We find that two other
providers, TIM and Vodafone, also use a proxy on port 80.

For the subset of vantage points connected to the three
mobile access networks that do not wipe the outgoing IP/ECN
field (Telenor(NO), Telenor(SE) and 3 (SE)), we observe that
0.53percent of paths to the Alexa 100k servers encounter
bleaching deeper into the network - always more than 5 hops
away. We find similar results in the experiments using the
PlanetLab clients (0.23percent bleaching), which is consistent
with other measurements (see Related Work).

Regarding incoming packets (towards the client), through
client/server experiments we find that all providers that do not
use a proxy honour the value in the ECN field. We verified
this by sending ECT marked packets from our servers to all
the MONROE clients in the different ISPs. We cannot reliably

5https://www.planet-lab.org/
6You can access the dataset at http://www.it.uc3m.es/amandala/ecn++/.
7We observe that the TCP 3WHS is established between the client and

the proxy first and when the HTTP GET is issued, the proxy establishes a
connection with the server.

conclude that there is not a fractionalpercentage of bleaching
in the incoming direction, because the number of servers we
have under our control limits the number of incoming paths
we can test.

Given the majority of mobile carriers that bleach the IP/ECN
codepoint, we complement the set of mobile networks we
measure with 7 additional operators active in 4 countries other
than the ones with MONROE coverage (i.e., Elisa (FI), DNA
(FI), Vodafone (DE), Blau (DE), Vodafone (UK), O2 (UK),
Base (BE)). For these, we run a limited set of measurements
only against four servers (two that we control and two that
run in the wild). We find that out of the seven mobile carriers,
3 of them (DNA (FI), Vodafone (UK), O2 (UK)) present the
same IP/ECN bleaching behavior in the first hop as the other
7.5 carriers we identified in MONROE.

Good news: ECN fields do not cause packet drop.

Through our client-side, end-to-end tests, we find that, irre-
spective of the TCP/ECN flags and IP/ECN codepoint com-
bination, for the 6.5M paths tested, the packets sent using
different TCP/ECN value combinations are acknowledged by
the other end. We find this to be true for SYNs (we receive
a SYN/ACK back), for data packets and FINs (we received
ACKs back). It is true both for mobile and wired operators.
This does not means the ECN related fields arrive at the other
end unchanged though (we know it is not the case for the ECN
field in the IP header, as per the previous finding). Through the
client/server experiments, we observe that while the IP/ECN
field is frequently bleached, all tested paths forward the
TCP flags unchanged, except for the paths going through the
mobile operators that use a non-ECN-capable proxy on port
80 (i.e., Movistar (ES) and TIM(IT)). Vodafone (IT) uses an
ECN-capable proxy that honors the TCP flags. As previously
mentioned, Tracebox is unsuited for measuring traversal of the
TCP/ECN flags because the deployed router base implements
RFC792. In our dataset, we find that only 2.4percent of routers
(11k out of 468k) along the paths we tested are RFC1812-
compliant.

Good news: ECN++ support is as good as ECN support.

As described in the two earlier findings, we observe that in
the 6.5M paths tested, ECN++ packets are treated by the
network in the same way as ECN packets. In other words, ECN
bleaching occurs as often in SYN, PureACKs and FIN packets
as in data packets. The combinations of the ECN related fields
used by ECN++ are not discarded or bleached more often than
when used in ECN. Furthermore, AccECN negotiation in the
TCP header traverses the paths we tested, except for the case
on in-path proxies.

Good news: 61percent of Alexa top 500k server supports

ECN. We used the results of the experiments we describe
in § -0b, which we ran against Alexa top 500k web servers.
Our finding corroborates the acceleration of ECN deployment
reported in previous work [4], [8]. We also observe that
3.51percent of servers (10,709) support ECN in the SYN/ACK,
a slight increase over the 1.3percent reported in [4]. Five of
them answer with ECT(1) in the SYN/ACK, while the others
use ECT(0).

https://www.planet-lab.org/
http://www.it.uc3m.es/amandala/ecn++/


Good news: All the ECN-capable top-500k Alexa servers

we were able to test have the same response to ECE as

to 3 DupACKs. Out of the 305k Alexa servers that support
ECN, we were able to test 158k of them for their congestion
response to ECE marks. We found that their response to an
ECE mark is the same to the response to 3 DupACKs. We
were unable to test the congestion response of 147k servers
for various reasons, including that we were unable to find
enough content to fill the IW; or that they were redirected.

Good news: At least, 51percent of the Alexa top-500k

servers support IW of 10 segments. Additionally, out of
the Alexa top-500k, 9.2percent support IW of 2 segments
and 9.3percent support IW of 4 segments. We were unable to
measure the IW of 74k (14percent) of the servers because we
were unable to find enough data to fill IW. Though these results
are not related to ECN, they are incidental to the measurement
technique we employ for testing the congestion response.

Bad News: 0.4percent of the Alexa top-500k servers use

IW larger than 10. The 0.4percent we observe account for
1,745 servers, all using an IW larger than 10. Out of these,
1,121 servers deliver the whole file in the first RTT (the largest
IW observed is 585 packets of 100 Bytes). Similar behavior
was also previously reported in [15].

Bad news: ECN+-enabled servers do not respond to

congestion in the SYN/ACK. For the 3.51percent of servers
of the Alexa top-500K that respond with a SYN/ACK with
the ECT codepoint, they all show the same odd behaviour,
which superficially seems like ECN+. However, none of them
respond to an ECE flag in the ACK of the 3WHS, none
respond with a second non-ECT SYN/ACK, and none reduce
their initial congestion window, all contrary to the ECN+ RFC.
Instead, they all enter Congestion Avoidance phase (i.e. in the
second RTT the congestion window is 1 MSS larger than IW).

CONCLUSIONS

This article opens another chapter in the sorry tale of ECN
deployment. It was not all bad news. We found good news for
the deployment of ECN++, which was the original subject
of the study. And we can confirm that ECN adoption is
proceeding well over fixed networks. However, we found bad
news over mobile. More than half of the 18 mobile carriers
tested routinely wipe the ECN field of all packets from clients.
Fortunately, wiping the ECN field at the first hop only denies
the benefits of ECN to the connection; the session otherwise
proceeds as normal.

ECN problems in mobile have not surfaced before because
this is the first ECN study to have extended to a broad enough
set of mobile vantage points. This is due to the considerable
work needed to build infrastructure like MONROE, which
makes it feasible to measure the effect of kernel level changes
over a wide range of mobile networks.

REFERENCES

[1] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP,” RFC 3168 (Proposed Standard),
Internet Engineering Task Force, Sep. 2001, updated by RFCs 4301,
6040. [Online]. Available: http://www.ietf.org/rfc/rfc3168.txt

[2] J. H. Salim and U. Ahmed, “Performance Evaluation of Explicit
Congestion Notification (ECN) in IP Networks,” RFC 2884
(Informational), Internet Engineering Task Force, Jul. 2000. [Online].
Available: http://www.ietf.org/rfc/rfc2884.txt

[3] S. Floyd, “Inappropriate TCP Resets Considered Harmful,” RFC 3360
(Best Current Practice), Internet Engineering Task Force, Aug. 2002.
[Online]. Available: http://www.ietf.org/rfc/rfc3360.txt

[4] B. Trammell, M. K’́uhlewind, D. Boppart, I. Learmonth, G. Fairhurst,
and R. Scheffenegger, “Enabling Internet-Wide Deployment of
Explicit Congestion Notification,” in In Proc Passive & Active
Measurement (PAM’15) Conference, 2015. [Online]. Available: http:
//ecn.ethz.ch/ecn-pam15.pdf

[5] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),”
Proc. ACM SIGCOMM’10, Computer Communication Review, vol. 40,
no. 4, pp. 63–74, Oct. 2010.

[6] B. Briscoe (Ed.), K. De Schepper, and M. Bagnulo, “Low Latency,
Low Loss, Scalable Throughput (L4S) Internet Service: Architecture,”
Internet Engineering Task Force, Internet Draft draft-ietf-tsvwg-
l4s-arch-00, Apr. 2017, (Work in Progress). [Online]. Available:
https://tools.ietf.org/html/draft-briscoe-tsvwg-l4s-arch

[7] P. Bhooma, “TCP ECN: Experience with enabling ECN
on the Internet,” 98th IETF MAPRG Presentation, 2017.
[Online]. Available: https://www.ietf.org/proceedings/98/slides/
slides-98-maprg-tcp-ecn-experience-with-enabling-ecn-on-the-internet-padma-bhooma-00.
pdf

[8] M. Kühlewind, S. Neuner, and B. Trammell, “On the State of ECN
and TCP Options on the Internet,” in Passive and Active Measurement:
14th International Conference, PAM 2013, Hong Kong, China, March
18-19, 2013. Proceedings. Springer, Mar. 2013, pp. 135–144. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-36516-4 14

[9] A. Kuzmanovic, A. Mondal, S. Floyd, and K. Ramakrishnan, “Adding
Explicit Congestion Notification (ECN) Capability to TCP’s SYN/ACK
Packets,” RFC Editor, Request for Comments RFC5562, Jun. 2009.
[Online]. Available: https://tools.ietf.org/html/rfc5562

[10] M. Bagnulo and B. Briscoe, “ECN++: Adding Explicit Congestion
Notification (ECN) to TCP Control Packets,” Internet Engineering
Task Force, Internet Draft draft-bagnulo-tcpm-generalized-ecn-04, May
2017, (Work in Progress). [Online]. Available: https://tools.ietf.org/
html/draft-bagnulo-tcpm-generalized-ecn

[11] B. Briscoe, M. Kühlewind, and R. Scheffenegger, “More Accurate ECN
Feedback in TCP,” Internet Engineering Task Force, Internet Draft draft-
ietf-tcpm-accurate-ecn-02, Oct. 2016, (Work in Progress). [Online].
Available: http://tools.ietf.org/html/draft-ietf-tcpm-accurate-ecn

[12] A. Medina, M. Allman, and S. Floyd, “Measuring the Evolution of
Transport Protocols in the Internet,” SIGCOMM Comput. Commun.
Rev., vol. 35, no. 2, pp. 37–52, Apr. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1064413.1064418

[13] J. Postel, “Internet Control Message Protocol,” RFC 792 (INTERNET
STANDARD), Internet Engineering Task Force, Sep. 1981, updated by
RFCs 950, 4884, 6633, 6918. [Online]. Available: http://www.ietf.org/
rfc/rfc792.txt

[14] F. Baker, “Requirements for IP Version 4 Routers,” RFC 1812 (Proposed
Standard), Internet Engineering Task Force, Jun. 1995, updated by RFCs
2644, 6633. [Online]. Available: http://www.ietf.org/rfc/rfc1812.txt

[15] J. Padhye and S. Floyd, “On Inferring TCP Behavior,” Proc. ACM
SIGCOMM’01, Computer Communication Review, vol. 31, no. 4, pp.
287–298, Oct. 2001, (Aka. Identifying the TCP Behavior of Web
Servers). [Online]. Available: http://www.icir.org/tbit/

http://www.ietf.org/rfc/rfc3168.txt
http://www.ietf.org/rfc/rfc2884.txt
http://www.ietf.org/rfc/rfc3360.txt
http://ecn.ethz.ch/ecn-pam15.pdf
http://ecn.ethz.ch/ecn-pam15.pdf
https://tools.ietf.org/html/draft-briscoe-tsvwg-l4s-arch
https://www.ietf.org/proceedings/98/slides/slides-98-maprg-tcp-ecn-experience-with-enabling-ecn-on-the-internet-padma-bhooma-00.pdf
https://www.ietf.org/proceedings/98/slides/slides-98-maprg-tcp-ecn-experience-with-enabling-ecn-on-the-internet-padma-bhooma-00.pdf
https://www.ietf.org/proceedings/98/slides/slides-98-maprg-tcp-ecn-experience-with-enabling-ecn-on-the-internet-padma-bhooma-00.pdf
http://dx.doi.org/10.1007/978-3-642-36516-4_14
https://tools.ietf.org/html/rfc5562
https://tools.ietf.org/html/draft-bagnulo-tcpm-generalized-ecn
https://tools.ietf.org/html/draft-bagnulo-tcpm-generalized-ecn
http://tools.ietf.org/html/draft-ietf-tcpm-accurate-ecn
http://doi.acm.org/10.1145/1064413.1064418
http://www.ietf.org/rfc/rfc792.txt
http://www.ietf.org/rfc/rfc792.txt
http://www.ietf.org/rfc/rfc1812.txt
http://www.icir.org/tbit/

	References

