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ABSTRACT
After ECN (Explicit Congestion Notification) was first added
to the Internet Protocol in 2001, it was hit by a succession of
deployment problems. Studies in recent years have claimed
that path traversal of ECN has become close to universal.
In order to test whether a performance enhancement called
ECN++ would face a similar deployment struggle, we mea-
sured its deployment over mobile as well as fixed networks.
In the process, we discovered some bad news for the base
ECN protocol—more than half the mobile carriers we tested
wipe the ECN field at the first upstream hop. This throws
into question whether previous studies used representative
vantage points. This paper also reports the good news that,
wherever ECN gets through, we found no deployment prob-
lems for the ECN++ enhancement. The paper includes the
results of other more in-depth tests to check whether servers
that claim to support ECN, actually respond correctly to ex-
plicit congestion feedback, including some surprising con-
gestion behaviour unrelated to ECN.

Given the results challenge accepted beliefs, this short pa-
per has been produced to report the main findings accom-
panied by the measurement data. More detailed results and
further testing continues.

1. INTRODUCTION
Expicit Congestion Notification (ECN) [26] is a way to

mark packets to indicate that the capacity of a link is ap-
proaching exhaustion. ECN was standardized as a straight
replacement for loss signals, but increasingly ECN is also
being recognized as critical for low delay [32].

Despite early evidence of its positive impact [27], a suc-
cession of unfortunate incidents stalled ECN deployment for
15 years: some firewalls treated all TCP/ECN connection at-
tempts as port scanning attacks [14]; TCP/ECN connection
attempts were mistakenly discarded by certain home router
models and one popular model crashed [30]; and when rou-
tinely wiping the Diffserv field between networks, a bug
wiped the IP/ECN field too.

In recent years, ECN adoption on end-systems has accel-

erated, with the majority of servers supporting ECN [31].
Currently, motivated by an increasing need to reduce queu-
ing delay in modern networks, solutions such as DCTCP [3]
in data centers or L4S [9] in public networks are further
driving interest in ECN. In 2016, Apple enabled client ne-
gotiation of TCP ECN in a random subset of iOS and ma-
cOS devices. In March 2017 they presented a measurement
study [7] showing almost universal path traversal support for
ECN. Other recent measurement studies [6, 17, 31] are con-
sistent with these findings.

The original ECN specification for TCP [26] prohibited
retransmitted packets and control packets from using ECN.
This was unfortunate, because TCP performance, particu-
larly short-flow completion time, is much more sensitive to
loss of certain control packets, such as the SYN at the start
of a connection [16, 18].

A new proposal called ECN++ [4] proposes safe ways to
remove all the original prohibitions on using ECN on each
type of TCP packet. As with any new protocol, ECN++
can experience deployment problems, either because exist-
ing networks and servers protect themselves against out-of-
the-ordinary behavior, or because optimizations have been
built around a narrow and unchanging interpretation of the
way protocols work [15].

Therefore, this study sets out to measure how much exist-
ing networks and servers would mangle or block the ECN++
updates to TCP/IP. We test ECN and ECN++ support in both
fixed and mobile networks. In particular, we test 18 mobile
carriers, making it, to the best of our knowledge, the largest
measurement study of ECN in mobile networks so far (even
Apple had only tested three mobile carriers [10]). Although
we only set out to measure ECN++ support, our measure-
ments from mobile vantage points challenge the accepted
belief that path traversal of ECN itself is free of problems.

The study does not just check for correct transitions of
protocol fields; it also checks behavior. That is, it checks
whether ECN-capable servers correctly reduce their rate in
response to ECN feedback.

The paper offers the following main contributions:
Bad news: More than half of the mobile carriers we tested
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bleach (clear) the ECN field at the first upstream IP hop.
This contradicts the impression of hardly any ECN traver-
sal problems that has been reinforced by all recent studies.
Nonetheless, our testing with fixed connectivity is consistent
with these previous studies.

But not awful news: Bleaching ECN is benign1, the con-
nection continues, but without the benefits of ECN. We find
no evidence of the ECN capability being blocked.

Good news: Wherever ECN gets through, we find no
problems for ECN++. We also find no problems with how
servers respond to ECN-marking, but we do find some inter-
esting congestion behaviors unrelated to ECN.

2. ECN BACKGROUND
ECN [13] can be deployed in any buffer in any network el-

ement. A bottleneck buffer will mark the standardized ECN
field [26] increasingly often as it detects early signs of in-
creasing load. These ECN markings then propagate to all
the hosts receiving data through the buffer. In turn, the re-
ceivers feed back these signals to the respective hosts that
are sending them data. The aim is that data senders will use
this feedback to regulate the load on the bottleneck buffer.

ECN is intimately tied to Active Queue Management (AQM)
technology. With AQM, buffers drop a small proportion of
packets at the first sign of queue growth to fool TCP senders
into thinking the buffer is full and backing off. ECN allows
AQM to keep the queue short without dropping packets.

2.1 ECN in IP

Codepoint IP/ECN field Meaning
not-ECT 00 Not ECN-capable transport
ECT(0) 10 }

ECN-capable transportECT(1) 01
CE 11 Congestion experienced

Table 1: The ECN field in IP

The ECN field has two bits, hence it supports the 4 code-
points in Table 1. Before using ECN, the standard requires
a data sender to have checked that the receiver has logic for
feeding back ECN markings. Each transport protocol (TCP,
SCTP, QUIC, etc.) does this differently. If at least one end
does not support ECN, there is not an ‘ECN-capable trans-
port’ (ECT) so the sender must set not-ECT in all packets,
which is also what legacy hosts send by default. According
to [26], ECT(0) and ECT(1) are equivalent and either can be
set by the sender to signify the packet is ECT, which means
"ECN-capable but not ECN-marked".

Network elements have to check the ECN field before us-
ing ECN. If it is not-ECT (00), they must use drop rather
than the CE codepoint to indicate congestion. If the ECN

1Nonetheless, if other links precede the cellular hop (e.g. a home
router or bus/train connected over cellular), any CE-marking in-
troduced in the home or vehicle network would be wiped, which
would fool ECN sources into overrunning their local network.

field is non-zero, any buffer can set the CE codepoint (11)
increasingly often to indicate increasing congestion.

2.2 ECN in TCP
Three flags in the main TCP header are assigned to ECN.

They are called NS, CWR and ECE for Nonce Sum, Conges-
tion Window Reduced and Echo Congestion Experienced.
These names are not descriptive of their usage in most cir-
cumstances, so this paper will represent them as a 3-bit code-
point, as shown in the ‘flags’ column of Table 2.

Table 2 succinctly supports the following explanations of
standard ECN (this section), Accurate ECN (§ 2.3) and ECN++
(§ 2.4). For the present explanation of standard ECN, ignore
the AccECN rows at the bottom and the ECN++ column on
the right. Also, the NS TCP flag is not used for standard
ECN (always zero).

For the example of an ECN client contacting an ECN
server, the table should be read down the rows as follows.
The client sends an ‘ECN setup SYN’ with TCP ECN flags
011 and the server responds with an ‘ECN setup SYN/ACK’
with TCP ECN flags 001. Only 00 is allowed in the IP ECN
field of both these handshake packets, as shown in the ‘Al-
lowed IP ECN’ column.

Once the TCP connection is established, ECN feedback
proceeds independently in either direction for the two half-
connections. Regular data packets have 000 in the TCP ECN
flags and, according to the IP ECN column, the data sender
can set either ECT codepoint (XX means theoretically any
of the 4 values in Table 1 are allowed). Then, if conges-
tion is experienced along the path, the buffer will set the CE
codepoint on some of these packets.

The data receiver will then feed this back by setting the
Echo CE (ECE) flag in the TCP header of acknowledgement
(ACK). The data sender then confirms receipt of a new ECE
flag by setting the CWR flag on the next segment, which
confirms (or at least claims) that it has reduced its conges-
tion window (cwnd). For reliability against loss of an ECE
message, the data receiver is required to set the ECE flag re-
peatedly on every ACK until it receives the CWR, one round
trip later.

2.3 Accurate ECN
Because the original ECN scheme repeats the ECE flag

for a whole round trip for reliability, more than one CE mark
within a round trip cannot induce any more feedback. Since
2010, it has become well-known [3,9] that queuing delay can
be reduced to extremely low levels if more accurate feed-
back gives the extent, not just the existence, of CE-marking.
AccECN [8] adds more accurate ECN feedback to TCP. We
introduce it in our testing, but we do not expect to find it in
the wild yet because standardization is not yet complete.

The handshake for a client and server supporting AccECN
feedback can be seen in the AccECN setup SYN and SYN/
ACK rows of Table 2. We will not step through the table
again, except to highlight differences. The 110 combina-
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Feedback Packet TCP ECN flags (NS:CWR:ECE) Allowed IP ECN
mode Description flags ECN ECN++
Non-ECN All ECN disabled 000 00 00

ECN

SYN ECN setup SYN 011 00 00
SYN/ACK ECN setup SYN/ACK 001 00 XX

Data
Regular 000 XX XX
Echo CE 001 XX XX
CWnd Reduced 010 XX XX

Control & RTX Same as data packet 00 XX

AccECN

SYN AccECN setup SYN 111 00 XX

SYN/ACK AccECN setup SYN/ACK 010 00 XX
—Ditto— with CE Echo 110 00 XX

Data CE counter XXX XX XX
Control & RTX 00 XX

Table 2: Allowed IP ECN field for all types of TCP packet in all three feedback modes. X means 0 or 1

tion of TCP ECN flags allows feedback on the SYN/ACK
in the event that the SYN arrives at the server with a CE
mark, otherwise the SYN/ACK uses 010. This enables the
SYN to be ECN-capable (see ECN++ in § 2.4). Once an Ac-
cECN connection is established, an AccECN data receiver
uses the ECN TCP flags as a 3-bit counter to continually re-
peat feedback of a count of how many CE-marked packets it
has received over the half-connection.

2.4 ECN++
When ECN was first standardized, SYNs and SYN/ACKs

were precluded from being ECN-capable at the IP layer. IP/ECN
was similarly prohibited for pure ACKs, window probes, and
retransmissions (termed ‘Control and RTX’ in Table 2). In
2005, the IETF sanctioned an experiment allowing IP/ECN
on the SYN/ACK, termed ECN+ [18, 19].

The ECN++ proposal has found ways to safely allow each
type of TCP control packet or retransmission to use IP/ECN,
including FIN (finish) and RST (reset) packets as seen in the
rightmost column of Table 2. ECN++ can be used with either
standard ECN feedback or AccECN feedback. Except, the
SYN can only be ECN-capable in the IP header if it requests
AccECN feedback in the TCP flags (111). This is because
only AccECN provides space in the SYN/ACK for feedback
in the event that the SYN gets CE-marked.2

3. RELATED WORK
The extent to which the Internet deploys and supports ECN

has been a topic visited repeatedly over the past 15 years [6,
7, 17, 21, 22, 31]. Previous work focused on three main as-
pects of ECN-readiness, namely, server-side support, end-
to-end path support and, finally, client-side support.

Measurements of server-side support usually focus on the
population of web servers as ranked by Alexa. While quan-
tifying ECN server-side support in 2004, Medina et al [22]
found that as little as 2.1% of the servers tested supported
2If the server does not support AccECN at all, for safety the client
has to behave as if it had received feedback of a CE on the SYN.

ECN. Ten years later, Trammell et al [31] report an accel-
eration in the deployment of ECN-capable servers, finding
56.17% of ECN-capable servers. In this paper, we corrobo-
rate the acceleration of ECN deployment for wired networks
and Alexa servers, and we extend the study to mobile net-
works and ECN++.

Regarding support of ECN by the network elements on the
end-to-end path, in 2013, Kühlewind et al [17] tested 22,487
hosts and reported that in 0.9% of cases ECN was not usable
due to middleboxes along the path. Later, in 2015, Trammell
et al [31] finds that when testing 326,743 hosts capable of
negotiating ECN, for 0.02% of them (107 hosts) a device on
the path mangles the TCP/ECN flags. We note that all these
above-mentioned efforts report on measurements performed
mostly in fixed networks. Only recently, in March 2017,
Apple [7] reported 100% positive results after testing from
vantage points connected to ‘a few’ mobile carriers, which
on further investigation meant three carriers [10].

As mobile broadband networks accommodate more traf-
fic, there is a pressing need for similar analysis of mobile
carriers, which are known to represent a middlebox-rich en-
vironment. Because of the difficulty of instrumenting mo-
bile devices to perform ECN measurements, there is little
prior work [7, 17]. In this paper, we present the largest mea-
surement study of ECN support in mobile networks to date,
using vantage points connected to 18 mobile operators. The
results we find in this paper contrast with the prior work,
providing a different picture of the current support of ECN
(in particular in mobile networks) and unraveling significant
challenges yet to overcome towards global ECN adoption.

We do not just check for correct transitions of protocol
fields, but also characterize the TCP behavior of the servers
we test. We leverage the TBIT methodology, introduced by
Padhye et al. [23]. TBIT is a tool designed specifically to
characterize the TCP behavior of web servers – to answer
questions such as the distribution of TCP’s initial value of
the congestion window on servers in the wild. Spoofing con-
gestion markings has also been proposed for receiver com-
pliance testing by operational servers [29].
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4. EXPERIMENTS
The goal of our experiments is to test how the ECN++

modifications to TCP/IP just described in § 2.4 would be
treated in the current Internet, particularly over mobile net-
works. In order to do that, we designed two series of exper-
iments. The first series of tests explores how the different
ECN++ related fields are treated by the currently deployed
base of network elements and servers. The second series of
tests measures how the congestion control algorithms run-
ning in deployed servers react to ECN+ congestion signals.
In both cases, we design our experiments to measure how
equivalent non-ECN and ECN packets are treated in order to
compare them with the ECN++ measurement results.

4.1 ECN++ support
The experiments to test support for ECN++ exchange TCP

control packets and pure ACKs with different values in the
ECN-related fields and check how those packets are treated
by the network and by servers. We next describe the tests
performed for each type of packet.

4.1.1 TCP SYN and TCP SYN/ACK
To test support for ECN++ in the SYN and the SYN/ACK,

we design the experiments to exchange packets containing
the values used by ECN++ in the ECN field of the IP header
and in the TCP ECN flags. We design two types of experi-
ments, namely, client-side experiments and client/server ex-
periments. In the client-side experiments, we only control
the client side that sends the TCP SYN packets against ex-
isting servers in the Internet (Alexa top 100k servers). This
allows us to learn information about a large number of paths
and about support for ECN++ in both network elements and
servers.

While client-side measurements provide a lot of informa-
tion about support for ECN++ in the SYN packet, it usually
provides little information about support for ECN++ in the
SYN/ACK packet, since the SYN/ACK packet is generated
by a server that is out of our control and does not support
ECN++.

In the client/server experiments we control both the clients
and servers of the connection. This allows us to perform ex-
haustive testing of all possible combinations of AccECN and
ECN++ fields both in the SYN and the SYN/ACK. However,
these experiments are limited to a few servers that we con-
trol, which also constrains the number of paths traversed.

Client-side experiments.
To observe how the ECN field in the IP header is treated

by network elements we use Tracebox [12]. Tracebox uses
the same principle as traceroute (i.e., sends packets with in-
creasing TTL and receives an ICMP TTL exceeded error
message from the router that discards the original packet
when the TTL reaches zero). Tracebox uses information
about the original packet returned in the ICMP error mes-
sage to identify any changes in the IP header.

We run Tracebox sending TCP SYN packets with differ-
ent codepoints in the ECN field of the IP header enumerated
in Table 2. We executed these tests with all possible combi-
nations of the CWR and ECE flags. With this test, we check
whether the ECN field is modified, and if so at which hop
along the path it is modified.

While Tracebox is very powerful for seeing how the fields
in the IP header are treated, it cannot detect the changes in
the ECN flags in the TCP header. This limitation stems from
the fact that most routers implement RFC792 [24] which re-
quires them to return only the first 64 bits of the IP payload
of the packet (leaving out all the ECN related flags later in
the TCP header) while a few routers implement RFC1812 [5]
which requires them to return the full packet if possible. Be-
cause of this, we implement a test that directly sends SYN
packets from the clients we control to the Alexa top 100k
servers with the different values for the ECN codepoints and
TCP flags used by ECN and ECN++ as described in the rows
corresponding to SYN packets in Table 2.

This test enables us to check, through the reception of
the SYN/ACK, if the SYN was delivered to the server and
the server processed it. We can further identify how many
servers use RFC3168 [25] (Classic ECN) and how many
servers use RFC5562 [20] (ECN+).

Client/server experiments.
In these experiments we control the client and the server

side. We implement both a client and a server side of the
test that exchange every allowed ECN++ packet sequence.
We also test for the case where ECN is not used. We test for
the possible SYN-SYN/ACK packet sequences involving the
different codepoint/flag combinations described in the SYN
and SYN/ACK rows of Table 2.

4.1.2 Data packets, pure ACKs and FINs
We designed these experiments to show how the ECN++

FIN and pure ACK packets are treated by the network and
the servers. We also measure how ECN-enabled data packets
are treated to establish a baseline for comparison. Like pre-
vious experiments, we perform both client-side and client/server
experiments (i.e., we perform these experiments with the
Alexa top 100k servers and with our own servers).

In the experiments, the client uses Tracebox with PureACKs,
Data packets, and FINs with the different combinations of
the ECN codepoints and TCP flags included in the rows de-
scribing data packets, and ’Control and RTX’ in Table 2. In
all cases, the client establishes a standard ECN TCP connec-
tion before sending the test packets.

4.2 Response to congestion signal
We execute a number of client-side experiments to de-

termine how the deployed base of ECN-enabled servers re-
spond to ECN congestion signals. In particular, we want
to learn if the congestion response to a CE marked packet
echoed through one or more packets with the ECE flag set
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is equal to the response to three duplicate ACKs. We test
for the case when a data packet is marked with CE (regu-
lar ECN) and the case when the CE marked packet is the
SYN/ACK (ECN+ case). The approach we use is similar
to the one used by TBIT [23]. For a given server, we mea-
sure the Initial Window (IW) of the TCP connection. Af-
ter learning this, we establish a new TCP connection to the
same server and we pretend that the first data packet sent by
the server has experienced congestion (either pretending the
packet is lost and by sending 3 duplicated ACKs or by send-
ing the ACK for that packet with the ECE flag set) and we
measure the resulting congestion window after such a con-
gestion signal, learning the response to congestion from the
server in these two situations (CE mark, or packet loss). In
particular, we are able to learn if the response is the same
for the two congestion signals. We also perform this test
pretending that the packet that encountered congestion is the
ACK of the TCP three way handshake (3WHS), allowing
us to test the congestion response for servers that support
ECN+.

4.3 Experimental Setup
We perform all the experiments we designed and described

above between January and May 2017. For the client-side
experiments, we use both the MONROE platform (mobile
carriers) and PlanetLab (wired service providers). The MON-
ROE platform [2] is the first open source [1] and open ac-
cess hardware-based platform for independent, multihomed,
large-scale experimentation in commercial mobile environ-
ments. MONROE allows authenticated external users to ac-
cess the platform and deploy their own experiments. The
platform comprises hundreds of nodes multihomed to three
of the mobile providers in each of 4 EU countries (Spain,
Italy, Sweden, Norway). For the purpose of this study, we in-
strument 11 MONROE nodes distributed in all the countries
with MONROE coverage. We measure the following mobile
carriers: Vodafone (IT), TIM (IT), WIND (IT), Orange (ES),
Yoigo (ES), Movistar (ES), Telia (SE), Telenor (SE), Three
(SE), Telia (NO), Telenor (NO). To test wired providers, we
instrument 54 PlanetLab [11] nodes distributed in 25 net-
works over 22 countries.

All experiments test two TCP ports, namely port 80 and
port 443. We execute all the tests both from the MONROE
and Planetlab nodes. In all cases, we test only IPv4 hosts.
We run the experiments we describe in § 4.1.1 and § 4.1.2
towards the Alexa top 100k web servers and to our own
servers. We run the experiments we describe in § 4.2 towards
the Alexa top 500k web servers, allowing us to also measure
support for ECN in the wild. MONROE nodes resolve the
Alexa top-N websites using Google’s public DNS resolver;
not the mobile carrier’s default resolver. This enables us
to build a vast and complex dataset, which we open to the
community3. For example, considering that each client at-

3You can access the dataset at http://www.it.uc3m.es/
amandala/ecn++/.

tempts to send TCP SYN packets with 4 different codepoints
in the ECN field of the IP header (Table 1) and TCP SYN
and SYN/ACK packets with 5 different combinations for the
TCP flags (Table 2), we collect information for a total of 26
million end-to-end communications, testing 6.5 million dif-
ferent paths.

5. FINDINGS
In this section, we describe the main findings of our mea-

surement study.
Bad news: 7.5 out of 11 Mobile operators tested bleach

ECN in outgoing packets. Using Tracebox in the MON-
ROE nodes we find that 7 out of 11 Mobile operators bleach
the ECN field in the IP header for all ECN codepoints in all
packets going from the client to the Internet, for all types
of packets tested (SYN, data packets, pure ACKS and FINs)
and for both ports (80 and 443). The operators bleaching
ECN are: Yoigo (ES), Orange (ES), Vodafone (IT), TIM
(IT), Wind (IT), Telia (NO), Telia (SE). In all the bleach-
ing cases, we observe that the ECN field is cleared in the
first hop (i.e., the mobile operator is clearing it in its radio
access).

One mobile operator (Movistar (ES)) bleaches the IP/ECN
field only for port 80 and not for port 443. Using the client/server
experiments, we learn that Movistar is using a web proxy
that does not support ECN 4. We find that two other providers,
TIM and Vodafone, also use a proxy on port 80.

For the three mobile operators that honor the IP/ECN field
in outgoing packets, (Telenor(NO), Telenor(SE) and 3 (SE)),
we observe that 0,53% of paths bleach the ECN field of
outgoing packets further than 5 hops away. We find sim-
ilar results in the experiments using the PlanetLab clients
(0,23% bleaching), which is consistent with other measure-
ments (see § 3).

Regarding incoming packets (towards the client), through
client/server experiments we find that all providers that do
not use a proxy honour the value in the ECN field. We ver-
ified this by sending ECT marked packets from our servers
to all the MONROE clients in the different ISPs.

We conjecture that ECN bleaching could be due to a bug
seen occasionally since 2009, where routers apply a Diff-
Serv policy for bleaching the Differentiated Service Code
Point (DSCP) that incorrectly wipes the ECN field as well
(before 1998, both fields were combined in the ToS field).
We try to validate that hypothesis by correlating changes to
DSCP values and ECN bleaching. For this, we use Trace-
box with all possible IP/ECT codepoints (see Table 1) and
a random DCSP value. We find no correlation is possible
because mobile operators always change the DSCP. These
results neither invalidate nor confirm our hypothesis. We are
in the process of contacting the ISPs to try to validate it.

Given the majority of mobile carriers that bleach the IP/ECN
4We observe that the TCP 3WHS is established between the client
and the proxy first and when the HTTP GET is issued, the proxy
establishes a connection with the server

5

http://www.it.uc3m.es/amandala/ecn++/
http://www.it.uc3m.es/amandala/ecn++/


codepoint, we complement the set of mobile networks we
measure with 7 additional operators active in 4 countries
other than the ones with MONROE coverage (i.e., Elisa (FI),
DNA (FI), Vodafone (DE), Blau (DE), Vodafone (UK), O2
(UK), Base (BE)). For these, we run a limited set of measure-
ments only against four servers (two that we control and two
that run in the wild). We find that out of the seven mobile
carriers, 3 of them (DNA (FI), Vodafone (UK), O2 (UK))
present the same IP/ECN bleaching behavior in the first hop
as the other 7.5 carriers we identified in MONROE.

Good news: ECN fields do not cause packet drop. As
previously mentioned, Tracebox is unsuited for measuring
traversal of the TCP/ECN flags because the deployed router
base implements RFC792. In our dataset, we find that only
2,4% of routers (11k out of 468k) along the paths we tested
are RFC1812-compliant. Through our client-side, end-to-
end tests, we find that, irrespective of the TCP/ECN flags and
IP/ECN codepoint combination, for the 6,5M paths tested,
the packets sent using different TCP/ECN value combina-
tions are acknowledged by the other end. We find this to be
true for SYNs (we receive a SYN/ACK back), for data pack-
ets and FINs (we received ACKs back). It is true both for
mobile and wired operators. This does not means the ECN
related fields arrive at the other end unchanged though (we
know it is not the case for the ECN field in the IP header, as
per the previous finding). Through the client/server experi-
ments, we observe that while the IP/ECN field is frequently
bleached, all tested paths forward the TCP flags unchanged,
except for the paths going through the mobile operators that
use a non-ECN-capable proxy on port 80 (i.e., Movistar (ES)
and TIM(IT)). Vodafone (IT) uses an ECN-capable proxy
that honors the TCP flags.

Good news: ECN++ support is as good as ECN sup-
port. As described in the two earlier findings, we observe
that in the 6,5M paths tested, ECN++ packets are treated
by the network in the same way as ECN packets. In other
words, ECN bleaching occurs as often in SYN, PureACKs
and FIN packets as in data packets. The combinations of
the ECN related fields used by ECN++ are not discarded or
bleached more often than when used in ECN.

Good news: 61% of Alexa top 500k server supports
ECN. We used the results of the experiments we describe
in § 4.2, which we ran against Alexa top 500k web servers.
Our finding corroborate the acceleration of ECN deployment
reported in previous work [17, 31]. We also observe that
3.51% of servers (10,709) support ECN in the SYN/ACK, a
slight increase over the 1.3% reported in [31]. Five of them
answer with ECT(1) in the SYN/ACK, while the others use
ECT(0).

Good news: All the ECN-capable top-500k Alexa servers
we were able to test have the same response to ECE as to
3 DupACKs. Out of the 305k Alexa servers that support
ECN, we were able to test 158k of them for their congestion
response to ECE marks. We found that their response to an
ECE mark is the same to the response to 3 DupACKs. We

were unable to test the congestion response of 147k servers
for various reasons, including that we were unable to find
enough content to fill the IW; or that they were redirected.

Good news: At least, 51% of the Alexa top-500k servers
support IW of 10 segments. Additionally, out of the Alexa
top-500k, 9.2% support IW of 2 segments and 9.3% support
IW of 4 segments. We were unable to measure the IW of 74k
(14%) of the servers because we were unable to find enough
data to fill IW.

Bad News: 0.4% of the Alexa top-500k servers use IW
larger than 10. The 0.4% we observe account for 1,745
servers, all using an IW larger than 10. Out of these, 1,121
servers deliver the whole file in the first RTT (the largest IW
observed is 585 packets of 100 Bytes). Similar behavior was
also previously reported in [23].

Bad news: ECN+-enabled servers do not respond to
congestion in the SYN/ACK. For the 3.51% of servers of
the Alexa top-500K that respond with a SYN/ACK with the
ECT codepoint, they all show the same odd behaviour, which
superficially seems like ECN+ [28]. However, none of them
respond to an ECE flag in the ACK of the 3WHS, none re-
spond with a second non-ECT SYN/ACK, and none reduce
their initial congestion window, all contrary to the ECN+
RFC. Instead, they all enter Congestion Avoidance phase
(i.e. in the second RTT the congestion window is 1 MSS
larger than IW).

6. CONCLUSIONS AND FUTURE WORK
This paper opens another chapter in the sorry tale of ECN

deployment. It was not all bad news. We found good news
for the deployment of ECN++, which was the original sub-
ject of the study. And we can confirm that ECN adoption
is proceeding well over fixed networks. However, we found
bad news over mobile. More than half of the 18 mobile carri-
ers tested routinely wipe the ECN field of all incoming pack-
ets. Fortunately, wiping the ECN field at the first hop only
denies the benefits of ECN to the connection; the session
otherwise proceeds as normal.

ECN problems in mobile have not surfaced before be-
cause this is the first ECN study to have extended to a broad
enough set of mobile vantage points. This is due to the
considerable work needed to build infrastructure like MON-
ROE, which makes it feasible to measure the effect of kernel
level changes over a wide range of mobile networks.

We conjecture that wiping ECN could be due to a bug,
where wiping the Diffserv field accidentally includes ECN.
Similar bugs have been fixed quickly in the past. We could
not prove any correlation between ECN and Diffserv wiping,
given we found Diffserv is always wiped. We plan further
work on this, in cooperation with the affected carriers.
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