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ABSTRACT
Invalid ad traffic is an inherent problem of programmatic advertis-
ing that has not been properly addressed so far. Traditionally, it has
been considered that invalid ad traffic only harms the interests of
advertisers, which pay for the cost of invalid ad impressions while
other industry stakeholders earn revenue through commissions
regardless of the quality of the impression. Our first contribution
consists of providing evidence that shows how the Demand Side
Platforms (DSPs), one of the most important intermediaries in the
programmatic advertising supply chain, may be suffering from eco-
nomic losses due to invalid ad traffic. Addressing the problem of
invalid traffic at DSPs requires a highly scalable solution that can
identify invalid traffic in real time at the individual bid request level.
The second and main contribution is the design and implementa-
tion of a solution for the invalid traffic problem, a system that can
be seamlessly integrated into the current programmatic ecosystem
by the DSPs. Our system has been released under an open source
license, becoming the first auditable solution for invalid ad traffic
detection. The intrinsic transparency of our solution along with
the good results obtained in industrial trials have led the World
Federation of Advertisers to endorse it.
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1 INTRODUCTION
Online advertising is a major social and economic driver of the
so-called Information Society. First, online advertising sponsors free
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offerings of essential services to billions of users, such as Online
Search Services, Map Services, and Social Media. Second, the mar-
ket volume of online advertising reached, only in the US, $88 B in
2017 with an inter-annual growth rate of 21% [30]. Third, online
advertising represents an important source of jobs. For instance,
recent studies have estimated that 1M direct and 6M indirect jobs
were associated with online advertising in the EU-28 workforce in
2015 [38]. Fourth, online advertising represents the fundamental
source of income of the companies at the forefront of technologi-
cal innovations such as Google or Facebook [2, 13]. Therefore, it
is in the best interest of everyone (citizens, governments and the
private sector) to guarantee the sustainable growth of this business.
However, this sustainability is in jeopardy due to several factors.
Arguably, the most important is the high volume of invalid ad traf-
fic, i.e., delivered ads not shown to humans. It is estimated that
every year trillions of delivered ad impressions are not watched by
humans leading to losses of tens of billions of dollars for advertis-
ers [18, 28].

Unfortunately, the identification and filtering of invalid ad traffic
has not been properly addressed so far due to two fundamental
reasons. First, a rapidly increasing fraction of ad transactions occur
through a programmatic ecosystem, where a chain of intermedi-
aries automatically connects advertisers willing to show ads and
publishers owning the inventory (websites, mobile apps) to show
those ads. This automatic process makes the detection of invalid
traffic complex. Second, intermediaries in programmatic advertis-
ing receive a commission for each delivered ad, regardless if it is
invalid or not. Then, it is well accepted the idea that invalid traffic
only harms the interests of advertisers, which pay for the cost of
the invalid ad impressions. Intermediaries in the supply chain get a
commission for each served invalid impression and then they do not
have direct monetary incentives to fight invalid traffic effectively.

Specialized companies referred to as verification vendors (e.g.,
IAS [20], DoubleVerify [11], White Ops [42]) have emerged offering
opaque proprietary solutions for the identification of invalid traf-
fic. Previous research has shown that even simple attack vectors
can defeat these opaque defenses [8, 26]. These solutions do not
properly address the concerns of advertisers, which have become
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increasingly vocal about the uncertainty of the quality of program-
matic media transactions [12, 39, 41] and the lack of transparency
in the ecosystem [4, 9].

To meet the demands of advertisers, in this paper, we present
the first open source (and thus auditable) solution for the detection
of invalid ad traffic in programmatic advertising.

Prior to designing our solution, we have revisited the common
idea that advertisers are the only stakeholders affected by invalid ad
traffic in programmatic advertising. We present an economic model
based on real financial reports of Demand Side Platforms (DSPs)–a
key intermediary in the programmatic advertising ecosystem–and
realistic assumptions on the operational set-up of DSPs, which
provides initial evidence that invalid ad traffic seems to impact the
business model of DSPs negatively. This finding suggests, contrary
to the conventional wisdom, that DSPs may have strong incentives
to filter invalid ad traffic. Our analysis concludes that post-bid
(i.e., non real-time) detection of invalid traffic does not solve the
problem for the DSPs. Instead, DSPs require a solution that can
identify invalid traffic in real-time and at the level of individual ad
transactions. Moreover, DSPs handle up to tens of billions of ad
transactions per day, a factor imposing demanding computational
performance constraints to the invalid traffic detection problem.

The main contribution of this paper is Nameles, an open source
invalid ad traffic detection system that operates in real-time at the
level of individual requests. Therefore, it meets the requirements
of both advertisers and DSPs. Nameles identifies anomalous ad
requests patterns of domains using an algorithm based on Shannon
entropy. Nameles has been built in accord with the latest version
of the OpenRTB specification [23] and is able to handle up to 500 k
ad transactions per second, adding a total delay of less than 3ms
to each ad transaction. As a result, it can be seamlessly integrated
into the programmatic supply-chain as a solution for the DSPs. We
have applied Nameles on a stream of ∼1.8 B daily bid request in
two periods of two months separated one year from each other,
observing that (on average) 20% of the daily ad traffic can be safely
considered invalid.

Nameles’ code is publicly available (under an open source license)
and then auditable by anyone. This intrinsic transparency, along
with the good detection performance shown by the system in exten-
sive industry trials, has led the main global advertiser trade-body,
the World Federation of Advertisers (WFA), to endorse Nameles.

2 BACKGROUND
In this section, we describe the process of serving an ad in program-
matic advertising. We do it with an example of a user visiting a
website, but the process is the same for ads shown in mobile apps.

A user connects to a website offering some ad spaces. Each ad
space is typically leased by the website’s publisher to an ad network
or a Supply Side Platform (SSP), which upon the user’s connection
generates an ad request. This ad request may be forwarded through
several intermediaries until it reaches the Ad Exchange. This part
of the process is known as the sell-side and is represented by Step 1
in Figure 1. The ad request includes the domain name, IP address of
the device, the User Agent, user’s cookie(s), etc. Upon the reception
of the ad request, the Ad Exchange initiates an auction which
represents the buy-side of the programmatic process.

The bidding process of this auction is standardized by the Open-
RTB protocol [23]. First, the Ad Exchange processes the information
included in the ad request to generate a bid request whose format
is specified by the OpenRTB standard [23]. For simplicity, in this
paper, we will consider that a bid request includes the IP address
receiving the ad and the domain name selling the ad space. Each
bid request is sent to the Demand Side Platforms (DSPs) registered
in the Ad Exchange. A DSP is an intermediary where advertisers,
or their agencies, configure their programmatic advertising cam-
paigns. Therefore, upon the reception of a bid request a DSP checks
if the request meets the configuration parameters of any of its ad-
vertising campaigns and if so, it creates a bid response including,
among other information, the price the advertiser is willing to pay
for this ad space. Note that the bid responses to a given bid request
have to be received by the Ad Exchange within 120ms [15]. The
Ad Exchange runs an auction based on the received bid responses
and informs all the participant DSPs about the selected winner bid.
The bidding process is represented by Steps 2-4 in Figure 1. To
finalize the programmatic process the Ad Exchange coordinates
the delivery of an URL from where to retrieve the ad, which is
immediately downloaded by the browser and shown to the user.
This is represented by step 5 in Figure 1.

From a business perspective, each bid event corresponds with
an opportunity to place an online advertisement on a web page for
the advertiser, and an opportunity to monetize an ad placement for
the publisher. Based on their respective commission percentages
(a reference of them obtained from insights from the industry is
presented in Figure 1), the intermediaries are compensated every
time a bid is successfully transacted, and an ad is displayed as
a result. However, the advertiser only benefits when the traffic
associated with the transaction is valid. This business model is
open to fraudulent activity [18, 28, 29] (e.g., a publisher monetizing
visits to a website coming from bots) whereas it seems not to offer
the right incentives to intermediaries to identify and filter invalid ad
traffic. Note that, according to various industry guidelines [14, 41],
invalid traffic is defined to correspond with those bid events where
displaying an ad would not have any potential for advertising effect
and the advertiser would lose its investment without getting anything
in return.

Verification companies (e.g., IAS, Double Verify or White Ops)
have emerged recently offering proprietary opaque solutions for
filtering invalid traffic. However, the lack of transparency on the
used techniques makes it difficult to assess their actual capabilities.
Indeed, recent works have demonstrated inefficiencies in these
solutions [8, 26] and different studies attribute billions of dollars
wasted in invalid traffic every year [18, 28, 29].

3 ECONOMIC IMPACT OF INVALID TRAFFIC
IN DSP COMPANIES

In this section, we refute the argument that advertisers are the
only stakeholders in the programmatic ecosystem negatively af-
fected by invalid traffic [27]. To this end, we provide qualitative and
quantitative economic analyses that support how, under realistic
assumptions, invalid traffic negatively impacts the profitability of
DSP companies.
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Figure 1: Overview of the programmatic advertising ecosystem operation.

-Qualitative Analysis: We investigated seven publicly listed DSP
companies through their annual income statements and found that
only one company had a positive net income. Moreover, depending
on the DSP company, variable costs ranged from 30% to 50% of the
revenue. Variable costs represent a proportion of total costs that
vary as a function of revenue. These findings indicate that the low
profitability of analyzed DSPs has a strong correlation with variable
costs.

The DSP win-rate [9] is defined as the fraction of won bids out of
all auctions. Regardless if an auction the DSP is hosting results in a
win or not, the DSP bears the cost for facilitating that auction. Then,
the inverse of the win-rate indicates how much a DSP company
accumulated variable costs that yield no economic revenue. While
valid bids represent a real opportunity for advertisers that provides
an intangible value even to lost valid bids, in the case of invalid bids
there is not a real opportunity and thus, lost invalid bids contribute
exclusively to increase DSPs costs.

Based on interviews we conducted with DSP companies, we
conclude that the DSP win-rate is typically between 5% to 20%. An
individual advertiser win-rate has been shown to be in the range
0.1% to 1% [44], and ad exchanges (and ad networks) fill-rate (i.e.,
the fraction of successfully completed auctions) is commonly below
40% [35]. Consequently, we assert that there is an oversupply of
programmatic ad inventory. This supports the economic viability
of invalid traffic filtering so that even after removing the invalid ad
traffic there will be still enough ad inventory available for DSPs.

In summary, all the above objective facts show that filtering in-
valid traffic would contribute to reducing the accumulated variable
costs of DSPs without affecting the availability of ad inventory and
as a result would lead to improving profitability and valuation of a
DSP company.

Finally, to maximize the profitability of the DSP company, invalid
bid requests should be identified in real time in the pre-bid stage,
so that variable costs incurred by processing such invalid bids are
minimized since the processing of the bid is stopped in the first
step of the procedure.
-Quantitative Analysis: Net Present Value (NPV) model is the
tool of choice for financial forecasting because it considers the time
value of money, and provides a concrete metric to financial decision-
makers, such as investors, for evaluating investment against the

Table 1: Impact of invalid traffic filtering to economics of
DSPs.

Enterprise Value (EV) Net Present Value (NPV)

No filtering Filtering No filtering Filtering

Max Min Max Min
[F=0,23; P=0] [F=1; P=1] [F=0,23; P=0] [F=1; P=1]

DSP-1 10,544 19,002 -3,269 4,421 8,020 -1,979
DSP-2 2,516 5,194 -3,518 536 1,672 -2,213
DSP-3 3,254 3,833 -1,147 1,237 1,481 -706
DSP-4 1,184 2,973 -2,376 133 892 -1,498
DSP-5 1,702 2,648 -819 634 1,035 -506
DSP-6 1,354 2,342 -1,005 445 863 -628
DSP-7 1,595 2,262 -2,118 310 592 -1,337

Average 3,163 5,468 -2,036 1,101 2,079 -1,267

predicted return [3]. Finance theory endorses an investment if NPV
is positive and higher than NPV of an alternative investment [3].
In addition to the NPV, we evaluated Enterprise Value (EV) [21],
a useful variant of the NPV, that takes into account cash flows
beyond the forecasted time window. Positive NPV and EV values
are reached when the cash inflows exceed cash outflows [3]. NPV
and EV are widely used as decision-making tools for planning
purchases, mergers or acquisitions [3].

We compute NPV and EV for two scenarios; without invalid
traffic filtering (Scenario A), and with filtering (Scenario B). The
timeframe of the analysis is eight years. NPV and EV are computed
based on five key factors:
1) Annual growth rates. In our analysis, they are based on the
industry average of seven publicly listed DSPs’ annual and quarterly
income statements between 2012-2015 [16] and are the same for
both scenarios.
2) Rate of return r . We use r = 20%, which is a typical value for
investments made into new products [3, 22], for both scenarios.
3) Invalid traffic filtering rate F . We consider F = 0 for Scenario A
and F between 0 and 100% for Scenario B.
4) Revenue penalty P (as a dependent factor of F ). We have selected
the parameters of the penalty function to make the penalty increase
in an exponential manner, such that the penalty is low until F =
20 − 30% and it spikes after this point until F reaches 100% where
all traffic is filtered. This function has been carefully constructed so
that a low penalty is imposed for filtering rates up to the average
reported fraction of invalid traffic from different studies [10, 43].



5) Long-term cash flow growth rate G, which is set-up to 2% in
both scenarios [25].

Our results show that there are NPV and EV gains for the DSP
when the filtering rate increases from zero towards F = 23%. Fil-
tering invalid traffic beyond F > 23% first results in diminishing
benefit and eventually drives a decline in revenue for the DSP.
These results confirm our hypothesis that filtering invalid traffic (at
a reasonable rate) improves DSPs profitability due to a reduction in
variable costs. Table 1 shows the minimum and maximum values of
NPV and EV, which correspond to [F;P] values of [0,23;0] and [1;1]
in Scenario B, respectively. We observe that at the optimal filtering
rate, NPV and EV in Scenario B increase (on average) 1,72 and 1,89
times in comparison with Scenario A, respectively.

Finally, we would like to note that the results obtained in this sec-
tion represent a reference example based on realistic assumptions
and should be interpreted as such.

4 DATASET
The dataset used in this paper includes a daily sample of incoming
bid requests stream data collected in two different periods one year
apart and each spanning two months between Dec 2016-Jan 2017
and Dec 2017-Jan 2018, respectively.

The data is from one of the largest DSPs with a significant global
presence. The data consist of desktop and mobile bid events, for
video, banner and in-app inventory. In particular, each daily sample
includes between 1.7-1.9 Billion actual bid requests issued on that
date from ∼50 Ad Exchanges. These bid requests are associated (on
average) to ∼150M IP addresses and ∼900 k domains per day. The
dataset includes the following information per bid request: a unique
identifier, the IP address1 and User Agent of the device initiating the
ad request and the Web Domain or Mobile Application ID selling
the ad space. For simplicity, we refer to both Web Domains and
Mobile Apps as Domains along the paper.

5 SYSTEM REQUIREMENTS, DESIGN AND
IMPLEMENTATION

In this section we describe Nameles, an open source system for the
detection of invalid ad traffic that operates in real time and at the
level of individual bid requests, thus meeting the requirements of
DSPs and advertisers.

5.1 System’s Functional Requirements
1. Scalability: DSPs typically handle tens of billions of bid requests
per day. This maps into peaks of hundreds of thousands of bid
request per second. Nameles must be capable of handling these
high rates of bid requests.
2. Delay: The bid response to a given bid request has to be received
by the Ad Exchange within 120ms [15]. Hence, the delay introduced
by Nameles should be limited to a few milliseconds in order to
minimize the impact in the overall bidding process delay.
3. Accuracy in invalid traffic identification: Providing 100%
guarantee that a bid request is invalid (or not) is not feasible. Instead,
it is more reliable providing a score indicating the likelihood that a

1We anonymize the IP address before any processing.
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bid request is invalid. Therefore, our system must incorporate an
accurate scoring algorithm.

5.2 System Design
In this subsection, we present a brief overview of the system func-
tionality and how it is integrated with the programmatic advertising
ecosystem. Then, we describe in detail each of the functional blocks
forming Nameles.

5.2.1 Overview. Figure 2 depicts a high-level representation of
Nameles functional blocks. Moreover, the figure shows how Name-
les could be integrated into the programmatic ad delivery chain as
an auxiliary service for DSPs. The only difference with respect to
the current operation of a DSP would be that, as part of the pre-bid
phase, the DSP makes a request to Nameles to provide a Confidence
Score per bid request. To this end, the DSP sends a scoring request
to Nameles (step 2 in Figure 2). The scoring request includes the
following fields: bid request id (to allow mapping Nameles result
to the corresponding bid request), IP address of the device asso-
ciated with the ad request and the domain offering the ad space.
This information is included in the bid requests as defined in the
OpenRTB protocol standard [23]. The scoring request is delivered
to two independent modules of Nameles: the Scoring module and
the Filtering module.

Because the DSP has limited information about a bid request to
determine if it is invalid or not, we propose to aggregate all bid
requests from a domain and use statistical analysis to determine the
level of confidence of a domain. This approach provides statistically
robust Confidence Scores for domains since they are computed
from a sample of (at least) hundreds of bid requests. Then, Nameles
assigns to the bid requests from a domain the Confidence Score
of such domain. The Scoring Module is responsible for computing
the Confidence Score for domains present in the bid requests re-
ceived by the DSP. Moreover, it groups the domains in four different
Confidence Classes. This information is summarized in the Scoring
List.

The Filtering module is responsible for classifying in real-time
each received scoring request. To this end, it retrieves the domain
id from the scoring request and obtains the domain’s Confidence
Score and Confidence Class from the Scoring List introduced above.



After that, it creates a scoring reply to be sent to the DSP (Step 3 in
Figure 2). This reply includes the following information: bid request
id (extracted from the corresponding scoring request), the domain
Confidence Score, and the domain Confidence Class.

Finally, the Communication Interface Module handles the com-
munication between the DSP and Nameles.

5.2.2 Communication Interface Module. This module manages the
delivery of scoring requests from the DSP to Nameles and scoring
replies in the opposite direction. We have opted to use a parallel
pipeline communication structure. In particular, the DSP creates
two queues: a sending queue used for pushing scoring requests
to Nameles and a receiving queue for pulling scoring replies from
Nameles in return. Nameles sets up a number of worker processes,
which connect to the sockets associated with both queues. These
workers pull scoring requests from the sending queue and forward
them to the Scoring and Filtering modules. The resulting scoring
replies are pushed by the workers to the receiving queue of the
DSP.

This parallel pipeline communication structure is highly scalable,
being able to handle streams of hundreds of thousands of requests
per second with processing delays below 3ms (see Section 6.2).

5.2.3 ScoringModule. The goal of the scoring module is to produce
a Scoring List of domains to be used by the Filtering module. This
list is updated daily. Since Nameles operates in real-time, the list
used at day d is obtained from a prediction algorithm applied on
the historical Confidence Score values of domains at days d − 1,
d − 2, d − 3, ... This module implements three different algorithms
to produce the Scoring List: one to compute the Confidence Score
of each domain, a second to compute the Confidence Classes, and a
third to derive the Scoring list to be used at day d based on historical
information. Next, we describe each of these algorithms.
- Confidence Score computation: A DSP can reconstruct the
traffic pattern associated with a given domain X by analyzing the
distribution of a number of requests across the IP addresses in-
cluded in the bid requests associated to X . This is the fundamental
signal used by our algorithm. Skewed distributions, where most
bid requests come from just a few IP addresses, are for obvious
reasons suspicious2 and thus domains presenting such traffic pat-
terns should be assigned low Confidence Scores. Instead, legit traffic
patterns correspond to more homogeneous distributions of bid re-
quests across IPs and domains presenting such distributions should
receive high Confidence Scores.

We compute the Shannon Entropy [33] of the distribution of
bid requests across IP addresses for each domain. The Shannon
Entropy summarizes in a single value the level of determinism of
a distribution and ranges between 0 (all bid requests to a domain
come from a single IP address) and loд2 (n) (the bid requests are
homogeneously distributed across the n IP addresses making ad
requests to the domain).

Shannon entropy has been successfully used in the field of anom-
aly detection [24, 40]. However, in our case, it has an important
limitation because it does not consider the volume of bid requests,
but just the shape of the distribution of bid requests. This limitation

2For instance, a domain receiving most of its visits from scrapers or from other types
of bots associated with fraudulent ad traffic.
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2For instance, a domain receiving most of its visits from scrapers or from other types
of bots associated with fraudulent ad traffic.
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distributed across 5 IPs would have the same Entropy value (2.32)
than a domain with 5000 bid requests homogeneously distributed
across 5 IPs. While the first domain is just an unpopular domain,
the second one is highly suspicious, having a high number of daily
visits distributed evenly across a small number of IPs.

To address this limitation, we propose a normalization process
that takes into account the volume of bid requests associated with a
domain X. In essence, we compute the ratio of the Shannon entropy
and the binary logarithm of the total number of bid requests (C (X ))
and scale the resulting value to a normalized range between 0 and
100. This normalized entropy score is the Confidence Score (CS)
assigned to domains by Nameles, and its formal expression is:

CS (X ) = 100
(
1 −

∑n
i=1C (xi ) loд2 (C (xi ))

C (X ) loд2 (C (X ))

)
(1)

To get an intuition on the effect of this normalization process,
we can consider the toy example mentioned above. The domain
with 5 bid requests from 5 IP addresses would have a high CS equal
to 100 whereas the domain with 5000 bid requests would have a
low CS equal to 19.
- Computation of theConfidenceClasses: Wefirst analyzed the
probability distribution function of the CS values across domains in
our daily datasets. Figure 3 shows this distribution for a specific day.
Note that other days in our dataset showed similar distributions.
We observed a skewed distribution concentrated in the high CS
values with a long tail towards low CS values. This distribution
indicates that most domains present homogeneous traffic patterns
(represented by high CS) while as we move towards lower values
of CS, we find domains with infrequent (i.e., statistically unlikely)
traffic patterns offering lower confidence.

To define the Confidence Classes, we use two different unsuper-
vised statistical methods that divide the distribution in 4 ranges
each representing a single Confidence Class:
- Outlier detection method: This method identifies outlier CS values
based on the definition of traditional outliers [31], i.e., CS (X ) <

25 percentile − 1.5 × IQR. Nameles uses this expression to define
the threshold for the No Confidence Class including domains with
an extremely deterministic and infrequent traffic pattern.
- Dispersion method: We defined intermediate Confidence Classes
between the one formed by outliers and the one composed by the
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we can consider the toy example mentioned above. The domain
with 5 bid requests from 5 IP addresses would have a high CS equal
to 100 whereas the domain with 5000 bid requests would have a
low CS equal to 19.
- Computation of theConfidenceClasses: Wefirst analyzed the
probability distribution function of the CS values across domains in
our daily datasets. Figure 3 shows this distribution for a specific day.
Note that other days in our dataset showed similar distributions.
We observed a skewed distribution concentrated in the high CS
values with a long tail towards low CS values. This distribution
indicates that most domains present homogeneous traffic patterns
(represented by high CS) while as we move towards lower values
of CS, we find domains with infrequent (i.e., statistically unlikely)
traffic patterns offering lower confidence.

To define the Confidence Classes, we use two different unsuper-
vised statistical methods that divide the distribution in 4 ranges
each representing a single Confidence Class:
- Outlier detection method: This method identifies outlier CS values
based on the definition of traditional outliers [31], i.e., CS (X ) <
25 percentile − 1.5 × IQR. Nameles uses this expression to define
the threshold for the No Confidence Class including domains with
an extremely deterministic and infrequent traffic pattern.



- Dispersion method: We defined intermediate Confidence Classes
between the one formed by outliers and the one composed by the
mass of legit domains. To this end, we use the Upper Half Range3
(UHR) of the distribution as our dispersion metric and define two
new thresholds asmax (CS ) − 2×UHR andmax (CS ) − 3×UHR.
Based on these thresholds we defined the following Confidence
Classes:
• Low Confidence Class: formed by domains whose CS falls in
the rangemax (CS )−3UHR > CS ≥ 25percentile−1.5 IQR.
• Moderate Confidence Class: formed by domains whose CS
falls in the range max (CS ) − 2UHR > CS ≥ max (CS ) −
3UHR.
• High Confidence Class: formed by domains whose CS falls in
the range CS ≥ max (CS ) − 2UHR.

Figure 3 shows the defined Confidence Classes for the Confidence
Score distribution of the dataset of Jan 15, 2018.
- Predicting the Scoring List: The Scoring list used at day d has
to be inferred from a prediction algorithm applied to the historical
Confidence Score values of domains at days d − 1, d − 2, d − 3,
. . .We refer to the estimated CS value of a domain X included in this
list as CS∗d (X ). To define the prediction algorithm, we first stud-
ied the stationary properties of the temporal series of CS values
of domains across the 62 days forming each of our datasets. This
analysis revealed that CS values present high stationarity, with 40%
of the domains in our dataset being strictly stationary (with a 90%
confidence interval), as reported by the Augmented Dickey-Fuller
test [32]. The analysis of the autocorrelation and partial autocorre-
lation functions for these domains revealed that in general, only the
CS of the previous day (CSd−1 (X )) contributes significantly to the
prediction of CS (X ) at day d . Then, the best predictor is CS∗d (X )

= CSd−1 (X ) and the Scoring List to be used at day d is formed by
the CS∗d (X ) of the different domains in our dataset.

As a result of the application of the three described algorithms,
the Scoring Module produces each day a Scoring List that includes
both the Confidence Score and the Confidence Class for each indi-
vidual domain.

5.2.4 Filtering Module. This module processes in real-time each
scoring request received from the Communication Interface mod-
ule. In particular, it extracts the domain from the scoring request
and searches for the CS∗d (X ) and the Confidence Class associated
with the domain in the Scoring list. As a result of this process, the
Filtering Module generates a scoring reply message including the
following information: Bid Request ID (obtained from the corre-
sponding scoring request) and the domain’s CS and Confidence
Class. The scoring reply is sent to the DSP through the Communi-
cation Interface module. Note that if the domain extracted from the
scoring request is not present in the Scoring list, the scoring reply
has the following content <bid request id, NULL, NULL>.

5.3 System Implementation
In this subsection, we describe our implementation of Nameles
that meets the performance and scalability requirements defined in
Subsection 5.1.
3The UHR is measured as the distance between the median and the maximum value
of the CS distribution.

5.3.1 The Communication Interface and Filtering module. The Com-
munication Interface and the Filtering modules address different
functional aspects of Nameles, and thus we have described them
separately in Section 5.2. In our Nameles prototype, we use an
integrated implementation of these two functional modules for
efficiency purposes. We implement the parallel pipeline communi-
cation structure described in Section 5.2.2 on top of ZeroMQ [19]
(a highly scalable distributed messaging system) using the exist-
ing Java bindings for this purpose. On the Nameles side, we use 6
workers that in addition to taking care of the pull and push commu-
nication functions, implement the filtering process. Each worker
is an independent process, which has an independent copy of the
Scoring List hash table produced by the Scoring Module allocated in
RAM. Moreover, each worker pulls independently scoring requests
from the DSP’s sending queue. For each scoring request, it extracts
the domain, obtains the CS and Confidence Class associated with
the domain from the Scoring List hash table, creates the scoring
reply and pushes it to the DSP’s receiving queue.

5.3.2 The Scoring Module. The Scoring Module implements a tem-
porary hash table including the number of bid requests associated
with each pair <domain, IP>. For each new bid request, the counter
of the tuple <domain, IP> included in the bid request is increased
by 1. At the end of every day, the resulting hash table includes
the needed information to compute the Confidence Score for each
domain as well as the thresholds to define the different Confidence
Classes. For this purpose, we store this temporary table into a Post-
greSQL database and use different PostgreSQL functions and Java
scripts to obtain the CS and the Confidence Class of each domain.
The final result of the process is the Scoring List, which is stored in
a hash table using as a key the domain id and as value the tuple <CS,
Confidence Class>. This table is transferred to the “Communication
Interface and Filtering” module to be used in the real-time filtering
of bid requests.

6 PERFORMANCE EVALUATION OF THE
SYSTEM

Wehave deployed a realistic experimental set-up to confirm that our
Nameles prototype meets the requirements defined in Section 5.1.

6.1 Experimental Set-up
The experimental set-up replicates a production set-up used by a
large-scale DSP. In particular, we use three servers in our setup
for Nameles. The first server plays the role of the DSP. This server
uses the real stream of bid requests from our dataset to produce a
stream of scoring requests to Nameles. The rate of scoring requests
is a configurable parameter so that we can perform stress tests by
using significantly higher rates of bids per second than the ones
reflected in our dataset. The second server deploys the “Communi-
cation Interface and Filtering” module of our Nameles prototype.
It receives the stream of scoring requests from the DSP server and
processes it to obtain the scoring replies. In addition, this server
forwards the scoring requests to a third server, which implements
the “Scoring” module.

The server emulating the DSP is a Dell PowerEdge R710 with
16 cores and 48GB of RAM. The servers implementing the “Com-
munication and Filtering” and the “Scoring” modules are similar,
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Figure 4: 95 percentile of delay and memory consumption
for the filtering process at different input request rates.

the context of common use in the Adtech industry, the resources
employed in our prototype can be considered commodity hardware.

6.2 Scalability and Processing Delay
6.2.1 Scoring List computation time. A critical aspect of the scala-
bility of Nameles resides in its ability to produce the Scoring List
in a short time. Specifically, given that the Scoring List is updated
daily, the computation process must guarantee that the new list is
ready before the expiration of the previous one, i.e., in less than 24 h.
We have measured the computation time for every daily dataset,
including between 1.7-1.9 B bid requests, and confirmed that it is
always shorter than 4 hours. Hence, Nameles meets the scalability
requirements for this critical process.

6.2.2 Delay and memory consumption of the filtering process. From
the DSP’s perspective, the filtering process starts when it sends
a Scoring Request and finishes when it receives the correspond-
ing Scoring Reply. The analysis of our dataset reveals an average
and a peak rate of 22 k and 26 k requests per second, respectively.
Then, our prototype must meet the next two requirements while
processing scoring requests streams at the observed peak rate: not
overflowing the memory of the server and offering a small delay to
minimize its impact on the overall delay of the real-time bidding
process.

We have evaluated the performance of our prototype for scoring
request streams ranging from 10 k to 500 k queries per second (QPS).
For each of the analyzed rates, we run stress tests of 5 minutes.
During the tests, we measure the individual delay associated with
the filtering process of each scoring request as well as the overall
memory consumption of the filtering process. Figure 4 summarizes
the performance of our Nameles prototype. The x-axis shows the
different tested scoring request rates. The left y-axis and right y-axis
show the 95-percentile filtering delay and 95-percentile memory
consumption measured during the experiment for the different
scoring request rates (QPS), respectively. Note that each stress test
has been run 5 times. The line in the figure represents the average
of 95-percentile values across the five experiments whereas the
lighter color area shows the max and min 95-percentile values.

First of all, we observe that the system performance is quite
stable across the different experiments and the observed variability
in memory consumption is due to the instantaneous load of the
server at the measurement moment rather than the QPS of the
experiment. The results of the stress tests demonstrate that our
Nameles prototype offers very high scalability performance. In
particular, the 95 percentile of memory consumption and delay is
lower than 28GB and 3ms for any of the considered QPS. These
results prove that our filtering process scales to handle more than
20 B bid requests per day with a modest infrastructure, meeting the
requirements of the largest DSPs such as Google, The Trading Desk
and MediaMath.

6.3 Scoring Accuracy
In this subsection, we assess both the accuracy of our prediction
algorithm and the accuracy of the Confidence Scores assigned to
domains.

6.3.1 Accuracy of the prediction algorithm. For each daily dataset,
we have computed the Root Mean Square Error (RMSE) of the
difference between the predicted CS (CS∗d (X )) and the actual CS
(CSd (X )) across all domains. The results indicate that the RMSE is
smaller than 3 points in every case.

In addition, we have evaluated the misclassification rate of do-
mains among Confidence Classes. We observe that the average
misclassification rates across all days in our dataset are below 3%
between any pair of classes. A careful analysis of the misclassified
domains indicates that the classification errors are mainly associ-
ated with domains having a CS close to the threshold that separates
two contiguous classes. This is also coherent with the fact that
misclassifications between non-contiguous classes are negligible
(< 0.3%).

6.3.2 Assessment of Confidence Score accuracy. The accuracy of
the Confidence Score cannot be objectively evaluated. There are
various continuously changing factors related to the invalid traffic
problem; attack vectors, domain traffic profiles, and others. As a
result, ground truth datasets for evaluating invalid traffic filtering
solutions do not exist. Indeed, to the best of the authors’ knowledge,
previous related academic works [6, 37] rely on manual validation
whereas proprietary commercial solutions do not offer any publicly
available accuracy evaluation analysis.

In this subsection, we present for the first time an objective ap-
proach to (at least partially) assess the accuracy of invalid ad traffic
detection tools. While we acknowledge our approach is far from
ideal, it does not suffer from the severe limitations associated with
manual validation such as: 1) limited scalability since only a handful
of domains can be manually evaluated; 2) it suffers from human
errors due to the lack of sufficient knowledge, lack of motivation,
distractions, etc.

In particular, we propose a two-fold approach to validate the
classification accuracy of Nameles:
(1)We compare the result of Nameles scoring with the following
widely used ad tech metrics:
- Bounce Rate: This metric measures the fraction of sessions that
only visit a single page in a domain. A low bounce rate is a strong
indication of low-quality traffic.

Figure 4: 95 percentile of delay and memory consumption
for the filtering process at different input request rates.

a Dell PowerEdge R730xd with 24 cores and 64GB of RAM. The
servers are connected to a conventional 1 Gbps Ethernet switch. In
the context of common use in the Adtech industry, the resources
employed in our prototype can be considered commodity hardware.

6.2 Scalability and Processing Delay
6.2.1 Scoring List computation time. A critical aspect of the scala-
bility of Nameles resides in its ability to produce the Scoring List
in a short time. Specifically, given that the Scoring List is updated
daily, the computation process must guarantee that the new list is
ready before the expiration of the previous one, i.e., in less than 24 h.
We have measured the computation time for every daily dataset,
including between 1.7-1.9 B bid requests, and confirmed that it is
always shorter than 4 hours. Hence, Nameles meets the scalability
requirements for this critical process.

6.2.2 Delay and memory consumption of the filtering process. From
the DSP’s perspective, the filtering process starts when it sends
a Scoring Request and finishes when it receives the correspond-
ing Scoring Reply. The analysis of our dataset reveals an average
and a peak rate of 22 k and 26 k requests per second, respectively.
Then, our prototype must meet the next two requirements while
processing scoring requests streams at the observed peak rate: not
overflowing the memory of the server and offering a small delay to
minimize its impact on the overall delay of the real-time bidding
process.

We have evaluated the performance of our prototype for scoring
request streams ranging from 10 k to 500 k queries per second (QPS).
For each of the analyzed rates, we run stress tests of 5 minutes.
During the tests, we measure the individual delay associated with
the filtering process of each scoring request as well as the overall
memory consumption of the filtering process. Figure 4 summarizes
the performance of our Nameles prototype. The x-axis shows the
different tested scoring request rates. The left y-axis and right y-axis
show the 95-percentile filtering delay and 95-percentile memory
consumption measured during the experiment for the different
scoring request rates (QPS), respectively. Note that each stress test
has been run 5 times. The line in the figure represents the average
of 95-percentile values across the five experiments whereas the
lighter color area shows the max and min 95-percentile values.

First of all, we observe that the system performance is quite
stable across the different experiments and the observed variability
in memory consumption is due to the instantaneous load of the
server at the measurement moment rather than the QPS of the
experiment. The results of the stress tests demonstrate that our
Nameles prototype offers very high scalability performance. In
particular, the 95 percentile of memory consumption and delay is
lower than 28GB and 3ms for any of the considered QPS. These
results prove that our filtering process scales to handle more than
20 B bid requests per day with a modest infrastructure, meeting the
requirements of the largest DSPs such as Google, The Trading Desk
and MediaMath.

6.3 Scoring Accuracy
In this subsection, we assess both the accuracy of our prediction
algorithm and the accuracy of the Confidence Scores assigned to
domains.

6.3.1 Accuracy of the prediction algorithm. For each daily dataset,
we have computed the Root Mean Square Error (RMSE) of the
difference between the predicted CS (CS∗d (X )) and the actual CS
(CSd (X )) across all domains. The results indicate that the RMSE is
smaller than 3 points in every case.

In addition, we have evaluated the misclassification rate of do-
mains among Confidence Classes. We observe that the average
misclassification rates across all days in our dataset are below 3%
between any pair of classes. A careful analysis of the misclassified
domains indicates that the classification errors are mainly associ-
ated with domains having a CS close to the threshold that separates
two contiguous classes. This is also coherent with the fact that
misclassifications between non-contiguous classes are negligible
(< 0.3%).

6.3.2 Assessment of Confidence Score accuracy. The accuracy of
the Confidence Score cannot be objectively evaluated. There are
various continuously changing factors related to the invalid traffic
problem; attack vectors, domain traffic profiles, and others. As a
result, ground truth datasets for evaluating invalid traffic filtering
solutions do not exist. Indeed, to the best of the authors’ knowledge,
previous related academic works [6, 37] rely on manual validation
whereas proprietary commercial solutions do not offer any publicly
available accuracy evaluation analysis.

In this subsection, we present for the first time an objective ap-
proach to (at least partially) assess the accuracy of invalid ad traffic
detection tools. While we acknowledge our approach is far from
ideal, it does not suffer from the severe limitations associated with
manual validation such as: 1) limited scalability since only a handful
of domains can be manually evaluated; 2) it suffers from human
errors due to the lack of sufficient knowledge, lack of motivation,
distractions, etc.

In particular, we propose a two-fold approach to validate the
classification accuracy of Nameles:
(1)We compare the result of Nameles scoring with the following
widely used ad tech metrics:
- Bounce Rate: This metric measures the fraction of sessions that
only visit a single page in a domain. A low bounce rate is a strong
indication of low-quality traffic.



Table 2: Value of external quality metrics associated with domains in each of the defined Confidence Classes in our dataset.

No Conf. Low Conf. Moderate Conf. High Conf.

Alexa Upstream traffic from Google and Facebook (%) median 20 (-41%) 18.5 (-45%) 23.7 (-30%) 33.7
IQR 21.05 20.19 24.19 32.84

Alexa Bounce rate (%) median 41.8 (-27%) 40.9 (-29%) 35.3 (-39%) 57.5
IQR 32.4 25.6 27.7 28.7

Alexa Search traffic (%) median 8.1 (-35%) 7.7 (-38%) 5.5 (-56%) 12.5
IQR 19.7 15.9 16.1 16.9

Alexa Total sites linking to the domain median 9.2 (-75%) 131 (-62%) 256 (-27%) 348
IQR 616 371 800 1,198

SimilarWeb Bounce rate (%) median 51.5 (-12%) 38.8 (-34%) 34.9 (-40%) 58.6
IQR 24.97 20.84 24.8 24.0

SimilarWeb Direct traffic (%) median 43.1 (68%) 34.2 (34%) 38.1 (49%) 25.6
IQR 39.5 37.0 34.6 27.8

SimilarWeb Search traffic (%) median 21.2 (-31%) 29.3 (-5%) 19.5 (-37%) 30.9
IQR 39.3 46.5 39.5 39.8

- Traffic from popular publishers: This metric represents the
percentage of upstream traffic coming to the domain from popular
publishers. In particular, the two publishers contributing a larger
fraction of traffic to domains are Google and Facebook. Then, for
our validation, we will compute the fraction of upstream traffic
coming from Google and Facebook to a domain. A very low fraction
of traffic coming from them may reveal the presence of low-quality
traffic.
- Search Traffic: This metric measures the percentage of traffic
coming to the domain from search engines. A very low search
traffic percentage is often an indication of low-quality traffic.
- Direct Traffic: This metric measures the percentage of traffic that
reaches the domain directly without being redirected from other
websites. In this case, a large fraction of direct traffic is usually
linked to low-quality traffic.
- Number of sites linking to a domain: An interesting domain
attracting high-quality traffic would typically be linked from a large
number of other sites. Contrary to this, domains associated with ad
fraud or other malicious practices would typically be linked from a
lower number of sites.

To obtain these metrics, we have queried two well-known ser-
vices, Alexa [1] and SimilarWeb [34]. Table 2 presents the median
and IQR values for the distribution of each one of these metrics
for each Confidence Class. In addition, the table shows the relative
difference of the median values of these metrics for the “No”, “Low”
and “Moderate” Confidence Classes in comparison to the “High”
Confidence Class. We observed substantial differences (up to 75%
in some cases) between the “High Confidence” Class and the rest.
(2) Low-quality domains and thus their ad inventory are likely to
have a short-term lifetime (i.e., being more volatile) in the online ad-
vertising ecosystem for multiple reasons: they might be committing
fraud and being detected and blacklisted or removed by fraudsters
after short periods of times to avoid detection; they provide poor
KPIs and thus the bidding prices for their inventory dramatically
decrease making them no longer profitable, etc. We have measured
the volatility associated with the domains of each of the confidence
classes defined by Nameles. In particular, we have computed the
fraction of domains of each class in our oldest dataset that are still
present one year later in our most recent dataset. The result shows

that (4.5; 1.2; 6.4; 35.0)% of domains within the (“No”, “Low”, “Mod-
erate” and “High”) confidence classes in our 16-17 dataset are still
present in our 17-18 dataset. We observe that the volatility of the
“High” Confidence Class is one order of magnitude smaller than in
other classes4.

The results from our two-fold objective validation suggest that
our scoring mechanism accurately identifies legitimate domains
and thus it is suitable for adoption by DSPs. Finally, it is also worth
noting that we have worked together with experts from the Ad
Tech industry over a period of 18 months to let them subjectively
evaluate the results provided by Nameles in extensive trials. The
satisfactory results obtained during these tests have led the World
Federation of Advertisers to endorse Nameles.

7 RESULTS OBTAINED FROM NAMELES’
EXECUTION

In this section, we present the results obtained from applying Name-
les to our large-scale dataset. First, we analyze the distribution of
domains and traffic across the defined Confidence Classes. Then,
we quantify the positive impact that Nameles may have in the prof-
itability of DSPs using as reference the economic model described
in Section 3.
-Longitudinal Analysis of domains’ confidence level: Figure 5
shows the fraction of domains and ad traffic (i.e., bid requests)
belonging to each of the defined Confidence Classes in our 16-17
and 17-18 datasets, respectively. The main bar shows the average,
and the error bar shows the 95% confidence interval across the days
in the dataset.

On average, in our 16-17 dataset (11.2; 8.8; 33.3; 46.7)% of the
traffic is associated with (“No”, “Low”, “Moderate” and “High”) Con-
fidence Classes. Whereas in our 17-18 dataset (7.0; 13.9; 36.3; 42.8)%
of the traffic belong to the (“No”, “Low”, “Moderate” and “High”)
classes. We find an overall stable behavior across time. In partic-
ular, there exists ∼20% low-quality traffic (belonging to the “No”
and “Low” confidence classes) in both datasets. These results imply
that, for instance, a DSP handling 50 B bid request per day using a
policy that filters traffic belonging to “No” and “Low” classes would

4There is an apparent systemic volatility since even in the high confidence class only
35.0% of the domains remain in the 17-18 dataset. While there exists such systemic
volatility, the reported one is likely to be inflated because our datasets represent a
subsample of the overall ad inventory available at the measurement time.
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Figure 5: Percentage of domains and ad traffic in each of the
Confidence Classes across the 62 days of the dataset. The
main bar presents the average value whereas the error bars
show the confidence interval at the 95%.

eliminate (on average) around 10 B (20%) bid requests every day.
However, it is worth mentioning that there seems to be a transfer
of ∼5% traffic from the “No” to the “Low” confidence class between
the 16-17 and 17-18 datasets, this may be interpreted as a slight
improvement in the behavior of the ecosystem for DSPs filtering
traffic at the “No” confidence level. Contrary, a transfer of ∼4%
traffic is observed from the “High” to the “Moderate" confidence
class, which may likewise be interpreted as a slight worsening of
the ecosystem behavior for DSPs accepting traffic exclusively from
the “High” confidence class.

In addition, we analyzed how popularity relates to confidence.
To this end, we computed the average (and standard deviation)
fraction of traffic within each Confidence Class for domains with
at least 500, 1 k, 10 k, 50 k, 100 k, and 1M bid requests per day for
our 16-17 dataset. Figure 6 shows the results. One may expect that
as more popular domains are considered, the fraction of domains
within the “High” Confidence Class would increase and the fraction
in other groups would decrease. However, we observe the opposite
trend between “Moderate” (which increases) and “High” (which
decreases) classes. In the case of “Low” and “No” Classes we observe
just a light increase after 100 k daily bid requests.
-Nameles’ impact on DSPs’ profitability: The results in the pre-
vious subsection provide specific figures on the filtering rates of
Nameles at different confidence levels. For instance, in our 16-17
dataset, a filtering rate of 11.21% filters out traffic from domains
with very rare traffic patterns that offer no confidence. A filtering
rate of 20.04% eliminates traffic offering low or no confidence, and
a filtering rate of 53.34% filters any domain that does not provide
high confidence.

Using these filtering rates as input to the economic model pre-
sented in Section 3 gives us an estimation of the impact that Nameles
is expected to have in the profitability of a DSP. The obtained results
indicate that filtering at the “No Confidence”, “Low Confidence” and
“Moderate Confidence” level offer NPV (and EV) improvements in
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On average, in our 16-17 dataset (11.2; 8.8; 33.3; 46.7)% of the
traffic is associated with (“No”, “Low”, “Moderate” and “High”) Con-
fidence Classes. Whereas in our 17-18 dataset (7.0; 13.9; 36.3; 42.8)%
of the traffic belong to the (“No”, “Low”, “Moderate” and “High”)
classes. We find an overall stable behavior across time. In partic-
ular, there exists ∼20% low-quality traffic (belonging to the “No”
and “Low” confidence classes) in both datasets. These results imply
that, for instance, a DSP handling 50 B bid request per day using a
policy that filters traffic belonging to “No” and “Low” classes would
eliminate (on average) around 10 B (20%) bid requests every day.
However, it is worth mentioning that there seems to be a transfer
of ∼5% traffic from the “No” to the “Low” confidence class between
the 16-17 and 17-18 datasets, this may be interpreted as a slight
improvement in the behavior of the ecosystem for DSPs filtering
traffic at the “No” confidence level. Contrary, a transfer of ∼4%
traffic is observed from the “High” to the “Moderate" confidence
class, which may likewise be interpreted as a slight worsening of
the ecosystem behavior for DSPs accepting traffic exclusively from
the “High” confidence class.

In addition, we analyzed how popularity relates to confidence.
To this end, we computed the average (and standard deviation)
fraction of traffic within each Confidence Class for domains with
at least 500, 1 k, 10 k, 50 k, 100 k, and 1M bid requests per day for
our 16-17 dataset. Figure 6 shows the results. One may expect that
as more popular domains are considered, the fraction of domains
within the “High” Confidence Class would increase and the fraction
in other groups would decrease. However, we observe the opposite
trend between “Moderate” (which increases) and “High” (which
decreases) classes. In the case of “Low” and “No” Classes we observe
just a light increase after 100 k daily bid requests.
-Nameles’ impact on DSPs’ profitability: The results in the pre-
vious subsection provide specific figures on the filtering rates of
Nameles at different confidence levels. For instance, in our 16-17
dataset, a filtering rate of 11.21% filters out traffic from domains
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Figure 6: Percentage of ad traffic in each Confidence Class as
function of the popularity (i.e., bid requests) of domains.

with very rare traffic patterns that offer no confidence. A filtering
rate of 20.04% eliminates traffic offering low or no confidence, and
a filtering rate of 53.34% filters any domain that does not provide
high confidence.

Using these filtering rates as input to the economic model pre-
sented in Section 3 gives us an estimation of the impact that Nameles
is expected to have in the profitability of a DSP. The obtained results
indicate that filtering at the “No Confidence”, “Low Confidence” and
“Moderate Confidence” level offer NPV (and EV) improvements in
comparison to the scenario without filtering of 41, 54 and -204% (14,
19 and -71%). We observe that filtering at the “Moderate Confidence”
level would not be recommended. On the other hand, filtering at
the “No Confidence” or “Low Confidence” class leads to a strong
positive economic impact. Note that results considering the 17-18
datasets are consistent.

8 NAMELES’ APPLICABILITY AND
EXTENSIBILITY

- Applicability by other players: In addition to DSPs, Nameles
can be easily integrated with other players of the programmatic
advertising supply chain such as Ad Exchanges or SSPs, which
handle a representative fraction of the ad traffic of a given domain.
Also, Publishers can integrate Nameles to self-generate the CS of
their websites and mobile apps.
-Extensibility to other signals: The concept of entropy allows us
to compute the CS considering different signals. In particular, in
addition to the default signal used in this paper (CS of domains),
we have computed the CS of individual IP addresses. To this end,
we consider the traffic pattern generated by each IP address as
the distribution of ad requests it sends across different domains.
Having the CS for the IP and the domain within a bid request
enriches the decision capacity of the DSP since such bid request
can be dropped due to a low CS associated with the IP address as
well. We have computed the CS for all IP addresses (with more
than 500 entries) for every daily sample in our dataset and based
on it, we have re-calculated the fraction of traffic belonging to
the Confidence Classes more likely to be filtered by DSPs’ policies
(i.e., None and Low Confidence). Adding the information about

Figure 6: Percentage of ad traffic in each Confidence Class as
function of the popularity (i.e., bid requests) of domains.

comparison to the scenario without filtering of 41, 54 and -204% (14,
19 and -71%). We observe that filtering at the “Moderate Confidence”
level would not be recommended. On the other hand, filtering at
the “No Confidence” or “Low Confidence” class leads to a strong
positive economic impact. Note that results considering the 17-18
datasets are consistent.

8 NAMELES’ APPLICABILITY AND
EXTENSIBILITY

- Applicability by other players: In addition to DSPs, Nameles
can be easily integrated with other players of the programmatic
advertising supply chain such as Ad Exchanges or SSPs, which
handle a representative fraction of the ad traffic of a given domain.
Also, Publishers can integrate Nameles to self-generate the CS of
their websites and mobile apps.
-Extensibility to other signals: The concept of entropy allows us
to compute the CS considering different signals. In particular, in
addition to the default signal used in this paper (CS of domains),
we have computed the CS of individual IP addresses. To this end,
we consider the traffic pattern generated by each IP address as
the distribution of ad requests it sends across different domains.
Having the CS for the IP and the domain within a bid request
enriches the decision capacity of the DSP since such bid request
can be dropped due to a low CS associated with the IP address as
well. We have computed the CS for all IP addresses (with more
than 500 entries) for every daily sample in our dataset and based
on it, we have re-calculated the fraction of traffic belonging to
the Confidence Classes more likely to be filtered by DSPs’ policies
(i.e., None and Low Confidence). Adding the information about
the CS of IP addresses increases the fraction of traffic in these two
categories in less than 0.5%. This result indicates that the application
of Nameles at the level of domains suffices to identify more than
99% of low-quality ad traffic.

9 NAMELES’ LIMITATIONS
In this section, we discuss the main limitations of Nameles and
argue why despite them, Nameles is still an important contribution.



- False Negatives: They are represented by the invalid traffic not
identified by Nameles. In the presence of Nameles, any attacker
owning a domain d would be undetected if it is able to generate
a normal (i.e., similar to the mass) traffic pattern for d . This is
obviously doable, but it would require the attacker to increase the
complexity of the attack. First, the attacker would need to infer
the CS threshold over which it would not be detected. Second, an
attacker performing n daily visits to its domain fromm IPs leading
to a low CS would need to either reduce n or increasem to increase
its CS over the quality threshold defined by different DSPs. Both
approaches lead to a revenue reduction.

To obtain a ballpark estimation of such reduction, we have com-
puted the number of daily visits that all 8 K domains in the “No” and
“Low” Confidence Classes in a given day of our dataset would need
to remove in order to pass the threshold of the “Moderate” Class.
We found that on average these domains would need to eliminate
38,5% visits leading to a roughly similar reduction in their revenue.
Therefore, even when failing in the detection, Nameles contributes
to reducing the profitability of possible attacks significantly.
-False Positives: They are represented by domains wrongly as-
signed a low CS. While false positives may have serious implica-
tions in other businesses, it is well-established in the programmatic
advertising industry that false positives are not an issue for the
buy-side, i.e., advertisers and DSPs, which are the target of our
solution. The existing oversupply of ad spaces discussed in Section
3 guarantees that wrongly filtering a legitimate domain would not
result in a lost opportunity of placing an ad that would be pro-
vided by other legitimate non-filtered domain. Therefore, we assert
that false positives are not an important consideration in adopting
Nameles.
- Presence of NATs: The widespread use of NATs may pollute the
computation of a domain’s CS since visits coming from different
users behind a NATed IP address would be all assigned to that IP
address, and thus Nameles could consider the traffic pattern of
that domain more deterministic than it actually is. To analyze this
potential limitation, we have re-computed the CS of all domains in
our dataset using as input the visits coming from <IP, User Agent>
pairs. The obtained results are similar to those presented in the
paper. Given that the impact of NATs when considering <IP, User
Agent> pairs as input is expected to be limited, we conclude that
Nameles is minimally affected by the presence of NATs.

10 RELATEDWORK
In addition to the abovementioned commercial proprietary solu-
tions [11, 20, 42], the research community has also addressed the
identification of invalid ad traffic. The proposed solutions focus on
detecting invalid traffic at the sell side of the online advertising
chain, i.e., publishers web pages [7] or delivered ads [5, 17]. These
solutions analyze the interaction of the user with the web page or
the served ad in order to identify commonly known attacks such
as visits generated by bots [5] or redirection attacks [36]. None
of these solutions are valid for DSPs. To the best of the author’s
knowledge, Stitelmant et al. [37] proposed the only alternative so-
lution to Nameles able to operate at the DSP level. By analyzing
the degree of overlapping in the IPs visiting two (or more) domains,

their solution identifies potential invalid traffic. This is a comple-
mentary technique to our normalized entropy score, and thus both
solutions can be used in parallel.

From a methodological perspective, there is a previous work
that has used entropy to identify invalid video visits to a Chinese
video portal [6]. The authors of this paper propose to use entropy
as the final metric to assess the traffic quality and a semi-supervised
classification that rely on manually labeled samples to differentiate
between valid and invalid video traffic. However, as discussed in
Section 5, the native Shannon entropy has an important drawback
since its interpretation depends on the volume of associated events.
To overcome this limitation, we use a Confidence Score based on a
normalized version of entropy. Moreover, instead of using manual
labeling of suspicious traffic, we define unsupervised statistically
supported outlier detection method. Hence, Nameles clearly ad-
vance the state-of-the-art from a methodological perspective as
well.

11 CONCLUSION
This paper introduces Nameles, a system for the detection of in-
valid ad traffic, which is one of the main problems faced by the
online advertising industry. Nameles has been designed to meet the
requirements of both advertisers and DSPs that together form the
so-called buy-side of the programmatic advertising industry. On
the one hand, Nameles is the first available open source solution for
the identification of invalid traffic, responding to the advertisers’
demand for transparency. On the other hand, the paper provides
economic supported evidence that, contrary to conventional wis-
dom, show how DSPs may increase their profitability with invalid
traffic filtering. For this, the applied solution needs to be highly
scalable and operate in real time and at the level of individual bid
requests. Nameles meets these requirements.

A Nameles prototype has been thoroughly tested in a realis-
tic deployment. We demonstrate that even with modest resources,
Nameles is able to process tens of billions of bid requests per day,
with processing delays below 3ms per request and good detection
accuracy. Moreover, applying Nameles on two datasets including
each almost 2 B bid requests per day for a period of two months,
we observe the presence of 20% invalid traffic. The evidenced per-
formance of Nameles along with our open-source vision has led the
World Federation of Advertisers to endorse Nameles as a solution
to counter invalid traffic by the Adtech industry.
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