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Abstract

We are immerse in a world that becomes more and more mobile every day, with ubiquitous connectivity and increasing
demand for mobile services. Current mobile terminals support several access technologies, enabling users to gain con-
nectivity in a plethora of scenarios and favoring their mobility. However, the management of network connectivity using
multiple interfaces is still starting to be deployed. The lack of smart connectivity management in multi-interface devices
forces applications to be explicitly aware of the variations in the connectivity state (changes in active interface, simulta-
neous access from several interfaces, etc.). In this paper, we analyze the present state of the connection management and
handover capabilities in the three major mobile operating systems (OSes): Android, iOS and Windows. To this aim, we
conduct a thorough experimental study on the connectivity management of each operating system, including several ver-
sions of the OS on different mobile terminals, analyzing the differences and similarities between them. Moreover, in order
to assess how mobility is handled and how this can affect the final user, we perform an exhaustive experimental analysis
on application behavior in intra- and inter-technology handover. Based on this experience, we identify open issues in
the smartphone connectivity management policies and implementations, highlighting easy to deploy yet unimplemented
improvements, as well as potential integration of mobility protocols.
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1. Introduction & Motivation

In the last years we have witnessed the market explo-
sion of a new kind of handheld device, the smartphone. At
this point in time it is clear that these devices are going
to keep a steady market penetration and are going to be a
major source of revenue and data traffic for network opera-
tors. According to [1], smartphones account for 88 percent
of the growth of global mobile devices and connections in
2014, with 439 million net additions in this year. Even
though they represent just the 29 percent of global hand-
sets in use, they are responsible for 69 percent of the total
handset traffic, which clearly shows the major adoption of
this technology. The use of smartphones has also modi-
fied the traditional patterns of mobile data consumption.
The typical smartphone user is craving for data-based ser-
vices, imposing a high burden on the operators, which see
their investments on network deployments pushed to the
limits due to greater bandwidth requirements. Due to the
shift in user profile and data service demand experienced
in the recent years, smartphones have become a powerful
tool in most people’s daily life. In addition, the enhanced
capabilities and fast upgrades of hardware in handheld
devices have considerably increased their usage. These
facts pave the way to advanced research and development
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that relies on the use of smartphones for carrying out in-
novative tasks, mostly related to health care or behav-
ioral studies and using the smartphone as a measurement
instrument [2]. Moreover, there is a trend towards spe-
cialized, almost personalized services, which could benefit
from an accurate knowledge on the capabilities supported
by smartphones and how they manage their resources.

The current offer in the market is very wide, in terms
of manufacturers, hardware resources and operating sys-
tems, but do the majority of the devices behave similarly?
Is there any difference in the management of their own
resources? Is the access to an application homogenized
across the different systems? Is the network connectiv-
ity management standardized in all the various devices?
Answering these questions could back the actual research
on mobile devices and their applications to make daily
tasks easier, but also more demanding use cases, applied
to different fields. However, mainly because these details
remain closed by manufacturers, most of this information
is still missing or disregarded in research, which focuses on
measuring performance or developing applications to serve
specific purposes.

Smartphone users have one common and defining char-
acteristic, they move. The need for supporting data ser-
vices on the move has shaped the design of the cellular
network, which must deploy access and core networks able
to redirect users’ traffic to their current location. In ad-
dition to the obvious problem of designing such networks,
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current smartphones support several wireless technologies,
such as IEEE 802.11 [3], complementing the cellular con-
nection. This heterogeneity brings new opportunities and
challenges to the industry, since the additional technolo-
gies can be used to offload the traffic from the cellular net-
work to local accesses, such as the broadband connection
usually deployed at home.

The smartphone operating system provides a set of
mobility-related functions from which an application can
benefit in case it decides to handle mobility. These func-
tionalities depend on the operating system (e.g., Android,
iOS, Windows Phone 8) and include connectivity events
such as network up or down events, and commands ex-
posed to the application layer to extract information on
connection availability. Usually the terminal connectivity
is handled by a service widely known as the Connection
Manager, in charge of deciding which is the best connec-
tion for the terminal in a specific moment, and the appli-
cation has to deal with those decisions.

This work focuses on the analysis of the current state of
the art on the mobility support at the Connection Manager
in different terminals, providing a functional view of the
differences between the major operating systems and the
different improvements that can be done to optimize the
mobile user experience. Our main contributions are:

• We analyze the default network connectivity manage-
ment of the three currently most popular families of
mobile OSes: Android, iOS and Windows Phone 8,1

including iOS8 and Android Lollipop, in their latest
versions supported to date. We test the same OS ver-
sions in different terminals, to avoid biased conclu-
sions, derived from the performance of the terminal
rather than from the OS behavior.

• We study how the smartphones running these dif-
ferent OSes perform inter- and intra-technology han-
dover, considering the most widely used access net-
works: cellular and IEEE 802.11. For this study, we
measure the handover latency in different scenarios
and we evaluate the differences and similarities in the
management and configuration of the networking pa-
rameters in each device.

• We evaluate how the handover performance affects the
user experience by considering different applications,
and whether they can survive to a change in connec-
tivity: changes in IP address and changes in access
technology.

• As a result of our experimentation, we identify the
challenges and open issues that are present in current

1Product names, logos, brands and other trademarks are regis-
tered and remain property of their respective holders (Google Inc.,
Apple Inc. and Microsoft Corporation). Their use throughout this
paper aims only at describing the results and the work performed
and in no way it indicates any relationship with the holders of such
trademarks.

smartphones and discuss on potential improvements
for the connectivity management that are feasible but
not yet implemented and on the integration of connec-
tivity management with current mobility protocols.

The rest of the paper is structured as follows: In Sec-
tion 2 we present the related work available in the lit-
erature and compare it to our work. We present some
background of the implementation of the network
management in the systems under study, analyz-
ing their main similarities and differences in Section 3. In
Section 4 we present the experimental deployment, and in
Section 5 we evaluate the initial attachment to the access
network performed by the systems under study. In Sec-
tion 6 we present a detailed analysis of the handover and
how the connection manager of the three families of OSes
handle the changes in connectivity, both inter- and intra-
technology, making this analysis extensive to the manage-
ment of this change in connectivity by some popular ap-
plications. Section 7 summarizes our main results and
highlights our findings comparing all the studied systems.
In Section 8 we identify open issues and improvements
to tackle the shortcomings of the network management in
mobile devices, in light of the data extracted from our
experiments. We also discuss on the integration with mo-
bility protocols. Finally, Section 9 concludes the article
and presents guidelines for our future work.

2. Related work

A significant part of the previous works in the literature
analyzes the energy consumption of smartphones, however,
we focus on the connectivity management. We have com-
piled in Table 1 the previous works that address network
performance in smartphones for a better comparison. Net-
work connectivity has been addressed, but mostly in terms
of application usage and traffic patterns. For instance,
[4] conducted a thorough study of application popularity
and usage, characterizing the patterns followed by differ-
ent demographic groups of users and the traffic generated.
Their study confirms the high diversity in smartphone us-
age, leading to the conclusion that the tools in use may
provide acceptable performance in average, but it could
be considerably enhanced by some specific knowledge on
applications performance and usage. Similarly, [5] also
uses a logging application installed in the smartphone of
a group of users and presents a personalized optimization
for Android smartphones, based on application usage pat-
terns per user, showing that the default task manager can
be enhanced to improve user experience. We argue that
a similar approach to these two can also be extended to
network connectivity management.

The use of mobile devices equipped with several network
interfaces motivates the performance study in [6], which
characterizes consistency and compares the WiFi and the
cellular accesses worldwide in terms of download/upload
speeds and latency. The first promising application of this
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Table 1: Comparison with related work on smartphone networking and Connection Manager
Ref. System Scope Main features studied Contributions Main conclusions

[4] Logging application
Android User interactions, application use, Evaluate the diversity range across users and Patterns on app usage and user interaction time;

Windows Mobile network traffic, energy drain time and their impact on network and energy apply diversity in usage to predict energy drain

[5] Android Logging application
Application usage models, app-launching

Application popularity
optimization, personalized optimization

User experience can be improved by knowing usage
and usage patterns

framework for task manager
patterns and context-aware resource management

[6]
iOS

Speedtest application Cellular and WiFi network performance
Temporal and geographical analysis, Similar throughput performance but,

Android aggregate performance iOS higher latency

[7] Android Logging application Cell, WiFi usage, phone usage
Analysis on application, phone, On average, WiFi traffic is 30%
WiFi and cellular traffic usage of the total data consumption

[8] Android Logging application Traffic volume in 3G and WiFi networks Aggregated and per-user analysis
Total traffic via WiFi much larger than via 3G,

most by a small number of users

[9]
Akamai and Google servers are heavily used.

Smartphones Wireless traffic captured by a Network traffic, TCP impact, comparison Study network performance and traffic,
Different receive window advertised by iOS and

Laptops gateway router in campus network to laptops, app layer parameters mainly focusing on TCP-related parameters
Android, but similar performance

[10]
iOS Measurement tool and methodology for app

Android
Customized application: TCP performance, RTT, DNS lookup time

performance comparison, 3G network
Smartphones are often the web browsing

Windows Mobile
3GTest as metrics for app and network performance

performance for various operators
performance bottleneck, rather than the network

Windows PC
Reduce number of handovers by keeping

[11] Customized Vertical handover, session continuity Connection manager to detect changes between
active connection instead of switching to

[12] connectivity management and handover decision triggers WLAN and WWAN, virtual connectivity manager
WWAN when RSSI is below a threshold

[13] Android
Different use cases for WiFi offloading:

Application for WiFi offloading, simultaneous App for WiFi offloading and content aggregation
content aggregation, SIM authentication

connectivity management usage of cellular and WiFi interfaces (Enhanced Android Connection Manager)
or flow optimization and segregation

[14]
Media players follow different content request

Android Server logs, sniffed wireless traffic Video streaming performance Thorough comparison of iOS and Android
and buffer management approaches. Redundant

iOS and media player source code comparison. clients behavior on streaming
traffic downloaded by iOS

diversity in network connectivity is WiFi offloading. How-
ever, [7] shows that in spite of the dense WiFi deployment,
cellular data consumption is still dominating and analyzes
the reasons behind that fact. A similar study is conducted
in [8], but in this case, the authors conclude that the per-
centage of offloaded traffic is not negligible, being mostly
exchanged at home APs. The differences between these
two studies may lie on the geographical differences in their
datasets. Yet again, it is proven that a unique solution for
connectivity management cannot perform optimally, ad-
vocating for a kind of customizable solution per user or
based on usage or mobility patterns. Chen et al. in [9]
evaluate network performance of handheld devices by mon-
itoring the traffic captured at a university campus. They
also confirm the predominant presence of TCP and HTTP
flows in the traces analyzed and focus their analysis on pa-
rameters such as slow start, the advertised receive window
and characteristics related to the TCP flows. However, our
analysis is centered on the network connectivity manage-
ment and the performance in case of a handover. While
the study in [9] is restricted to a WiFi connection, Huang
et al. [10] evaluate network and application performance
over 2G and 3G cellular accesses. They measure UDP
and TCP throughput before examining the performance
of two widely used applications, web browsing and video
streaming, by comparing them with different combinations
of smartphone and network operator.

Devices equipped with multiple interfaces typically rely
on the entity of the connection manager mostly for the
interface selection, and then provide networking informa-
tion to the applications. In the literature we can find

alternative designs for the connection manager. Zhang
et al. [11] study mobility management between WLAN
and WWAN and propose an architecture that relies on
a connection manager and a virtual connectivity manager,
which integrates end-to-end information to be used to op-
timize the handover. Their connection manager includes
RSSI monitoring and network availability detection mod-
ules. This architecture is experimentally tested in [12],
achieving promising results such as 2.1 seconds interrup-
tion from WLAN to cellular and seamless handover from
cellular to WLAN, being able to select the best AP to
associate with (in terms of available bandwidth).

To the best of our knowledge, only [13] tackles the short-
comings of the current Android Connection Manager by
developing an application that enhances and extends its
functionality. Their application plays with the possibili-
ties offered by the usage of multiple interfaces and – by
enabling simultaneous usage of cellular and WLAN inter-
faces – adds support for WiFi offloading, flow segregation
and content aggregation. However, they do not provide
an assessment on the Connection Manager itself neither
analyze the overall behavior under different network sce-
narios and various conditions. Besides, [14] compares iOS
and Android behavior in streaming, finding out that An-
droid and iOS media players request data from the server
differently and they also have different buffer management
policies. As of the time of writing we are the first ones to
provide a thorough analysis of the network management
supported by an experimental evaluation of the inter- and
intra-technology handover under a wide variety of configu-
rations. In addition, we examine the network attachment
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executed by each device and we analyze the behavior of
several applications in case of a handover, and how they
can handle the change in the global connectivity of the ter-
minal – most of the times unsuccessfully. The performance
of an application does not only depend on the ability of
the developer to handle network connectivity, but also the
accessibility and flexibility offered by the operating sys-
tem and the exposed API. Above all, we compare the three
most popular families of operating systems worldwide2 and
state the differences and similarities among the connection
manager of Android, iPhone and Windows Phone 8 de-
vices, establishing the guidelines for further improvements
in this unexplored feature.

3. Mobile terminal networking stack

Even though the developer community for the three fam-
ilies of OSes is considerably large, there is no official docu-
mentation on the networking stack and the network man-
agement of the system. The effort of the community is
focused on the application layer, thereby the main interest
of a developer is centered at checking whether Internet con-
nection is available, rather than making an efficient usage
of the networking resources and optimizing performance.
Still, we identify the five most representative elements that
define the network management in Android, iOS and Win-
dows Phone 8, and we introduce them comparatively in
this section.

3.1. Android

Android is an open source software stack released by
Google, and publicly available under Apache or GNU Gen-
eral Public Licenses. It is based on Linux kernel 3.X (ker-
nel 2.6 in versions up to Android 4.0). On top of the Linux
kernel, you can find libraries 3, and the Android runtime.
The Android runtime consists on a Dalvik virtual machine
–where the applications run– and on core libraries, specific
for Android devices and used by the applications. In An-
droid Lollipop, the new Android Runtime (ART) replaces
Dalvik by default. An application framework interacts be-
tween the lower layers and the applications, which are on
top of the system architecture.

1. Default interface: the Android API provides tools
for an application to configure its preference on a de-
fault interface. It is important to isolate this behav-
ior from the terminal’s own networking preferences.
The default interface in Android is the cellular one,
and simultaneous active connections over the cellular
and the WLAN interfaces are not supported in ver-
sions previous to Lollipop. However, it is possible to

2http://www.businessinsider.com/

android-is-utterly-dominant-in-europe-2013-7
3Commonly found also in Linux systems. Note that not all the

Linux libraries are fully supported by Android and some changes
have also been introduced to the architecture, such as wake locks
and power management.

modify the default Android behavior to use both in-
terfaces at the same time [13]. In Android Lollipop,
each interface has its own routing table and the cel-
lular connection is kept for 30 seconds after switching
to WiFi. The ongoing communications started over
the cellular interface will remain there. In addition,
the terminal will not connect to a WiFi AP that has
no Internet connection.

2. WLAN interface: the hardware abstraction layer
(HAL) contains the software modules that talk di-
rectly to the kernel wireless stack and drivers. The
HAL is a user-space layer developed in C/C++ used
by the application framework to interact with the
wpa supplicant module4, which runs in the back-
ground and controls the wireless configuration.

3. Network related events: Android offers, by means
of the Android Debug Bridge (ADB), the possibil-
ity of tracking system logs and monitor different sys-
tem events. ADB is a command line tool to com-
municate from a computer to emulated or physi-
cal Android devices. For example, we can moni-
tor the active network connection (WIFI or cellular)
and its coarse-grained status (disconnected, connect-
ing, connected, disconnecting, suspended, unknown).
In the case of the WiFi connection, it is also possible
to monitor the state of the wpa supplicant module,
which also reports changes on its status (associated,
associating, authenticating, completed, disconnected,
dormant, four way handshake, group handshake, in-
active, interface disabled, invalid, scanning, uninitial-
ized). This information is also made available to ap-
plication developers by the API framework.

4. Application Programming Interface (API): the
Android API framework is published in API levels5.
Each API level is an integer that identifies the API
revision (current API level 21). Applications must
support the API level for the specific Android version,
and they usually are backward compatible. Network
access is handled by the Android core libraries. As we
have previously stated, the API provides applications
with information of the network connection status and
the HAL and kernel modules access to the network
interfaces and are in charge of the (re)configuration.
However, the network management still keeps a sim-
plistic or conservative approach, as it is very limited in
terms of optimization or using the two access network
interfaces at the same time. Interestingly enough, the
API provides constants and methods to check whether
the signal strength has changed, to know when a scan-
ning has been performed and information about sur-
rounding APs is available, compute the difference in

4http://w1.fi/hostap.git
5Not necessarily a new Android version has to support a new API

level, but commonly a new version upgrades the API too.
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signal strength or change the state or configuration of
the WiFi connection, so that applications could make
a much wiser usage of the network connectivity6.

5. Flexibility and restrictions to the user: Android,
being Linux-based, offers a high degree of flexibility
in configuration and networking support. In addition,
the lax licensing has favored the distribution of cus-
tomized versions of the firmware7. By default, An-
droid users are not given root access, but root access
can be configured, empowering the accessibility to all
the terminal features. The root access and the Linux
characteristics make the Android OS the most flexi-
ble and accessible of the systems under study. In this
way, we have full access to the system logs record, we
can monitor the status of the network interfaces and
we can capture traffic with a network analyzer such
as tcpdump8.

3.2. iOS

iOSn is the operating system running on Apple mobile
devices, being n the version number, currently the latest
version is iOS8, released in September 2014. iOS is based
on the open source OS Darwin, however, iOS remains as
closed-source. It is built upon 4 abstraction layers, ordered
from top to bottom: i) Cocoa Touch layer, ii) Media layer,
iii) Core Services layer and iv) Core OS layer. The Core
OS layer has access to the kernel, drivers and networking
features as the interface to BSD sockets. However, devel-
opers are recommended to implement applications by us-
ing the framework in the highest level as possible, as the
complexity of handling networking events or configuration
is hidden by the OS.

1. Default interface: the cellular interface is assumed
to provide always-on connectivity, but as soon as a
wireless AP appears in range, the WiFi connection
takes over the cellular connection.

2. WLAN interface: the WLAN interface is selected
as the primary interface, over the cellular connection.

3. Network related events: the development platform
does not offer access to the lower layers that talk di-
rectly to the hardware. However, the application can
react to network connectivity changes, for instance,
by means of the SCNetworkReachability API (avail-
able in the System Configuration framework in Core
Services API) to diagnose the cause of the failure of
a connection and determine availability of different
connections.

6The interested reader is referred to http://developer.android.

com/reference/packages.html for a complete guide of the Android
API framework.

7One of the most popular ones is CyanogenMod, which reports
more than 12 million installs (http://www.cyanogenmod.org/).

8http://www.tcpdump.org/

4. Application Programming Interface (API): iOS
provides three different networking API layers: Foun-
dation layer, Core Foundation layer (these two are
specific to iOS) and POSIX layer (as in other UNIX
systems). The three of them support common net-
working tasks, being recommended to use the highest
level API that fulfills the developer’s requirements.
The networking API provided by iOS7 can be catego-
rized into three main groups: BSD sockets, web access
and Bonjour. The interested reader is referred to [15]
for further details.

5. Flexibility and restrictions to the user: the iOS
system is closed source thereby the user is not given
much flexibility of configuration with respect to net-
work preferences. Even though the operating system
has been hacked and it can be jailbroken it does not
change the networking behavior or configuration, but
increases flexibility application-wise.

3.3. Windows Phone 8

Windows Phone 8 (WP8) is developed by Microsoft,
and, as the OS version for PC, they changed completely
what was established in previous releases. Therefore, due
to a change in the architecture, applications designed for
WP8 cannot run in previous OS versions or devices run-
ning an older version cannot upgrade to WP8. As part
of the features that Microsoft tried to improve in this new
version, they include the network stack, focusing on speed-
ing up the connection and reducing power consumption.

1. Default interface: one of the main changes in the
networking stack in Windows 8 is the prioritization of
network connections. Despite having a priority, mul-
tiple interfaces can be connected simultaneously. By
default, the cellular interface is the one that is actively
connected, but in the moment that an already visited
WiFi network becomes available, the phone will try
to connect to it. However, the connection through
one interface does not kill a previous connection in
another interface. It is only after a short period of
time that the cellular connection will be terminated,
unless it is being used by an application. In addition
to that, existing connections at the moment of the
new attachment, are kept alive and only the new con-
nections will use the new interface. WP8 even offers
the applications the possibility to select the network
interface to use.

2. WLAN interface: the wireless network stack builds
on top of the hardware device (and its firmware) with
the driver and the Wi-Fi service of the OS. With this
new generation of their OS, Microsoft targets to opti-
mize power consumption and connection delay, which
worsens user experience. In order to do so, they have
tried to integrate as much operations as possible into
the hardware layer.
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3. Network related events: as mentioned, the access
to the configuration of the WP8 device is more re-
stricted to the user, providing no information on the
current connections or the networking events, other
than enabling or disabling a network interface and
changing the priority of a WiFi network in the list of
preferred networks.

4. Application Programming Interface (API):
WP8 exposes a set of APIs that comprises the ones
for previous releases (WP7) and the ones that the
manufacturer recommends for applications built from
scratch for WP8. We are only going to mention
here the ones recommended for this system, which
are .NET HttpClient and WinRT Sockets, and the
so-called “Native code” (IXML HttpRequest2 and
WinSock). Although there are several development
frameworks, we can differentiate two parts: the one
devoted to the web browsing (HTTP-related) and the
one directly related to the network connections (sock-
ets). Despite the restrained flexibility, WP8 offers
its applications information about the network con-
nectivity and when a change in connectivity occurs.
An application can even set preferences on the use of
one interface over the other. Moreover, the emulator
provided by the development framework can simulate
changes in the network connectivity to test the appli-
cation under different scenarios.

5. Flexibility and restrictions to the user: WP8
tries to optimize mobile user experience and is de-
signed considering the performance of current devices
(touch-screen, portable devices, wireless connectiv-
ity). However, this optimization, achieved by imple-
menting a more integrated system, speeds up some
processes but no involves more freedom to the user
in configuration nor accessibility. The manufacturer’s
claim to favor this design is that the user just wants
to be connected, but does not care about how they
get connected.

4. Experimental setup

This section describes the characteristics of the mobile
terminals under test and provides an overview of the dif-
ferent experiments. We aim at studying the connection
manager in several mobile devices running the most repre-
sentative OSes – iOS, Windows Phone and Android. The
characteristics of the smartphones in our experiments are
collected in Table 2. We have included in our analysis
the latest versions available of the OSes, including iOS8
and Android Lollipop. We have tested the same operating
system version running in different terminals, so we can
avoid dependency on the terminal rather than on the OS.
For the sake of fairness we have avoided performing any
modification to the terminals.

We deploy two IEEE 802.11 Access Points that provide
Internet access. These Access Points are under our com-
plete control to keep track of the behavior of the terminals
attached to them and to be able to modify network param-
eters, such as the ESSID (Extended Service Set Identifier),
the wireless channel in which the Access Point (AP) oper-
ates and the IP subnet managed by the access router.

We intend to characterize the Connection Manager on
the systems under study, identifying the main strengths
and weaknesses of network connectivity management and
comparing their behavior. Our analysis focuses on under-
standing the following mechanisms:

1. Initial attachment procedure to an 802.11 net-
work. Regarding this mechanism, we aim at un-
derstanding: i) how the attachment to a WLAN is
carried out by every device, analyzing the differences
among them, if any, and, ii) how the network selec-
tion algorithm works and what criteria are used to
choose among the different candidate networks. This
is explained in Section 5.1.

2. Initial configuration of the protocol stack. Once
the mobile terminal has attached to a point of ac-
cess, we aim at understanding the main steps and the
protocols used to complete its networking stack con-
figuration. Note that, if this procedure takes place
entirely whenever there is a change in the point of at-
tachment to the network, and not only as an initial
configuration, it may enable potential optimizations
for the handover process. This operation is explained
in Section 5.2.

3. Horizontal handover. We examine the handover
procedure between two IEEE 802.11 APs. We play
with different network parameters to have a wide view
of the performance for the different mobile terminals.
Specifically, the current AP and the target one may
have the same or different ESSID, operate in the same
or different channels and manage the same or different
IP subnets, in which case the handover would imply
also a layer three reconfiguration. Through this anal-
ysis, we aim at knowing whether there are any domi-
nant factors when the mobile device changes its point
of attachment to the network and to what extent the
different changes impact the configuration and con-
nectivity management. The horizontal handover is
explained in detail in Section 6.1.

4. Vertical handover. We evaluate the handover pro-
cedure when it involves a change in the access tech-
nology. We aim at understanding how the mobile de-
vices handle the inter-technology handover, whether
they can keep both technologies operative simultane-
ously and whether they handle the survival of ongo-
ing connections. Characterizing the inter-technology
handover is essential to design potential optimizations
and flow mobility solutions. However, due to restric-
tions by the terminal and the network operator, we
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Table 2: Main characteristics of the analyzed smartphones
LG Nexus 4 E960 LG Nexus 5 iPhone 3GS iPhone 4 iPhone 5 HTC 8S

OS Version Android 4.2.2, 5.0 Android 5.0 iOS 6.0 iOS 7.0.4 iOS 8.1.2 Windows Phone 8.0

Chipset
Qualcomm Snapdragon Qualcomm MSM8974 Samsung

Apple A4 Apple A6
Qualcomm Snapdragon

S4 Pro APQ8064 Snapdragon 800 APL0298C05 S4 Plus MSM8227

CPU
Quad-core Quad-core 600 MHz 1 GHz Dual-core Dual-core

1.5 GHz Krait 2.3GHz Krait 400 Cortex-A8 Cortex-A8 1.3GHz Swift 1GHz Krait

RAM 2GB 2GB 256MB 512 MB 1GB 512MB

WLAN
Atheros WCN3660 Broadcom BCM4339 Broadcom Broadcom Murata 339S0171 Atheros WCN3660
Murata SS2908001 (5G WiFi combo) BCM4325 BCM4329 Broadcom BCM4334

were not able to obtain direct measurements from the
cellular interface. The vertical handover results are
presented in Section 6.2.

5. Application behavior. We study application sur-
vival to handover in the cases already explained. The
objective is to know the perception of the user when
an application is running and there is a change in con-
nectivity. In addition, we get to know whether appli-
cations can handle an interruption due to horizontal
or vertical handover seamlessly. These experiments
are presented in Section 6.3.

We start our analysis in Section 5, with the evaluation
of the initial attachment procedure to an IEEE 802.11 net-
work.

5. IEEE 802.11 Initial attachment procedure

In order to test the default attachment to an IEEE
802.11 [3] WLAN, we deploy a wireless access point and
run thirty experiments for each smartphone. In each ex-
periment, which lasts for 60 seconds, we monitor the traffic
by means of a network analyzer9. The monitor interface is
located close to the access point, so we can likely capture
all the frames involved in every exchange. Initially, the
WLAN interface of the mobile terminal is down, so we do
not miss any packet or reach misleading results because of
having the device already connected to another network.
We start our experiment by bringing up the interface and
checking that the device actually connects to the AP under
our control. This experiment describes the case in which
the terminal finds an already known network and connects
successfully. Note that to connect to a network for the very
first time the user must identify and select manually the
network to connect to.

Figure 1 presents in a diagram the different steps per-
formed during the initial attachment to the IEEE 802.11
network. Note that this is a general diagram and it does
not try to highlight the differences among the terminals,
but to illustrate the common procedures followed by all
of them. In the following, each of the steps in the initial
attachment is explained in detail, highlighting the differ-
ences among terminals.

9http://www.wireshark.org/

5.1. IEEE 802.11 attachment

Active scanning to broadcast address: when the
WLAN interface of a mobile terminal goes up, it detects all
the surrounding wireless networks available by initiating
an active scanning procedure. The terminal sends Probe
Request frames to a wildcard ESSID (and to every previ-
ously visited ESSID) in every channel sequentially. Neigh-
boring access points will receive these Probe Requests and
answer with Probe Response messages, indicating their ca-
pabilities and providing synchronization information. This
active scanning phase differs slightly in the systems under
study.

By monitoring the traffic in different channels we are
able to measure the delay induced by the scanning pro-
cedure. The results show high variability in the amount
of Probe Requests being broadcast as well as in the time
interval between them, but we can identify different pat-
terns:10

• The Android terminal scans approximately every 10
seconds in every channel, sending a number of consec-
utive Probe Requests inter-spaced approximately 15
ms.

• The Windows terminal spends approximately 6 sec-
onds between consecutive scans in the same channel.
The time lapse between consecutive Probe Requests is
very variable, but shows two different dominant val-
ues: the terminal sends several requests every 6 ms
and one after 60 ms to continue with 6 ms interval
again.

• The iPhone terminal presents an interval of approx-
imately 9 seconds between the scan in every channel
and the delay between consecutive Probe Requests
is around 20 ms. As the WP8 terminal, there are
several requests spaced 20 ms (much higher interval
than WP8) another one 700 ms after that, to continue
sending every 20 ms again.

It is also interesting to evaluate the behavior of the
terminals in channel 14, which is not allowed in Europe,
where we are based. The Android and Windows phones
do not list the networks operating in that frequency as
available, but the iPhone does, regardless of the regulatory

10Due to the high variability we just provide rough numbers.
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Figure 1: Initial attachment to the WLAN.

domain. However, the three terminals send Probe Request
frames in every channel including that out of the allowed
frequency band (at a different interval than in the other
channels, though). Noteworthy, Android and Windows
devices do not give the user the opportunity to attach to
these networks although they actively scan that channel.

The scanning policy followed by a terminal has several
potential effects. First, the number of Probe messages sent
during the scanning phase impacts directly the energy con-
sumption. Second, a terminal can only obtain information
regarding the signal level from the AP by the frames re-
ceived, hence receiving more responses before deciding the
target point of attachment can be beneficial. Last, the
delay in the attachment to a WLAN AP is directly influ-
enced by the time spent in the active scanning, and so is
the handover delay if the terminal has to scan again before
connecting to a new AP.

Target Network Decision: this step corresponds to
the actual decision on the AP to connect to. It seems
reasonable to expect the terminals to perform some kind
of complex algorithm considering, for instance, the signal
level received from the different APs. After the analysis,
we have discovered through our extensive tests that all the
terminals use a simple rule to decide where to connect to.
If the AP used in the immediately previous connection is
available, the terminals will connect to it, no matter its
signal level. In case the last visited AP is not available,
the terminal connects to the one previous to the last one,
and so on. In the case secured and open networks are
available, only the iPhone terminal shows a preference for
secured networks if the immediately previous connection
is not possible. Note that we have confirmed this
behaviour also with several wireless networks that
are available at our laboratory, not only the two
APs we deploy in our set of experiments. It is worth
to note that the Android phone includes an option in the
WiFi settings to connect to a different WLAN or to the
cellular network if the signal is weak. However, even if this
option is enabled, the terminal follows the same approach
and disregards signal strength information to connect to
an AP. This way of choosing the target network leads to
weak connections and poor performance.

Active scanning to selected ESSID: in this step, the
terminal addresses a Probe Request message directly to
the AP selected previously and indicates the target ESSID
in the correspondent field in the frame.

Authentication and Association: these are the last

two steps before being attached to a WLAN AP. Both of
them are standard procedures and are equally executed
in the different terminals. Security procedures are out of
scope as the main focus in this work is on the Connection
Manager.

Table 3 gathers the average and standard deviation of
the delay during the initial attachment to a WLAN mea-
sured for the different OSes versions. We distinguish be-
tween link layer and network layer configuration, which in
turn is measured for IPv4 and IPv6 configuration, in or-
der to provide more information on the influence of both
processes. The link layer delay is measured as the time
from the interface going up until the terminal is associ-
ated to the AP. The scanning policies presented previously
influence considerably these delays. The Android termi-
nal clearly outperforms the rest of the systems. Although
it sends a higher number of frames before attaching to
the selected AP, these frames are more frequent, whereas
the other systems have a longer interval and therefore,
the association is delayed. However, Android Lollipop has
clearly impaired performance in the connection for Nexus
5 devices (well-known issues are being reported by Nexus
5 users since updated to Lollipop). The WP8 delay dou-
bles that of Android 4.2 and Nexus 4 Lollipop, although
the scanning time in every channel is lower for Windows.
There is no clear difference in performance between iOS6
and iOS7, so this process seems not to have suffered major
modifications from one version to the other. Still, the lat-
est version, iOS8 increases the delay, as it happened with
the Android update. We have had access to a new iPhone
6 and been able to perform the same tests, finding no dif-
ference, on average, in our measurements with respect to
the ones in Table 3, which correspond to an iPhone 5. It
calls our attention the usage of CTS-to-self frames sent by
Android Lollipop in Nexus 5 and iOS8 in iPhone 6, but not
in previous terminals running the same operating system.
Moreover, Nexus 5 just sends one frame right before the
authentication frame. The process and the delay for IP
configuration is explained in detail in the next subsection.

5.2. Protocol stack initial configuration

IPv4, IPv6 and Multicast configuration: we group
these configuration steps because they are very similar for
the evaluated systems. Table 3 shows the delay during the
initial attachment due to the configuration of an IP ad-
dress in the wireless interface of the mobile terminal, once
it is associated to the AP (under the column “Network
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Table 3: Initial attachment delay

OS Version Link layer delay (s)
Network layer delay (s) Total (s)

IPv4 IPv6 IPv4 IPv6
Android 4.2 Nexus 4 0.42 ±0.12 1.09 ±0.31 4.75 ±0.43 1.51 ±0.33 5.17 ±0.45
Android 5.0 Nexus 4 0.47 ±0.05 0.68 ±0.36 9.58 ±3.53 1.15 ±0.33 10.05 ±3.54
Android 5.0 Nexus 5 2.58 ±0.05 0.50 ±0.04 3.33 ±1.15 3.09 ±0.06 5.90 ±1.14

iOS6 1.91 ±0.08 0.13 ±0.01 1.16 ±0.06 2.05 ±0.07 3.08 ±0.14
iOS7 1.98 ±0.26 0.13 ±0.02 1.12 ±0.58 2.12 ±0.26 3.1 ±0.67
iOS8 2.28 ±0.47 0.25 ±0.11 0.87 ±0.25 2.54 ±0.45 3.25 ±0.51
WP8 1.08 ±0.28 1.1 ±0.12 1.28 ±0.15 2.18 ±0.30 2.36 ±0.32

layer delay”). In the case of IPv4, the different termi-
nals follow the same mechanism and use DHCP (Dynamic
Host Control Protocol) [16] to configure the IP address
when they attach to the network. In our experiments, the
DHCP server is located in a node belonging to the same
network but different from the AP. The iPhone terminals
are the fastest ones in this case because they start the
process much earlier, while Android 4.2 (ICS) and WP8
present a very similar delay, close to one second over the
one from iOS. Contrarily to the attachment to the WiFi
AP, the IPv4 address configuration has been made faster
in the new Android version. Another interesting differ-
ence is that the new iOS version, iOS8, uses gratuitous
ARP in the IPv4 configuration when the wireless interface
goes up, for both iPhone 5 and iPhone 6. Neither Android
nor WP8 do that.

Regarding IPv6 configuration, the WP8 device tries to
configure an IPv6 address by means of DHCPv6 [17], but
as we have no DHCPv6 server in our network, all the ter-
minals configure local and global IPv6 addresses following
the SLAAC (Stateless Address Auto Configuration) pro-
cedure as specified by [18] and [19] for configuration and
DAD (Duplicate Address Detection). First, the mobile
node acquires a link local IPv6 address and joins the all-
nodes and the solicited-node multicast addresses when the
connection is established in the interface. Then, in order
to perform the DAD the terminal sends a Neighbor Solici-
tation message to the solicited-node multicast address. As
the source address of this message is the unspecified ad-
dress, any other node will not respond to that message and
will identify the tentative target address and know that ad-
dress cannot be used. Whether the node itself receives its
own Neighbor Solicitation depends on the particular im-
plementation of the multicast loopback. In the case of iOS
devices, the delivery to upper layers of their own multicast
message is disabled, so, if no other node in the network
has the same IPv6 address as the target one, no Neigh-
bor Advertisement from any other node will be received
and the mobile terminal will silently configure the inter-
face with the target IPv6 address. However, the Android
and Windows terminals send out a solicited Neighbor Ad-
vertisement with their own source address upon receiving
their own Neighbor Solicitation messages to announce this
configuration. The Android device unicasts the advertise-

ment to the router, while the Windows device broadcasts
it to all the nodes.

In light of the results in Table 3, the delay for the
IPv6 configuration is comparable in the iOS and Win-
dows Phone systems, but the Android device takes sig-
nificantly more time, which delays any IPv6 connection.
It is worth to mention that the three families of mobile
OSes follow [20] considerations to protect privacy. Ac-
cording to SLAAC rules, the IPv6 address is configured
from an interface identifier (EUI-64 identifier), and the
second half of the global IPv6 address (without consid-
ering the 8-byte prefix announced by the router for con-
figuration) is the same regardless of the location, so the
device could be tracked. Therefore, IPv6 privacy exten-
sions are defined so the network interfaces are configured
with randomized strings, which change over time, instead
of the interface identifier in order to complicate the ac-
tivity correlation. RFC 7217 [21] provides the specifica-
tion for the generation of these random interface identi-
fiers while keeping IPv6 addresses stable in each visited
subnet. Typically, the address derived from the EUI-64
identifier is kept, in addition to a temporary address built
upon randomized identifiers. In our tests, we have ob-
served that only the Android device configures an IPv6
address matching its EUI-64 identifier and a randomized
one. The WP8 and the iOS devices configure the two IPv6
addresses from random strings. According to the RFC,
“devices implementing this specification MUST provide a
way for the end user to explicitly enable or disable the
use of temporary addresses”; however, none of the sys-
tems are compliant with this statement. Table 3 shows a
considerably higher delay for network layer configuration
for the Android (Nexus 4) terminal. It starts the IP ad-
dress configuration process approximately 1 second after
the association, starting with the Router Solicitation mes-
sage, and approximately 4 seconds after the association, it
starts with the SLAAC, which leads to the highest delay
among the terminals studied. Unfortunately, this process
has been impaired significantly in the updated version.

Finally, the use of multicast for the interface configura-
tion is slightly different in the three families of systems.
For instance, Windows Phone makes use of LLMNR (Link
Local Multicast Name Resolution) protocol [22] in addi-
tion to IGMP (Internet Group Management Protocol) [23]
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and MLDv2 (Multicast Listener Discovery) [24, 25] which
are used in the iPhone signaling. The Android phones just
make use of MLDv2 messages, as IGMP is not supported.
This behavior is specific of some Android devices and con-
stitutes a known issue in the community.11

Higher layer configuration: As part of the pro-
cess to gain Internet connectivity, all mobile OSes
perform a technique called Network Connectivity
Indicator, to detect captive portals. This proto-
col issues a DNS query to establish a TCP con-
nection intended to send an HTTP GET method
and retrieve a light-weighted web page, which is
mainly void. This procedure serves to check the
Internet connection at the device and prompt the
users with a login form to introduce their creden-
tials, if required by the WLAN administrator. The
API in Android includes a way to access the infor-
mation on whether the terminal is connected or
connecting to the Internet, through which inter-
face and allows registering to event notifications
in case of network status changes. The connec-
tion manager can detect the status of the interface
and if it is connected, and in addition, application
developers have the option to try and reach a web-
site from their application when it starts running
to check that there is actual connectivity. With re-
gard to Apple’s devices, it is worth highlighting a recent
change performed in iOS7 compared to iOS6. The captive
portal detection in iOS6 was performed issuing a query
to the web page http://www.apple.com/library/test/

success.html, while in iOS7 this web page check has been
swapped by a randomized query to a URL selected in a list
identified by Apple. Table 4 collects the service connec-
tions that are preceded by a DNS query when the different
terminals attach to a WLAN. As soon as the mobile ter-
minals gain Internet connectivity, all the terminals try to
reach the central servers of their correspondent manufac-
turers to update their location, configure some services
- time synchronization or push notification service – and
re-initiate some connections – as GTalk, in the case of
Android. IP addresses on the server side are expected
to change, so the terminal connects by hostname, issu-
ing DNS queries, rather than by IP address. Commonly,
servers implement a load balancing scheme, so it is pos-
sible that the same query returns a different IP address
for the same host name. For that reason, to identify the
connections we track an IP address block, instead of a spe-
cific name or address. In addition we observe that many
providers and applications use CDN (Content Distribution
Network) nodes to offer their services, which complicates
the identification of the service as the connections are hid-
den by the CDN. For instance, iPhone uses the Akamai
network [26] for all Apple related services.

To sum up, the results show that the Android terminal

11Issue 51195: many devices have multicast disabled in the kernel.
http://code.google.com/p/android/issues/detail?id=51195

Figure 2: General scenario for handover tests.

associates to the AP much faster in the previous versions
of the system, and the network layer configuration time is
comparable to that of WP8 for IPv4, but it takes signifi-
cantly longer than in the other terminals for IPv6 configu-
ration and Duplicate Address Detection (DAD). However,
it calls our attention that, as Linux does, the first DNS
query sent by the Android phone is always a request for an
IPv6 address (type AAAA), so IPv6 takes precedence over
IPv4. On the contrary, the WP8 device issues the IPv4
query before the IPv6 one. Note that the differences in
hardware, as reported in Table 2, should not be responsi-
ble for the differences in performance, specially in the case
of the Android phone, which is the one with the slowest
initial connection. In the case of the iOS terminals, they
require much less time than the Windows and Android de-
vices to configure an IPv4 address, but the association to
the wireless AP takes longer (except for Nexus 5). The
fast configuration in IPv4 makes possible to have compa-
rable total times for iOS and Windows devices, while for
IPv6 the Windows terminal is almost 1 second faster than
iOS and almost 3 seconds faster than Android.

6. Handover dissection

This section presents a thorough study of different han-
dover scenarios and their effect on applications and user
experience. For these experiments, we vary the configura-
tion of two 802.11 APs in order to cover as many different
scenarios as possible. The different variations in the setup
are presented in Figure 2. The access points provide Inter-
net access to the terminals attached to them and we play
with different parameters of the network – ESSID, chan-
nel and IP subnet – to evaluate their influence when the
handover process takes place from one AP to the other.

We do not only analyze the handover from an 802.11
AP to another, but also the inter-technology, or vertical
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Table 4: DNS queried for initial configuration of services on WLAN interface start-up
Service Android iOS WP8

Initial connection clients3.google.com www.apple.com; login.live.com
to central servers (IPv4 and IPv6) (IPv4 and IPv6) clientconfig.passport.net

Network status clients3.google.com/generate 204 http://www.apple.com/library/test/success.html (iOS6) www.msftncsi.com
indication www.google.com/blank.html randomized (iOS7)

push notification mtalk.google.com 18-courier.push.apple.com (IPv4 and IPv6) push.live.net
service

play.googleapis.com www.apple.com; ctldl.windowsupdate.com
Software updates android.clients.google.com (IPv4 and IPv6) crl.microsoft.com

(IPv4 and IPv6) (IPv4 and IPv6)

handover, moving the connection from the cellular inter-
face to the WLAN one and vice versa. Lastly, we evaluate
the behavior of several applications when a handover takes
place to check handover impact from the point of view of
the user.

6.1. WLAN Horizontal Handover

6.1.1. Initial considerations

In this section we focus on the main core of the han-
dover analysis, which is the intra-technology or horizontal
handover, where the mobile node changes the point of at-
tachment to the WLAN and connects to a different WLAN
AP. Table 5 gathers the link layer delay measured for the
different experiments. We have indicated the differences
in ESSID and channel of operation between the two APs.
Our analysis is centered on the link layer handover, so we
do not change the IP subnet. As none of the three mo-
bile OS families bases a handover decision on the received
signal strength from the current AP or link quality degra-
dation, we force a handover in our experiments by initi-
ating it in the network or in the terminal side following
three different approaches: i) the AP deauthenticates the
station (since the mobile terminals do not react to signal
strength or link quality degradation, we turn off the AP).
This is presented in Table 5 as “disconnect AP” in light of
the obtained results we differentiate two subcases; ii) the
mobile user terminates the connection by manually omit-
ting – “forgetting” – that network (referred to in Table 5
as “forget”) or iii) the mobile user switches the connection
directly to other network (“manual” in Table 5). The dif-
ference between the second and the third option is that, in
the latter, the user explicitly indicates the target network
to switch to.

Another preliminary consideration is that the cellular in-
terface is the default interface in smartphones, since it pro-
vides always-on connectivity. Therefore, we also evaluate
the influence of having this interface enabled or disabled
in the case of a horizontal WLAN handover. We have no-
ticed that the analyzed OS families always fall back to the
cellular connection as soon as the current WLAN connec-
tion fails, even if there are other WiFi networks available.
This change involves another variation of the IP address
that provides global connectivity to the device, however, it
does not necessarily worsen the handover latency and the

interruption experienced by the user. On the contrary,
the change to the cellular connection actually does not in-
crease the handover delay and, as we will see in Section
6.3, improves the performance in case the handover im-
plies a change of IP subnet, contributing to the survival of
a running application, depending on the implementation.
For the experiments presented in this section, we have con-
firmed that having the cellular data connection enabled or
disabled makes no significant difference in the horizontal
handover delay, so we do not distinguish these two cases
in Table 5 for the sake of clarity.

6.1.2. Handover latency

The first issue that calls our attention is the consider-
able handover latency for the systems under study in every
scenario. However, it is remarkable that this latency does
not always translate into a complete loss of connectivity
or killing a running application – see Section 6.3.

From the figures in Table 5 we can clearly see that the
fastest way of handing over from one WiFi network to the
other is to manually change the connection. All the termi-
nals can change the connection in less than a second, but
iOS devices are particularly fast, with times around 200
ms. In the case the handover is initiated by the user but
just deciding to disconnect from the current AP, without
directly connecting to the new one (“forgetting” the cur-
rent connection) the handover latency increases to values
around 1.5 seconds as the mobile terminal scans again in
every channel. However, the Android terminal presents a
stable delay as the handover delay remains around 0.9 s
when the mobile terminal hands off between two APs from
different ESSs (Extended Service Sets), regardless whether
the handover is initiated by the terminal or the network.
For the rest of the systems, instead, it varies significantly.
It is remarkable the sticky client implementation in iOS8
wireless client, which tries to remain connected to the same
AP regardless of network conditions or even user choices,
especially when having to change to a different channel,
which explains the 4.92 s delay in the “manual” handover
and the 0.17 s for the “forget” handover, as the terminal
cannot try to remain connected to the previous AP.

In the case of roaming between two APs within the same
ESS, the only possibility is to hand off by disconnecting the
AP, because the user cannot choose manually to which AP
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Table 5: Layer 2 handover delay [s] for the different terminals

Handover mechanism

Manual Forget
disconnect AP

AP deauthenticates Connection lost

Same channel

A 4.2 N/A N/A 0.92 ±0.13 5.54 ±0.09
A 5.0 Nexus 4 N/A N/A 7.20 ±2.54 21.09 ±6.39
A 5.0 Nexus 5 N/A N/A 9.12 ±1.72 2.96 ±1.06 (reassoc)

13.14 ±2.66
iOS6 N/A N/A 1.94 ±0.36 4.63 ±1.12 (reassoc)
iOS7 N/A N/A 2.48 ±0.29 4.59 ±0.59(reassoc)
iOS8 N/A N/A 2.44 ±0.81 11.23 ±3.33 (reassoc)

Same WP8 N/A N/A 0.24 ±0.1
ESSID

Different channel

A 4.2 N/A N/A 0.99 ±0.19 5.40 ±0.11
Lollipop Nexus 4 N/A N/A 3.25 ±0.26 (reassoc) 2.71 ±0.37 (reassoc)
Lollipop Nexus 5 N/A N/A 9.05 ±4.68 13.40 ±4.60

iOS6 N/A N/A 1.57 ±0.34 5.66 ±1.38 (reassoc)
iOS7 N/A N/A 2.38 ±0.32 4.88 ±0.97 (reassoc)
iOS8 N/A N/A 14.80 ±5.94 18.87 ±1.87
WP8 N/A N/A 0.4 ±0.097

Same channel

A 4.2 0.95 ±0.08 0.9 ±0.03 0.78 ±0.29 5.42 ±0.1
A 5.0 Nexus 4 0.10 ±0.08 1.04 ±0.45 5.31 ±3.02 10.73 ±3.18
A 5.0 Nexus 5 0.09 ±0.04 4.70 ±1.78 8.53 ±3.81 9.75 ±4.83

iOS6 0.14 ±0.054 1.53 ±0.10 1.36 ±0.53 11.87 ±0.83
iOS7 0.22 ±0.03 1.64 ±0.33 2.41 ±0.67 11.88 ±0.36
iOS8 0.12 ±0.06 0.27 ±0.06 3.90 ±1.90 11.44 ±2.23

Different WP8 0.87 ±0.34 1.52 ±0.62 10.14 ±1.83
ESSID

Different channel

A 4.2 0.93 ±0.07 0.91 ±0.025 0.91 ±0.06 5.41 ±0.15
Lollipop Nexus 4 0.27 ±0.28 3.29 ±0.31 9.07 ±1.65 15.09 ±3.39
Lollipop Nexus 5 0.10 ±0.08 4.24 ±1.30 6.87 ±3.26 13.12 ±4.48

iOS6 0.22 ±0.06 1.43 ±0.45 1.09 ±0.82 12.00 ±0.51
iOS7 0.28 ±0.04 1.69 ±0.61 1.20 ±0.26 12.16 ±0.887
iOS8 4.92 ±0.03 0.17 ±0.08 8.61 ±4.12 12.12 ±2.38
WP8 0.73 ±0.05 0.75 ±0.05 10.41 ±0.065
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Figure 3: Flow diagram of a handover procedure for the different OS families.

in the ESS it connects. When the handover is triggered
from the network side, the AP sends a deauthentication
frame when it disconnects. In this case, we have iden-
tified two differentiated behaviors that repeat in our ex-
periments, except for the WP8 terminal. In the first case,
the mobile terminal receives the deauthentication from the
AP and starts active scanning for a new AP to connect to.
This case shows lower delays and the signalling is similar
to the one described in Section 5 for the initial attachment.
On the contrary, in the other case we have measured much
higher delays until the mobile terminal associates to the
new AP. The reason for this difference is that the mobile
terminal does not get disconnected because it recognizes
the deauthentication from the AP, but because the con-
nection is lost (e.g. missed Beacons). The mobile terminal
tries to reconnect to the lost AP by sending Null Function
frames and Probe Requests. As the AP does not respond
anymore, the mobile terminal needs to scan to look for
other available APs. Once again, the Android terminal
presents a similar delay irrespective of whether the former
and the new AP are part of the same ESS (around 5 sec-
onds). However, the iOS devices perform a re-association
in approximately 5 seconds when roaming within the same
ESS, whereas the delay raises to 12 seconds when the two
APs are in different ESSs. We have traced the events that
take place in the case with the higher delays in the wireless
networking stack until the wireless driver. However, we
cannot confirm if this is a buggy behavior of the implemen-

tation, but it clearly gives us some room for improvement
in the connection management. The Windows Phone ter-
minal does not present these differences in its behavior. Its
handover process is more stable although moving within
the same ESS clearly decreases the delay and reduces the
scanning phase. It is worth to mention that, when roaming
within the same ESS the iOS devices send a Reassociation
Request frame instead of an Association Request to the
new AP. The main difference between these two frames is
that the Reassociation includes the BSSID (Basic Service
Set Identifier) of the previous AP that the mobile termi-
nal was connected to. This is because from iOS6 Apple
has implemented support for 802.11r (amendment for Fast
BSS transition). Since our APs do not implement 802.11r
mechanisms, this feature reduces to a regular handover,
although having it enabled, should influence significantly
aspects like security or QoS.

If the handover is performed between two APs within
the same ESS, this change should have an effect only at the
link layer, being transparent to the IP layer. Therefore, the
mobile terminal should not renew its DHCP lease until it
is expired even though it changes from one AP to another
inside the same ESS. This behavior is confirmed by the
iPhone terminal, but both Android and Windows phones
initiate a DHCP discover process when they connect to
the new AP, regardless of being part of the same ESS.

In these experiments we do not consider changes in the
IP layer, as we are focusing on the link layer delay. Never-
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theless, it is worth pointing out that for the Android and
Windows phones any kind of handover involves a recon-
figuration in the IP layer (new DHCP and IPv6 configu-
ration), even though the target network is managing the
same IP subnet.

6.1.3. Link layer behavior

Figure 3 illustrates the signaling differences
among the systems under study for the four han-
dover cases we have analyzed. We indicate the
steps common to all the systems with a brown line,
and we differentiate the steps for each system with
green for Android, blue for WP8 and black for iOS.
In the following, we highlight the main differences
among the three. The handover process starts ei-
ther when the AP sends the deauthentication to
the mobile terminal (“disconnect AP” case in Ta-
ble 5) or the mobile terminal disassociates (“man-
ual” and “forget” cases in Table 5). One of the
main differences we can appreciate is that the An-
droid terminal does not differentiate between the
“manual” and “forget” handovers. Both trigger
the active scanning with broadcast Probe Request
frames to the wildcard ESSID; then, it follows
a broadcast Probe Request to the target ESSID
(when the AP sends the deauthentication to the
Android terminal, this Probe Request frame is not
broadcast) and finally authenticate and associate.
For WP8, we notice it follows a shorter path than
the other systems when the AP sends the deau-
thentication (and the ESSID does not change),
which matches the low delay of the WP8 handover
in this case. We notice that only the iOS7 device
sends a Deauthentication frame when it receives
the deauthentication from the AP. Finally, the two
different cases for the “disconnect AP” handover are il-
lustrated by the two different paths that part from the
“AP sends Deauthentication” box. The case that incurs
the highest delay is the path through the Null Function
frames, while the direct path to the active scanning box
also involves considerably lower delays (as abovementioned
in Table 5). In this last case, the terminals may follow two
different paths, sending Null Function frames or not, de-
pending on whether they accept the deauthentication from
the AP or think the connection has been lost.

The use of Null Function frames is a common practice
and, as their usage is not defined by the standard, different
implementations make different use of them. On the one
hand, they are used for power saving, notifying the AP
when the station is going to sleep mode and waking up.
On the other hand, they are used during active scanning
to get the AP buffering the frames addressed to the station
while it is sensing other channels to avoid retransmissions.
A third alternative is to use the Null Function frames as a
keep alive for the connection. However, the flexibility pro-
vided by these frames is also applied for attacking wireless
networks [27].

6.1.4. Upper layers behavior

It is worth mentioning that the handover delay increases
significantly in the case of not having an application run-
ning. Moreover, although the behavior on the link layer is
quite similar in the different devices for any of the scenar-
ios, the behavior in the upper layers is very diverse.

We aim to characterize also the interruption at upper
layers due to the handover. However, we have not been
able to extract similar results to the link layer measure-
ments, due to the variability in the behavior of the appli-
cation running and the high delay to re-establish the flow
with the main servers. The application behavior is not
under our control, but several cases can be identified. In
the case of Android, every handover case involves a com-
plete reconfiguration also at the network layer, reissuing
DHCP discovery and performing DAD. Therefore, the in-
terruption of any traffic flow is considerably long. When
the device gains connectivity again, the TCP connection is
reset (RST flag set) and any connection of an application
running at the moment of the handover has to be renewed,
sometimes even connecting to different servers – e.g. due
to load balancing at the server. On the other hand, in the
case both APs handle different IP subnets, this re-issue of
DHCP discoveries enables a faster re-configuration of the
IP layer. Otherwise, even though the connection at link
layer takes place successfully, no data will be delivered
to or from the mobile terminal as it does not reconfigure
its IP address according to the new network. However,
passing through the cellular interface during the
transition between two WLAN APs enables the IP
re-configuration, also within the same ESS. This is
the case for iOS devices, which do not re-issue a
DHCP discovery when there is a handover within
the same ESS if the cellular interface is not en-
abled.

6.2. 3G-WLAN Vertical Handover

One of the main differences among the operating sys-
tems under study is in the simultaneous usage of the cellu-
lar and 802.11 interfaces. iOS does not allow one interface
to remain active when the other is getting started too, e.g.
finishes the open connections and turns down the cellular
interface when a known WLAN appears in range and tries
to connect to it. On the other side, Android keeps the
cellular connection on until the IP address is configured in
the WLAN interface. Finally, Windows Phone allows the
simultaneous connectivity through both interfaces, even
keeps an active communication through the cellular in-
terface although it gets attached to a WLAN AP, while
applications started from that moment use the WLAN.
This is an important advancement over its competitors,
as for instance, it allows to keep a VoIP (Voice over IP)
conversation over the cellular network while connecting to
an 802.11 AP, ensuring that the call will not be inter-
rupted. Android 5.0 includes a significant change in the
network management. First of all, the simultaneous us-
age of cellular and WiFi interfaces is allowed. Therefore,
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the connections established through the cellular connec-
tion remain active through that interface even in the case
the mobile terminal connects to a WLAN. If there are not
active connections, the WLAN interface is still the pre-
ferred one, deactivating the IP connectivity in the cellular
interface 30 seconds after the WiFi interface gets a connec-
tion. In order to introduce these changes, the development
team has defined a routing table per interface, instead of
a system-wide routing table, as in the previous Android
versions. This has allowed to improve, as we show in 6.3
the performance of applications running when a handover
occurs, for instance, in the case of an ongoing Skype call.

6.3. Application survival to handover

Following the different approaches for handover de-
scribed in Section 6, we have studied the influence of these
handover procedures in the behavior of several applica-
tions. The test procedure consists on starting the ap-
plication under stable network conditions and perform a
handover to analyze the effect of this change. The re-
sults of these experiments are presented in Tables 6 and 7
for intra-technology WLAN handover and inter-technology
handover respectively. We have observed that the mo-
bile devices under study fall back to the cellular interface
as soon as the WLAN connection is lost, although other
802.11 networks are available and even attach to one of
them immediately. Because of that, we have included an-
other variant in our experiments apart from the different
configurations of the WLAN, which is to have the cellular
data connection in the mobile terminals enabled or dis-
abled. However, regardless whether the cellular interface
is on or off, the delay (presented in Section 6.1) is not
affected but only has an influence on the survival of the
application, which is more likely to overcome the handover
when the cellular interface is on. We have identified dif-
ferent application behaviors:

a) The application interrupts and does not recover even
when there is global connectivity unless you restart
the application. This is indicated in the table by a
black cell.

b) The application interrupts for a small lapse, contin-
ues working intermittently and finally stops. This is
indicated by a dark grey cell.

c) The application interrupts for a small interval, but it
continues working properly and go back to its normal
operation with a noticeable but acceptable glitch for
the user. This is indicated by a light grey cell.

d) The application tolerates the handover, which hap-
pens smoothly and the interruption is seamless for
the user. This is indicated by a white cell.

We have chosen some of the most widely used applica-
tions serving for different purposes, also to check
if there are differences in the way they access

to the network. The applications we have evaluated
are Skype, as a VoIP application (Android v3.2.0.6673,
v5.1.0.57240 (Nexus4 Lollipop) and v5.1.0.58677 (Nexus 5
Lollipop); iOS6 v4.2.2601; iOS7 v4.17.0.123; iOS8 v5.11;
WP8 v2.1.0.241); and three applications for radio stream-
ing, which will be referred to in the following as Ra-
dio 112 (Android v1.08.16 (ICS), v4.1.2 (Nexus4 Lollipop)
and v1.08.33 (Nexus 5 Lollipop); iOS6 v2.1.7216; iOS7
v2.1.9327; iOS8 v3.0.0; WP8 v2.1.0.0), Radio 213 (Android
v1.0 and v2.1.3 (Nexus 4 and Nexus 5 Lollipop); iOS6 v2.4;
iOS7 v3.0; iOS8 v3.5; WP8 v1.3) and Radio 314 (Android
v2.2.2 and v2.2.6 (Nexus 4 and Nexus 5 Lollipop); iOS6
v2.1.1; iOS7 v2.2.1; iOS8 v2.2.2; WP8 v1.2). We choose
three different radio stations to avoid biasing the con-
clusions, because some features may be implementation-
dependent. We have also considered in our analysis
Youtube, as a video streaming application (Android 4.2
v4.2.16 and v6.0.13 (Nexus 4 and Nexus 5 Lollipop); iOS6
v1.1.0; iOS7 v2.3.1.11214; iOS8 v10.09.11358); and Face-
book, as the most relevant social network at the mo-
ment15 (Android v3.3, v23.0.0.22.14 (Nexus 4 Lollipop)
and v24.0.0.30.15 (Nexus 5 Lollipop); iOS6 v5.6; iOS7
v6.8; iOS8 v26.0; WP8 v4.1.0.0). However, Youtube
and Facebook are not included in the comparison
of the results. Youtube has been excluded from the
table because there is no difference in the behavior
of this application in any of the handover combi-
nations. As long as the buffer does not empty, the
user will be able to watch the video without notic-
ing that there is a handover in progress. However,
the application may stop if the handover does not
allow to keep filling the buffer to continue playing
the video. Facebook does not appear in the table
neither, as this application can always recover from
the loss of connectivity, retrying to load the user
profile (or the target page) in several attempts, ei-
ther automatically triggered by the application or
reloaded by the user.

As recommended by the developer documentation of the
three OS families, HTTP or HTTPS are the way to send or
receive small pieces of information, and this is the way that
all the Radio applications use for streaming their content.
The only application in our experiment set that uses a
different protocol is Skype.

In order to mitigate the interruption in network
connectivity, the different mobile terminals ana-
lyzed fall back to the cellular connection as soon as
the current WLAN connection fails, even if there
are other known WiFi networks available. Regain-
ing IP connectivity by the 3G, gives more time to the mo-
bile terminal to scan in the WiFi channels and connect

12The application tested is the one by Los 40 radio station.
13The application tested is the one by Cadena 100 radio station.
14The application tested is the one by RNE radio station.
15http://www.dreamgrow.com/top-10-social-networking-sites-by-

market-share-of-visits-may-2013/
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Table 6: Survival to handover for applications of different nature in the three OS families. Intra-technology handover

Skype Radio 1 Radio 2 Radio 3
3G on 3G off 3G on 3G off 3G on 3G off 3G on 3G off
AP user AP user AP user AP user AP user AP user AP user AP user

A 4.2
A 5.0 Nexus 4

Same IP subnet,
A 5.0 Nexus 5

same channel
iOS6
iOS7
iOS8
WP8
A 4.2

A 5.0 Nexus 4

Same IP subnet,
A 5.0 Nexus 5

different channel
iOS6
iOS7
iOS8

Same WP8
ESSID A 4.2

A 5.0 Nexus 4

Diff IP subnet,
A 5.0 Nexus 5

same channel
iOS6
iOS7
iOS8
WP8
A 4.2

A 5.0 Nexus 4

Diff IP subnet,
A 5.0 Nexus 5

different channel
iOS6
iOS7
iOS8
WP8

A 4.2
A 5.0 Nexus 4

Same IP subnet,
A 5.0 Nexus 5

same channel
iOS6
iOS7
iOS8
WP8
A 4.2

A 5.0 Nexus 4

Same IP subnet,
A 5.0 Nexus 5

different channel
iOS6
iOS7
iOS8

Different WP8
ESSID A 4.2

A 5.0 Nexus 4

Diff IP subnet,
A 5.0 Nexus 5

same channel
iOS6
iOS7
iOS8
WP8
A 4.2

A 5.0 Nexus 4

Diff IP subnet,
A 5.0 Nexus 5

different channel
iOS6
iOS7
iOS8
WP8
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Table 7: Survival to handover for applications of different nature in the three OS families. Inter-technology handover

Skype Radio 1 Radio 2 Radio 3

3G → WiFi

A 4.2
A 5.0 Nexus 4
A 5.0 Nexus 5

iOS6
iOS7
iOS8
WP8

WiFi → 3G

A 4.2
A 5.0 Nexus 4
A 5.0 Nexus 5

iOS6
iOS7
iOS8
WP8

Color guide for application behavior during handover in Table 6 and Table 7:
Application interrupts Annoying, finally interrupts Acceptable glitches Seamless handover

to another AP if there are any other networks available.
However, the change in the technology involves a change
in the IP address in use for currently ongoing connections,
and this may impact open connections more than the link
layer handover, depending on the implementation. There
are applications that can survive these two changes in the
current connection, while others are interrupted as soon
as the current network interface loses connectivity. Note
that the applications that easily survive are those that
can benefit from buffering the content (Youtube) but note
that buffering does not necessarily imply a seamless han-
dover, as not all the applications that buffer the content
can survive a handover (Radio 3) concluding that the sur-
vival of an application is implementation dependent. It
does not depend neither on the OS nor the API offered
to application developers, as in the same system differ-
ent applications can overcome the handover interruption
whereas others do not regain connectivity anymore – Ra-
dio 1 and Radio 3 in Windows Phone, respectively. In
addition, in the case of the applications that hand-off suc-
cessfully, even though the change of access technology back
to 3G involves an additional change in the IP configura-
tion, it helps improving the user experience making the
interruption smoother.

In the light of the results in Tables 6 and 7 the first issue
that calls our attention is the poor performance of the ap-
plication Radio 3, which cannot survive the change of the
point of attachment to the network. Secondly, we identify
that Radio 2 performs significantly better in the Windows
Phone 8 than in Android or iOS. A user of this applica-
tion in the Windows terminal can continue listening to the
radio station with a seamless handover or with a minimal
interruption in every case, while an Android or iPhone user
would stop being provided the service. However, while the
Android Radio 2 application fails in every handover, under
any circumstances, the iPhone Radio 2 application shows

different behavior under different scenarios and for iOS6,
iOS7 and iOS8: i) for iOS6, the application cannot han-
dle a handover that involves a change in the IP subnet;
a change in the point of attachment within the same ESS
is supported but, changing to a different ESS this appli-
cation only survives if the 3G interface is enabled ii) for
iOS7, Radio 2 interrupts only when IP subnet and chan-
nel change within the same ESS; iii) for iOS6, iOS7 and
iOS8, the application tolerates inter-technology handovers,
although the application for iOS8 is the one that interrupts
the most. It is also remarkable the improvement from iOS6
to iOS7 versions of the same application, especially for Ra-
dio 2 and Radio 3, as well as in the case of iOS8, where
Radio 1 does not interrupt when 3G connection is on and
Radio 3 can always maintain the connection. However,
Radio 2 does not show an improvement, as it interrupts
playing.

The issue of changing the IP address is not trivial. A
similar behavior is observed for Radio 1: the Windows
terminal can handle the change of AP unless it involves
a change in the IP address of the target subnet. Simi-
larly, the iPhone terminal starts experiencing trouble even
when the target wireless network has the same ESSID, but
a different IP. When the target AP operates in the same
channel, as the scanning process takes less time, the ap-
plication can recover, but that is the only case. When the
ESSID is different between both networks, the application
running on the iPhone terminal can only handle the han-
dover when the action that triggers the change comes from
the network, but not when the terminal decides to termi-
nate the connection. This has been overcome in iOS7, only
if the connection can fall back to the cellular interface,
as waiting for having configured the new WLAN network
connection adds too much delay. However, the Android
terminal can manage the change in connectivity for Radio
1 without interruption in every case.
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By observing the results in Table 6 we can see that the
applications running in the Android 4.2 device present a
more homogeneous behavior and mostly do not tolerate
the handover, but for the application Radio 1. However,
the Android update 5.0, has allowed to maintain an on-
going Skype call in several scenarios, while applications
Radio 2 and Radio 3 still show the same poor perfor-
mance and interrupt when handover occurs. It is impor-
tant to note that although the application Radio 1 seems
to keep the transmission without interruption, the
user actually hears the last packets before the han-
dover twice. That is to say, the sound keeps being
heard, but if, for instance, listening a song, a part
of it will be heard twice before recovering the con-
nection, with the subsequent impairment of user
experience.

Last, in the case of Skype, the application running on
the Windows phone outperforms the other two versions.
This result was expected, being a proprietary solution by
the same manufacturer. Among the rest, the Android
implementation offers the poorest performance, not be-
ing able to survive the handover in any case. It is worth
pointing out that in the case of inter-technology handover
from 3G to WiFi, Windows Phone 8 and iPhone terminals
are able to keep the call active for two different reasons:
the iOS device turns down the 3G interface when the WiFi
network becomes available, then, the call just survives the
change of connection and takes advantage of the higher
bandwidth of the WiFi network to overcome packet losses
during the interruption. On the other hand, the Windows
Phone 8 device keeps the ongoing call on the 3G connec-
tion, even though the WiFi connection becomes ready and
active to be used by other applications. We have con-
firmed that this only happens when the WiFi connection
becomes available while there is an ongoing call, but if
the call starts when the device is already connected to a
WLAN, every call will use that connection. In any case,
Skype is the most sensitive application among the ones we
tested. We cannot claim that it does not handle a change
in network connectivity, but it will interrupt an ongoing
call in case the communication between the two endpoints
is lost for more than 15 seconds.

7. Summary

In this section we present a summary of the main find-
ings for the different families of OSes and highlight the
differences and features that called our attention, catego-
rizing them into five groups:

Simultaneous usage of network interfaces: Out of
the three OS families under study, Windows Phone 8 and
Android Lollipop allow simultaneous usage of cellular and
WLAN interfaces. The Windows Phone 8 device keeps
active connections over the cellular and the WLAN inter-
faces simultaneously. Android, only in its latest version
(Lollipop) modified its policy to allow simultaneous con-
nection through both interfaces. The cellular connection

remains active for 30 seconds after ongoing sessions finish.
iOS devices finish the open connections on the cellular in-
terface when a connection to a WLAN is established.

Network selection: None of the systems under study
perform a network selection algorithm to decide on the
best network available to connect to. They rely on the
network used in the last connection, if it is available. In
addition, none of the systems uses information on link
quality or performance to change point of attachment if
needed. iOS8 WiFi client is particularly sticky, even not
responding to user choices and remaining attached to the
current AP if the signal is not lost.

Connection establishment: Android and Windows
Phone 8 renew their IP address by reissuing a DHCP dis-
covery every time they connect to a different AP, but iOS
does not if the change of AP takes place within the same
ESS. In the initial attachment to a WLAN, Android out-
performs the other systems in the link layer attachment,
but it is considerably slower in the IP configuration. The
WP8 terminal has proven to be the fastest one, on aver-
age, for initial attachment to an already visited WLAN. It
calls our attention the remarkable impairment of perfor-
mance in the connection establishment to WiFi networks
in Android Lollipop running on Nexus 5. The delay in the
connection establishment for iOS8 is also slightly higher
than in previous versions, but the difference is not as no-
torious as for Lollipop (on Nexus 5). Although the IP
configuration has been made faster, the connection to the
AP has been considerably damaged. It is also new with
respect to previous versions, the use of Gratuitous ARP
in iOS8 and the CTS-to-self frames sent before authen-
tication frames by iOS8 (iPhone 6) and Lollipop (Nexus
5).

IPv6 configuration: The three OS families implement
privacy extensions for SLAAC [20], configuring an IPv6
address that does not match their respective EUI-64 iden-
tifiers. Actually, this is not the only IPv6 address con-
figured in the terminal interface, so applications should
handle this and take into account that this kind of ad-
dress will change over time, which may affect ongoing ses-
sions. The first DNS query sent by the Android phone
always requests an IPv6 address, so IPv6 takes precedence
over IPv4. However, the IPv6 configuration takes a signif-
icantly longer period to be completed. On the contrary,
WP8 issues first the IPv4 query but the delays for IPv4
and IPv6 configurations are comparable. The cellular net-
works available for our experiments do not offer IPv6 sup-
port for the moment. Although standardization bodies
have provided guidelines for the migration to IPv6, to our
knowledge, at the time of writing only some LTE networks
in North America and Europe support IPv6 access.

Handover: Not having any application running in-
creases delay in case of a handover. Android (except for
Lollipop) presents a more regular behavior, having a han-
dover latency of 0.9 s for most of the cases evaluated. WP8
and iOS devices present a more variable performance. Par-
ticularly, when a handover is initiated by a deauthentica-
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tion from the AP (between different ESSIDs), the interrup-
tion in connectivity through the WLAN can take approxi-
mately 5 s, 10 s or 12 s on average for Android, WP8 and
iOS systems respectively. However, when the handover
happens within the same ESS it is completed in 0.24 s or
0.4 s by the WP8 phone, a result which outperforms the
other two systems. When the handover is initiated by the
terminal, the fastest handover (90 ms) is performed by the
Nexus 5 Android Lollipop device if the user is manually
indicating the target network, closely followed by iOS de-
vices. Note that changing to a different channel, even if
the user does it manually, increases delay considerably in
iOS8, due to its sticky client implementation. However,
Android and WP8 offer lower delays than iOS if the ter-
minal needs to scan for available networks to decide on the
new AP to connect to (“forget” case in our experimental
results). Nevertheless, the new Android version offers a
significantly higher delay (around 4 s) and the new iOS
version (iOS8) overcomes the issues with the manual con-
nection and lowers the delay to just 170 ms. Only the
iOS devices and Android Lollipop perform a re-association
when the handover takes place within the same ESS. This
diminishes the handover delay for the Lollipop devices,
but not for the iOS terminals. Although all the systems
fall back to the cellular connection when they lose WLAN
connectivity, this change does not increase the delay in the
WiFi-WiFi handover. The change to the cellular network
shades the interruption in the WiFi interface, allowing for
time to perform the scanning and the association to the
new AP. The remarkably bad performance of Android Lol-
lipop and iOS8 deserve a special mention, especially in the
case of changing to a different channel manually for iOS8
and as a general consideration for Android Lollipop.

Multicast and network traffic: Unsurprisingly,
HTTP is the dominant traffic as it is also the recommended
way to access remote content in the development documen-
tation. It calls our attention the intensive use of IEEE
802.11 Null function frames. The use of these frames is
not specified by the standard, but WiFi clients, especially
in smartphones, send a significant amount of these frames
regularly. The most extended use of Null Function frames
is power management, so the station informs the AP when
it goes to sleep or awakes. However, these frames are sent
very regularly, and, specifically, when connection to the
current AP is lost. In our handover experiments, we have
detected that Android and iOS devices try to reach the AP,
whose signal is lost, by sending numerous Null Function
frames and Probe Requests, delaying the connection to a
new point of attachment. It is also remarkable the number
of DNS requests required every time that any connection
is open. Regarding multicast support, IGMP is not sup-
ported in some Android devices, including Nexus 4 and
Nexus 5, which we used in our experiments.

8. Open issues and future directions

The thorough assessment of the connection management
in the three mobile operating system families under study
highlights some flaws in current implementations. Our
study reveals that the design of current mobile terminal
OS and applications only takes into account the availabil-
ity of Internet connection, but does not consider the pres-
ence of several access networks as a resource. In addition,
current implementations do not optimize network access
selection or handover and pay minimal attention to con-
nection management, beyond identifying the interface be-
ing used and detecting Internet connection. To fill these
gaps we identify some potential implementation changes
that would be feasible, even easy to implement, and that
would enhance user experience, reducing latency in the
connection and the handover and improving efficiency in
the handling of several interfaces.

8.1. Enhanced network selection

If several known WLANs are in range, all the systems
analyzed connect to the one they were connected the last
time. None of them takes into account the signal strength
or link quality towards the different APs as a criterion to
choose what network to connect to. If this were considered,
handover after a short time could be avoided. Current
drivers and firmware as the ones in smartphones have full
access and capabilities to monitor certain key indicators of
the performance or link quality. Keeping track of changes
in these parameters and other decision policies are easily
implementable in software tools like wpa supplicant. Even
further improvements, as supporting some of the recent
IEEE 802.11 standard amendments, are already included
in recent versions. The potential changes that we suggest
as an example for access network selection are mainly re-
lated to the WLAN connection:

• Connection to the best WLAN: when the WLAN
detects that already visited networks are available, the
smartphone connects to the last visited one. Our sug-
gestion is to connect to the network that provides the
best link quality at that moment. Another variant of
this selection is to keep track of the performance of-
fered by the network in the previous connection – or
keep an average measurement of historic connections
– at that given location (similar approaches exist in
the context of vehicular networks [28]). This choice
would be customizable and applicable to different cri-
teria, like security or delay instead of just throughput
or signal quality when several of the networks offer
similar characteristics.

• Reduced scanning during handover: since the
mobile terminal keeps sending Probe Request frames
after attaching to the WLAN AP, this information
could be used to speed up the process of handover,
shrinking the interval that the terminal spends scan-
ning again after disassociating from the previous AP

19



and connecting to the new one. Moreover, the mo-
bile terminals keep sending Probe Requests frames to
all the visited networks. As the terminal already has
all the information about the user location and move-
ment, the scanning could adapt to the user location,
only scanning for nearby networks, reducing consid-
erably the number of frames being sent regularly.

• Early detection of low link quality: similarly to
prioritizing the connection to the AP that offers the
highest signal quality, the link quality should be moni-
tored, given the dynamic nature of wireless networks.
This monitoring would allow a quick reaction when
the link quality gets low, making the current con-
nection likely to fail. Moreover, we could take ad-
vantage of the considerable amount of frames that
are exchanged with the AP constantly, as we have
checked that, apart from the active scanning, the
three OS families that we have evaluated send 802.11
Null Function frames at all times for power manage-
ment and signaling purposes. Depending on the ter-
minal capabilities, the current open connections could
be handed-off to the cellular interface and start trying
to connect to a new WLAN in order to avoid inter-
ruptions before the current one fails.

• Get information from network repositories:
standardization bodies have made an effort in the
specification of different information repositories and
distribution such as ANDSF [29], ANQP [30], ALTO
[31] and MIIS [32] [33]. Their generalized deployment
and the access to this information can help the mobile
device to choose the best access network to connect to,
increase performance in network-assisted handovers
and contribute to more efficient network management.

8.2. Multi-interface management and integration of mo-
bility protocols

The IP layer constitutes a reasonable level to offer inter-
technology mobility support, being the most widespread
network layer protocol and in use with different access
technologies underneath. IP mobility has been a research
topic for a long time and the different solutions designed
to allow a user to freely roam across different points of
attachment are a clear example of the evolution of the
research on this topic, continuously adapting to the new
requirements imposed by operators. Although there are
hundreds of different solutions, none of them has been a
clear market success and none is massively deployed. The
current panorama on mobility management is somehow
mixed, since mobility solutions have only been deployed
within the cellular operator boundaries, e.g., a user can
freely roam across the different access networks defined by
3GPP, but there is no solution for inter technology han-
dover or IP mobility within non-3GPP technologies in the

wide sense16, due to the lack of support in the network
and in the terminal. The lack of a common IP mobility
solution implemented in the majority of smartphones and
networks results in the inter-dependence between the mo-
bile user experience and the smartphone mobile services
exposed to the applications.

The network connectivity management in multi-
interfaced devices can mainly follow two models, widely
known as weak host and strong host models. The weak
host model will accept any packet destined to one of its
IP addresses, regardless of the interface where the packet
is received. On the contrary, the strong host model will
only accept the packet if the destination address matches
that one of the interface which received it. Different oper-
ating systems decide to implement one or the other. For
instance, Linux implements the weak host model, whereas
Windows Vista and Windows 7 default to the strong host,
although weak host model behavior is configurable. Such
implementation decisions affect the performance of the
devices, especially when different access technologies are
available. We argue that a flow mobility solution [34, 35]
may enhance the user experience when a handover takes
place with an ongoing communication. Current smart-
phones, which have multiple interfaces and can connect to
different access technologies, need a connection manager
that enables this feature. For Internet access, the two main
technologies currently used are cellular (UMTS, LTE) and
IEEE 802.11. Nevertheless, the most common approach is
to use only one of the interfaces at a time, missing the ben-
efits that the usage of both interfaces simultaneously could
provide. One of these benefits, currently being discussed
by standardization bodies is 3G offloading. By offloading
some of the flows at the mobile terminal over a congested
cellular network to a WiFi network whenever it is possi-
ble not only is convenient for the user, who enjoys greater
bandwidth with less delay and at a lower cost, but also for
the network operator that frees resources to serve other
users. The offloading can be selective depending on the
application running or respond to user requirements.

From our experiments, the only OSes that make possi-
ble the simultaneous usage of 3G and WLAN interfaces are
Windows Phone 8 and the latest version of Android (Lol-
lipop). In this way, e.g., a Skype call can continue without
interruption even though the mobile terminal attaches to
a WLAN that just became available. The attachment to
the new network is totally seamless for the ongoing call as
it keeps going through the cellular interface, but the ap-
plications that can tolerate a hand off, or that start after
it, will be bound to the WLAN interface. This, as we have
reported in Section 6.3 improves considerably the perfor-
mance in case of an inter-technology handover, which is
seamless for the user. However, once the ongoing session
has finished, the new connections will use the WiFi in-

16Some technologies have their own mobility support at link layer
but the connections at the terminal will not be able to survive an IP
address change.
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terface mandatorily, without a choice, for instance, if the
user needs to establish a longer session and they will be
on the move or if they need to ensure session continuity.
According to the IETF [36] there are different approaches
for connectivity management in multi-interface devices: i)
per-application, ii) centralized, system-wide or based on
user input iii) stack-level solutions to specific problems.
If flow mobility were enabled, applications could choose
their default interface, mobility requirements if more than
one access technology is available or specify minimum re-
sources or QoS needs according to the network interface.
Both hardware and software tools in current smartphones
allow the implementation of this kind of policies, although
it increases complexity both in the development of the ap-
plications and the connectivity management. In addition,
the mobile OS has to deal with multiple applications run-
ning in parallel, which may or may not specify network
connectivity requirements in the same way. Therefore, the
system needs to provide a combined approach, with a de-
fault policy, system-wide, based on information available
and at the same time offer the possibility of a more ad-
vanced connectivity management per-application, if it is
specified. Moreover, the management of simultaneous con-
nectivity opens issues as routing, default address selection
[37] and the selection of parameters to be configured on a
per-interface basis [36].

9. Conclusions

In this article we have studied a feature that commonly
goes unnoticed, not existing much documentation about
its operation: the network manager in smartphones. To
that purpose, we have analyzed the connection proce-
dure of the three most popular mobile OS families – An-
droid, iOS and Windows Phone 8 – and we have studied
the performance when a handover, both inter- and intra-
technology takes place. We have also examined how the
handover impacts the performance of some applications
and affects user experience. Finally, we introduced some
optimizations that are directly extracted from the conclu-
sions gathered as a result of our experiments. The poten-
tial optimizations that we propose are the base for our fu-
ture lines of research. The mobile terminal that presented
the least network attachment delay and the most advanced
features in terms of connectivity management is the Win-
dows Phone 8 terminal. WP8 and Android Lollipop allow
both the cellular and WiFi interfaces to be active at the
same time. Unfortunately, WP8 is also the one that offers
the most restricted access to the device’s features and the
least flexibility for potential modifications resulting from
our research. Indeed, in terms of flexibility and room for
modifications, the mobile terminal chosen for performing
further improvements is the Android device. The open
source licensing and the root access provide a convenient
development environment to continue improving the con-
nectivity management in current mobile devices. As we
have confirmed in this article, the three analyzed

OS families access the network in a very similar
way and perform also similarly when the point of
attachment changes. Due to these similarities, the
conclusions of the potential enhancements to the
connection manager performed in Android, could
be ported to the other two platforms, by adapting
it to their software stack.
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