
ns-3-based Real-time Emulation of LTE Testbed using
LabVIEW Platform for Software Defined Networking (SDN)

in CROWD Project

Rohit Gupta and Bjoern
Bachmann

National Instruments
Dresden, Germany

rohit.gupta@ni.com,
bjoern.bachmann@ni.com

Russell Ford and
Sundeep Rangan
New York University

russell.ford@nyu.edu,
srangan@nyu.edu

Nikhil Kundargi, Amal
Ekbal and Karamvir Rathi

National Instruments
Austin, TX, USA

nikhil.kundargi@ni.com,
amal.ekbal@ni.com,

karamvir.rathi@ni.com
Maria Isabel Sanchez
IMDEA Networks Institute

University Carlos III
Madrid, Spain

mariaisabel.sanchez
@imdea.org

Antonio de la Oliva
University Carlos III

Madrid, Spain
aoliva@it.uc3m.es

Arianna Morelli
INTECS, Pisa, Italy

arianna.morelli@intecs.it

ABSTRACT
In this paper, we present initial results on how the ns-3
LTE LENA stack is used to build a LTE testbed in an in-
door lab network. We have extended the ns-3 MAC/PHY
layer architecture to interface with a LabVIEW implemen-
tation of the LTE Physical layer and also extended ns-3 core
modules to enable real-time performance. We present how
this testbed can be used for prototyping a novel Software
Defined Networking (SDN) scheme for interference manage-
ment within dense heterogeneous deployments of cellular
wireless networks. We provide an example case study for
a Distributed Mobility Management (DMM) implementa-
tion using this testbed, where we demonstrate mobility of
a emulated User Equipment device between LTE and WiFi
networks. We plan to use this testbed for validation and
demonstration of various SDN-based algorithms proposed
within the framework of the EU FP7 CROWD (Connec-
tivity management for eneRgy Optimised Wireless Dense
networks) Project. We believe the proposed testbed is es-
pecially valuable for studying the cross-layer performance
of cellular PHY/MAC algorithms in a realistic environment
and shows how ns-3 can be used as a unified prototyping
and simulation framework for wireless networks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
WNS3 2015, May 13 2015, Barcelona, Spain
Copyright is held by the owner/author(s). Publication rights licensed to ACM
ACM 978-1-4503-3375-7/15/05...$15.00
DOI: http://dx.doi.org/10.1145/2756509.2756516.

Categories and Subject Descriptors
I.6.5 [Computing Methodologies]: Simulation and Mod-
elling —Model Development

General Terms
Algorithms, Design, Performance, Verification

Keywords
LabVIEW, Simulation, Hardware emulation, Software-Defined
Radio, Software-Defined Networking, LTE, ns-3

1. INTRODUCTION
There has been growing mobile traffic demand due the ex-

plosion of diverse applications and their rising data require-
ments. As a result, there is significant interest from the
wireless industry for denser heterogeneous deployments to
improve coverage and data rates for mobile users. However,
lack of coordination between neighboring cells can result in
severe inter-cell interference, and coordinated transmission
of base stations and users to control this interference is one
the key challenges in the management of future wireless net-
works.

This scenario calls for deployment of agile network con-
trollers to improve spectral and energy efficiency. In the
FP7 CROWD project [1], we have adopted Software De-
fined Networking (SDN) as the paradigm for management
of dense heterogeneous networks. Our approach is based on
a two-level hierarchy of CROWD Local Controllers (CLC)
and CROWD Regional Controllers (CRC) that are respon-
sible for tuning the network characteristics on a local or
regional scale, respectively. The algorithms proposed within
the project span all layers of the protocol stack [2] and
demonstration and validation of said algorithms requires an
open testbed which allows for easy implementation of novel
and flexible network control functions.

Workshop on ns-3 - WNS3 2015 - ISBN: 978-1-4503-3375-7
Castelldefels (Barcelona), Spain - May 13-14, 2015

91

It would be quite challenging to incorporate this SDN
framework into existing testbeds (see [3, 4]) due to the tightly-
optimized integration and complexity of the LTE stack. More-
over, initial algorithm investigation, especially for PHY/MAC
cross-layer design is usually done through system-level sim-
ulators, such as ns-3 [5]. Hence, we chose to extend the ns-3
LENA stack [6, 7] to enable real-time emulation and de-
fine a custom API for interfacing with an external FPGA-
based LabVIEW PHY layer. The interested reader is re-
ferred to the overall system and physical layer architecture
of the CROWD testbed presented in [8, 9, 10].

The main contribution of this paper is to expand on our
previous work [8, 9, 10] and describe the changes needed
within the MAC/PHY interface in the ns-3 LENA stack
and core simulator to enable real-time emulation with the
LabVIEW PXI platform. Distributed Mobility Management
(DMM) is presented as an example use case for this testbed.
In this experiment, we plan to operate a real WiFi net-
work beside the emulated LTE network to show mobility
between the WiFi and LTE networks using the CROWD
SDN scheme.

The paper is organized as follows. Section 2 gives a brief
overview of the CROWD architecture. Section 3 describes
the extensions that were made to ns-3 PHY/MAC interface
and also to ns-3 core sub-systems to enable real-time exe-
cution. Section 4 discusses Distributed Mobility Manage-
ment (DMM) as a potential use case for this testbed within
CROWD. Section 5 presents some initial results from ns-3
logs that demonstrate real-time execution and communica-
tion between an LTE eNB and UE. Finally, we conclude the
paper with some comments on future work in Section 6.

2. CROWD ARCHITECTURE
In this section, we provide an introduction to the CROWD

architecture, which is described in more detail in [1]. Fig-
ure 1 shows the system overview and interaction between dif-
ferent network components. The main goal of the framework
is to unify network management functions using SDN. In this
regard, we propose a two-tier hierarchy of SDN controllers,
viz. the previously-introduced CLC and CRC. CROWD
controllers are technology-agnostic and expose their north-
bound interface for control applications, whereas they inter-
act with network elements using their southbound interface.
CROWD Regional Controllers are responsible for wide area
network management and executes network functions over
long time scales. Each CROWD Local Controller runs short
term optimizations and fine tunes the network over shorter
time scales. The CROWD vision aims to provide a common
set of functions as part of the SDN southbound interface
which can be used by control applications, for example LTE
access selection [11] and LTE interference mitigation [12],
to configure network elements in dense deployments.

Figure 2 illustrates how the CROWD architecture is real-
ized on top of our LTE testbed. The figure shows how the
CLC collects statistics regarding channel state information
(CSI) and traffic conditions from the eNB and also interacts
with the eNB RRC layer and MAC scheduler to influence
scheduling decisions at the eNB. The control applications in-
teract with the CLC, providing an efficient and unified way
to deploy a multitude of network management functions.

Figure 1: CROWD Architecture

Remote Host

MAC

RLC

PDCP

eNB

IP

UDP

GTP

IP

UDP

GTP

IP

SGW/PGW

LV PHY

LV
Real-Time

FF L1-L2
API

MAC

RLC

PDCP

TCP/UDP

APP

IP

LV PHY

LV
Real-Time

UE

FF L1-L2
API

Femto Forum
(FF)/Small Cell
Forum L1-L2 API

RRC

Interface to
SDN Controller

CLC
(SDN Controller)

eICIC Algorithms
(e.g. ABSF)

Figure 2: LTE MAC/PHY SDN Architecture for
CLC controlling eNBs.

3. MODIFIED NS-3 MAC/PHY ARCHITEC-
TURE

We now describe the modifications to the ns-3 core sim-
ulator to allow for real-time execution and to the LENA
MAC/PHY code to enable interfacing with the LabVIEW
PHY. Ns-3 already provides real-time emulation features
that allow simulated TCP/IP networks to interact with real
networks. Also the LENA module offers many protocol im-
plementations that are mostly accurate to the LTE/EPC
specification, making it one of the most complete open-
source and re-configurable implementations of the LTE and
core network stack available. The LENA module therefore

Workshop on ns-3 - WNS3 2015 - ISBN: 978-1-4503-3375-7
Castelldefels (Barcelona), Spain - May 13-14, 2015

92

represents an opportunity for researchers to leverage this
source code to emulate LTE devices. However, to make ns-3
function as a wireless device emulator, several major changes
to the software architecture are required.

Firstly, the Physical Layer and channel in ns-3 LENA are
naturally a system-level simulation. The first component of
this project is to completely replace the simulated L1 with a
real implementation of the LTE PHY running on FPGA and
RF hardware, which can perform the baseband processing in
order to transmit and receive the ns-3-generated MAC data
Transport Blocks and control signals over-the-air. Clearly
this is a fundamental departure from the way LENA func-
tions at L1. However, due to the layered and modular design
of the LENA module, we were able to integrate our custom
L1-L2 interface without drastic changes to many upper-layer
classes, as we will show.

Furthermore, we exploit the built-in real-time core Dis-
crete Event Simulation (DES) scheduler to synchronize LENA
functions with wall-clock time. Still, to achieve true real-
time performance with the timing constraints of LTE, multi-
threading is essential. We shall discuss how we have of-
floaded certain expensive functions, such as logging and the
marshalling and transfer of L1-L2 API messages, to multiple
threads in order to increase throughput and reduce latency
and jitter. Tight synchronization and low-latency communi-
cation between layers is also necessary, so we shall propose
how this can be achieved within our UDP API.

3.1 PHY Layer Modifications
Figures 3 and 4 show an overview of the modified ver-

sion of the LENA eNB stack. The LteEnbPhy and LteUePhy

classes, which model Layer 1 in LENA, are replaced with the
NiLteEnbPhy, NiLteUePhy classes, respectively. The Lte-

SpectrumPhy class is bypassed entirely in NI-L1 mode, as
NiLteEnbPhy and NiLteUePhy instances communicate directly
with the LabVIEW PHY through the methods provided by
the NiLteL1L2APi utility class.

For simplifying configuration of a standard LTE/EPC net-
work along with the NI-L1 PHY interface, a modified helper
class is provided, which is mostly identical to the LENA
LteHelper class but omits all code related to the simulated
PHY, including the channel model, interference model, an-
tenna model, and TX gain configuration.

Here we only describe the modifications to the downlink,
however the general structure and call flow for the uplink is
nearly identical (although the control-plane procedures and
messages that are generated are, of course, different).

3.1.1 eNB Classes
In the LENA module, the instance of LteEnbPhy is respon-

sible for subframe generation from buffered data and control
messages produced by the MAC Layer for each eNB. The
simulated transmission of a subframe is initiated in Start-
Subframe(); the control period is transmitted at the begin-
ning on the subframe where the data period transmission is
delayed by 3 symbol periods. This method, which is repeat-
edly scheduled every TTI, also triggers the MAC to schedule
UEs in DL and UL resources and, in turn, generate the cor-
responding control and data Transport Blocks for the next
subframe.

We should point out that the synchronization between the
subframe processing loop in the LabVIEW PHY and the ns-
3 MAC layer is not done directly through the PHY trigger-

LteEnbRrc

LteRlc

NiLteEnbPhy

NiLteL1L2API

EpcEnbApplication (S1App)

UDP Socket

X2Application
EpcEnbApplication

(S1App)

LteEnbMac

S1-U NetDevice

NiLteEnbPhy

NiLteL1L2API

UDP Socket

LteControl
Messages

Lte MAC
PDUs

eNB LTE Data Plane eNB LTE ControlPlane

LteEnbMac

LtePdcp

EpcEnbNetDevice

LteRlcAM

LtePdcp

LteEnbRrc

EnbClc
Interface

CROWD Local
Controller

Control app
(e.g. eICIC/RRM)

SDN management (non-NS3)

Figure 3: ns-3 LENA LTE eNB Architecture (mod-
ified)

NiLteEnbPhy

UDP Socket (To/From LabVIEW PXI/USRP-RIO)

LteControl
Messages

Lte MAC
PDUs

eNB LTE Control Plane eNB LTE Data Plane

De-Serialize
Control Messages

De-Serialize
MAC PDUs

TX.Request RX.Indication

NiLteL1L2Api

Serialize MAC
PDUs

PhySubFrame Synch

Serialize Control
Messages

LteEnbMac LteEnbMac

Figure 4: ns-3 LENA LTE eNB NI PHY Module
(modified)

ing the MAC routines to perform scheduling and generate
MAC PDUs. The two loops run independently on different
hosts (i.e. the Linux laptop and NI PXI controller/FPGA)
and their timing sources can be synchronized over Ether-
net via Precision Time Prototol (PTP), which is supported
by both Linux and the LabVIEW real-time OS. Triggering
of the MAC by the PHY though subframe indication mes-
sages is currently being tested and will be included in future
iterations of the L1/L2 API.

We define a new class, NiLteEnbPhy, where we also pe-
riodically call StartSubframe() to send data for the current
subframe. However instead of calling into LteSpectrumPhy

to transmit the control and data period over the simulated
channel, we insert the list of downlink LteControlMessage

objects and the data PacketBurst object for the current
subframe into a thread-safe TX Queue, which is processed
by a separate eNB Message Handler Thread. This thread is
then signaled via a semaphore to generate and send a corre-
sponding NI-L1 TX Request API message to the PHY using
the methods provided by NiLteL1L2Api.

Workshop on ns-3 - WNS3 2015 - ISBN: 978-1-4503-3375-7
Castelldefels (Barcelona), Spain - May 13-14, 2015

93

NiLteL1L2Api is a static utility class that has methods to
automatically serialize and de-serialize LTE Control/Data
message objects using the Boost serialization library. We
elected to use Boost for the convenience of not needing to
define our own serialization format and routines, however
we later intend for all API messages to derive from the ns-3
Header base class, for which we will define a more compact
encapsulation. The TX Request is built from the serial-
ized LteControlMessage objects and data payload and is
then sent over UDP to the LabVIEW PHY (using the Boost
socket library non-blocking send), which has a corresponding
thread that receives and parses TX Requests (among other
API messages). The interested reader is referred to [9] for
the detailed description of API and how it interfaces with
the LabVIEW PHY.

3.1.2 UE Classes
When the UE successfully receives and decodes downlink

TB data for a given subframe, the LabVIEW PHY will gen-
erate a RX Indication API message, which is sent over UDP
to the Linux host running the UE ns-3 process. A UE Mes-
sage Handler Thread instance listens on the UDP socket
and receives, deserializes and parses out the RX Indication.
The decapsulated downlink LteControlMessage and Pack-

etBurst objects are enqueued in the control message list for
processing by the UE MAC.

Similar to the eNB, the LteUePhy class is replaced by NiL-

teUePhy, which also has no relationship to LteSpectrumPhy.
Another key difference between the original LENA class and
the NI-L1 version is that the SubframeIndication() method
is not initiated by the eNB PHY in StartSubframe(). Rather,
the method runs (in a separate thread from the message han-
dler thread) independently in a loop and waits on a condition
variable, which is set by the message handler on reception
of a RX Indication.

3.1.3 NI-L1 Common Control Channel
In our simplified design, only the DCI (the DL DCI mes-

sage type in ns-3 LTE module) contains parameters neces-
sary for directly controlling the PHY. Therefore this con-
trol information must be transmitted as a separate physical
channel, i.e. the PDCCH, which can be immediately re-
ceived at the PHY and used for decoding the data channel.
In our design, all other control messaging is only relevant to
the MAC and higher layers. The operation of the MAC layer
in ns-3 does, however, require control functionality normally
provided by the other physical channels (i.e. the PBCH and
PHICH), which have not yet been fully implemented in our
LabVIEW PHY. As a temporary solution, we have devised a
simplified control channel, referred to as the NI-L1 Common
Control Channel (NI-CCH), which encompasses all control
messaging beside the DCI. All LteControlMessage objects
specific to the downlink are directly serialized, after which
they are encoded (always as rate 1/4th QPSK) and regarded
as simply another PDSCH Transport Block. The NI-CCH
TB is mapped to the first NNICCH

RB Resource Blocks (de-
termined by the length of the serialized, coded data), which
are decoded by all users and passed up to the UE MAC.
While this may be viewed as a stopgap solution, for the pur-
poses of over-the-air experimentation with a real-time ns-3
LTE module, it effectively serves its purpose of transmit-
ting broadcasted messages, such as the Master Information
Block, in a much simpler manner. The notable shortcom-

ings of this method are its inefficient use of resources and
it being an obvious deviation from the LTE standard. In
future iterations, we intend to provide a more accurate LTE
frame structure, with all of the basic physical channels im-
plemented.

3.2 Integration with CROWD Local Controller
(CLC)

One of the main goals of CROWD project is to show the
application of Software-Defined Networking (SDN) concepts
for dense LTE deployments. Hence, we have created exten-
sions to the MAC scheduler to integrate with SDN based
controllers, for example an OpenDayLight Controller [13] .
However, the interface to the ns-3 LTE MAC scheduler is
designed to be generic and support other SDN controllers
as well. The main function of SDN controller is to col-
lect network performance statistics and dispatch scheduling
instructions from SDN applications running on top of the
controller. Figure 2 shows the high-level overview of the
CLC interface with MAC scheduler, whereas in Figure 5,
we show our custom CROWD version of the Round Robin
MAC Scheduler class in ns-3 LENA stack. We have essen-
tially created a non-blocking UDP interface that transmits
essential CQI and traffic statistics to the CLC controller,
while at the same time it also receives MAC scheduling mes-
sages from CLC. Such messages include the Almost-Blank
Sub-Frame (ABSF) pattern that instructs a particular eNB
to mute its data-period transmission for certain TTIs for
interference coordination. Here we list some key messages
exchanged between eNB MAC scheduler and CLC:

i DlCqiReportInd: Sent from eNB MAC scheduler to
the CLC to provide DL CQI reports.

ii DlTrafficStatusInd: Sent from eNB MAC scheduler to
CLC to provide traffic status reports.

iii SetMcsReq: Sent from CLC to eNB MAC scheduler to
set the MCS of scheduled UEs. UEs are identified using
a Radio Network Temporary Identifier (RNTI).

iv SubframeIndication: Sent from eNB to CLC every
TTI to enable synchronization between CLC and MAC
scheduler.

v SetAbsfPatReq: Sent from CLC to eNB MAC sched-
uler to set the ABSF pattern. The ABSF pattern is de-
termined by the ABSF application that interfaces with
CLC through the CROWD northbound API.

The implementation of the CROWD architecture within
ns-3 LENA predates the recent introduction of various fre-
quency reuse classes, which interfaces with the MAC sched-
uler in a very similar way. In future work, we will investigate
revising our approach to Radio Resource Management, pre-
sented here, to be more aligned with the direction of LENA.

3.3 Limitations of ns-3 for Real-time Opera-
tion

The ns-3 real-time scheduler has effectively all the hooks
necessary for synchronizing execution with real-time clock.
However, the object class and other data structures, for ex-
ample (Packet and Packet Tag objects) are not thread safe.
We modified ns-3 reference counting class SimpleRefCount

to be thread safe by changing private data structure m count

Workshop on ns-3 - WNS3 2015 - ISBN: 978-1-4503-3375-7
Castelldefels (Barcelona), Spain - May 13-14, 2015

94

DoSchedDlTriggerReq()
(Schedule users, generate DCI)

CLASS CrowdFfMacScheduler

4.) SchedDlTriggerReq
(Compute resource
allocation)

MAC Subframe Block
DoSubframeIndication ()

5.) SchedDlConfigInd
(Downlink Control Information)

DoSchedDlCqiInfoReq
Process CQI info

3.) SchedDlCqiInfoReq
(Transfer CQI reports)

CLASS LteEnbMac

CROWD Local Controller (CLC) ABSF Application

ClcMacInterface

CLASS EnbClcInterface

ConfMacParams()

1.) ClcMacStatsInd ()
(CQI, buffer stats)

2.) SetClcMacParams()
(Mute subframes or
reserve frequency resources)

ClcMacInterface

Figure 5: SDN-Based CLC Interface with ns-3
LENA LTE MAC Scheduler

to use the boost::atomic type. However, the packet tags
are still not thread safe, which prohibits us to pass Packet

objects with tags across different threads for more efficient
serialization/de-serialization of LTE Control/MAC PDUs.
We also set pthread priorities and use the real-time Linux
kernel to prioritize ns-3 process and its threads for respon-
sive execution.

3.4 Limitations of ns-3 for Real-time Logging
Ns-3 provides a rich logging framework, which enables

module-based logging that can be easily activated and de-
activated based on the needs of the simulation. However,
the logging infrastructure outputs the log either to file or
standard output, which can interfere with real-time execu-
tion. Hence, we perform this file output in a separate, low-
priority thread, with logging data stored in shared memory
between the main high-priority thread and standard pthread
synchronization used for thread safety.

3.5 Limitations of ns-3 LENA LTE Stack for
Interfacing with Hardware

We found LENA module to be well mostly suited for par-
titioning of the code so each eNodeB and UE node could
be isolated to run in a separate process, with the excep-
tion of the UeManager. Currently, we have found some
workaround for this issue, but separating some of the code
in this way requires more pervasive architecture changes
throughout LENA, which we plan to carry out with the help
of LENA developers.

4. USE CASE: SDN-BASED DMM FOR MO-
BILITY MANAGEMENT

In this section, we present a SDN-based Distributed Mo-
bility Management (DMM) implementation, which demon-
strates CROWD Controller integration in the ns-3 LTE stack.
The DMM scheme enables mobility between IEEE 802.11
and LTE networks by means of support at the host as well as
network-based mobility management performed by the SDN
controller. Media Independent Handover (MIH) or IEEE
802.11u is used for discovery of suitable access point by the
client.

The scenario for the inter-technology mobility experiments
conducted within CROWD project is shown in Figure 6.
The figure represents the switching elements part of the
SDN deployment in a single-technology network, which in
the scope of CROWD is called a district. In our case, we
have deployed a WiFi district that is controlled by a lo-
cal controller (CLC) with several WiFi Access Points (APs)
and OpenFlow-enabled switches. The local controllers in the
different districts are coordinated by the regional controller
(CRC). In every district, there is at least one DMM gateway
(DMM-GW) that provides Internet access and manages the
different prefixes assigned by the controllers to the mobile
nodes that attach to the district. The concept of DMM is
to bring the mobility management entities, the DMM-GWs
in our case, closer to the edge of the access network. The
continuity when a handover occurs is provided by establish-
ing a tunnel between the DMM-GW in the original home
and the target visited networks. This is the case when the
handover takes place between two districts managed by our
SDN-DMM solution. When the mobile node roams to a dif-
ferent district entirely, however, the host takes control of its
own mobility management.

In our host-based implementation, the mobile node at-
taches to a new network (moving from a CROWD district)
and, once it has gained connectivity in that new network,
the MN notifies the CRC coordinating the district of its
previous point of attachment. Then, the CRC notifies the
DMM-GW in that district of the new location of the mobile
node. In addition, the CRC replies to the MN with the data
for connecting to the DMM-GW, as well. The MN and the
DMM-GW can, in turn, establish a bidirectional tunnel to
encapsulate the mobile node’s traffic and ensure continuity
for ongoing sessions.

We use as the target network the LTE emulated environ-
ment provided by the ns-3 modified LENA LTE and Lab-
VIEW framework already presented. The mobile node and
the remote host interact with ns-3 through a virtual tap in-
terface, with the UE, eNodeB and core network running in
the real-time ns-3 implementation on Linux laptops, whereas
the LTE PHY layer runs over the LabVIEW/PXI platform.

Figure 6: Scenario for inter-technology (WiFi/LTE)
Distributed Mobility Management

5. RESULTS
We now show some preliminary results of our efforts to

integrate ns-3 with our LabVIEW PHY layer. We run two
instances of ns-3, one acting as an eNB and the other as a

Workshop on ns-3 - WNS3 2015 - ISBN: 978-1-4503-3375-7
Castelldefels (Barcelona), Spain - May 13-14, 2015

95

UE. In the current setup, the downlink PHY runs Over-The-
Air (OTA) within LabVIEW and uplink PHY messages are
carried over an Ethernet link, directly connecting the UE
PXI system to the eNB host. The two instances of ns-3 for
the eNB and UE run on separate hosts and communicate via
the MAC/PHY API and UDP, which is supported in both
ns-3 and the LabVIEW PHY. The simulation was carried
out for a period of 700 seconds. Currently, we are testing
the LTE scenario for RLC Unacknowledged Mode without
Hybrid ARQ, however we plan to extend our work to sup-
port Acknowledged Mode and HARQ feedback. Fig 7 shows
the jitter performance of eNB PHY frame counter that runs
every 1 ms. Ideally, the curve in Fig 7 should show lit-
tle deviation from 1 ms, as the subframe generation event
scheduled every 1 ms by the core DES scheduler. Any devi-
ation from the ideal execution time is jitter, which we wish
to minimize. We observe an average deviation of about 200
microseconds with occasional 300 microsecond peaks. We
show similar real-time performance results for the UE in
Figure 8. Note that the time representation in y-axis is that
of wall-clock time of PC and not that of simulation time.
The deviations in event execution are due to the fact that
ns-3 is not designed from ground up for real-time execu-
tion. However, we are investigating a more multi-threaded
architecture and further optimizations (to reduce memory
allocation and copying of packet buffers, for instance) that
we hope will improve real-time performance.

In the current simulation of ns-3, we generated the UDP
constant bit-rate source that sends UDP packets from a re-
mote host through the emulated Evolved Packet Core net-
work to UE at 1400 bytes/millisecond. Figure 9 shows the
jitter results of the eNB application traffic generation which
happens every 1 ms. We can see from Figure 10 that UE
sink application receives packets on the average of 1 ms,
as expected. We also show below example log from ns-3
real-time logging system of the LTE ATTACH procedure.
In the logs below, Sim Time refers to ns-3 simulation time,
whereas Wall Clock Time refers to the real-time-clock of the
computer, since the beginning of the simulation.

#grep -i conn /tmp/eNB.log

Sim Time (ms)= 16985 Wall Clock Time (ms) = 20221.8 :
IMSI 1 RNTI 1 UeManager INITIAL RANDOM ACCESS
–> CONNECTION SETUP

Sim Time (ms)= 17006 Wall Clock Time (ms) = 20242.8
: IMSI 1 RNTI 1 UeManager CONNECTION SETUP –>
CONNECTED NORMALLY

Sim Time (ms)= 17006 Wall Clock Time (ms) = 20242.8
: IMSI 1 RNTI 1 UeManager CONNECTED NORMALLY
–> CONNECTION RECONFIGURATION

Sim Time (ms)= 17028 Wall Clock Time (ms) = 20264.9 :
IMSI 1 RNTI 1 UeManager CONNECTION RECONFIGU-
RATION –> CONNECTED NORMALLY

#grep -i conn /tmp/UE.log

Sim Time (ms)= 31 Wall Clock Time (ms) = 20207.4 : IMSI
1 RNTI 1 UeRrc IDLE RANDOM ACCESS –>
IDLE CONNECTING

Sim Time (ms)= 52 Wall Clock Time (ms) = 20228.7 :
IMSI 1 RNTI 1 UeRrc IDLE CONNECTING –> CON-
NECTED NORMALLY

Figure 7: Real-time Performance of eNB PHY
Frame Counter

Figure 8: Real-time Performance of UE PHY Frame
Counter

Figure 9: eNB source traffic generation statistics

Figure 10: UE sink traffic consumption statistics

Workshop on ns-3 - WNS3 2015 - ISBN: 978-1-4503-3375-7
Castelldefels (Barcelona), Spain - May 13-14, 2015

96

6. CONCLUSIONS
In this paper, we propose extensions to ns-3 to integrate a

emulated LTE MAC and upper-layer stack from the LENA
module with a LabVIEW PXI/FPGA-based LTE Physical
layer. This platform provides a flexible Software Defined
Radio testbed for prototyping the CROWD SDN system.
We introduced several architectural changes, such as multi-
threading, non-blocking logging and separation of eNB and
UE data structures, that were key to real-time cellular net-
work emulation in ns-3. We also presented Distributed Mo-
bility Management (DMM) to showcase mobility between
LTE and WiFi networks using the testbed. We suggest that,
since ns-3 is already a widely used simulation tool, adopt-
ing it for prototyping, as well, can significantly shorten the
time from system-level simulation to prototyping. We plan
to continue this work by investigating more efficient ns-3
execution, especially within the LENA stack through a par-
allel architecture, and finally to contribute this code back
the open source community. Also we would like to explore
the integration of other ns-3 wireless protocols implementa-
tions, such as 802.11 and Zigbee with LabVIEW-based PXI
and USRP devices. Another interesting use case for ns-3 as
part of a real-world stack would be to reduce the memory
footprint and streamline the code execution to allow it to
run on System on Chip (SOC) devices such as the embed-
ded USRP E-310 [14] (based on the Xilinx Zinq) platform.
We believe this paper presents a strong case that using ns-
3 for prototyping as well as simulation can accelerate and
advance wireless research.

7. ACKNOWLEDGMENTS
The research leading to these results has received funding

from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 318115 (Con-
nectivity management for eneRgy Optimised Wireless Dense
networks - CROWD).

8. REFERENCES
[1] H. Ali-Ahmad, C. Cicconetti, A. de le Oliva,

V. Mancuso, M. R. Sama, P. Seite, and
S. Shanmugalingam., “SDN-based Network
Architecture for Extremely Dense Wireless Networks,”
IEEE Software Defined Networks for Future Networks
and Services (IEEE SDN4FNS), Nov. 2013.

[2] “EU FP7 CROWD Project.” [Online]
http://www.ict-crowd.eu/publications.html.

[3] “Amarisoft Corp..” [Online]
http://www.amarisoft.com/.

[4] “OpenAirInterface.” [Online]
http://www.openairinterface.org/.

[5] “ns-3 Open Source Simulator.” [Online]
http://www.nsmam.org.

[6] “Overview of NS3 based LTE LENA Simulator.”
[Online] http://networks.cttc.es/
mobile-networks/software-tools/lena/.

[7] N. Baldo, M. Miozzo, M. Requena-Esteso, and
J. Nin-Guerrero, “An open source product-oriented lte
network simulator based on ns-3,” in Proceedings of
the 14th ACM international conference on Modeling,
analysis and simulation of wireless and mobile
systems, pp. 293–298, ACM, 2011.

[8] “LabVIEW Based Platform for Prototyping Dense
LTE Networks in CROWD Project.” [Online]
http://www.ni.com/white-paper/14297/en/.

[9] R. Gupta, B. Bachmann, A. Kruppe, R. Ford,
S. Rangan, N. Kundargi, A. Ekbal, K. Rathi,
A. Asadi, V. Mancuso, and A. Morelli, “LabVIEW
based Software-Defined Physical/MAC Layer
Architecture for prototyping dense LTE Networks,” in
SDR WInnComm, 2015.

[10] R. Gupta, T. Vogel, N. Kundargi, A. Ekbal,
A. Morelli, V. Mancuso, V. Sciancalepore, R. Ford,
and S. Rangan, “LabVIEW based Platform for
prototyping dense LTE Networks in CROWD
Project,” in EuCNC, 2014.

[11] 3GPP, “3GPP TS 24.312; Access Network Discovery
and Selection Function (ANDSF) Management Object
(MO),” tech. rep.

[12] A. Daeinabi, K. Sandrasegaran, and X. Zhu, “Survey
of intercell interference mitigation techniques in LTE
downlink networks,” in Telecommunication Networks
and Applications Conference (ATNAC), 2012
Australasian, pp. 1–6, Nov. 2012.

[13] “OpenDaylight Project.” [Online]
http://www.opendaylight.org/.

[14] “USRP Embedded Series Platform.” [Online]
http://www.ettus.com/product/category/
USRP-Embedded-Series.

Workshop on ns-3 - WNS3 2015 - ISBN: 978-1-4503-3375-7
Castelldefels (Barcelona), Spain - May 13-14, 2015

97

