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Abstract—This paper describes the work in progress in the European 
Commission funded OneLab project to extend PlanetLab nodes with 
multihoming functionalities. These multihoming functionalities aim 
at enabling application developers, for example, to test the impact of 
multihoming solutions on their applications, or to find out 
appropriate parameters for multihoming solutions according to the 
requirements of their applications.   
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1. INTRODUCTION  
Multihoming is the ability of having different connections to 

Internet, potentially through different providers. As Internet evolves, 
there are at least two different trends pushing the importance of 
multihoming: 

• Internet communications are nowadays seen as strategic by 
companies and institutions. Reliability and degree of 
independence from particular service providers are an 
increasingly common requirement for these companies and 
institutions, and multihoming provided at the site level is the 
key to achieve the mentioned objectives. Furthermore, 
nowadays, at least 60% of stub domains are multihomed to 
two or more providers [8]. 

• There is a proliferation of access technologies everywhere. 
Therefore, it is increasingly common to have devices with 
several network interfaces (3G, WLAN, Ethernet, 
Bluetooth…). To gain full advantage of robustness in 
communications and ubiquitous access by the ability of using 
the different accesses where they are available, a multihoming 
solution at the host level is required. 

With these scenarios, it is expected that more and more 
multihoming situations will become common in the near future. As a 
consequence, a lot of work is being done in different Working 
Groups of the IETF [1] to develop multihoming solutions that can 
provide the appropriate functionality while fulfilling requirements 
that guarantee that the solutions are deployable.  

In IPv4, multihoming is mainly provided by means of BGP, i.e., 
multihoming is provided by routing. Such a solution, however, 
suffers from limitations, in particular scalability, that impede its full 
deployment up to small sites level, and much less to the host level. 
Indeed, if a site announces different address blocks with different 
priorities to obtain some load balancing capabilities, different routes 
will be needed in the core network for the address space of the site 
(on per address block with different paths to follow).  As more sites 
are getting interest in obtaining capabilities, this can become a 
serious concern. Multihoming research in IPv6 aims at providing the 
full expected functionalities of multihoming. The multihoming 
architecture solutions for IPv6 are host based and allow not only 
sites, but also individual hosts, to take full benefit of multihoming.  

The European Commission funded OneLab project [2] is currently 
working on extending the functionalities present in the PlanetLab 

overlay network environment. OneLab, using PlanetLab software as a 
starting point, will create an overlay network environment federated 
with PlanetLab. Eventually, the added functionality could be 
included in PlanetLab. Among the extensions, OneLab aims at 
providing multihoming functionalities by means of introducing 
multihoming components in PlanetLab standard nodes. In this paper, 
we describe these new components that should allow researchers to 
experiment with multihoming in a realistic distributed environment 
over the Internet. Examples of interesting issues that can be studied 
are effects of multihoming mechanisms in applications, improved 
performance of multihoming mechanisms by interactions with 
applications, or even study different multihoming methods. 

The paper is structured as follows; section 2 describes the 
components of the OneLab multihoming solution;  section 3 explains 
the requirements of the multihoming solution for OneLab nodes; 
section 4 describes how we introduce those components in OneLab 
nodes; Sec. 5 details how researchers can benefit from these 
functionalities; and finally, Sec. 6 concludes the paper. 

2. Multihoming Components in OneLab 
2.1 Objective 

The objective of the multihoming solution in OneLab is to enable 
OneLab nodes with the following host based multihoming related 
functionalities: 

• A failure detection and path exploration method. 

• A transparent mechanism able to change the path used by a 
flow. 

• A mechanism to simulate link failures. 

 

2.2 Architecture 
The basis of the architecture is a OneLab node with more than one 

network interface. The multihoming solution consists of three 
modules, each one providing one of the three functionalities 
described in Sec. 2.1. The functionality of these modules is described 
in the following.  

2.2.1 Failure Detection and Path Exploration Method: 
In a multihoming solution, we need a way to assess the current 

status of the path between two IP addresses, and detect failures when 
they happen. If the path is disrupted, a path exploration method is 
needed to find a new path between the nodes (represented by a new  

pair of addresses) through which the communication is possible, if it 
exists. 

We have chosen to provide this functionality using a protocol 
based on the REAchability Protocol (REAP) [3]. REAP is 
responsible for failure detection and recovery.  REAP periodically 
sends Keep Alive messages when no data is transferred by upper 
layers.  As a host is supposed to receive Keep Alive messages or data, 
a failure can be detected due to a timer expiry.  Failure detection 
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triggers a new path exploration procedure.  REAP is fully described 
in section 4.1. The original REAP has been extended in order to 
support IPv4. Other possible modifications are under consideration. 
For instance, to provide information not only on path availability but 
also on some path characteristics such as round trip time (RTT).  

2.2.2 Transparent mechanism for path modification: 
This module modifies transparently the packets of the applications 

in order to send those packets through the new path discovered by 
REAP. The initial version uses a simple static configuration but more 
complex options for dynamic exchange of addresses (following 
SHIM6 [6] or MONAMI [7] principles) could be introduced.  

2.2.3 Link Failure Simulator: 
This module simulates simplex/duplex, random/static failures in a 

specific link. Notice that these failures do not affect the real network 
service, only how applications perceive it. It will be implemented 
using filters. 

3. Requirements 
    Before going into the details of our multihoming 

implementation in the OneLab testbed, we discuss, in this section, the 
requirements for the software of OneLab nodes to allow the 
implementation of the multihoming functionality. 

• As we are possibly going to modify packet headers, we 
require sudo or su capabilities in the host system and the slice 
system.  

• Support for several interfaces.  As the multihoming service 
requires access to the interfaces configuration, a possible 
scheme to provide this functionality in a secure way is to use 
one interface as primary (used for managing the OneLab 
node) and having others with unrestricted access for 

application use. 

• The ifconfig and iproute2 commands are needed in order to 
configure the non-primary interfaces. 

• Raw sockets are needed.  The VNET system must support all 
the raw socket properties, including the possibility of opening 
sockets at the IP level. 

•  Ideally, IPv6 should be supported in order to obtain the 
maximum benefit from the experimental capabilities enabled 
by the proposed multihoming solution.  Unfortunately, 
OneLab does not support yet IPv6 and its development within 
the kernel is not on the agenda. 

4. Introducing the Multihoming Components in 
a OneLab Node 
The multihoming components defined in Sec. 2.2 must be introduced 
in the architecture of OneLab nodes. This is done following the 
PlanetLab architecture principles [4][5]. Having these principles in 
mind we plan to implement the modules as services in a sliver (see 
Figure 1). A sliver is the instantiation in a node of a slice, and a slice 
is a set of virtual machines, each one created in physical nodes in the 
overlay environment. We argue that, implementing the link failure 
and multihoming services inside the sliver and not inside the node 
itself, will provide a greater deal of flexibility and the isolation 
between slivers required by the PlanetLab design guides. 

The three modules that compose the multihoming solution for 
OneLab will be set up using configuration files that will define 
settings like, for example, the addresses available for the peers in a 
communication, the timer configuration or the port to listen Probes.  

 The architecture designed for the multihoming service at the 
highest level will be made of a daemon which controls all the rest of 

Figure 1: OneLab Multihoming Architecture 



  

the processes. This daemon is in charge of parsing the configuration 
files and of running the different REAP instances, the Link Failure 
Simulator and, when needed, the mechanism for path modifications. 
The global configuration file will define the behavior of the various 
modules by providing a set of variables affecting the modules 
behavior.  

Each of the modules will provide information regarding its 
operation by a file system structure. Each process will create a folder 
in which all the state variables are stored and accessible by user space 
applications. Examples of stored variables are address information, 
timer configuration of REAP, and failure characteristics. 

Apart from the information accessible through the files, we 
propose an API for accessing these variables and modifying the 
running behavior of the processes. Through this API, for instance, the 
timers used by REAP can be changed on the fly.  

 

4.1 Failure Detection and Path Exploration 
Method 
As explained in section 2.2.1 the protocol selected to detect failures 
and find a new pair of candidate locators is REAP.  

The REAP protocol relies on two timers (the Keep Alive Timer and 
the Send Timer), and a probe message, namely the Keep Alive 
message. The Keep Alive Timer (TKA) is started each time a node 
receives a data packet from its peer, and stopped and reset, each time 
the node sends a packet to the peer. When the Keep Alive Timer 
expires, a Keep Alive message is sent to the peer. The Send Timer 
(TSend), defined roughly as three times the Keep Alive Timer plus a 
deviation to accommodate the Round Trip Time, is started each time 
the node sends a packet and stopped each time the node receives a 
packet from the peer. If no answer (either a Keep Alive or data 
packet) is received in the Send Timer period a failure is assumed and 
a locator path exploration is started. Consequently, the Send timer 
reflects the requirement that when a node sends a payload packet 
there should be some return traffic within Send Timeout seconds. On 
the other hand, the Keep Alive timer reflects the requirement that 
when a node receives a payload packet there should be a similar 
response towards the peer within Keep Alive seconds. Note that if no 
traffic is exchanged, there is no Keep Alive signaling. As a 
consequence, there is a tight relationship between the values of the 
timers defined by the REAP protocol and the time required by REAP 
to detect a failure. The current specifications suggest a value of 3 
seconds for the Keep Alive Timer, and of 10 seconds for the Send 
Timer, although these values are supported by neither analytical 
studies nor experimental data. Once a node detects a failure, it starts 
the path exploration mechanism. A Probe message is sent to test the 
current locator pair, and if no responses are obtained during a period 
of time called Retransmission Timer TRTx, the nodes start sending 
Probes testing the rest of the available address pairs, using all 
possible source/destination address pairs. A more detailed description 
of the REAP protocol and an analysis of its behavior can be found on 
[15]. Recent work has shown that the recovery time, i.e., the time 
needed to get a new source/destination address pair, can be reduced 
by allowing REAP to send multiple probes upon failure detection [9].  
Figure 2 presents a use case of the REAP protocol for better 
understanding. It presents a packet exchange between two end hosts, 
A and B.  After a period of normal packet exchange the path between 
them fails (T1) only in the direction from A to B. TSend seconds after 
the failure, one of the hosts (on this case B) detects a failure on the 
path and starts a path exploration mechanism, which begins by 
sending a probe through the path being used. On this case, the probe 
is received by A, which answers the probe indicating that A can see B 
(state Inbound_OK). As this probe is being sent through the failed 
path, it does not reach the destination. After a Retransmission Timer, 
A sends another probe using other path. On this case it reaches B.  
After the reception of this probe, B is in operational state (it can see 
A and A can see B)  and sends one more probe indicating its state to 
A. After reception of this last probe, A is in operational state too and 
the protocol ends. 

In order to work, this protocol needs information about the 
incoming/outgoing application packets along with some control 
packets (Keep Alive, Probe). REAP is being implemented on OneLab 
as a service running on a sliver. The notification about the 
incoming/outgoing packets is obtained by the use of the PCAP 
library [10]. PCAP allows an application to sniff packets of a given 
interface and to filter these packets following selected criteria. On a 
OneLab sliver the PCAP library works in a similar manner as on a 
normal linux machine with the exception of only being able to sniffer 
packets which source or destination is an application running on the 
slice. Due to this limitation, the control packets are sent and received 
by standard UDP sockets. 

Figure 2: REAP Example 



  

The Failure Detection and Path Exploration module is tightly 
coupled to the Transparent mechanism for path modification and 
Link Failure Simulator. In one hand, once the module has detected a 
failure on the link and found a new path, it informs the Path 
modification module of it. On the other hand, the Link Failure 
simulator informs the REAP module of a failure so it starts dropping 
the application packets and running the path exploration mechanism 
defined in REAP.  

4.2 Transparent mechanism for path 
modification 
Once the Failure Detection and Path Exploration module has 
detected a failure and found a new path, it informs this module of the 
new source and destination addresses to use. This module will use 
these new addresses to modify the IP header of the application 
packets and restarting the routing process followed by the packet. 
This modification is performed on the reception of the application 
packets, so the modification of the path is transparent to the 
application which receives the packets exactly in the same way as 
before the path failure. 

The modification of the packets is performed by using the Libiptc 
[11] library. This library allows a packet captured on an Iptables 
chain to be passed to user space. In user space the packet may be 
modified and can be incorporated to the normal packet kernel flow. 
On this basis, the mechanism for path modification is composed of a 
set of iptables rules to extract the packets from the kernel flow and a 
user space program which modifies the IP header of the packets and 
recalculates de IP checksum. The transport protocol checksum does 
not need to be modified since on reception the IP header is set again 
as the original packet and re-injected to the kernel which then 
computes the transport checksum with the correct values. When a 
packet has been modified, it is injected on the normal kernel flow, the 
packet is again routed according with the new IP headers and sent 
through the appropriate interface. 

 

4.3 Link Failure Simulator 
Based on the previous modules, the Link failure simulator must 
provide the mechanisms to: 

• Stop the application packets flow. 

• Stop the REAP control packets flow. 

• Stop the sniffering of packets used on the Failure detection 
and Path exploration module. 

To stop the application packets and control messages a rule in 
Iptables can be used. A simple rule on the INPUT chain of Iptables 
dropping the application packets and control messages is used to stop 
all the traffic exchange on the slice. 

However the PCAP library sniffs the packets directly from the 
interface before these packets are processed by the kernel and the 
Iptables rules does not apply over it. To overcome this issue the Link 
Failure simulator sends an inter-process signal to the Failure 
detection and Path exploration module which bypass the processing 
of the messages sniffered by pcap, actively triggering the failure 
detection mechanism. 

5. Use of the Multihoming Functionalities 
 We envision several application scenarios for the platform 
described above. For instance, a video content distribution service 
might test, on the OneLab testbed, how the video service is impacted 
by a link failure and how multihoming can protect the content 
delivery. Further, a study of the parameter configuration related to 
the recovery can be done in a large-scale environment. 

 One can also imagine that REAP can be extended in order to 
provide additional path characteristics.  Indeed, with the growing 
importance of the Internet combined with the growth of multihoming 
[8], more and more Internet users needs to better select the paths 
taken by their packets.  Today, although many of measurements 
techniques have been developed within the IPPM working group of 
the IETF, an application that needs to select a path must implement 
its own measurement system to obtain data for performing its 
selection.  This implies that several applications running on the same 
host or in the same campus will probably perform almost the same 
kind of measurements.  In the long term, duplicating those 
measurements is not the appropriate solution.  A better solution 
would be to permit the REAP component to query a service that is 
run continuously.  This service would provide information about: 

• the topology of the visible part of the Internet.  See Donnet 
and Friedman [12] for further details on topology discovery. 

• the delay.  See Wang et al. [13] for details on delay 
measurements. 

• the bandwidth.  See Prasad et al. [14] for details about the 
bandwidth estimation. 

Researchers can use this platform to investigate the effects of 
multihoming and failure recovery mechanisms on their applications, 
including the study of parameter configurations related with the 
recovery. If REAP is extended to provide information about some 
characteristics of the paths, researchers can study the impact of these 
characteristics on their applications.  

Besides, there is an ongoing discussion about what information 
about path conditions and path changes would be useful for the upper 
layers.  

Such upper layers include transport layers with congestion control 
procedures and applications that are sensitive to path conditions. This 
mechanism would allow researchers to explore how upper layers 
could use a more detailed network layer information and conduct 
experiments with this.  

PREROUTING

INPUT

FORWARD

OUTPUT

POSTROUTING

LIBIPTC
USER’S SPACE

Figure 3: Transparent mechanism for path modification 



  

Finally, this service could be used as a starting point to build more 
complex multihoming solutions. For example, the module that 
manages different addresses in the node assumes static configuration, 
but researchers could use this basic functionality to test a protocol for 
exchanging dynamically and in a secure way end-point addresses 
information.   
6. Conclusion  

In this paper, in the context of the OneLab project, we explained 
how PlanetLab-like nodes can be extended in order to support 
multihoming. The multihoming functionalities chosen to be part of 
the solution are: 

• A failure detection and path exploration method. 

• A transparent mechanism able to change the path used by a 
flow. 

• A mechanism to simulate link failures. 

 

First we have described the failure detection and path exploration 
method. It is based on a modified version of REAP so that it can 
work under an IPv4 network.  We next discussed how the 
multihoming component modifies packet headers to change the IP 
addresses in case of a failure.  This mechanism, based on libiptc, is 
transparent to applications.  Finally we have described our link 
failure simulator which aims at creating artificial failures. 

A new feature in a testbed is useless if it cannot be used by the 
community.  We therefore described, in this paper, a bunch of 
application scenarios for which our multihoming module is suitable 

The multihoming component described in this paper has been 
developed for an IPv4 environment. A next step in the multihoming 
development in OneLab would be to implement IPv6. 
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