

Antonio de la Oliva
Universidad Carlos III

de Madrid
Madrid
Spain

aoliva@it.uc3m.es

Benoit Donnet
Université catholique

de Louvain
Belgium

donnet@info.ucl.ac.be

Thierry
Parmentelat

INRIA
Sophia-Antipolis

France
thierry.parmentelat@inria.fr

Ignacio Soto
Universidad Carlos III

de Madrid
Madrid
 Spain

isoto@it.uc3m.es

Abstract—This paper describes the work in progress in the European
Commission funded OneLab project to extend PlanetLab nodes with
multihoming functionalities. These multihoming functionalities aim
at enabling application developers, for example, to test the impact of
multihoming solutions on their applications, or to find out
appropriate parameters for multihoming solutions according to the
requirements of their applications.

Key Wordss— Multihoming, OneLab, PlanetLab, REAP.

1. INTRODUCTION
Multihoming is the ability of having different connections to

Internet, potentially through different providers. As Internet evolves,
there are at least two different trends pushing the importance of
multihoming:

• Internet communications are nowadays seen as strategic by
companies and institutions. Reliability and degree of
independence from particular service providers are an
increasingly common requirement for these companies and
institutions, and multihoming provided at the site level is the
key to achieve the mentioned objectives. Furthermore,
nowadays, at least 60% of stub domains are multihomed to
two or more providers [8].

• There is a proliferation of access technologies everywhere.
Therefore, it is increasingly common to have devices with
several network interfaces (3G, WLAN, Ethernet,
Bluetooth…). To gain full advantage of robustness in
communications and ubiquitous access by the ability of using
the different accesses where they are available, a multihoming
solution at the host level is required.

With these scenarios, it is expected that more and more
multihoming situations will become common in the near future. As a
consequence, a lot of work is being done in different Working
Groups of the IETF [1] to develop multihoming solutions that can
provide the appropriate functionality while fulfilling requirements
that guarantee that the solutions are deployable.

In IPv4, multihoming is mainly provided by means of BGP, i.e.,
multihoming is provided by routing. Such a solution, however,
suffers from limitations, in particular scalability, that impede its full
deployment up to small sites level, and much less to the host level.
Indeed, if a site announces different address blocks with different
priorities to obtain some load balancing capabilities, different routes
will be needed in the core network for the address space of the site
(on per address block with different paths to follow). As more sites
are getting interest in obtaining capabilities, this can become a
serious concern. Multihoming research in IPv6 aims at providing the
full expected functionalities of multihoming. The multihoming
architecture solutions for IPv6 are host based and allow not only
sites, but also individual hosts, to take full benefit of multihoming.

The European Commission funded OneLab project [2] is currently
working on extending the functionalities present in the PlanetLab

overlay network environment. OneLab, using PlanetLab software as a
starting point, will create an overlay network environment federated
with PlanetLab. Eventually, the added functionality could be
included in PlanetLab. Among the extensions, OneLab aims at
providing multihoming functionalities by means of introducing
multihoming components in PlanetLab standard nodes. In this paper,
we describe these new components that should allow researchers to
experiment with multihoming in a realistic distributed environment
over the Internet. Examples of interesting issues that can be studied
are effects of multihoming mechanisms in applications, improved
performance of multihoming mechanisms by interactions with
applications, or even study different multihoming methods.

The paper is structured as follows; section 2 describes the
components of the OneLab multihoming solution; section 3 explains
the requirements of the multihoming solution for OneLab nodes;
section 4 describes how we introduce those components in OneLab
nodes; Sec. 5 details how researchers can benefit from these
functionalities; and finally, Sec. 6 concludes the paper.

2. Multihoming Components in OneLab
2.1 Objective

The objective of the multihoming solution in OneLab is to enable
OneLab nodes with the following host based multihoming related
functionalities:

• A failure detection and path exploration method.

• A transparent mechanism able to change the path used by a
flow.

• A mechanism to simulate link failures.

2.2 Architecture
The basis of the architecture is a OneLab node with more than one

network interface. The multihoming solution consists of three
modules, each one providing one of the three functionalities
described in Sec. 2.1. The functionality of these modules is described
in the following.

2.2.1 Failure Detection and Path Exploration Method:
In a multihoming solution, we need a way to assess the current

status of the path between two IP addresses, and detect failures when
they happen. If the path is disrupted, a path exploration method is
needed to find a new path between the nodes (represented by a new

pair of addresses) through which the communication is possible, if it
exists.

We have chosen to provide this functionality using a protocol
based on the REAchability Protocol (REAP) [3]. REAP is
responsible for failure detection and recovery. REAP periodically
sends Keep Alive messages when no data is transferred by upper
layers. As a host is supposed to receive Keep Alive messages or data,
a failure can be detected due to a timer expiry. Failure detection

A multihoming architecture for OneLab

Physical Multiple Interfaces

IPTABLES/Socket Interface

Virtual Interface

Virtual IPTABLES/Socket Interface

REAP Module Link Failure Simulator Module Address Interchange Module

Configuration

Informational API Filesystem

Controller Daemon

VSLICE

PCAP/Socket Interface

Link
Failure

Indication

triggers a new path exploration procedure. REAP is fully described
in section 4.1. The original REAP has been extended in order to
support IPv4. Other possible modifications are under consideration.
For instance, to provide information not only on path availability but
also on some path characteristics such as round trip time (RTT).

2.2.2 Transparent mechanism for path modification:
This module modifies transparently the packets of the applications

in order to send those packets through the new path discovered by
REAP. The initial version uses a simple static configuration but more
complex options for dynamic exchange of addresses (following
SHIM6 [6] or MONAMI [7] principles) could be introduced.

2.2.3 Link Failure Simulator:
This module simulates simplex/duplex, random/static failures in a

specific link. Notice that these failures do not affect the real network
service, only how applications perceive it. It will be implemented
using filters.

3. Requirements
 Before going into the details of our multihoming

implementation in the OneLab testbed, we discuss, in this section, the
requirements for the software of OneLab nodes to allow the
implementation of the multihoming functionality.

• As we are possibly going to modify packet headers, we
require sudo or su capabilities in the host system and the slice
system.

• Support for several interfaces. As the multihoming service
requires access to the interfaces configuration, a possible
scheme to provide this functionality in a secure way is to use
one interface as primary (used for managing the OneLab
node) and having others with unrestricted access for

application use.

• The ifconfig and iproute2 commands are needed in order to
configure the non-primary interfaces.

• Raw sockets are needed. The VNET system must support all
the raw socket properties, including the possibility of opening
sockets at the IP level.

• Ideally, IPv6 should be supported in order to obtain the
maximum benefit from the experimental capabilities enabled
by the proposed multihoming solution. Unfortunately,
OneLab does not support yet IPv6 and its development within
the kernel is not on the agenda.

4. Introducing the Multihoming Components in
a OneLab Node
The multihoming components defined in Sec. 2.2 must be introduced
in the architecture of OneLab nodes. This is done following the
PlanetLab architecture principles [4][5]. Having these principles in
mind we plan to implement the modules as services in a sliver (see
Figure 1). A sliver is the instantiation in a node of a slice, and a slice
is a set of virtual machines, each one created in physical nodes in the
overlay environment. We argue that, implementing the link failure
and multihoming services inside the sliver and not inside the node
itself, will provide a greater deal of flexibility and the isolation
between slivers required by the PlanetLab design guides.

The three modules that compose the multihoming solution for
OneLab will be set up using configuration files that will define
settings like, for example, the addresses available for the peers in a
communication, the timer configuration or the port to listen Probes.

 The architecture designed for the multihoming service at the
highest level will be made of a daemon which controls all the rest of

Figure 1: OneLab Multihoming Architecture

the processes. This daemon is in charge of parsing the configuration
files and of running the different REAP instances, the Link Failure
Simulator and, when needed, the mechanism for path modifications.
The global configuration file will define the behavior of the various
modules by providing a set of variables affecting the modules
behavior.

Each of the modules will provide information regarding its
operation by a file system structure. Each process will create a folder
in which all the state variables are stored and accessible by user space
applications. Examples of stored variables are address information,
timer configuration of REAP, and failure characteristics.

Apart from the information accessible through the files, we
propose an API for accessing these variables and modifying the
running behavior of the processes. Through this API, for instance, the
timers used by REAP can be changed on the fly.

4.1 Failure Detection and Path Exploration
Method
As explained in section 2.2.1 the protocol selected to detect failures
and find a new pair of candidate locators is REAP.

The REAP protocol relies on two timers (the Keep Alive Timer and
the Send Timer), and a probe message, namely the Keep Alive
message. The Keep Alive Timer (TKA) is started each time a node
receives a data packet from its peer, and stopped and reset, each time
the node sends a packet to the peer. When the Keep Alive Timer
expires, a Keep Alive message is sent to the peer. The Send Timer
(TSend), defined roughly as three times the Keep Alive Timer plus a
deviation to accommodate the Round Trip Time, is started each time
the node sends a packet and stopped each time the node receives a
packet from the peer. If no answer (either a Keep Alive or data
packet) is received in the Send Timer period a failure is assumed and
a locator path exploration is started. Consequently, the Send timer
reflects the requirement that when a node sends a payload packet
there should be some return traffic within Send Timeout seconds. On
the other hand, the Keep Alive timer reflects the requirement that
when a node receives a payload packet there should be a similar
response towards the peer within Keep Alive seconds. Note that if no
traffic is exchanged, there is no Keep Alive signaling. As a
consequence, there is a tight relationship between the values of the
timers defined by the REAP protocol and the time required by REAP
to detect a failure. The current specifications suggest a value of 3
seconds for the Keep Alive Timer, and of 10 seconds for the Send
Timer, although these values are supported by neither analytical
studies nor experimental data. Once a node detects a failure, it starts
the path exploration mechanism. A Probe message is sent to test the
current locator pair, and if no responses are obtained during a period
of time called Retransmission Timer TRTx, the nodes start sending
Probes testing the rest of the available address pairs, using all
possible source/destination address pairs. A more detailed description
of the REAP protocol and an analysis of its behavior can be found on
[15]. Recent work has shown that the recovery time, i.e., the time
needed to get a new source/destination address pair, can be reduced
by allowing REAP to send multiple probes upon failure detection [9].
Figure 2 presents a use case of the REAP protocol for better
understanding. It presents a packet exchange between two end hosts,
A and B. After a period of normal packet exchange the path between
them fails (T1) only in the direction from A to B. TSend seconds after
the failure, one of the hosts (on this case B) detects a failure on the
path and starts a path exploration mechanism, which begins by
sending a probe through the path being used. On this case, the probe
is received by A, which answers the probe indicating that A can see B
(state Inbound_OK). As this probe is being sent through the failed
path, it does not reach the destination. After a Retransmission Timer,
A sends another probe using other path. On this case it reaches B.
After the reception of this probe, B is in operational state (it can see
A and A can see B) and sends one more probe indicating its state to
A. After reception of this last probe, A is in operational state too and
the protocol ends.

In order to work, this protocol needs information about the
incoming/outgoing application packets along with some control
packets (Keep Alive, Probe). REAP is being implemented on OneLab
as a service running on a sliver. The notification about the
incoming/outgoing packets is obtained by the use of the PCAP
library [10]. PCAP allows an application to sniff packets of a given
interface and to filter these packets following selected criteria. On a
OneLab sliver the PCAP library works in a similar manner as on a
normal linux machine with the exception of only being able to sniffer
packets which source or destination is an application running on the
slice. Due to this limitation, the control packets are sent and received
by standard UDP sockets.

Figure 2: REAP Example

The Failure Detection and Path Exploration module is tightly
coupled to the Transparent mechanism for path modification and
Link Failure Simulator. In one hand, once the module has detected a
failure on the link and found a new path, it informs the Path
modification module of it. On the other hand, the Link Failure
simulator informs the REAP module of a failure so it starts dropping
the application packets and running the path exploration mechanism
defined in REAP.

4.2 Transparent mechanism for path
modification
Once the Failure Detection and Path Exploration module has
detected a failure and found a new path, it informs this module of the
new source and destination addresses to use. This module will use
these new addresses to modify the IP header of the application
packets and restarting the routing process followed by the packet.
This modification is performed on the reception of the application
packets, so the modification of the path is transparent to the
application which receives the packets exactly in the same way as
before the path failure.

The modification of the packets is performed by using the Libiptc
[11] library. This library allows a packet captured on an Iptables
chain to be passed to user space. In user space the packet may be
modified and can be incorporated to the normal packet kernel flow.
On this basis, the mechanism for path modification is composed of a
set of iptables rules to extract the packets from the kernel flow and a
user space program which modifies the IP header of the packets and
recalculates de IP checksum. The transport protocol checksum does
not need to be modified since on reception the IP header is set again
as the original packet and re-injected to the kernel which then
computes the transport checksum with the correct values. When a
packet has been modified, it is injected on the normal kernel flow, the
packet is again routed according with the new IP headers and sent
through the appropriate interface.

4.3 Link Failure Simulator
Based on the previous modules, the Link failure simulator must
provide the mechanisms to:

• Stop the application packets flow.

• Stop the REAP control packets flow.

• Stop the sniffering of packets used on the Failure detection
and Path exploration module.

To stop the application packets and control messages a rule in
Iptables can be used. A simple rule on the INPUT chain of Iptables
dropping the application packets and control messages is used to stop
all the traffic exchange on the slice.

However the PCAP library sniffs the packets directly from the
interface before these packets are processed by the kernel and the
Iptables rules does not apply over it. To overcome this issue the Link
Failure simulator sends an inter-process signal to the Failure
detection and Path exploration module which bypass the processing
of the messages sniffered by pcap, actively triggering the failure
detection mechanism.

5. Use of the Multihoming Functionalities
 We envision several application scenarios for the platform
described above. For instance, a video content distribution service
might test, on the OneLab testbed, how the video service is impacted
by a link failure and how multihoming can protect the content
delivery. Further, a study of the parameter configuration related to
the recovery can be done in a large-scale environment.

 One can also imagine that REAP can be extended in order to
provide additional path characteristics. Indeed, with the growing
importance of the Internet combined with the growth of multihoming
[8], more and more Internet users needs to better select the paths
taken by their packets. Today, although many of measurements
techniques have been developed within the IPPM working group of
the IETF, an application that needs to select a path must implement
its own measurement system to obtain data for performing its
selection. This implies that several applications running on the same
host or in the same campus will probably perform almost the same
kind of measurements. In the long term, duplicating those
measurements is not the appropriate solution. A better solution
would be to permit the REAP component to query a service that is
run continuously. This service would provide information about:

• the topology of the visible part of the Internet. See Donnet
and Friedman [12] for further details on topology discovery.

• the delay. See Wang et al. [13] for details on delay
measurements.

• the bandwidth. See Prasad et al. [14] for details about the
bandwidth estimation.

Researchers can use this platform to investigate the effects of
multihoming and failure recovery mechanisms on their applications,
including the study of parameter configurations related with the
recovery. If REAP is extended to provide information about some
characteristics of the paths, researchers can study the impact of these
characteristics on their applications.

Besides, there is an ongoing discussion about what information
about path conditions and path changes would be useful for the upper
layers.

Such upper layers include transport layers with congestion control
procedures and applications that are sensitive to path conditions. This
mechanism would allow researchers to explore how upper layers
could use a more detailed network layer information and conduct
experiments with this.

PREROUTING

INPUT

FORWARD

OUTPUT

POSTROUTING

LIBIPTC
USER’S SPACE

Figure 3: Transparent mechanism for path modification

Finally, this service could be used as a starting point to build more
complex multihoming solutions. For example, the module that
manages different addresses in the node assumes static configuration,
but researchers could use this basic functionality to test a protocol for
exchanging dynamically and in a secure way end-point addresses
information.
6. Conclusion

In this paper, in the context of the OneLab project, we explained
how PlanetLab-like nodes can be extended in order to support
multihoming. The multihoming functionalities chosen to be part of
the solution are:

• A failure detection and path exploration method.

• A transparent mechanism able to change the path used by a
flow.

• A mechanism to simulate link failures.

First we have described the failure detection and path exploration
method. It is based on a modified version of REAP so that it can
work under an IPv4 network. We next discussed how the
multihoming component modifies packet headers to change the IP
addresses in case of a failure. This mechanism, based on libiptc, is
transparent to applications. Finally we have described our link
failure simulator which aims at creating artificial failures.

A new feature in a testbed is useless if it cannot be used by the
community. We therefore described, in this paper, a bunch of
application scenarios for which our multihoming module is suitable

The multihoming component described in this paper has been
developed for an IPv4 environment. A next step in the multihoming
development in OneLab would be to implement IPv6.

Acknowledgment
Authors of this paper are supported by the European-founded

034819 OneLab project. We would like to thank the OneLab
consortium for their support and suggestions that improved this
work..

References
[1] IETF Home Page: http://www.ietf.org

[2] OneLab Home Page: http://www.one-lab.org

[3] J. Arkko and I. Van Beijnum, “Failure Detection and Locator
Pair Exploration Protocol for IPv6 Multihoming”, IETF draft
draft-ietf-shim6-failure-detection-07 (work in progress),
December 2006.

[4] L. Peterson and T. Roscoe, “The Design Principles of
PlanetLab”, PlanetLab Design Note PDN-04-021, available at
https://www.planet-lab.org/doc/pdn, January 2006.

[5] L. Peterson, S. Muir, T. Roscoe, and Aaron Klingaman,
“PlanetLab Architecture: An Overview”, PlanetLab Design Note
PDN-06-031, available at https://www.planet-lab.org/doc/pdn,
May 2006.

[6] E. Nordmark and M. Bagnulo, “Level 3 multihoming shim
protocol”, IETF draft-ietf-shim6-proto-08 (work in progress),
May 2007.

[7] N. Montavont, R. Wakikawa, T. Ernst, C. Ng and K..
Kuladinithi, "Analysis of Multihoming in Mobile IPv6", IETF
draft-ietf-monami6-mipv6-analysis-02 (work in progress), Feb.
2007.

[8] S. Agarwal, C.-N. Chuah and R. H. Katz, “OPCA: Robust
Interdomain Policy Routing and Traffic Control”, in Proc.
OPENARCH, Apr. 2003.

[9] S. Barré and O. Bonaventure, “Improved Path Exploration in
shim6-based Multihoming”, in Proc. ACM SIGCOM IPv6
Workshop, Aug. 2007.

[10] V. Jacobson, C. Leres and S. McCanne, “tcpdump”, UNIX, man
page, 1998. See also http://www.tcpdump.org

[11] M. Boucher, M. Josefsson, J. Kadlecsik, J. Morris, H. Welte and
R. Russel, “Netfilter: Firewall, NAT, and Packet Mangling for
Linux”, UNIX, man page, 1999. See also
http://www.netfilter.org

[12] B. Donnet and T. Friedman, "Internet Topology Discovery: a
Survey", In IEEE Communications Survey and Tutorials. 2007.
to appear.

[13] J. Wang, M. Zhou and L. Yuxia, "Survey on the End-to-End
Internet Delay Measurements", In Proc. 7th IEEE International
Conference on High Speed Networks and Multimedia
Communications (HSNMC), June/Jul. 2004.

[14] R. Prasad, C. Dovrolis, M. Murray and kc claffy, "Bandwidth
Estimation: Metrics, Measurement Techniques and Tools", In
IEEE Network, 6(17), Nov./Dec. 2003, pp. 27-35.

[15] A. de la Oliva, M. Bagnulo, A. Garcia-Martinez and I. Soto.
“Performance Analysis of the REAchability Protocol for IPv6
 Multihoming” Accepted for publication in NEW2AN 2007,
Conference on Next Generation Teletraffic and Wired/Wireless
Advanced Networking, September 2007.

