A multihoming architecture for OnelLab

Benoit Donnet
Université catholique

Antonio de la Oliva
Universidad Carlos I

de Madrid de Louvain
Madrid Belgium
Spain donnet@info.ucl.ac.be

aoliva@it.uc3m.es

Abstract—This paper describes the work in progress in thefiean

Thierry Ignacio Soto
Parmentelat Universidad Carlos IlI
INRIA de Madrid
Sophia-Antipolis Madr_id

France Spain

thierry.parmentelat@inria.fr isoto@it.uc3m.es

overlay network environment. OnelLab, using Planetiaftware as a

Commission funded OnelLab project to extend Plareti@des with starting point, will create an overlay network enwiment federated
multihoming functionalities. These multihoming fitiomalities aim with PlanetLab. Eventually, the added functionalibpuld be
at enabling application developers, for exampleets the impact of included in PlanetLab. Among the extensions, Onebibs at

multihoming solutions on their applications, or tind out
appropriate parameters for multihoming solutionsoading to the
requirements of their applications.

Key Wordss— Multihoming, OneLab, PlanetLab, REAP.

1. INTRODUCTION

providing multihoming functionalities by means ofitrioducing
multihoming components in PlanetLab standard noldethis paper,
we describe these new components that should aéisearchers to
experiment with multihoming in a realistic distriied environment
over the Internet. Examples of interesting isstes$ tan be studied
are effects of multihoming mechanisms in applicgaioimproved
performance of multihoming mechanisms by interaxtiowith

Multihoming is the ability of having different connections toapPplications, or even study different multihomingthods.

Internet, potentially through different providesss Internet evolves,
there are at least two different trends pushing ithportance of
multihoming:

Internet communications are nowadays seen as gGitrabgy
companies and institutions. Reliability and degreé
independence from particular service providers are
increasingly common requirement for these compaaias
institutions, and multihoming provided at the déeel is the
key to achieve the mentioned objectivesurthermore,
nowadays, at least 60% of stub domains are multbto
two or more providers [8].

There is a proliferation of access technologiesryavieere.
Therefore, it is increasingly common to have deviegth
several network interfaces (3G, WLAN,
Bluetooth...). To gain full advantage of robustness i
communications and ubiquitous access by the alaifitysing
the different accesses where they are availabtejlahoming
solution at the host level is required.

With these scenarios, it is expected that more amare
multihoming situations will become common in theantuture. As a
consequence, a lot of work is being done in differ&/orking
Groups of the IETF [1] to develop multihoming soduis that can
provide the appropriate functionality while fuliiilg requirements
that guarantee that the solutions are deployable.

In IPv4, multihoming is mainly provided by meansREP, i.e.,
multihoming is provided by routing. Such a solutidmowever,
suffers from limitations, in particular scalabilitthat impede its full
deployment up to small sites level, and much lesthé host level.
Indeed, if a site announces different address blagkh different
priorities to obtain some load balancing capak#itidifferent routes
will be needed in the core network for the addssace of the site
(on per address block with different paths to fa)lo As more sites
are getting interest in obtaining capabilities,stldian become a

Ethernet,

The paper is structured as follows; section 2 dessr the
components of the OnelLab multihoming solution;tisec3 explains
the requirements of the multihoming solution foreDab nodes;
section 4 describes how we introduce those comperierOnelLab
nodes; Sec. 5 details how researchers can berefit fthese
functionalities; and finally, Sec. 6 concludes flaper.

2. Multihoming Components in OnelLab
2.1 Objective

The objective of the multihoming solution in Onelialio enable
OnelLab nodes with the following host based multimgrmrelated
functionalities:

A failure detection and path exploration method.

A transparent mechanism able to change the path e
flow.

A mechanism to simulate link failures.

2.2 Architecture

The basis of the architecture is a OneLab node mithe than one
network interface. The multihoming solution consistf three
modules, each one providing one of the three fonefities
described in Sec. 2.1. The functionality of theseluaies is described
in the following.

2.2.1 Failure Detection and Path Exploration Method:

In a multihoming solution, we need a way to asghsscurrent
status of the path between two IP addresses, ardtdailures when
they happen. If the path is disrupted, a path eafitm method is
needed to find a new path between the nodes (@meesby a new

pair of addresses) through which the communicatgoossible, if it
exists.

serious concerrMultihoming research in IPv6 aims at providing the

full expected functionalities of multihoming. The uhlihoming
architecture solutions for IPv6 are host based altmlv not only
sites, but also individual hosts, to take full bfégref multihoming.

The European Commission funded OnelLab projects[2lirently
working on extending the functionalities presenttli® PlanetLab

We have chosen to provide this functionality usagrotocol
based on the REAchability Protocol (REAP) [3]. REABR
responsible for failure detection and recovery. AREperiodically
sends Keep Alive messages when no data is traedféry upper
layers. As a host is supposed to receive KeeppeAtiessages or data,
a failure can be detected due to a timer expingiluFe detection

[VSLICE

Configuration

‘ Informational API Filesystei

Controller Daemon

I

Link
Failure
REAP Module le—Indication | | jnk Failure Simulator Module Address Interchange Module
£ x x
v v v

PCAP/Socket Interface

Virtual IPTABLES/Socket Interface

{ {

Virtual Interface

A

A4

IPTABLES/Socket Interface

¢

Physical Multiple Interfaces

Figure 1: OneLab Multihoming Architecture

triggers a new path exploration procedure. REARIlly described
in section 4.1. The original REAP has been extenidedrder to
support IPv4. Other possible modifications are uramsideration.
For instance, to provide information not only orhpavailability but
also on some path characteristics such as roymdrtie (RTT).

2.2.2 Transparent mechanism for path modification:

This module modifies transparently the packet$efdpplications
in order to send those packets through the new giatovered by
REAP. The initial version uses a simple static @urhtion but more
complex options for dynamic exchange of addres$ekowing
SHIMG6 [6] or MONAMI [7] principles) could be intrasted.

2.2.3 Link Failure Smulator:

This module simulates simplex/duplex, random/stgikures in a
specific link. Notice that these failures do ndeef the real network
service, only how applications perceive it. It wile implemented
using filters.

3. Requirements

Before going into the details of our multihogin
implementation in the OnelLab testbed, we discusis section, the
requirements for the software of OnelLab nodes towalthe
implementation of the multihoming functionality.

e As we are possibly going to modify packet headevs,
require sudo or su capabilities in the host systaththe slice
system.

» Support for several interfaces. As the multihomsmgvice
requires access to the interfaces configuratiompossible
scheme to provide this functionality in a secure vgato use
one interface as primary (used for managing thelL@ne

application use.

e The ifconfig and iproute2 commands are needed dieroto
configure the non-primary interfaces.

¢ Raw sockets are needed. The VNET system must suglpo
the raw socket properties, including the possipdit opening
sockets at the IP level.

. Ideally, IPv6 should be supported in order to obtéhe
maximum benefit from the experimental capabilitembled
by the proposed multihoming solution. Unfortungtel
OnelLab does not support yet IPv6 and its developmithin
the kernel is not on the agenda.

4. Introducing the Multihoming Components in
a OneLab Node

The multihoming components defined in Sec. 2.2 rhesintroduced
in the architecture of OnelLab nodes. This is doolowWing the

PlanetLab architecture principles [4][5]. Havingesle principles in
mind we plan to implement the modules as servicezdiver (see

Figure 1).A diver is the instantiation in a node oBiace, and aslice

is a set of virtual machines, each one createdhysipal nodes in the
overlay environment. We argue that, implementing link failure

and multihomingservices inside the sliver and not inside the node
itself, will provide a greater deal of flexibilitand the isolation
between slivers required by the PlanetLab desigegu

The three modules that compose the multihoming tisolufor
OnelLab will be set up using configuration files tthaill define
settings like, for example, the addresses availtdlehe peers in a
communication, the timer configuration or the pgortisten Probes.

The architecture designed for the multihoming iservat the

node) and having others with unrestricted access fhighest level will be made of a daemon which cdstedl the rest of

Peer A Peer B

IP1, IP2 IP3,1P4
(IP1, IP3) Payload Packet——————»|
le——(IP3, IP1) Payload Packet
L {IP1,IP3)Payload Packet4>®

le——(IP3, IP1) Payload Packet

L (IP1, IP3) Payload Packet4»®

[¢————————(IP3, IP1) Payload Packet:

L (IP1, IP3) Payload Packe:4-@

Time T1 Path
IP1->IP3 is
broken

Tsend seconds after T1,
B sends a complaint that
it is not receiving

[4———————————(IP3, IP1) state=Explaring anything
Peer A realices
that it needs to
start the

exploration

L (IP1,1P3) s;ane:lnbound_OK;»@

Retransmission
to a different
address

But it gets lost due
to broken path

This one gets
_— ,lthrough, Peer B
would also have
retransmitted socon

(IP1, IP4) state=Inbound_OK

Failure detection
and path discovery
finished

le——(IP4, IP1) state=Operational

H—————{IP1, IP4) Payload Packet—— |

[e—— —(IP4, IP1) Payload Packet

Figure 2: REAP Example

the processes. This daemon is in charge of patemgonfiguration
files and of running the different REAP instancée Link Failure
Simulator and, when needed, the mechanism for paitifications.
The global configuration file will define the behaw of the various
modules by providing a set of variables affectinge tmodules
behavior.

Each of the modules will provide information regadgl its
operation by a file system structure. Each proweék<reate a folder

in which all the state variables are stored anéssible by user space

applications. Examples of stored variables are exfdinformation,
timer configuration of REAP, and failure characédcs.

Apart from the information accessible through thkesf we
propose an API for accessing these variables andifymy the
running behavior of the processes. Through this ARlinstance, the
timers used by REAP can be changed on the fly.

4.1 Failure Detection and Path Exploration
Method

As explained in section 2.2.1 the protocol sele¢tedetect failures
and find a new pair of candidate locators is REAP.

The REAP protocol relies on two timers (the KeepréITimer and
the Send Timer), and a probe message, namely tlep Kdive
message. The Keep Alive Timer () is started each time a node
receives a data packet from its peer, and stoppedeset, each time
the node sends a packet to the peer. When the Kiep Timer
expires, a Keep Alive message is sent to the géer.Send Timer
(Tseng, defined roughly as three times the Keep Alivendii plus a
deviation to accommodate the Round Trip Time, aststl each time
the node sends a packet and stopped each timeotteeraceives a
packet from the peer. If no answer (either a KedpeAor data
packet) is received in the Send Timer period aifaiis assumed and
a locator path exploration is started. Consequetitly Send timer
reflects the requirement that when a node sendayiad packet
there should be some return traffic within Send &mit seconds. On
the other hand, the Keep Alive timer reflects thquirement that
when a node receives a payload packet there sHumild similar
response towards the peer within Keep Alive secoNdte that if no
traffic is exchanged, there is no Keep Alive sigmal As a
consequence, there is a tight relationship betwbernvalues of the
timers defined by the REAP protocol and the tirguied by REAP
to detect a failure. The current specificationsgasy a value of 3
seconds for the Keep Alive Timer, and of 10 secdiodshe Send
Timer, although these values are supported by eritmalytical
studies nor experimental data. Once a node dedefetifure, it starts
the path exploration mechanism. A Probe messagenisto test the
current locator pair, and if no responses are nbthiuring a period
of time called Retransmission Timekq], the nodes start sending
Probes testing the rest of the available address,pasing all
possible source/destination address pairs. A metaldd description
of the REAP protocol and an analysis of its behawén be found on
[15]. Recent work has shown that the recovery tinee, the time
needed to get a new source/destination addresscaaibe reduced
by allowing REAP to send multiple probes upon faldetection [9].
Figure 2 presents a use case of the REAP protamolbétter

understanding. Ipresents a packet exchange between two end hosts,

A and B. After a period of normal packet exchatigepath between
them fails (T) only in the direction from A to B. &,qseconds after
the failure, one of the hosts (on this case B)alsta failure on the
path and starts a path exploration mechanism, whiegins by

sending a probe through the path being used. QGrctse, the probe
is received by A, which answers the probe indigativat A can see B
(state Inbound_OK). As this probe is being senvugh the failed

path, it does not reach the destination. After adRemission Timer,

A sends another probe using other path. On this tasaches B.

After the reception of this probe, B is in operatibstate (it can see
A and A can see B) and sends one more probe tittticiés state to

A. After reception of this last probe, A is in optonal state too and
the protocol ends.

In order to work, this protocol needs informatiomoat the
incoming/outgoing application packets along withmso control
packets (Keep Alive, Probe). REAP is being impletedron OnelLab
as a service running on a sliver. The notificatiabout the
incoming/outgoing packets is obtained by the usethef PCAP
library [10]. PCAP allows an application to snifigkets of a given
interface and to filter these packets followinges&td criteria. On a
OnelLab sliver the PCAP library works in a similaammer as on a
normal linux machine with the exception of onlyrgiable to sniffer
packets which source or destination is an apptinatunning on the
slice. Due to this limitation, the control packate sent and received
by standard UDP sockets.

The Failure Detection and Path Exploration modue tightly
coupled to the Transparent mechanism for path neatidn and
Link Failure Simulator. In one hand, once the meduds detected a
failure on the link and found a new path, it infernthe Path
modification module of it. On the other hand, thak. Failure
simulator informs the REAP module of a failure setarts dropping
the application packets and running the path eafitomn mechanism
defined in REAP.

4.2 Transparent mechanism for path

modification

Once the Failure Detection and Path Exploration ut®dhas

detected a failure and found a new path, it infotinis module of the
new source and destination addresses to use. Tadsllenwill use

these new addresses to modify the IP header ofapimication

packets and restarting the routing process follolwgdhe packet.
This modification is performed on the receptiontioé application

packets, so the modification of the path is trarmpato the

application which receives the packets exactlyhe same way as
before the path failure.

The modification of the packets is performed byngsthe Libiptc

[11] library. This library allows a packet captured an Iptables
chain to be passed to user space. In user spageatket may be
modified and can be incorporated to the normal egkkrnel flow.

On this basis, the mechanism for path modificattooomposed of a
set of iptables rules to extract the packets froekernel flow and a
user space program which modifies the IP headéneopackets and
recalculates de IP checksum. The transport protaoetksum does
not need to be modified since on reception thed&der is set again
as the original packet and re-injected to the WKemkeich then

computes the transport checksum with the correktesa When a
packet has been modified, it is injected on themabkernel flow, the
packet is again routed according with the new |Bdees and sent
through the appropriate interface.

4.3 Link Failure Simulator
Based on the previous modules, the Link failure utator must
provide the mechanisms to:

e Stop the application packets flow.
¢ Stop the REAP control packets flow.

« Stop the sniffering of packets used on the Faitleection
and Path exploration module.

To stop the application packets and control messageule in
Iptables can be used. A simple rule on the INPUdirclof Iptables
dropping the application packets and control mességused to stop
all the traffic exchange on the slice.

However the PCAP library sniffs the packets disedilom the
interface before these packets are processed bkettmel and the
Iptables rules does not apply over it. To overcohi®issue the Link
Failure simulator sends an inter-process signalthte Failure
detection and Path exploration module which byphssprocessing
of the messages sniffered by pcap, actively triggethe failure
detection mechanism.

5. Use of the Multihoming Functionalities

We envision several application scenarios for phegform
described above. For instance, a video contentilolisibn service
might test, on the OnelLab testbed, how the videdaeis impacted
by a link failure and how multihoming can protettetcontent
delivery. Further, a study of the parameter conmfijion related to
the recovery can be done in a large-scale envirahme

PREROUTING
INPUT -
Y
LIBIPTC
FORWARD USER’S SPACE
A
OUTPUT -
POSTROUTING

Figure 3: Transparent mechanism for path modificaton

One can also imagine that REAP can be extendeddier to
provide additional path characteristics. Indeedhwhe growing
importance of the Internet combined with the groatmultihoming
[8], more and more Internet users needs to betlecisthe paths
taken by their packets. Today, although many ofsueements
techniques have been developed within the IPPM wvgrgroup of
the IETF, an application that needs to select & paist implement
its own measurement system to obtain data for penfmy its
selection. This implies that several applicatiocmsning on the same
host or in the same campus will probably performast the same
kind of measurements. In the long term, dupligatithose
measurements is not the appropriate solution. #iebesolution
would be to permit the REAP component to query raice that is
run continuously. This service would provide imf@tion about:

« the topology of the visible part of the Internesee Donnet
and Friedman [12] for further details on topologycdvery.

e the delay. See Wang et al. [13] for details onaylel
measurements.

« the bandwidth. See Prasad et al. [14] for detdisut the
bandwidth estimation.

Researchers can use this platform to investigate dfiects of
multihoming and failure recovery mechanisms onrtlagplications,
including the study of parameter configurationsated with the
recovery. If REAP is extended to provide informatiabout some
characteristics of the paths, researchers can shediynpact of these
characteristics on their applications.

Besides, there is an ongoing discussion about wifiatmation
about path conditions and path changes would Helfse the upper
layers.

Such upper layers include transport layers withgestion control
procedures and applications that are sensitivatio gonditions. This
mechanism would allow researchers to explore howeupayers
could use a more detailed network layer informatiord conduct
experiments with this.

Finally, this service could be used as a startimigtto build more
complex multihoming solutions. For example, the oledthat
manages different addresses in the node assuntiescstafiguration,

but researchers could use this basic functionaditgst a protocol for [9]
exchanging dynamically and in a secure way endtpaédresses

information.

6. Conclusion

In this paper, in the context of the OneLab projee explained
how PlanetLab-like nodes can be extended in ordesupport
multihoming. The multihoming functionalities chostmbe part of
the solution are:

« Afailure detection and path exploration method.

¢ A transparent mechanism able to change the pathhysa
flow.

¢ A mechanism to simulate link failures.

First we have described the failure detection aaith exploration
method. It is based on a modified version of REAPtimgt it can
work under an IPv4 network. We next discussed hihe

multihoming component modifies packet headers tange the IP
addresses in case of a failure. This mechanissedan libiptc, is

transparent to applications. Finally we have dbedr our link
failure simulator which aims at creating artificfallures.

A new feature in a testbed is useless if it carbeused by the

community. We therefore described, in this pamerbunch of
application scenarios for which our multihoming ratedis suitable

The multihoming component described in this papas been

developed for an IPv4 environment. A next stephia inultihoming
development in OnelLab would be to implement IPv6.

Acknowledgment

Authors of this paper are supported by the Eunogeanded
034819 OnelLab project. We would like to thank theelab
consortium for their support and suggestions tmaproved this
work..

References
[1] IETF Home Pagehttp://www.ietf.org

[2] OneLab Home Pagéttp://www.one-lab.org

[3] J. Arkko and I. Van Beijnum, “Failure Detection anacator
Pair Exploration Protocol for IPv6 Multihoming”, T draft
draft-ietf-shim6-failure-detection-07 (work in prn@ss),
December 2006.

[4] L. Peterson and T. Roscoe, “The Design Principles o
PlanetLab”, PlanetLab Design Note PDN-04-021, abdd at
https://www.planet-lab.org/doc/pdn, January 2006.

[5] L. Peterson, S. Muir, T. Roscoe, and Aaron Klingama
“PlanetLab Architecture: An Overview”, PlanetLabdign Note
PDN-06-031, available at https://www.planet-lab/dag/pdn,
May 2006.

[6] E. Nordmark and M. Bagnulo, “Level 3 multihomingrsh
protocol”, IETF draft-ietf-shim6-proto-08 (work progress),
May 2007.

[7] N. Montavont, R. Wakikawa, T. Ernst, C. Ng and K..
Kuladinithi, "Analysis of Multihoming in Mobile IP&", IETF
draft-ietf-monami6-mipv6-analysis-02 (work in pregs), Feb.
2007.

[8] S. Agarwal, C.-N. Chuah and R. H. Katz, “OPCA: Rstbu
Interdomain Policy Routing and Traffic Control”, Rroc.
OPENARCH, Apr. 2003.

S. Barré and O. Bonaventure, “Improved Path Exiloman
shim6-based Multihoming”, in Proc. ACM SIGCOM IPv6
Workshop, Aug. 2007.

[10] V. Jacobson, C. Leres and S. McCanne, “tcpdumpX)ihan
page, 1998. See also http://www.tcpdump.org

[11] M. Boucher, M. Josefsson, J. Kadlecsik, J. MotiisWelte and
R. Russel, “Netfilter: Firewall, NAT, and Packet Mging for
Linux”, UNIX, man page, 1999. See also
http://www.netfilter.org

[12] B. Donnet and T. Friedman, "Internet Topology Disany: a
Survey", In IEEE Communications Survey and Tutari2007.
to appear.

[13] J. Wang, M. Zhou and L. Yuxia, "Survey on the EaeEnd
Internet Delay Measurements", In Proc. 7th IEEEnmational
Conference on High Speed Networks and Multimedia
Communications (HSNMC), June/Jul. 2004.

[14] R. Prasad, C. Dovrolis, M. Murray and kc claffy afglwidth
Estimation: Metrics, Measurement Techniques andsTotn
IEEE Network, 6(17), Nov./Dec. 2003, pp. 27-35.

[15] A. de la Oliva, M. Bagnulo, A. Garcia-Martinez andoto.
“Performance Analysis of the REAchability Protoéml IPv6
Multihoming” Accepted for publication in NEW2AN 2@,
Conference on Next Generation Teletraffic and WiAdeless
Advanced Networking, September 2007.

