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Abstract

This paper characterizes analytically the performance of REAP (REAchability
Protocol), a network layer end-to-end recovery protocol for IPv6. REAP was
developed by the IETF SHIM6 Working Group as part of its multihoming so-
lution. The behavior of REAP is governed by a small number of parameters:
three timers, a simple characterization of the application traffic, and the com-
munication delay. The key figure of merit of REAP performance is the time to
recover from a path failure as seen by the upper layers, figure that cannot be
trivially obtained, despite the apparent simplicity of this reachability protocol.
In this paper we provide upper bounds for the recovery time of REAP for dif-
ferent deployment scenarios, applying these analytical results to two interesting
case studies, TCP and VoIP traffic.
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1. Introduction

The SHIM6 (Site Multihoming by IPv6 Intermediation) Working Group1 of
the IETF has developed a framework that enables scalable fault tolerance pro-
tection for on-going communications in IPv6 multihomed environments. Con-
sidering that the large address space of IPv6 allows end hosts to configure as
many addresses as available providers, this framework aims to enable the use
of these different addresses for a single communication which enables the use of
different paths. The address agility function is performed by a shim sublayer,
named SHIM6, defined inside the IPv6 layer. This SHIM6 sublayer manages
the mapping between the addresses being exposed to the upper layers, which
remain constant during the communication lifetime, and the addresses included
in the packets sent through the wire, that could vary and enforce the use of
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different paths. The SHIM6 protocol [1] creates and manages these mappings
between the SHIM6 sublayers of the two nodes involved in the communication.
A fault tolerance solution requires a mechanism to detect failures across the
communicating path, and a mechanism to discover a valid path after a failure.
In particular, the mechanism should allow transport layer survivality, to be fully
transparent for transport layer sessions [2]. The SHIM6 Working Group defines
such a component, named REAP (REAchability Protocol, [3]), which detects
failures in any of the two unidirectional paths in use for a communication, and
explores different unidirectional paths to find a valid one after an outage. Note
that a bidirectional path is modeled by REAP as two unidirectional paths.
The REAP instance of an endpoint detects a failure by monitoring the packets
received for a given communication. When a communication involves a bidi-
rectional exchange of data at a sufficient rate, the availability of the path is
determined without exchanging REAP-specific packets. If one of the endpoints
is not sending data regularly or the if the rate at which data is being sent is too
low, its REAP entity generates Keepalive messages that prevent the expiration
at the other end of the timer used to detect failures. When no party sends upper
layer data for some time REAP stops generating Keepalive messages and failure
monitoring is suspended.
When a failure is detected, REAP triggers the path exploration func-
tion. The currently used unidirectional paths are initially tested by
sending REAP Probe messages. If this validation fails, Probe messages
with different combinations of source/destination addresses are sent until a new
pair of working addresses is found. Note that SHIM6 and REAP support the
use of paths defined by different source and destination address pairs in each
direction.
Ideally, a failure detection mechanism should require as low resources and band-
width as possible. The amount of state required for REAP operation is just
three timers per communication and per endpoint. Additionally, it is quite
efficient in terms of the number of protocol-specific messages exchanged since
Keepalive messages are only sent for unidirectional or low-rate communications.
REAP is a good solution to provide a failure detection and path ex-
ploration mechanism to other protocols requiring such functionality,
because it has minimal requirements and it is independent from the
SHIM6 protocol. Examples of protocols that could benefit from this
functionality are HIP (Host Identity Protocol) [4] [5], Mobile IPv6 with
registration of multiple CoAs (Care-of Address) [6], Mobike (IKEv2 Mobility
and Multihoming Protocol) [7] or combined SHIM6/Mobile IPv6 operation [8].
Although two simulation and experimental studies have been previ-
ously published, focusing either on the path exploration process [9] or
on the impact of the transport protocol on the recovery time [10], no analytical
characterization of the time required to recover from a failure has been provided
so far. Note that this value is a key figure of merit for determining the impact
perceived by upper layers. Too large recovery times can result in the commu-
nication being discarded by the upper layers. But even if the communication
continues, the quality can be degraded if the recovery process takes longer than
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the time required by the application. Proper characterization of REAP per-
formance would enable the configuration on a per-communication basis of the
REAP timers in order to comply with specific upper layer constraints.
However, despite the functional simplicity of the REAP mechanism, the char-
acterization of the recovery time is far from trivial. It could be initially thought
that the time required to detect a failure by REAP depends only on the value
of the three defined timers, the Send Timer, the Keepalive Timer and the Re-
transmission Timer, but this would obviate the relation of the time at which
these timers are started and the time at which the failure occurs. This relation
largely depends on the specificities of the communication. Without a proper
computation of this time it is not possible to provide an upper bound which can
be used by the applications to cope with the failures in the communication.
In this paper we characterize analytically the upper bound of the time required
by REAP to detect a failure and recover from it in different scenarios. These
results are applied to different traffic patterns and to the specific case of TCP
as the transport protocol.
The remainder of the paper is organized as follows: Section 2 provides an in-
sight on the REAP protocol. In Section 3 we present the reference model used
for the analysis, and we detail the definition of the Recovery Time. In Section
4 we start a top/down characterization by analyzing the contributions to the
Recovery Time of the failure detection process and the exploration process. For
this analysis, different types of communication (bidirectional and unidirectional)
and failure (Two-Way and One-Way) are considered. Section 5 is devoted to
characterize the τ parameter, that depends on the time elapsed between
the transmit time of the first lost packet in any node and the starting
time of the Send Timer. τ is the main parameter to be considered when
estimating the duration of the detection process. To obtain the least upper
bound of τ , the maximum value among several cases has to be considered. The
methodology followed to obtain the upper bound of τ is verified by simulation
results. Then, in Section 6, we provide more compact expressions for the combi-
nation of the results obtained in Sections 4 and 5. These expressions eliminate
the dependency on the failure type or location, and are the results to be used for
configuring REAP to comply with the specific requirements of an application.
An applicability example of the results is presented in Section 7. To give fur-
ther details of the applicability of the analytical results, we consider the variable
rate traffic case and applications that use TCP as transport layer in Section 8.
Finally, in Section 9 we present the conclusions and future work.

2. Failure detection and path exploration in REAP

In this section we describe in detail the two components of REAP [3], the
failure detection and the path exploration mechanisms. The failure detection
mechanism of REAP is used to monitor the status of the pair of unidirectional
paths active in a communication. Note that although SHIM6 is able to manage
alternative paths for a communication, REAP only tests the pair of paths in

3
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Figure 1: State Machine of REAP

use at a given time. To validate the current two unidirectional paths of a com-
munication, REAP relies on two timers in each node, the Keepalive Timer and
the Send Timer, and, when required, on the exchange of a message, named the
Keepalive message. The Keepalive Timer is started each time a node receives
a data packet from its peer, and stopped and reset each time the node sends a
packet to the peer. When the Keepalive Timer expires, a Keepalive message is
sent to the peer. Note that the reception of Keepalive messages does not mod-
ify the value of the Keepalive Timer at the receiving node. The Send Timer
is started each time the node sends a packet, and stopped and reset each time
the node receives a packet from the peer, either a data packet, or a Keepalive
message. If the Send Timer expires, i.e. no packet has been received during this
period, a failure is assumed and the node starts the path exploration process.
The Send Timer expiration indicates that no return traffic was received for some
time by a node that was sending data. On the other hand, the Keepalive Timer
is used to assure that return traffic, in this case Keepalive messages, is generated
in nodes that are receiving data but have no data to send. Note that the values
of the Keepalive Timer and the Send Timer should allow at least one Keepalive
message to arrive to the destination to avoid false failures. The current spec-
ification suggests a default value of 15 seconds for the Send Timer, while no
value is proposed for the Keepalive Timer. Note that neither experimental data
nor analytical studies have been considered to propose the values for any of the
timers that determine the performance of REAP.

4
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REAP does not include any mechanism for detecting congestion. Severe conges-
tion in the network is considered by REAP as a failure. If packets stop reaching
the node for a Send Timer period, due to congestion, REAP assumes a failure
has occurred (a false positive) and starts the exploration mechanism. We argue
that this is an appropriate behavior when network congestion is such that the
time during which the path is unavailable exceeds the threshold set by the ap-
plication using it.
Once a node detects a failure, it starts the path exploration mechanism by
changing its state from Operational to Exploring. First, a Probe Exploring
message (a Probe message with the Exploring flag set) is sent to test the cur-
rent address pair. This allows resuming the communication through the initial
path after short unavailability periods, due for example to light network conges-
tion or local route reconfiguration. In this case REAP completes the required
handshake through the current path and returns to the Operational state with-
out disrupting the communication. However, if no response is obtained during
a Retransmission Timer period, alternative outgoing paths, defined by different
combinations of source and destination addresses, are tested by sending Probe
Exploring messages and waiting for a response during a Retransmission timer
period. In the current specification, only one Probe is sent at a time. After
sending four Probe Exploring messages, an exponential backoff algorithm in-
creases the Retransmission Timer. When a Probe Exploring is received, this
means that a valid unidirectional path has been discovered for the incoming
path. The node that has received the Probe Exploring message then changes its
state to Inbound OK and uses Probe Inbound OK messages to continue explor-
ing outgoing valid paths. This type of Probe messages includes an indication
of the valid incoming path. If the other node receives a Probe Inbound OK, it
can assume as valid the incoming path through which the packet was received,
and it can obtain from the payload of the Probe Inbound OK the valid outgoing
path to be used. Then, the node changes its state to Operational, and sends
a Probe Operational message in which it informs its peer about the validity of
the path through which it received the Probe Inbound OK message. A node
that receives a Probe Operational message changes its state to Operational. It
is worth to highlight that data is still being sent when the node is in the Ex-
ploring or the Inbound OK states using the source and destination addresses
in use when the node was in the Operational state. When the Operational
state is reached again, the addresses in use are changed to the ones resulting
from the exploration process. Note that these rules may lead to different state
and message sending schedules: for example, one node can detect a failure and
send a Probe Exploring that arrives to its peer before the peer detects a fail-
ure; or both nodes can detect a failure before receiving a Probe from the other
endpoint. Fig. 1 presents the state machine diagram that formalizes the behav-
ior described above, including some transitions that occur only when a limited
number of packets (either data, Keepalive or Probes) are lost, which could oc-
cur due to temporary path unavailability. Although, as already mentioned, in
the current specification Probe messages for exploring alternative paths are sent
sequentially during the exploration phase, in [9] a concurrent exploration mech-
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anism of alternative paths is defined. This concurrent exploration is done after
probing the current path.
It could be thought that we could reduce the time to recover from failure by
exploring the alternative paths also concurrently with the probing of the current
one when the REAP state changes from Operational to Exploring. While this
could be true, enforcing the preference to select other locators only if the Probe
of the current path has failed at the same time at which other paths are been
concurrently probed may complicate slightly the state machine of the REAP
entities. For this kind of operation, REAP should store the addresses of the
first received Probe (if different from the current incoming path), and wait for
a Probe for the current incoming path until the Retransmission Timer expires.
If the Probe from the current incoming path arrives in time, the current path is
preserved, and otherwise the probing process continues with the information of
the first received Probe. In the rest of the paper we do not consider this mode
of operation (not mentioned also in the REAP specification [3]), although the
analysis could be easily adapted to it.

3. Model for performance evaluation in REAP

In this section we present the reference model to be used in the performance
analysis for REAP. We first discuss the parameters involved in the failure de-
tection and recovery procedures. Then, we define the figure of merit through
which we evaluate the performance of REAP, the Recovery Time.

3.1. Reference Model for REAP
Consider two nodes that are communicating. Packets traveling from A to

B, and from B to A, experience a fixed end-to-end delay of γAB and γBA,
respectively which may change when the addresses in use change. Note that
γAB and γBA can be quite different for many reasons. To name a few, they can
be different because SHIM6 allows each direction to be determined by unrelated
source and destination addresses, resulting in completely different unidirectional
paths, or because even if the same routers were traversed in both directions,
queuing delay can be different as a result of different traffics being served for each
segment on each direction. The Round Trip Time at a given time is computed
as RTT = γAB+γBA. Upper layers periodically deliver data packets to the IPv6
layer. The size of each packet is irrelevant for the analysis. Communication can
be bidirectional, with node A sending data with a fixed inter-packet interval
of ∆A, and node B sending data with ∆B interval. If the communication is
unidirectional, we assume that it is node A the one that sends traffic with inter-
packet interval ∆A. The case in which no packets are sent by neither of the
peers is not considered, since REAP does not perform failure detection in this
case. For the rest of the definition of the model we assume bidirectional traffic
without loss of generality.
A failure occurs at a given time Tfail. The failure could affect both directions
if it is caused by a failure in an element (router or link) shared by both paths,

6
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Figure 2: Reference Model for the analysis of REAP

or it can just affect to one direction (either affecting the path from A to B, or
from B to A). To precisely characterize the location of the failure so that we can
determine which packets were able to go through before the failure and which
packets were affected by it, we use α and α′ to define the fraction of the end-
to-end delay that a packet should experience until it reaches the point at which
the failure has occurred. The valid range for α and α′ is (0, 1). Extreme cases
for α (α′) of 0 or 1 would mean that the packet is dropped just when issued to
be sent by the application (0) or just when it is to be delivered to the remote
application (1). There are a number of reasons to have values close to these
figures: a failure in the outgoing interface or in the remote incoming interface,
address configuration problems in the nodes, operating system misconfiguration,
etc. Note that in general α does not need to be equal to 1 − α′. Considering
a bidirectional failure, a packet sent by A would spend α ∗ γAB until it reaches
the failure point, and a packet sent from B would spend α′ ∗γBA until it arrives
to the outage (see Fig. 2). Then, we can also state that packets sent from peer
A at a time T = Tfail−αγAB or later are dropped, as well as packets sent from
B later than T = Tfail − α′γBA. Note that α and α′ are unrelated because of
the different properties of the communication paths in both directions.
The time at which the first lost packet from A is sent is named TlostA. The time
at which the first lost packet from B is sent is denoted as TlostB . The possible

7
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range of values for TlostA and TlostB are presented in equations (1) and (2).

Tfail − αγAB ≤ TlostA < Tfail − αγAB + ∆A (1)
Tfail − α′γBA ≤ TlostB < Tfail − α′γBA + ∆B (2)

Finally, we assume that the Send and Keepalive Timers of A and B are equal
for both nodes, with values TSend and TKA respectively.

3.2. Recovery Time
The analysis presented in this paper aims to characterize the impact of

REAP on upper layers when an outage occurs. For this purpose, we define the
Recovery Time as the difference between the time at which the first data packet
lost (at any node) is sent, and the time at which every peer willing to send
traffic is ready to send packets again (i.e. the peer or peers with traffic to send
have returned to the Operational state). In particular, for unidirectional traffic
only the peer sending traffic has to return to the Operational state to restore
the original communication.
Fig. 3 shows the Recovery Time for a bidirectional data exchange with a failure
affecting both directions. For the sake of clarity, data packet exchanges during
the exploration process have been omitted. In the situation depicted, the Send
Timer at B expires before the Send Timer at A, so it is B the node that starts
probing the current path from B to A. Before any Probe Exploring arrives to A,
the Send Timer at A expires, so that it also starts testing the current path from
A to B. A Retransmission Timer time after the first Probe was sent, B real-
izes that the current path is not valid, and starts probing alternative addresses.
The first alternative path tested succeeds, so A receives the Probe Exploring
message, and issues a Probe Inbound OK that includes information confirming
the validity of the new path from B to A. Upon the successful reception of this
message at B, B changes its state to Operational and data packets can be sent
again. Finally, a Probe Operational from B to A is used to inform A that the
path it had selected is valid. In the example considered, the Recovery Time is
the time since the first packet sent by A was lost, until both peers return to
Operational state.
As discussed before, the operation of some upper layers may be negatively af-
fected by outages lasting for more than a given threshold, threshold that may
vary for different transport and application layer combinations. Consequently,
we are particularly interested in being able to estimate the upper bounds for the
Recovery Time in any particular scenario determined by the type of communi-
cation (bidirectional, unidirectional), the frequency at which data packets are
sent in both communicating peers, the Send Timer and Keepalive Timer values,
and the end-to-end delay at both directions of the communication. Provided
that the parameters characterizing the communication were known, it could be
determined if a given configuration fulfills the requirements of the upper layers
regardless the particular execution details such as the exact time at which pack-
ets are sent at each side or the failure details, i.e. regardless the failure affecting
one or both directions or the physical location at which the failure occurs.
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Figure 3: Recovery Time Components

4. Characterization of the Recovery Time

In order to characterize the behavior of the Recovery Time (Trecovery here-
after), we have to consider all possible communication scenarios that may result
from the type of communication. First, we must separate the analysis of bidi-
rectional and unidirectional traffic. For bidirectional traffic we assume
that the packet rate is high enough, precluding a Keepalive messages
exchange. Additionally, we have to consider that on each peer runs
a different Send Timer, resulting in different event sequences. These
event sequences cannot be modeled by considering two independent unidirec-
tional flows. The scope of the failure, either in both directions, or just in one
direction, also determines different behaviors for the REAP entities involved.
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Consequently, the cases that must be analyzed are:

• Bidirectional traffic, Two-Way failure.

• Bidirectional traffic, One-Way failure.

• Unidirectional traffic, Two-Way failure.

• Unidirectional traffic, One-Way data path failure.

• Unidirectional Traffic, One-Way return path failure, (i.e. the path through
which Keepalive messages are exchanged). Although this scenario is pos-
sible, it is not relevant for our work since this kind of failure does not
affect the data exchange.

Regarding the path exploration phase, we assume that after checking the cur-
rent path to confirm the failure, the possible alternative paths are explored
concurrently (as recommended in [9]), and that at least one path is working
(Recovery Time is meaningless if no working path is available). Concurrent
path exploration is the fastest way of providing a valid path through which
the application can resume its operation, which is required in the case of ap-
plications with tight constraints in the required recovery time. However, our
analysis is also valid for sequential path exploration if the first alternative path
explored is working, and it can be easily extended to sequential path explo-
ration recovering in the nth path.
The REAP state machine (Fig. 1) includes some logic to recover from REAP-
specific packets lost due to short-lived congestion or other transient effects. In
our analysis, we simplify this state machine by taking into account only state
transitions that conduct to a recovery using a new path, i.e., ignoring state tran-
sitions in which REAP decide that the original path is working and therefore
finally does not influence the application chosen path. So we can assume the
following:

• After a failure, a node in Exploring state never receives data packets
through the original path. Data packets could only be received if the
node had moved to the Exploring state due to a transient loss of pack-
ets.

• Keepalives are only sent in the Operational state. If packets are not lost
unless a failure occurs, a node is in Exploring state only if the original
incoming path failed. Then, Keepalives should not be received through
the original incoming path (because it is not available), nor through other
path (because a Probe Inbound OK should have been received before the
Keepalive).

• Similarly, Keepalives should not be received in Inbound OK state because
Probe Inbound OK or Probe Operational messages should have been re-
ceived before.

10
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1. Send Timeout
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1. Incoming Probe Inbound_OK

SEND Probe Operational

RESTART Send Timer

1. Incoming Probe Exploring

SEND Probe Inbound_OK

START Send Timer
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RESTART Send Timer

STOP KeepAlive Timer
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1. Retransmit
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1. Retransmit
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START Send Timer

RESTART Retransmission Timer

1. Incoming Probe Operational

STOP Send Timer

START KeepAlive Timer

Exploring

Inbound_OK

Operational

Figure 4: REAP Simplified State Machine

• A node can only send Probe Operational messages if it is in the In-
bound OK state and has received a Probe Inbound OK message. A peer
can only send Inbound OK messages from the Inbound OK state. There-
fore, a node in the Exploring state cannot receive a Probe Operational
message.

• As at least one of the explored paths after a failure is valid and the Send
Timer is large enough, this timer will not expire in the Inbound OK state.

Taking these assumptions into consideration, Fig. 4 presents the simplified state
machine of REAP. We use this state machine to derive in the following sub-
sections the feasible transitions for each of the scenarios presented above. It is
worth to note that when a failure occurs, the first event is always the expiration
of the Send Timer in any of the nodes, triggering the generation of a Probe
Exploring message. Then, only two possibilities are available for the transitions
on the peer node: the peer remains in Operational state until it receives the
Probe Exploring message, or, only in the case of bidirectional communication
with Two-Way failure, the Send Timer could expire before receiving the Probe
Exploring message. For analyzing the rest of the possible state transitions, we
consider the type of traffic and the type of failure. For the sake of clarity, in the
following explanations we are only taking into account the messages exchanged
with the peer through the alternate fastest path (concurrent exploration), which
is equivalent to assume sequential exploration in which the first alternate path
explored is valid.
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Figure 5: Path Exploration Transitions: Bidirectional traffic, Two-Way failure
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4.1. Bidirectional traffic, Two-Way failure
On this scenario, the peers are exchanging bidirectional traffic when both

unidirectional paths in use are affected by an outage. The restriction that a
node can only reach the Inbound OK state when the peer is in the Exploring
state defines three possible state sequences in the peers until they return to the
Operational state (Fig. 5):

1. In the first case, presented in Fig. 5(a) (continuous lines), the node dis-
covering the failure after the expiration of the Retransmission Timer, A,
sends a second Probe Exploring message that arrives to its peer B when
it is in Operational state. Note that this message is able to reach node B
since it is exchanged through an alternative path. The reception of the
Probe Exploring results in a change to Inbound OK in B. In this transi-
tion, B sends a Probe Inbound OK message, which after reception triggers
a transition in A from the Exploring state to the Operational state. Hence,
the peer which transits to Operational state sends a Probe Operational
message to alter the state of the corresponding peer to Operational state.
At this point both peers are ready to resume the communication. Taking
into account this behavior, equation (3) presents the value of Trecovery for
this scenario.

Trecovery = TRTx +RTT + γ + Tsend +min(τA, τB) (3)

We define τA (τB) as the time elapsed between the sending of the first
packet lost (in any node) and the starting time of the Send Timer on
A (B). In the case considered, we are interested in the time at which
the first node detecting the failure starts its Send Timer (in Fig. 5(a),
node A), condition that is expressed in general as min(τA, τB). Then
after Tsend time (the value of the Send Timer), node A sends a Probe
Exploring that is never returned, so a new path is explored after TRTx (the
value of the Retransmission Timer) seconds. The new path is explored by
sending a Probe Exploring message, requiring γAB + γBA + γAB , or in
other words, RTT +γAB . In order to make equation (3) independent from
the actual node detecting the failure, we express RTT + γAB in equation
(3) as RTT + γ, being γ the end-to-end delay from the node discovering
the failure to its peer.

2. The second case corresponds to Fig. 5(a) (dashed lines). In this case, node
A reaches the Exploring state before node B. The first Probe Exploring
message sent by B is lost since this message is sent through the failed
path. While node B is in the Exploring state, node A sends a Probe
Exploring message that reaches node B, changing its state to Inbound OK.
In this transition, node B sends a Probe Inbound OK message. When
this message reaches node A, A changes its state to Operational, sending
a Probe Operational message, which after reception, changes the state of
node B to Operational. At this stage both peers are ready to resume the
communication. This state sequence yields to the same equation as the
first case (equation (3)).
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Figure 6: Path Exploration Transitions: Bidirectional traffic, One-Way failure

3. The third case corresponds to Fig. 5(b). In this case, peer B reaches the
Exploring state prior to receiving the Probe Exploring message from A.
In this scenario both peers perform the transition
Exploring→Inbound OK→Operational and are able to resume the com-
munication once a Probe Inbound OK is received (Equation (4)).

Trecovery = TRTx +RTT + Tsend +max(τA, τB) (4)

Now, the time at which the process is finished is driven by the last node
detecting the failure.

4.2. Bidirectional traffic, One-Way failure
Fig. 6 presents the only possible state sequence for path exploration in a

scenario where bidirectional traffic is affected by an outage on any unidirectional
path (in this case, from A to B). As the Send Timer is set each time a packet is
sent, and stopped each time a packet is received, the Send Timer in peer A never
expires since the path from B to A is not affected by the outage. On the other
hand, due to the outage, B does not receive packets from A so its Send Timer
expires triggering a transition to the Exploring State. Then B sends a Probe
Exploring message, which is received by A, and A transits to the Inbound OK
state. This Probe Exploring message reaches A using the current path, since
the path from B to A is not affected by the outage. In this transition, A sends
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a Probe Inbound OK to B, using the current path, which is lost. A new Probe
Inbound OK message sent through other path succeeds in arriving to B. As a
consequence, B moves to the Operational state again, sending an Operational
Probe to A. Once received the Probe Operational, A transits to Operational.
Equation (5) presents the value of Trecovery for this scenario.

Trecovery = TRTx +RTT + γBA + Tsend + τB (5)

Note that the state transition sequence presented above is the only possible one,
since the Send Timer can expire only in one of the nodes.

4.3. Generic case for Bidirectional Traffic
Given the equations for Trecovery presented in the previous sub-sections, we

now provide a general expression to be used for Bidirectional Traffic, regardless
the type of failure.

Trecovery = TRTx +RTT + Tsend +min(τ + γ, τc) (6)

In equation (6), τ corresponds to the peer whose Send Timer expires first
(min(τA, τB)). γ is the end-to-end delay between the node whose Send Timer
expires first and the peer. τc is the τ of the node whose Send Timer expires the
last (i.e. τc = max(τA, τB)). The case τ + γ < τc corresponds to the first Probe
Exploring message sent through a valid path reaching the peer while it is still
in the Operational state. The case τ + γ > τc corresponds to the first Probe
Exploring message reaching the peer when it is in the Exploring state. Finally
it is worth to note that the Bidirectional traffic, One-Way failure case (equation
(5)) is just a particular case of expression (6) in which max(τA, τB) =∞.

4.4. Unidirectional traffic, Two-Way failure
In this scenario only one state sequence is possible. As the Send Timer

is set up each time a packet is sent, the Send Timer is only running on the
node sending the packets. Fig. 7 presents the state sequence and the messages
exchanged for the path exploration mechanism when node A is the sending
active peer. When the failure occurs, A stops receiving Keepalive messages and
its Send Timer expires, changing its state to Exploring and sending a Probe
Exploring message. Upon reception of the Probe Exploring message, node B
modifies its state to Inbound OK and sends a Probe Inbound OK message to A.
When this probe is received on A, its state changes to Operational and a Probe
Operational message is sent to B. Once A reaches the Operational state again
the application is ready to resume the communication. Equation (7) presents
the value of Trecovery for this scenario.

Trecovery = TRTx +RTT + Tsend + τA (7)

4.5. Unidirectional Traffic, One-Way failure in the data path
Due to the characteristics of REAP, this scenario corresponds exactly to the

same state machine transition sequence as in the previous sub-section (Section
4.4). Note that the Trecovery value in this case is different from the previous
section, being τ the difference between both cases.
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Figure 7: Path Exploration Transitions: Unidirectional Traffic, Two-Way failure

5. Characterization of τ

Most of the components of the expressions presented in Section 4 are simple
to characterize. However, this is not the case for the τ parameter. In the
following sections we provide a set of equations to characterize τ for each of
the cases presented in Section 4. The results are upper bounds of τ that are
always a supremum (or least upper bound, i.e. the smallest real number that is
greater than or equal to every possible τ). We use the term maximal for the
case in which τ equals the upper bound, leaving the term supremum for
the case in which τ never reaches the upper bound.

5.1. Bidirectional traffic, Two-Way failure
The approach followed for characterizing τ is to identify the only four cases

in which the maximum value for τ can occur regardless the starting times for
sending packets at A and B and the time of the failure:

• Case π: The first packet lost was sent by A, and τA reaches its maximum
value (τAπ).

• Case θ: The first packet lost was sent by B, and τB reaches its maximum
value (τBθ).

• Case ρ: The first packet lost was sent by A, and τB reaches its maximum
value (τBρ).
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• Case σ: The first packet lost was sent by B, and τA reaches its maximum
value (τAσ).

Taking into account the values of τA and τB for each of the scenarios described
above, the maximum value of τ is:

τmax = max
[
min(τAπ, τBπ),min(τBθ, τAθ),

min(τBρ, τAρ),min(τAσ, τBσ)
] (8)

Note that cases π-θ and ρ-σ are symmetric but we need to keep them as different
cases because they depend on characteristics (α/α′,∆A/∆B ,
γAB/γBA) that can be different in the two sides of the bidirectional communica-
tion, but that have to be computed simultaneously. In the following subsections
we analyze in depth cases π and ρ, and present the final (symmetric) expressions
for θ and σ, for which ∆A,∆B , α, γAB and γBA are exchanged respectively by
∆B ,∆A, α

′, γBA and γAB . Next we prove that it is impossible to find a case,
µ, in which min(τAµ, τBµ) > τmax, demonstrating that the maximum must oc-
cur in any of the four cases identified (π, ρ, θ, σ). A more general expression,
independent from the specific location of the point of failure, which is an upper
bound of τ (τupp) is provided in Section 6.

5.1.1. Case π
We first identify the case in which the maximum delay between the loss of

the first packet sent by A and the start of the Send Timer on A occurs. Then
we analyze the values of τA and τB for this specific scenario.
The worst case scenario in this situation (Fig. 8), that depends on the timing
of the packets sent at both nodes, corresponds to the exchange of packets which
leads to the greatest difference between TrecA (time at which the last packet
sent by B arrives at A) and TlostA (sending time of the first packet lost on A).
This difference achieves its maximum when TlostA is the lowest possible value
and TrecA to its highest value. Tsend will be started in A when the next packet
is sent by A after the last packet from B was received (TrecA, see Fig. 8).
Considering that A sends a new packet each ∆A seconds, the value of τAπ can
be expressed using the ceil function as dTrecA−TlostA

∆A
e∆A.

In order for TrecA to be the highest value, the last packet which arrived correctly
to peer A must be sent at the latest possible time, hence TlostB approaches to
the highest limit imposed in equation (2). In the same way, in order for TlostA
to be the lowest value, it must reach the lowest limit imposed by equation (1).
Following the reasoning presented above, equation (9) presents the values for
TlostA, TlostB and TrecA, with ε → 0, representing the packet sent at B just ε
seconds before the failure could drop the packet.

TlostA = Tfail − αγAB
TlostB = Tfail − α′γBA + ∆B − ε
TrecA = TlostB + γBA −∆B (9)
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Figure 8: Maximum τAπ for first packet lost sent by A

Therefore:

TrecA − TlostA = (1− α′)γBA + αγAB − ε

Note that as ε tends to zero, its contribution is irrelevant inside the ceil approx-
imation, hence τAπ is a maximal of τ .

τAπ =
⌈ (1− α′)γBA + αγAB

∆A

⌉
∆A (10)

We now characterize the corresponding value of τ in peer B (τBπ). The Send
Timer in peer B is started on the first packet sent after the reception of the last
packet from peer A (TrecB , see Figs. 9 and 10). By definition, τBπ is

τBπ ≤ TsendB − TlostA (11)

where TsendB is the sending time of the packet starting the Send Timer at B.
Depending on the packet timing and the end-to-end delays, two situations could
occur: i) TlostB ≤ TrecB and ii) TlostB > TrecB .
For TlostB ≤ TrecB (see Fig. 9), equation (12) presents the relation between
the end-to-end delays, α, and the packet timing of each node, which makes
TlostB < TrecB .

TrecB = TlostA + γAB −∆A

TrecB = Tfail + (1− α)γAB −∆A

TrecB ≥ TlostB ⇒ (1− α)γAB + α′γBA ≥ ∆A + ∆B (12)

Note that the values of TlostA and TlostB are the same of equation (9). To cal-
culate the moment at which the Send Timer is set on peer B, we consider two
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Figure 9: Value of τBπ when TlostB ≤ TrecB for maximum τA and first packet lost sent by A

steps. First the difference between TrecB and TlostB is calculated. The next
packet sent by B after TrecB is the packet setting the Send Timer. In this way
we know the instant at which the Send Timer is started after TlostB . In the
second step, the distance between TlostB and TlostA is calculated. Adding these
two values we obtain τBπ.

τBπ <
⌈TrecB − TlostB

∆B

⌉
∆B + (TlostB − TlostA) (13)

From the TrecB expression presented at (12), we obtain:⌈TrecB − TlostB
∆B

⌉
∆B =

⌈ (1− α)γAB + α′γBA −∆A −∆B

∆B

⌉
∆B (14)

TlostB − TlostA can be computed as follows.

TlostB − TlostA = αγAB + α′γBA + ∆B − ε (15)

Note that TlostB > TlostA since we have defined in the scenario that the first
packet lost was sent by A. Combining expressions (13), (14) and (15) in equation
(16),

τBπ = αγAB − α′γBA + ∆B +
⌈ (1− α)γAB + α′γBA −∆A −∆B

∆B

⌉
∆B (16)

Now we solve equation (11) for the case TlostB > TrecB (see Fig. 10). TsendB
corresponds to the sending time of the next packet sent by B after receiving the
last packet from A (TrecB). Equations (17) and (18) present the value of TlostB
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Figure 10: Value of τBπ when TlostB > TrecB for maximum τA and first packet lost sent by
A

and TlostA for this case.

TlostB = Tfail − α′γBA + ∆B − ε (17)
TlostA = Tfail − αγAB (18)

The distance between TlostB and TrecB can be calculated taking into account
the values of equations (17) and (18).

TrecB = TlostA + γAB −∆A

TrecB = Tfail + (1− α)γAB −∆A

TlostB − TrecB = −α′γBA − (1− α)γAB + ∆A + ∆B − ε (19)

TsendB can be obtained by considering the number of inter-packet intervals at
B (of duration ∆B) that fit into the distance between TlostB and TrecB . The
value of TsendB is presented in equation (20).

TsendB = TlostB −
⌊−α′γBA − (1− α)γAB + ∆A + ∆B − ε

∆B

⌋
∆B (20)

Combining equations (17) and (18) the relationship between TlostA and TlostB
is

TlostB − TlostA = αγAB − α′γBA + ∆B − ε (21)

Including equations (20) and (21) into equation (11), we can find a supremum
(due to the presence of the ε) to the value of τB as shown in equation (22).

τBπ = αγAB − α′γBA + ∆B −
⌊−α′γBA − (1− α)γAB + ∆A + ∆B

∆B

⌋
∆B (22)

A summary of the values for τBπ is provided next:
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• if (1− α)γAB + α′γBA ≥ ∆A + ∆B

τBπ = αγAB − α′γBA + ∆B +
⌈ (1− α)γAB + α′γBA −∆A −∆B

∆B

⌉
∆B

• if (1− α)γAB + α′γBA < ∆A + ∆B

τBπ = αγAB − α′γBA + ∆B −
⌊−α′γBA − (1− α)γAB + ∆A + ∆B

∆B

⌋
∆B

(23)

being τBπ a supremum of τ . Note that for the second case, τB < τBπ < τB+∆B .

5.1.2. Case θ
Due to the symmetry of the system, τ on B when the first packet lost is sent

by B corresponds to the same scenario as τAπ swapping node A by node B. The
equations defining τBθ can be obtained following the procedure used in Section
5.1.1 after exchanging ∆A by ∆B , ∆B by ∆A, α by α′, γAB by γBA and γBA
by γAB in equations (9) and (10):

τBθ =
⌈ (1− α)γAB + α′γBA

∆B

⌉
∆B (24)

As in the case of τAπ, τBθ is a maximal of τ .
Correspondingly, τAθ is symmetric to τBπ, so

• if (1− α′)γBA + αγAB ≥ ∆A + ∆B

τAθ = α′γBA − αγAB + ∆A +
⌈ (1− α′)γBA + αγAB −∆A −∆B

∆A

⌉
∆A

• if (1− α′)γBA + αγAB < ∆A + ∆B

τAθ = α′γBA − αγAB + ∆A −
⌊−αγAB − (1− α′)γBA + ∆A + ∆B

∆A

⌋
∆A

(25)

As in the case of τBπ, τAθ is a supremum of τA (τA < τAθ < τA + ∆A).

5.1.3. Case ρ
In this section, we discuss the situation in which the maximum delay between

the loss of the first packet sent by A and the start of the Send Timer on B
occurs. Then we analyze the values of τA and τB for this specific scenario. Fig.
11 presents the worst case scenario for setting the Send Timer on B (τBρ) when
the first lost packet corresponds to A. The time at which B receives the last
packet from A (TrecB) is stated in equation (26).

TrecB = TlostA + γAB −∆A (26)
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Figure 11: Maximum τBρ for first packet lost sent by A
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Figure 12: Value of τAρ for maximum τB and first packet lost sent by A

The time when the Send Timer is set on B corresponds to the next packet sent
after receiving the last packet from A. Regardless of the sending time of the
last packet from A, the worst possible case occurs when B sends a packet ∆B

seconds after TrecB , being this time TsendB . The value of τ for this case, that
is a maximal, is presented in equation (27).

τBρ = TsendB − TlostA = TrecB + ∆B − TlostA
τBρ = γAB −∆A + ∆B . (27)

Note that the worst possible case of τB in this scenario corresponds to the arrival
of the last packet successfully sent by A just after the sending of a packet
by B.
In Fig. 12 we detail the relevant parameters for this case on node A. The Send

Timer on A is started when A sends the next packet after the last packet sent
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from B to A arrives (TrecA). Therefore,

τAρ = dTrecA − TlostA
∆A

e∆A (28)

We estimate the time at which the last packet from B arrives (TrecA) considering
the time at which this packet was sent, TsB , plus the end-to-end delay from B
to A.

TrecA = TsB + γBA (29)

We can set a relation between TsB and TlostA by analyzing the relationship
among the time at which the last packet received at B arrived (TrecB) and TsB
through a new positive integer parameter n.

TsB = TlostA + γAB −∆A − n∆B (30)

To find the value of n we know that TsB must be the greatest possible value
lower than TlostB in order to be received on A (TsB < Tfail − α′γBA).

TlostA + γAB −∆A − n∆B < Tfail − α′γBA
TlostA = Tfail − αγAB
n∆B > α′γBA + (1− α)γAB −∆A

n =
⌈α′γBA + (1− α)γAB −∆A

∆B

⌉
(31)

Equation (32) shows the time at which the first packet sent from B is received
on A and combines equations (28), (29), (30) and (31) to find the final value for
τAρ.

τAρ =

⌈
RTT −∆A −

⌈
α′γBA+(1−α)γAB−∆A

∆B

⌉
∆B

∆A

⌉
∆A (32)

being τAρ a maximal of τ .

5.1.4. Case σ
Due to symmetry considerations, τAσ corresponds to the same scenario as

τBρ, after swapping node A by node B. The equations can be obtained following
the same procedure used in Section 5.1.3, i.e. exchanging ∆A by ∆B , ∆A by
∆B , α by α′, γAB by γBA and γBA by γAB in equation (26).

τAσ = γBA −∆B + ∆A (33)

being τAσ a maximal of τ . The corresponding case in B (τBσ) is

τBσ =

⌈
RTT −∆B −

⌈
αγAB+(1−α′)γBA−∆B

∆A

⌉
∆A

∆B

⌉
∆B

being τBσ a maximal of τ .
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5.1.5. Proof of the Maximality of τmax
For a given case (two nodes communicating, and a failure among them),

Trecovery depends on the minimum value of τ in side A and τ in side B. There-
fore, to obtain the worst case for Trecovery, we should look for the worst case,
i.e. the maximum case, of this min(τA, τB). Equation (8) assumes that this
maximum of τ happens in one of four particular cases. These cases are defined
by considering the situation at which τ is maximum for one side, and which is
the side sending the first packet lost.
However, it could be thought that other cases different than these could lead
to a greater value of min(τA, τB), since the assumptions made to build the
four cases (when a maximum value of tau in one side occurs) did not stressed
the maximality of min(τA, τB).
In the following paragraphs we prove that τmax (equation (8)) provides a max-
imum for all possible combinations of τA and τB , i.e. ∀〈τAµ, τBµ〉,min(τAµ, τBµ) ≤
τmax. This means that we prove that the maximum occurs in any of the specific
cases (π, ρ, θ, σ). Due to the symmetry inherent to equation (8) we focus on
proving, for the case in which the first packet lost is sent by A, that

∀τAµ, τBµ/τ = min(τAµ, τBµ)⇒

τ ≤ max
[
min(τAπ, τBπ),min(τBρ, τAρ)

] (34)

for every possible case of τAµ and τBµ when the first packet lost is sent by A.
An analogous demonstration can be done for the cases when the first packet
lost is sent by B.
To prove equation (34), we consider the four possible combinations of the values
of τAπ, τBπ, τAρ and τBρ:

1. τAπ < τBπ and τAρ < τBρ ⇒ τ ≤ max(τAπ, τAρ)
2. τBπ < τAπ and τBρ < τAρ ⇒ τ ≤ max(τBπ, τBρ)
3. τAπ < τBπ and τBρ < τAρ ⇒ τ ≤ max(τBρ, τAπ)
4. τBπ < τAπ and τAρ < τBρ ⇒ τ ≤ max(τBπ, τAρ)

Note that, as explained in Section 5.1, by definition τAπ > τAρ and τBρ > τBπ,
since τAπ and τBρ are the worst possible cases for τA and τB respectively.
Consider the combination 1. We have to show that ∀τ, τ ≤ max(τAπ, τAρ).
As τAπ > τAρ the maximum is τAπ, it should be proved that ∀τAµ, τBµ, τ =
min(τAµ, τBµ) ≤ τAπ. We know that ∀τAµ, τAµ < τAπ. For every value of τAµ
and τBµ, τ = min(τAµ, τBµ) at least is as small as τAµ, and this is smaller than
τAπ, proving that τ ≤ τAπ for all possible combination of τAµ and τBµ with the
constrains imposed by the first combination.
The same reasoning can be applied to the second case, combination 2, to show
that, in this case, τ ≤ max(τBπ, τBρ) = τBρ.
The third case (combination 3), imposes τBρ < τAρ and τAπ < τBπ, hence
τAπ < τAρ. Since τAπ > τAρ by definition, this case is not possible.
Finally for the fourth case (combination 4), we have to show that for all com-
binations of τAµ and τBµ, τ ≤ max(τBπ, τAρ). τ = min(τAµ, τBµ) so we have
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to prove that there is not a value of τAµ and τBµ for which min(τAµ, τBµ) >
max(τBπ, τAρ). This is equivalent to prove that the values of τAµ and τBµ are
not within the intervals (τBπ, τBρ) and (τAρ, τAπ) at the same time. On the
following lines we prove that this situation is not possible by showing that given
τAµ within (τAρ, τAπ) there is not a value of τBµ greater than τBπ.

Proof. Suppose an arbitrary value of τAµ and the corresponding τBµ value, for
all possible values of TlostA and TlostB . Equations (35) and (36) show the value
of τAµ and τBµ calculated as in Section 5.1.1.

τAµ =
⌈TlostB − TlostA + γBA −∆B

∆A

⌉
∆A (35)

τBµ = TlostB − TlostA +
⌈TlostB − TlostA + γBA −∆B

∆A

⌉
∆A (36)

Now we find the constraints imposed by the range of possible values of τA.

• τAµ > τAρ

TlostA − TlostB + γAB < α′γBA + (1− α)γAB −∆B (37)

• τAµ < τAπ
TlostB − TlostA < αγAB − α′γBA + ∆B (38)

Supposing there is a τBµ > τBπ, then equation (39) must be true.

TlostB − TlostA +
⌈TlostB − TlostA + γBA −∆B

∆A

⌉
∆A >

αγAB − α′γBA + ∆B +
⌈ (1− α)γAB + α′γBA −∆A −∆B

∆B

⌉
∆B (39)

Imposing the constraints defined in equation (37) and (38) into τBπ we obtain
equation (40).

τBπ > TlostB − TlostA + dTlostB − TlostA + γBA −∆B

∆A
e∆A (40)

Equation (40) combined with equation (36) imposes that τBπ > τBµ so the
condition τBµ > τBπ cannot be fulfilled. This ends the proof.

5.2. Bidirectional traffic, One-Way failure
In this section, we consider scenarios in which node A and B exchange

bidirectional traffic and a failure occurs in only one of the directions of the
communication. As it will be presented, this case is a particularization of the
analysis performed for the Bidirectional traffic, Two-Way failure, in Section 5.1.
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Figure 13: Worst Case scenario for unidirectional traffic affected by a Two-Way failure

5.2.1. Failure in the path from A to B
Equation (8), showed the expression which provides τmax for a bidirectional

traffic and Two-Way failure. This equation applies when the first packet lost
was sent by either A or by B. In the current scenario, B does not suffer any
packet loss since there is no failure in the path from B to A, hence τBθ, τAθ,
τAσ and τBσ are not considered for this scenario. In the same way, equations in
which the Send Timer is set on A are not considered, since A is always receiving
packets and the Send Timer is being stopped and reset regularly. Therefore
equations τAπ, τBπ and τAρ are not considered. This reasoning yields to the
fact that the τmax for this scenario is equal to τBρ. Equation (41) shows the
equation to consider in this scenario.

τmax = γAB −∆A + ∆B (41)

being this value of τ a maximal.

5.2.2. Failure in the path from B to A
Following the same reasoning as in Section 5.2.1, for this scenario only τAσ

must be considered. Hence equation (42) shows the value of τmax to consider
in this scenario.

τmax = γBA −∆B + ∆A (42)

being this value of τ a maximal.

5.3. Unidirectional traffic, Two-Way failure
Fig. 13 presents the worst case for a unidirectional traffic flow affected by

a bidirectional failure. This case occurs when a Keepalive message is sent in
the latest possible instant before the failure. Therefore, the activation of the
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Send Timer when the next packet is sent produces the highest delay on τ . It is
important to note that the time at which the Keepalive message is sent depends
on the time at which node B receives a packet, hence the Keepalive message
sending time on B depends on the traffic of the peer. Equation (43) presents
the value of τmax for this scenario.

τmax =
⌈
TRKA − TlostA

∆A

⌉
∆A (43)

Due to the dependence between the Keepalive timer and the traffic sent by the
peer, in order to calculate the value of τmax we proceed in several stages. First
we calculate the time at which peer A sends the packet which activates the
Keepalive Timer on B (T1, see Fig. 13). When the Keepalive timer expires
on B, at time TSKA, a Keepalive message is sent. TSKA can be derived from
T1 by adding the end-to-end delay and the TKA. Then we can obtain the
relationship between TlostA and TSKA. Once the relation between TlostA and
TSKA is found, the calculation of τmax is done by finding the time at which the
Keepalive message was received by A (TRKA).
Equation (44) presents these relationships.

TSKA = Tfail − α′γBA − ε
T1 = TSKA − TKA − γAB

TlostA = T1 + n∆A (44)

The time at which the first lost packet is sent by A (TlostA) occurs a given
positive integer number (n) of ∆A periods after the packet that started the
Keepalive at B was sent (T1). Note that TlostA is related with Tfail by the
following equation.

Tfail − αγAB ≤ TlostA < Tfail − αγAB + ∆A (45)

Then,

TlostA ≥ Tfail − αγAB
n∆A ≥ Tfail − αγAB − T1

n∆A ≥ (1− α)γAB + α′γBA + TKA (46)

TlostA < Tfail − αγAB + ∆A

n∆A < Tfail − αγAB + ∆A − T1

n∆A < (1− α)γAB + α′γBA + TKA + ∆A (47)

Combining both equations, we obtain the value for TlostA.

TlostA = T1 +
⌊

(1− α)γAB + α′γBA + TKA
∆A

+ 1
⌋

∆A (48)
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Figure 14: Worst Case scenario for Unidirectional traffic affected by a failure in data path

The time at which the Keepalive is received is expressed as

TRKA = TSKA + γBA (49)

τmax corresponds to the difference between TRKA and TlostA, taking into account
that the Send Timer starts when the next packet is sent, as shown in equation
(50).

TSKA = Tfail − α′γBA − ε
TRKA = TSKA + γBA

T1 = TSKA − TKA − γAB
TRKA = Tfail + (1− α′)γBA − ε

T1 = Tfail − α′γBA − ε− TKA − γAB

τmax =

⌈
RTT + TKA − b (1−α)γAB+α′γBA+TKA

∆A
+ 1c∆A

∆A

⌉
∆A (50)

This value of τmax is a maximal.

5.4. Unidirectional traffic, One-Way failure in data path
Fig. 14 presents the worst case for a unidirectional traffic flow affected by a

failure in the data path. This case occurs when the Keepalive Timer in peer B
is started by the latest possible data packet sent by peer A. After a Keepalive
Timer period, a Keepalive message is sent from B to A, resetting the Send Timer
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Parameter Initial Value Ending Value
∆A 1ms 200ms
∆B 1ms 200ms
γAB 1ms 100ms
γBA 1ms 100ms
α 0 1
α′ 0 1

Table 1: Traffic Characteristics for random exploration

Figure 15: Percentage of error between the theoretical and experimental results for 200 random
samples, Bidirectional Traffic, Two-Way Failure case

at A.

TRKA = Tfail − αγAB + γAB + TKA + γBA − ε
TlostA = Tfail − αγAB + ∆A − ε

τmax =
⌈
TRKA − TlostA

∆A

⌉
∆A (51)

Equation (52) shows the value of τmax for this case, being this value of τmax a
maximal.

τ =
⌈
RTT + TKA −∆A

∆A

⌉
∆A (52)

5.5. τ Simulation Results
In order to validate the results presented before, an extensive search of max-

imum values for τ has been performed. The objective of the simulation is to
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sample systematically the continuous space of starting times for a given com-
munication scenario, to measure the corresponding value of τ , in order to check
if the upper bounds obtained in our previous analysis hold.
Therefore, we set some values for the parameters that a given specific application
could find in two particular nodes: ∆A (and ∆B for bidirectional communica-
tion), resulting from the own nature of the application; γAB and γBA resulting
from the initial path used.

Then we assume a type of failure, the details of this failure, i.e. the
values of α and/or α′ depending on the type of failure, that describe
the failure position, and the time at which the failure occurs. The
set of experiments is defined by setting different starting times for
the periodic data transmission in A (B). With this, we aim to test all
the different combinations of the defined starting times at A and B. When an
experiment is defined (the communication to test, type of failure and starting
times for the data exchanged), we use Matlab to simulate all the packets that
would be exchanged among the communicating nodes, and as a result of this
simulation, we obtain the value of τ for the experiment. The maximum value
of τ for each experiment related with a communication scenario is the worst
case value of τ for the communication, which is compared with the expected
theoretical result, in particular, the results provided by equations:

• Equation (8) for the Bidirectional traffic, Two-Way failure case.

• Equations (41) and (42) for the Bidirectional traffic, One-Way failure case.

• Equation (50) for the Unidirectional traffic, Two-Way failure.

• Equation (52) for the Unidirectional Traffic, One-way failure in the data
path respectively.

For each of the communication scenarios, the numerical parameters that define
an experiment (∆A, ∆B , γAB , γBA, α and α′) have been generated using two
approaches. In the first approach, we have generated a set of values for each
parameter by defining a starting value that is incremented by a fixed step.
Then, we have simulated all the configurations resulting from the combinations
of these values (around 5500 samples for each Bidirectional Traffic scenario and
1400 sample for each Unidirectional Traffic scenario). In the second approach,
we have generated randomly the values of the parameters (200 samples for each
scenario), supposing a uniform distribution among fixed initial and final values
with increments of 1 msec (Table 1). In order to obtain a more precise value for
the maximum of τ , further simulations were performed with starting points close
to the ones in which the higher τ value was obtained, using in this time smaller
variations. Fig. 15 shows the percentage of error, for each sample, between the
theoretical value of τ provided by our analysis and the value of τ measured in
the simulator for the Bidirectional Traffic, Two-Way Failure scenario and 200
random samples. The configuration of the REAP timers is set as defined in
the specification [3]. We only present these results due to length considerations,
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although the complete set of results2 show similar behavior. In all cases, the
difference between the theoretical analysis and the simulated model is 0 when
the value of τ corresponds to a maximal, showing that the theoretical model is
able to compute without error the value of τmax. When the theoretical result is a
supremum, the simulator provides results whose differences with the theoretical
predictions can be made arbitrarily small by reducing the step used for the
variation of the sending times at A and B.

6. Upper bound for the Recovery Time regardless of the Location
and Type of the failure

In this section we simplify the analytical results obtained in Section 5 to
obtain an upper bound for Trecovery independently of the failure point and type
of failure for both the Bidirectional and Unidirectional Traffic. This is the result
expected to be useful for the configuration of REAP in a real deployment.
First an upper bound for τmax regardless the point of failure is obtained for the
scenarios that depended on the α and α′ parameters, that were the Bidirectional
traffic, Two-Way failure, and the Unidirectional Traffic Two-Way Failure. Then,
we provide an upper bound for Trecovery in the Bidirectional Traffic and in the
Unidirectional Traffic scenarios independent from the failure type or location.

6.1. Upper bound for τ regardless the location of the failure: Bidirectional traffic,
Two-Way failure

A supremum for τ for Bidirectional traffic, Two-Way failure, was provided
in equation (8). In order to obtain a compact expression for an upper bound
that does not depend on the location of the failure (i.e. on α or on α′), we
first apply the inequalities x+ 1 ≥ dxe and x− 1 ≤ bxc to obtain the following
equation:

max
[
min

(
αγAB + (1− α′)γBA + ∆A, γAB + ∆B −∆A

)
,

min
(
α′γBA + (1− α)γAB + ∆B , γBA + ∆A −∆B

)
,

min
(
γAB + ∆B −∆A, RTT − α′γBA − (1− α)γAB + ∆A

)
,

min
(
γBA + ∆A −∆B , RTT − αγAB − (1− α′)γBA + ∆B

)]
(53)

In order to provide an upper bound, we maximize the values of each term in
equation (53). For each term, we choose the values of α and α′ maximizing it.
For the cases π and σ, τ reaches its maximum value at node A so the values
maximizing these terms are α = 1, α′ = 0. For the cases θ and ρ, τ reaches its
maximum at node B, hence the values maximizing these terms are α = 0, α′ = 1.

2The complete results data set can be obtained from http://enjambre.it.uc3m.es/

~aoliva/reap.html.
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Therefore,

τupp = max
[
min(RTT + ∆A, γAB + ∆B −∆A),

min(RTT + ∆B , γBA + ∆A −∆B),
min(γAB + ∆B −∆A, RTT + ∆A),

min(γBA + ∆A −∆B , RTT + ∆B)
]

(54)

Eliminating the terms that are duplicated, we obtain

τupp = min
[
max

(
γBA+∆A−∆B , γAB+∆B−∆A

)
,max

(
RTT+∆A, RTT+∆B

)]
(55)

In the same way, an upper bound for the value of τc (τ on the correspondent
node) is shown in equation (56).

τuppC = max
[
max

(
γBA+∆A−∆B , γAB+∆B−∆A

)
,max

(
RTT+∆A, RTT+∆B

)]
(56)

Note that the simplifications done to calculate the upper bound and the con-
ditions of the supremum in equations (23) and (25) state that τmax ≤ τupp ≤
τmax +max(∆A,∆B).

6.2. Upper bound for τ regardless the location of the failure: Unidirectional
traffic, Two-Way failure

In a similar way to Section 6.1, we can obtain upper bound equation (50),
which provided a maximum for τ for Unidirectional traffic, Two-Way failure to
obtain an equation that does not depend on the location of the failure.

τupp < RTT − ((1− α)γAB + α′γBA) + ∆A (57)

On this case, equation (57) is maximized by setting α = 1 and α′ = 0. Finally
the upper bound value for the τ for this case is presented in equation (58).

τupp < RTT + ∆A (58)

6.3. Upper bound for the Recovery Time for Bidirectional Traffic
We now aim to provide an expression for the Recovery Time regardless the

type and location of the failure for Bidirectional Traffic. In Section 6.1 we
have obtained an expression for τ for Bidirectional traffic, Two-Way failure,
that is independent of the location of a failure. We had also obtained two
expressions that characterize τ for the case of Bidirectional traffic, One-Way
failure (equations (41) and (42)) that already were independent of the location
of the failure. The maximum of these expressions correspond to the One-Way
Failure case. Therefore the upper bound for τ for Bidirectional Traffic is

τupp = max(γBA + ∆A −∆B , γAB + ∆B −∆A) (59)

Combining equation (59) and equation (6), we obtain the upper bound for the
Recovery Time:

Trecovery < TRTx +RTT +max(γAB , γBA) + TSend + τupp (60)
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6.4. Upper bound for the Recovery Time for Unidirectional Traffic
From Section 6.2, the upper bound of τ for the case of Unidirectional traffic,

Two-Way failure corresponds to equation (58). The value of τ for Unidirectional
Traffic, One-Way failure does not depend on the point of failure and is presented
in equation (52). Then, the upper bound of Trecovery for the Unidirectional
Traffic case is

τupp =
⌈
RTT + TKA −∆A

∆A

⌉
∆A ≤ RTT + TKA (61)

Trecovery < TRTx + 2RTT + Tsend + τupp (62)

7. A case study of the applicability of the results

Equations (59), (60), (61) and (62), provide the appropriate values for the
timers of REAP to comply with a target Recovery Time given the character-
istics of an application and a scenario. We show how the previous results can
be applied with a case study: Suppose a bidirectional VoIP (Voice over IP)
application for which we require a Trecovery value of 2 seconds, considering
that this time is short enough not to make the user think that the call has
been disconnected, using a codec which generates a packet each 30 msec. The
end-to-end delay available for the communication is upper bounded by 150 ms
(symmetrical case), being this value the typical upper bound of the mouth-to-
ear delay as specified in [11]. In this scenario, equation (59) provides an upper
bound for the time required to start the Send Timer (τ) of 150 ms for the first
peer detecting the failure. Supposing concurrent path exploration, the time re-
quired to recover from a failure corresponds to equation (60) and it is equal to
TRTx + 0.3 + TSend + 0.15 + 0.15 seconds. The specification of REAP recom-
mends TRTx = 0.5 sec, although the only constrain imposed to the TRTx value
is that it must be higher than the RTT (Round Trip Time). Now the Send
Timer can be set according to the requirements imposed by the application, i.e.
assuming the previous Trecovery value of 2 seconds, the Send Timer must be set
to 0.9 seconds. A final check should be performed to be sure that the loss of
a small number of packets for reasons such as light congestion does not trigger
the exploration process, i.e. check that Tsend

∆A
and Tsend

∆B
are larger than a certain

small value such as 3 or 4, so that 3 or 4 data packets should be discarded before
the exploration process is started. The main idea behind requiring at least 3
or 4 packets to be lost before entering in the exploration process is to prevent
triggering this process as a result of a very small number of uncorrelated events.
Or, in other way, this 3 or 4 packets are used to check by sampling that the path
has been unavailable during the whole Tsend period, which is a good criteria to
decide that the path should be changed.
Now we analyze a communication with the same characteristics as
the example presented above but with a delay of 400 msec. This value is
the maximum one-way delay for network planning recommended by
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[11]. Taking into account the same computations as in the previous example
Trecovery < 2.1 + TSend seconds. In this case the previous assumption of a
Trecovery value of 2 seconds is impossible to fulfill, being the closest achievable
value around 2.4 seconds, taking for example, TSend = 10 ∗∆.
By these simple examples we provide a way for the application to configure the
REAP timers according to the desired failure Recovery Time.

8. Generalization for variable rate traffic and TCP

The previous results have been derived on the assumption of constant rate
traffic. This section is devoted to analyze the impact of variable rate traffic, and
to analyze the specific case of TCP, that can be considered for our purpose as
a specific case of constrained variable traffic pattern. The main results of this
paper are equations (60) and (62), which present the upper bound for the Re-
covery Time for Bidirectional and Unidirectional Traffic respectively. If we focus
on the Unidirectional Traffic case (equation (62)), the Recovery Time does not
depend on the sending inter-packet interval (∆) of any of the nodes, but only on
the characteristics of the link and the configuration of the REAP timers. Hence,
it is straightforward that it can be applied to variable rate unidirectional traffic
without any additional consideration. However, the Bidirectional Traffic case
(equation (60)) depends on the rates of both nodes. In the case of variable rate
traffic, the worst possible condition which yields to the higher Recovery Time
occurs when the difference between both traffic rates is the highest possible.
In order to obtain the worst possible difference between both traffic rates, it is
required to compute ∆A −∆B and ∆B −∆A for the maximum and minimum
values of ∆A and ∆B respectively, which applied to equation (60) results in the
upper bound for the Recovery Time.

8.1. TCP
We now discuss how to apply the results for Bidirectional Traffic (section

6.3) to TCP traffic. In the next paragraphs we consider two cases: when only
one node is transmitting a large chunk of data, and when both nodes are trans-
mitting a large amount of data.
First, let’s consider a TCP application that is transferring data (bulk trans-
fer) from one end host (let’s call it A) to the other (let’s call it B), i.e., data
traffic goes in one direction (A → B) and the return path (B → A) is used
only for ACKs. We must consider the worst case for this scenario for equation
(59) to calculate an upper bound to the Recovery Time. To do so, we analyze
the two terms inside the maximum operator separately: γAB + ∆B −∆A and
γBA + ∆A −∆B . In each term the worst case is given by the values of ∆A and
∆B maximizing the difference between them.
The maximum of ∆B − ∆A happens when ∆A is minimum and ∆B is maxi-
mum. The value of ∆A, the inter-packet interval in the sending side, depends
in practice on the minimum value allowed by the operating system and MAC
access methods, so zero is the worst (minimum) case. ∆B is the time used by
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γAB
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TdelayedACK

Figure 16: Exchange of data for TCP application when only one node is transmitting data
and the sending site has exhausted its transmission window before receiving an ACK

TCP for Delayed ACKs. While TCP ACKs can be sent just when a TCP seg-
ment is received, they can be delayed until the Delayed ACK Timer expires, so
the value of this timer is the largest value for the inter-packet rate of the node
receiving data traffic (see Fig.16). Therefore, the value of this timer can be used
to estimate the worst case for the difference of ∆B and ∆A:

max (γAB + ∆B −∆A) = γAB + TdelayedACK (63)

This timer is in the order of few hundreds of milliseconds, as recommended in
[12] (200 ms in Windows XP3).
Now, we calculate the maximum of ∆A −∆B . In the worst case ∆A could be
close to the RTT of the communication, if the sending side has sent all the data
allowed by its transmission window in negligible time compared to the RTT ,
and has to wait for an acknowledgement to a previous packet before sending the
next packet. Although ∆B will be usually greater than zero in that case, we
can again use zero as a worst case. Therefore:

max (γBA + ∆A −∆B) = γBA +RTT (64)

Now, by applying (63) and (64) in (59), we obtain an expression for the worst
case of the τupp for a TCP application that sends bulk traffic from A to B:

τupp = max(γAB + TdelayedACK , γBA +RTT ) (65)

3http://support.microsoft.com/kb/328890
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Using this result in equation (60) we get an upper bound for Trecovery.
The second case considered is a TCP application exchanging bulk traffic in
both directions of the communication. Applying the same reasoning as above,
we have to consider the two terms in the maximum of equation (59). In each of
the terms the worst case for the difference between ∆A and ∆B and vice versa is
given by the Delayed ACK Timer, and occurs when one host is sending packets
at an inter-packet interval close to zero and the other end host is waiting the
maximum time any of the peers can wait to send a packet. This is a worst case
scenario, far from normal operation because the difference between ∆A and ∆B

will be typically close to zero. Therefore:

τupp = max(γBA + TdelayedACK , γAB + TdelayedACK) (66)

Then, by introducing (66) in (60), we obtain an expression for the worst case
of the Trecovery for a TCP application that exchanges bulk bidirectional traffic
between A and B.
In conclusion, equations (65), (66), and (60), allow the configuration of REAP
timers to achieve objective Recovery Times for worst case scenarios for TCP
traffic.
It must be noted that although these results give us the time required by REAP
to detect the failure and find a valid path, TCP may need an additional time to
start using the new path. This was shown in previous work by the authors [10].
The cause of this mismatch is the congestion control mechanism implemented by
TCP. When a failure is detected the time at which the subsequent transmission
of segments occurs is driven by the expiration of the Retransmission Timeout
(RTO) timer, to reduce the congestion of the network. This timer follows a
backoff mechanism, increasing its value when a retransmission occurs. In case
REAP detects a failure and finds a suitable path, TCP does not start using the
new path immediately, rather it waits until the RTO expires to retransmit the
packet.
In [10] the authors proposed a mechanism which, using a cross-layer technique,
allowed REAP to reset the RTO of TCP when a new path was found and ready
to use. This mechanism has been adopted in a public domain Linux SHIM6
distribution [13]. By the use of this mechanism, the recovery time at TCP level
can be modeled as presented in this section.

9. Conclusion

In this paper we have presented an exhaustive analytical study of the time
required by REAP to recover from a path failure. We have focused on char-
acterizing the time since the first data packet is lost in any node and the time
at which a peer willing to send a packet can do so again, i.e. the Trecovery figure
of merit. The analysis has considered all the possible situations that may occur
for each communication type (bidirectional or unidirectional traffic exchange),
different types of failure (One-Way, Two-Way), locations of the failure, trans-
mit start time for each peer, etc. Besides the analysis performed, in which we
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have proven that some of the expressions provided are optimal upper-bounds
(i.e. supremum values) for any possible operational scenario, simulations have
been used to validate the expressions obtained for several cases. The final result
of this process has been two expressions for the upper bound Trecovery for bidi-
rectional communication - expression (60) - and unidirectional communication -
expression (62) - that are independent of the parameters that cannot be known
in advance about the failure that may occur: type and location of the failure.
Consequently, these are the most valuable expressions for understanding REAP
behavior. These expressions depend on the end-to-end delay of the paths in-
volved, on the values of the timers of REAP (Send Timer and Transmission
Timer) and on the inter-packet sending rates of the application. If the traffic
pattern generated by an application exchange can be modeled properly, and
some assumptions (or real-time measures) about the end-to-end delay can be
made, it is easy to configure the REAP timers to assure that communication is
restored in a certain time in case of a failure. Such exercise has been presented
in Section 7 for a VoIP traffic exchange as a case of study. The use TCP as
transport-layer has also been considered, since TCP impose several restrictions
to the traffic exchange that can be taking into account by the REAP model.
We note that the results obtained are general enough to apply the methodology
devised in our work to other failure detection protocols with some similarities to
the failure detection module of REAP, such as Bidirectional Forwarding Detec-
tion (BFD) [14], Neighbor Unreachability Detection (NUD) [15] or the failure
detection mechanism of SCTP [16].
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