
Q.93 1 Call Protocol Validation and Perfonnance Assessment, based on LOTOS

E. Vazquez, J. Vinyes, A. Azcorra, M. Alvarez-Campana
Dep. of Telematic Engineering - Technical University of Madrid

ETS Ing. Tdecomunicacion, E-28040 Madrid, Spain

Absrrucr - This paper report3 the validation and performance analy-
sis of a 4.931 signalling software, which was developed in the kame of
the project Factory Customer Premises Network (FCPN. Esprit P2198).
In FCPN, a topdown stepwise refinement approach was used, sup-
ported by the LOTOS Formal Description Technique. This approach
was based on a sequence of design steps, where each step consisted of
three tasks: production of the target design, assessment of the design,
and prototyping or implementation.

This paper addresses the second task, i.e. the assessment of the
Q.93 1 protocol specification. The assessment of the functional require-
ments is based on testing. The main issues involved in the testing
task are discussed, and the test suite derived for the 4.931 specifi-
cation is described. The non-functional requirements are considered
using two different approaches: Firstly, the paper reports real perfor-
mance measures taken in 4.93 1 protocol prototype implemented with
the LOTOS-to-C compiler TOPO. Secondly, it presents an extension
of the LOTOS language called LOTOS-TP, which includes simulation
oriented features, and discusses its application to the 0.93 1 specifica-
tion. The resulting model can be used to simulate the 4.931 protocol
and evaluate its performance in various environments.

INTRODUCTION

The work reported in this paper describes the validation and perfor-
niancc analysis of a 4.931 signalling software developed in the frame
of the project Factory Customer Premises Network (FCPN, ESPRI’I-
2198). FCPN addresses the problem of Infrared Mobile terminals
carried by users through a factory (see 151). The protocol architecture
on the Infrared link is based on an ISDN approach. Following CCITT
guidelines, the 4.93 I [2, 31 signalling software has been structured in
two functional blocks: Call Protocol and Call Control. This approach
allows the portability of the Call Protocol to different target machines,
leaving in the Call Control the machine-dependent features.

The Q.931 Call Protocol used in FCPN has been developed using
LOTOS 171. a formal description technique standardized by IS0 in
1988. The development method used for the 4.931 Call Protocol in
FCPN rcflects ideas developed in the frame of the project Lotosphere
(ESPRIT-2304). Our rcsearch team has matured those ideas after their
application in some prototype developments, including ESA (European
Space Agency) and ESPRIT projects. The case reported in this paper re-
flects a non trivial application of that methodology to a signalling block
capable of handling over one hundred simultaneous calls over multiple
D channels. Other authors have also used the same methodology for
experiences over 4.931. It is worth citing the paper [41 by Ernberg et
al. Although they did not arrive to a working implementation, their
work is valuable under the methodological point of view.

This paper addresses one particular taskof the design process: the as-
sessment of the functional requirements and of the performance require-
ments. Other tasks of the complete design process have been presented
in other papers (e.g. [I J describes the implementation task). The assess-
ment of the functional requirements is based on testing. Non-functional
requirements are assessed with two different approaches: Firstly, using
real performance measures taken from a prototype of the 4.93 I protocol
implemented with the LOTOS-to-C compiler TOP0[8. 91. Secondly,
using a 4.93 \ simulation model based on an extension ol’LOTOS called
LOTOS-TP, which includes simulation oriented features.

SIGNALLING PROTOCOL VALIDATION

The Vdidution of System Designs with LOTOS

With our methodology, in each design step an ussessmetu task is
performed to achieve confidence in the correctness of the design and/or
detect errors. This task must assess that the design produced in the
previous task is consistent with the system requirements. In a general
design case, the assessment can be separated into two subtasks:

Subtask 2.1 assessm the consistency of the design with the
requirements considered relevant at the current design step,
a order to validate the design decisions made.
Subtask 2.2 assesses the consistency of the current design
with all the previous design steps.

The first subtask has to compare an non-formal input -the re-
quirements- with a formal one -the formal description of the desigw.
Such a comparison can ofily be done by human interpretation of the
non-formal requirements. The interpretation of the requirements must
be formalized and compared to the design. With the present state of the
art, the only practical approach is based on testing, and has two parts:

1. Generatton of the test suite, where tests are formalized as LOTOS

2. gecurion ofthe test suite using automatic tools and procedures as

Subtask 2.2 must verify the equivalence relations that guarantee the
consistence between successive refinements. For example, the ver-
ification of the testing equivalence between two system refinements
consists in proving that they have the same response to external tests.
This task may be accoinplished automatically. However, the venfica-
tion algorithms are very complex and cause state explosion even for
simple specifications, so in practice the testing equivalence is verified
partially, by computing the responses to a limited number of tests.

As the previous subtask, subtask 2.2 is also divided into two parts,
test suite generation and test suite execution. However, in this case
one of the specifications can be processed with a test generation tool
to generate the test suite in a (semi)automatic way. Then, the resulting
test suite is executed on the other specification.

Q.931 Protocol Validatwn

messes. This part has to be done by hand.

much as possible.

The design process followed to obtain the 4.931 specification con-
sists of two refinement steps: service specification and protocol spec$-
cation. The first step specifies the service that must be provided by the
4.931 protocol according to the (non-formal) definition given by the
CCI‘lT Recommendation. The second step specifies a protocol entity
that is able to provide that service. These two steps are described in
more detail below.

The 4.931 service is defined in terms of
the possible sequences ofsigmlling messages that may be observed at
the user-network interface according to the Q.93 1 Recommendation.
These messages are carried in layer 2 data primitives. Therefore, these
are the primitives relevant to our service specification.

As shown in figure 1, the layer 2 service access points are the only
visible interface in the service specification. The layer 3 internal struc-
ture, for example 4.931 entities, intexnal interfaces, local resources, etc
is irrelevant at this point of the design process.

Service Specificahon:

0-7803-1772-6/94/$3.00 @ 1994 IEEE

272

Signalling Signalling
messages messams

Figure 1 : 4.93 1 Service Specification

The service specification has been tested in several call establishment
and releasescenarios. The testing method used is based on the semantics
of the parallel composition of LOTOS, and is supported by a tool
called LOLA[l2, 131 (LOtos LAboratory). With this method, each
test scenario is itself a certain signalling message sequence specified
in LOTOS, which is composed in parallel with the service description
in LOTOS to test if the sequence is accepted or not. The tests are
automatically executed in batch: an auxiliary tool is used to run all the
test cases through LOLA and produce a file summarizing the results.

Once the service specification has been
tested, the next refinement step is the specification of the protocol. In our
case, this specification defines the behavior of a 4.93 I protocol entity,
and has two visible interfaces: the layer 2 interface, as in the service
specification, and the layer 3 interface. Considering the two assessment
subtasks presented above, two different test configurations are needed.
Firstly, the protocol specification has to be consistent with the service
specification. This can be assessed with a test configuration where two
4.931 protocol entities are composed with a network emulation mcdule
that interconnects their upper interfaces. The resulting system, shown
in figure 2, must have the same observable behavior as the service
specification, so it must pass the same tests.

Protocol Specification:

0.931 0.93 1
protocol

Service Tests

Figure 2: Composition of 4.931 Protocol Specifications

In the second configuration, a 4.931 protocol entity is tested sepa-
rately, observing the signalling messages exchanged through the lower
interface, as in the service specification tests, and the service primitives
exchanged through the upper interface. This configuration serves to
test if the requirements related to the layer 3 service interface, which
were not considered in the service specification, are met by the protocol
specification.

The Q.931 Test Suite

The generation of a test suite
for a protocol specification such as the 4.931 one, which has complex
interfaces consisting of many different messages and service primitives,
may be a rather cumbersome task. Consequently, one of the main ob-
jectives in the design of the 4.931 test suite was to build it in a modular
way, so that complex test sequences could be easily created by Eombin-
ing a relatively small number of basic "test modules". Each test module
is a LOTOS process which can be combined with other processes, by
using the appropriate LOTOS parallel and sequential composition oper-
ators, in order to obtain a meaningful test. This approach can be applief
recursively in order to obtain tests of increasing complexity. Forexam-
ple, several instances of a call setup test process can be composed in
interleaving to obtain a multi-call test process.

The first step followed to obtain the simplest test processes is to find
the relevant states of the protocol and identify the possible transitions

Generation ofthe Q.931 Test Suite:

among them. The 4.931 protocol specification had 15 relevant states
(e.g. call initiated, call received, active, etc).

The second step is to identify the externally observable events as-
sociated to the transitions identified in the previous step. -In general,
each transition of the 4.931 protocol specification involves two events:
the transmission or reception of a service primitive in the layer 3 inter-
face, and the transmission or reception of the corresponding signalling
message via a service primitive in the layer 2 interface.

Each possible pair of primitives is encapsulated in a LOTOS process,
which terminates with a LOTOS exit, so that it can be sequentially com-
posed with otherprocesses by using the LOTOS enabling operator. The
service primitive parameters that may change from one test to another,
e.g. call reference, called number, etc, are included as parameters in
the process header.

The final test bed is ma& of different combinations of 47 elementary
test processes, giving a total of 75 single call tests, and 48 multi-call
tests. The purpose of the single call tests is to study the specification
behavior in the different situations that may arise during the setup and
release of a single call as thoroughly as possible. The multi-call tests
study aspects related with the management of several consecutive or
concurrent calls, for example the selection of call references. It assumes
that the specification behavior for a single call has been previously
tested, so it considers combinations of typical calls only.

The 4.931 protocol test suite
obtained with the procedure summarized above has been executed with
a LOTOS-to-C compiler called TOPO. The procedure to execute a
test with a compiler such as TOPO is similar to the one used with
a state exploration tool such as LOLA: the test takes the form of a
LOTOS process which is composed in parallel with the behavior under
test. With LOLA, the composition of the behavior and the test can be
exhaustively analyzed to determine if the desired conditions are met in
all cases. For example, the test result provided by LOLA may prove that
the sequence of primitives represented by the test is always accepted
without blocking.

With TOPO, however, the composition of the behavior and the test
is translated to C, compiled and executed. Since the specification may
be non-deterministic, the fact that one execution ends without blocking
does not necessarily guarantee that the s ification never blocks in the
situation represented by the considered 3. TOPO, therefore, does not
provide the definite test results given by LOLA, but it is much faster,
and may even be the only practical alternative when the specification
is too complex to be expanded with LOLA. When TOPO is used, each
test can be executed several times in order to increase the probability
of detecting incorrect behaviors.

Since TOPO is not primarily designed for testing purposes, it is
necessary to make some changes in the specification before compiling
and executing the tests. The specifications processed by TOPO must
have a noexir behavior, and cannot have external parameters or gates. To
achieve this, the behavior under test is encapsulated in a LOTOS process
which is composed in parallel with the tests, hiding the synchronization
events between the the two parts.

Furthemme, the behavior part of the resulting specification is struc-
tured as a choice where each branch consists of an internal event fol-
lowed by one test process mmposed in full synchronization with the
tested process. In this way, the complete set of test processes and the
behavior under test are included in a single file which is compiled only
once. The selection of a particular test is done at execution time by
means of the wait annotation supported by TOPO, which allows the
selection of any of the choice branches depending on the value of an
integer parameter.

0.931 PERFORMANCE ASSESSMENT

Execution ofthe Q.931 Test Suite:

Protoiype Performance Measurement

In order to obtain a first estimation ofthe 4.93 1 protocol performance,
the 4.93 1 formal specification has been implemented in a UNIX system
with the LOTOS-to-C compiler TOPO. The results of real measures
taken in this environment are summarized below.

To obtain the prototype 4.93 1 implementation, the 4.93 1 specifica-
tion (3800 lines) together with the complete test suite described in the

273

previous section (6400 lines) is translated from LOTOS to C with the
TOPQ compiler. The C files genhted by TOPO are compiled, and
then linked with the appropriate library functions, giving an executable
file of 1073 Kbytes. (If the test suite is not included in the specification,
the size of the resulting executable file is 417 Kbytes.)

The resulting 4.931 implementation is executed as a user process
in a diskless Sun SPARCstation connected via Ethernet to a file server
and running SunOS release 4.0.3. The measures presented below cor-
respond to the CPU time consumed by the 4.93 I process during the ex-
ecution of several test cases selected from the complete test suite. (The
CPU times are obtained with the rime operating system command.)

The selected tests provide a rough estimation of the -'mum number
of sigivllling messages per CPU second that the 4.93 1 implementation
is able to process, in the following cases:

I. The user side initiates a call which is immediately rejected by the

2. The user side initiates 'a call and clears it as soon as it has been

3. The user side establishes n calls in parallel and then clears them.

Each test case ha.. executed 5 times with n=50 calls. For each test
case, tablc 1 lists the number of signalling messages per call exchanged
in each direction (from User to Network and vice versa), the average and
niaximuni CPU times consumed to process the 50 calls, and the average
nunibcr of messages processed per CPU second. ' These time values
correspond to thc "user" time provided by the UNIX time command.
Tlic "system" time was in all cases less than 5 X of the user time.

network side, repeating the whole cycle n times.

established, repeating the whole cycle n times.

ease U-N - N-tU ' Aver. Max.
I I I 5.04 5.1
2 ~ 3 4 13.92 14.3
3 3 4 36.56 37.1

Table 1 : 4.93 1 Performance Results

I test mess. DercaII I CPUsec. I n i i 4
p e r d

19.84
25.14
9.57

Perforittorice Siniularion with LOTOS

Thc 4.031 formal specification has been used as the basis to ob-
tain a simulation model suitable for evaluating the 4.931 protocol
pcrformancc in different implementation environments. This model
iiiakcs LIW of thc temporal and probabilistic description provided by
LOTOS-TP, an extension of the standard LOTOS language designed
for pcrfomiancc simulation. LOTOS-TP [IO] was developed to sup
port thc cvaluation of performance of systems that are being designed
with LOTOS. This allows the inclusion of non-functional requirements
in ttic dcsipn process. LOTOS-TP includes two main extensions with
rcspcct to LOTOS: the quantitative description of time, and the proba-
bilistic characterization of behaviors. The additional refinement steps
rcquircd to obtain the 4.931 performance model in LOTOS-TP from
the standard LOTOS specification are supported by TOPOSIM. a simu-
lation tool bascd on TOPO. the LOTOS-to-C compiler used during the
protocol validation phax.

Qirorrtitorive Descriptiorr qf7iirtie: The ability to describe the prq-
grcssion oftiinc in a quantitative way, which LOTOS lacked, is essential
for most performance cvaluation applications. In our case, this is nec-
essary to dcfine thc tinic consumed by the 4.93 I protocol while it is
performing intcrnal actions, as well as characteristics of the protocol
cnvironnicnt, for example. the time required to send a signalling mes-
sage through the D channcl in the user-network interface, the delay
from thc instant whcn the user side receives a particular message to the
imtant when it gencratcs the corresponding rcsponse message, etc.

The semantic model followed to include quantitative time in LOTOS-
TP is based in the "As Soon As Pmsible" (ASAP) criterion. With the
ASAP semantics, the synchronization among several processes that
offer thc same action takes place immediately. The time domain is
not predefined. It is defincd by a set of values (a sorr) and operations
included in the specification.

274

Probabilistic Descriprion of BZhaviors: The ability to describe a
system in a probabilistic way allows the specifier to abstract the real
behavior of a given system component by expressing it in terms of

s. In our case this may serve to represent the user behavior,
for example the probability of acceptance or rejection of an incoming
call in the called user interface. A probabilistic description is also useful
to model real phenomena that involve random values, for example the
duration of a call, the time interval between successive calls, etc.

In addition to the two basic features sum-
marized above, LOTOS-TP provides facilities to describe the system
parameters that must be measured and the statistics that will be com-
puted during the simulation. Other aspects, such as the duration of the
simulation period, the initial transient interval, and the values of vari-
able parameters have n u been explicitly considered in the language,
but they can be easily defined with commands of the simulation tool.

To study the performance of a protocol
with LOTOS-TP, the user has to specify a complete system composed

Simulation Facilities:

Simulurwn Merhodobgy:

of three parts:

1. The protocol entities.
2. A model of the protocol environment, for example the protocol

3. The measbrement processes required to obtain the desired perfor-

The model of the environment represents the non-functional require-
ments that the protocol design must meet, for example the traffic load
generated by the protocol users, the throughput provided by the com-
munication channel used, etc. In general, many of these values will
be considered as simulation parameters which will be set when the
simulation is executed.

Concerning the measurement processes, there must be one of them
for each performance metric considerd. Each metric is treated as an
stochastic process. During the simulation, the associated measurement
process will provide the sequence of values taken by the process and the
time intervals between consecutive values. The measurement processes
must be included in the specification in such a way that they have access
to the parts of the system where the values of the measured stochastic
processes are generated. They must obtain the stochastic process values
and pass them outside the specification without modifying the behavior
of the studied protocols.

Finally, the user must include a header at the beginning of the speci-
fication indicating the statistics that must be calculated from the values
supplied by the measurement process. The simulation tool creates one
observer process that synchronizes in the external gates of the specifi-
cation and computes the required statistics.

TOPOSIM [l l] is a simulation tool based
on the LOTOS-to€ compiler TOP0 that can be used to evaluate the
performance of a system specified in LOTOS-TP. TOPOSIM generates
a set of C modules that can be compiled and linked to obtain an exe-
cutable program. This program recognizes a number of command line
options that serve to specify the duration of the simulation period and,
optionally, the duration of the initial transient period, as well as the
simulation parameter values. Additionally, the simulation program can
generate a trace that shows the interactions between the specification
and the observer process created by the tool.

The Q.931 Model in LOTOS-TP

users and the underlying communication facilities

mance rnetrics

The TOPOSZM Tool:

Starting from the 4.931 specification in LOTOS, we have speci-
fied in LOTOS-TP a system composed of two 4.931 protocol entities,
one corresponding to the user side and the other to the network side,
communicating over a D channel by means of the service primitives
provided by the LAP-D protocol. (See figure 3.) Three steps have been
followed to obtain this specification:

The 4.93 I specification has to be mod-
ified in order to include the LOTOS-TP extensions and to adapt it to
the TOPOSIM tool. All Q.931 timers, which were implemented with
C annotations (supported by the TOP0 compiler) due to the temporal
limitations of LOTOS, were correctly specified in LOTOS-TP.

1. Specifcarion Changes:

2. Specifcation ofthe Q.931 Environment: The 4.93 1 environment
consists of a process representing a user terminal in the user side, a
process representing the call service module in the network side, and,
finally, a process representing the LAP-D service.

Sc SaTunTnu

I - ! ! : : - I

1 1 ’ i I

I I. LAP-D I I
I I

Figure 3: Complete 4.93 1 Specification

The process that models the LAP-D service is very simple and con-
siders the data transfer primitives only. The transfer delay between the
data request and the data indication primitives depends on the signalling
channel rate and the length of the different 4.931 messages (inciuding
the LAP-D header). The other two processes, user terminal and call
service, are more complex, because they must be able to handle the
different sequences of layer 3 service primitives that may take place
during a call. The approach followed to specify them makes use of the
4.93 1 validation test suite presented in the previous section. The spec-
ification of the user and call service environment processes has been
obtained by eliminating the layer 2 service primitives of the independent
test cases used to validate the protocol and merging them in a single
behavior tree, using alternative operators where necessary, so that any
valid layer 3 service primitive sequence is accepted. Once the complete
behavior tree has been obtained, the different alternatives of a typical
call (successfully established, called user busy, etc) can be weighted
with a selection probability by using the facilities of LOTOS-TP. The
behavior of these modules for several consecutive or concurrent calls
can be obtained by using recursive process instantiation and the parallel
composition operators provided by LOTOS.

3. Definition of Measurement Processes: Two measurement pro-
cesses were included in the 4.931 system (see figure 3). The first one
measures the delay between the initial SETUP message and the CON-
NECT message (gate “Sc”), and the delay between the SETUP and
the first end-to-end response message, i.e. ALERTING or CONNECT
(gate “Sa”). The second one gives the transmission channel utilization
in the user - network direction (gate ”Tun”), and in the network -user
direction (gate Tnu”).

Simulation Results

Table 2 shows an example of the results obtained from the measure-
ments taken at gate “Sa”, assuming a traffic load of 10 Erlang and a
average call duration of 180 seconds.

Table 2: 4.931 Simulation Result Example

. _. Setup time (secs)
Min. I Aver. j Max.

Channel utiliz.
U--N-vtU- _ _

0.1321 0.429 1 0.804 0 . 9 5 4 ~ ~ i O m -

I Setuptime (secs) I Channel utiliz. I

In this example, 60% of the calls were assumed to be successfully\
completed. The remaining 40% corresponds to four different categories
of unsuccessful calls, each of them with its own probability. These
probabilities and other experiment details, such as signalling message
lengths, signalling message sequences, delays before receiving the user
responses, etc, are omitted for brevity, but can be found in [6]. The

important point is that these parameters can be easily tuned using the
features of LOTOS-TP and TOPOSIM, in order to model different real
4.93 1 environments accurately.

CONCLUSIONS

The work reported in this paper has produced three practical results.
Firstly, a Q.93 I Call Protocol LOTOS specification has been validated
with the testing approach described in the paper. Secondly, we have
carried out performance measurements on a prototype implementation
of the 4.931 Call Protocol running in a UNIX environment. Finally,
we have developed a Q.93 1 simulation model in LOTOS-TP that can
be used to estimate the performance of the 4.931 Call Protocol given
the hardware/sofiware characteristics of other execution environments.

Besides these practical results, an important output of the work has
been the production of a more refined LOTOS methodology and an
evaluation of it under an industrial point of view. The evaluation of
the formal design and assessment tasks is very positive. Expressing
the tests in LOTOS and running them with LOTOS tools against the
specifcation proved better than the conventional approach of coding
tests in either Cor a special purpose language a p them against
the implementation, when the design is much more- change.
The performance simulation model was obtained from the LOTOS
specification by using the simulation extensions provided by LOTOS-
TP. Even though the TOPOSIM tool had some limitations, this approach
reduced the effort required to develop and validate the simulator.

REFERENCES

I] A. Azcorra, E. Vkzquez, M. Alvarez-Campana, and J. Vinyes.
“Formal Description Techniques at Work: an ISDN Implementa-
tion of 4.931 Using LOTOS. In A. Danthine, et al, editors, Pro-
tocol Specifcation, Testing aod Verification, PSTVXIII, pp. 175-
190, Liege, Belgium, May 1993. IFIP WG6.1, North-Holland.

21 CCITT. ISDN User-Network Interface Layer 3 Specifcation for
Basic Call Control. Fascicle V1.I 1 4.931, Blue Book, 1989.

[3] CNET. ISDN VN2 Signalling Procedures. Technical Report
LAAiRSMl133, Lannion, 1986.

[4] P. Emberg, T. Hovander, and F. Monfort. “Specification and
implementation of an ISDN telephone system using LOTOS”. In
M. Diaz and R. Groz, editors, Formal Description Techniques,
FORTE V, pp. 171-186, Perros-Guirec, France, October 1992.
IFIP Transactions C2, North-Holland.

[5] FCPN. Logical link control and signalling protocol definition.
Deliverable 3.3, FCPN, July 1991.

[6] FCPN. Signalling protocol validation and performance analysis.
Deliverable 11.5, FCPN, October 1991.

[7] ISO. LOTOS a Formal Description Technique based on the Tem-
poral Ordering of Observational Behavior. IS 8807, 1989.

[8] J.A. MaRas, T. de Miguel, T. Robles, J. Salvachha, and G. Hue-
cas. TOPO: Quick Reference. Technical Report V3.0, DIT-UPM,
Madrid, Spain, April 1 .

[9] J.A. Mailas, T. de Mi .Er’ el, J. Salvachiia, and A. Azcorra. “Tool
Support to Implemen LOTOS Formal Specifications”. In Com-
puter Networks and IIDN Systems, 25(7), February 1993.

[101 C. Miguel. Tkcnicas de descripci6n formal aplicadas a la evalu-
aci6n de prestaciones de sistemas de comunicaci6n. PhD thesis,
ETS Ing. Telecomunicaci6n, UPM, Madrid, March 1991.

[1 I] C. Miguel, A. Fernindez, J.M. Ortufio, and L. Vidaller. “A LOTOS
Based Performance Evaluation Tool”. In Computer Networks and
ISDN Systems, 25(7), February 1993.

[12] S . Pav6n and M. Llamas. “The Testing Functionalities of LOLA”.
In J. Quemada, J.A. Mafias, and E. Vkzquez, editors, Formal
Description Techniques, FORTE Il l , pp. 559-562, Madrid, Spain,
November 1990. IFIP, North-Holland.

[13] J. Quemada, S . Pav6n, and A. Fernfindez. “State Exploration by
Transformation with LOLA”. In Workshop on Automatic Veriji-
cation Methods for Finite State Systems, Grenoble, June 1989.

1

275

