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Abstract. TIC is a timed algebraic calculus which combines ideas from asyn-
chronous and synchronous calculi. Time is introduced by assigning explicit time
restrictions to the events of an asynchronous calculus. The semantics is defined
in an operational way. Interleaving of behaviours is defined in such a way that
a proper merge of events in time is achieved. Weak timed bisimulation is also
defined. Examples are presented to show the applicability of the calculus to the
study of timed behaviours.

1. Introduction

TIC is an algebraic calculus of processes which allows a precise definition of timed
systems. This approach assigns a precise timing to the events of an asynchronous
calculus, to make it suitable for quantitative time specification. The asynchronous
calculus taken as the starting point for TIC is the basic behaviour calculus of
LOTOS [ISO88]. Nevertheless, the calculus is general, and the same approach
could be used to introduce time in other asynchronous calculi. The present work
can be considered as a timed interpretation of the basic calculus of LOTOS,
by adding timing restrictions to the events of a specification. The notation and
terminology are similar to those used in LOTOS.

Specifications written using an asynchronous calculus (in the sense of [Mil83])
define the relative ordering in time of a given set of events. A time ambiguity exists
in such specifications because there are many different real systems which have
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the same relative ordering of events, but different timing. There are applications
in which the specification of the relative ordering of events gives a sufficiently
complete description of the system, but in others, quantitative timing may be
an essential part of the behaviour of the system. When considering performance
aspects, timing is especially relevant.

In TIC every event must have an explicil time restriction. This may be seen
from some points of view as an overspecification. In other approaches, related
to the so called maximum parallelism hypothesis, some events are supposed to be
ol negligible duration and to happen as soon as possible. This is a very imple-
mentation oriented hypothesis which tries to make good use of the computing
resource so that when something is ready to be done and the processor is free,
the processor shall not stay idle and will do it. Our approach is specification
oriented and tries to be implementation independent, as any FDT should be.
Thus, no underlying assumptions are made. To represent events with negligible
time separation, a zero time attribute which is a very convenient approximation
from the application point of view, can be used.

The effect of timing constraints on interleaved behaviours establishes the major
difference with respect to asynchronous calculi, where the merging of evenls is
defined in a way that allows all the possible combinations which maintain the
relative ordering of each part. With our definition of interleaving, the events will
be merged according to their occurrence in time.

The semantics of TIC is defined operationally by deriving a labelled tran-
sition system over which the definition of equivalences is possible. A notion of
Weak Timed Bisimulation has been defined and is described in the paper. Other
equivalences or relations presented in the literature also seem more or less easy
io define, although we have not studied them yet.

The present work is a continuation of [QuF87] and [QAF89] in which different
treatments of the passing of time were studied. In the first work, the calculation of
the passing of time was solved with a simple mechanism. but a proper merging in
time of the events ol the interleaved behaviours was not achieved. In the second
work this problem was solved by means of a new definition of interleaving,
but without achieving all the desired properties, The present approach achieves,
by means of the introduction of empty transitions and a new definition of
weak bisimulation, all the desired properties similar to those existing in untimed
LOTOS. TIC is, in fact, a timed extension of the behaviour calculus of LOTOS.
The untimed basic LOTOS caleulus is a subcaleulus of TIC. The main limitation
of TIC is its inability to represent as soon as possible (asap) time requirements.
There is also a related work [Mig91] which extends [QuF87] with an asap liming
requirement for internal actions and which has applications in performance
analysis.

This work can be situated in the framework of Algebraic Calculi of processes,
which started with Milner’s CCS [Mil80]. CIRCAL [Mil85], CSP[Hoa85], SCCS
[Mil83], MEIJE [AuB87|. ACP [BeK83] and others followed. Some of these
calculi were of asynchronous type. such as CCS, CSP or ACP. Others were of
synchronous type, such as SCCS. Some caleuli have been compared with SCCS
by giving an interpretation in it. but in our case this seems impossible. We found
several difficulties when trying to interpret TIC as a subcalculus of SCCS, being
one of them the need to distinguish between passing of time and internal actions,
because SCCS combines both in a single event. Timed choice and parallelism also
present problems.

One important aim of this work has been the definition of a synchronous
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calculus where equivalence relations, such as weak bisimulation [Par81] or testing
equivalence [dNH84] which have been developed only for asynchronous calculi,
can be defined. The same applics to the conformance relation of Brinksma and
Scollo [BSSE6).

Some of the first works about formal models of time are [K'85] [ReR86]
[GeB87). The second paper [ReR86] (see also [ReR87]) presents a timed model
for CSP which includes a delay statement as the basic timing element. The
representation of simultaneity in this work has some similarities to our approach.
In [Azc89] [NRS90] [HeR90] a different approach based on the separation of
time and actions is studied; a special action representing the passing of time
is considered, whereas in [OdF90] it is the execution of the actions that takes
some positive quantity of time. Different possibilities concerning the instants
at which each action can be executed are discussed there. In [BeR&5] timing
restrictions of tightly coupled automata with time interval constraints are studied
in a way which has a slight relation to the present approach. In [Tof88, MoT90]
a timed interpretation of CCS is given where an order relation, which expresses
the notion of faster than, is introduced. Bolognesi's [BLTY90, Bol.91] presents a
timed extension of LOTOS which includes the notion of timers which have an as
soon as possible timing. Finally, we have had recent notice of a timed extension
of ACP presented in [BaB91], which has some points in common with the
calculus here presented. The work by Bergstra and Klop focuses on the algebraic
characterization of strong bisimulation in ACP but it does not deal with weak
bisimulation as we do. These commonalities stress our confidence in the interest
of this approach.

Our approach is also related to the way time was introduced in Petri Nets
by Merlin and Farber [MeF76]. and other related Petri Net models. In addi-
tion to using different models, the main difference is that in timed Petri Nets,
time constraints are associated with complete transitions, whereas here the time
constraints are associated with the individual parts of a specification.

2. The Calculus

2.1. Syntax of the Language

We will work over a class of timed concurrent processes whose observable
behaviour is defined in terms of the sequence of observed gates during execution.
As in basic-LOTOS and in many other simplified models of concurrency, we will
not allow the exchange of values through these gates. Consequently, only the
emission of undistinguishable signals through the gates is observable. Gates will
be denoted by a name.

We will also have internal actions which are not observable from outside,
but whose exccution can change the state of the process and therefore its future
observable behaviour.

In addition, we can observe the time at which each action occurs, with respect
to a discrete scale of time. In fact we will take the set of natural numbers as our
domain for time. at both the syntactic and the semantic levels.

Definition 1.

(i) We will consider a universe of gates % that includes the names of the gates
that can appear in any process.
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(i) We have an internal event denoted by i, such that i & %.
(iii) The set of events & is the set & = @ U [i}. o

Notation: B, B’ By,... are variables denoting behaviour expressions: £ty,... ar¢
variables ranging over time, that is to say over N: T, T).... range over intervals of
time instants [r~.1"]. where [t~ € N.t* € NU{oc}]: g.¢.... are variables ranging
over %: a.d’,ay.... range over &; and finally G, Gy, ... are variables ranging over
finite gate name sets.

Definition 2. The algebra of finite basic behaviour expressions is defined by the
operators in Table 1. Each behaviour expression B has an associated gate set
L(B), also defined in the table. O

Table 1. Syntax of TIC

Name syntax Gate sel

Timed Deadlock  stoplr) [0}

Tdie idle 0

Action Prefix ar B LiB) U |ala & i}

Timed Choice aT; B LiB)yJ lala &1}

Choice BB LiByyu LiBy)

Parallelism B\ B2 LB )L LB

Hiding hide Gin B LiB) =

Relabelling Blg/g)...enlgy]  (LIB)-{g).8h])
Uigh Enl

The basic component of the syntax is the pair formed by an event in & and a
natural number which represents an instant of time.

Definition 3. Timed events will be pairs in & # N, represented by the name of the
gate followed by its oceurrence time. We will denote the set of timed events by
Fé.0

For example. a3 indicates that event @ will happen at instant 3. The (ime
attribute of a time event is relative to the instant at which the previous event
occurred and on which the action causally depends.

For instance, in al ;¢2: idle|[0)|p2: idle, a will occur at instant 1, bat 2 and ¢ at
3: 0 ¢ occurs 2 instants after the occurrence of a to which it is causally related.

Time attributes of events are non-negative numbers, A null separation between
the occurrence of two events is allowed. This has been considered admissible, not
only to allow the parallel execution of several actions at the same lime, generated
for instance by plain interleaving. but also to capture a negligible separation
between events. It is clear that in every case, we must be careful to prevent
the possible appearance of unbounded sequences of such events. Without this
restriction we would have to admit the execution of an infinite number of
actions in finite time, against any physical law. But such sequences would only be
introduced by specifications including recursive calls without any positive lapse of
time, and this can be prevented at the syntax level by an adequate generalization
of the concept of guarded definition.

Although we have not given any semantics yet, the reader will probably guess
that starting from stop(t) or idle as the constants in our signature, the (finite)
application of the rest of the operators will generate the set of finite processes of
TIC. In order to obtain infinite behaviours, some kind of recursive definition of
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Tahle 2. Syntax of the auxiliary operators

Name Syntax Gate set L(B)

Time Passing  Agelt, B)  L(B)

Inaction Stop U]

processes is mandatory. This generalization of behaviour expressions must include
variables whose meaning will be defined by means of the least fixed points of the
defining equations.

Notation: PVar will denote the set of process variables. P, P, Py,... will range
over Plar,

Definition 4. Generalized basic behaviour cxpressmns are defined by adding pro-
cess variables in PVar as new basic expressions so that metavariables appearing
in the definition of finite basic behaviour expressions range over the set of gen-
eralized basic behaviour expressions. We denote by PVar( B) the set of process
variables appearing in B. Finally Lf B) will be undefined for processes including
vanables. O

In the following definitions Bs will represent generalized basic behaviour
expressions.

Definition 5.

(i) A system of recursive definitions of processes (srdp) is a system |P : B| =
|P; :B; /i€ l|whereViel PVar(B)< (P /iel).

(ii) If [P : B is a srdp, we define the set of gates of the processes so defined as
the least solution of the system of equations L(P) = L(B;), where L(B;) 1s
defined as if B; were a finite basic behaviour expression. by taking as the set
of gates of each appearance of cach process variable F; along B, just the
unknown L(P;). O

Definition 6.

{i) An infinite basic behaviour expression is a pair ([P : B|, B) with PVar(B) = P.
We denote by # the class of infinite behaviour expressions. Usually an
infinite behaviour expression will be denoted by giving only the generalized
behaviour expression B if the corresponding system of equations can be
deduced from the context.

(ii) We define the label set of an infinite basic behaviour expression ([P : B|, B)
as the set L{B) calculated by the rules in def. 2. ldkmg as L(P;) for each P
appearing in B, the corresponding set of gates defined in def. 5.

An auxiliary operator Age, whose syntax is defined in Table 2, is needed to
represent the passing of time over a process that does not evolve in any other way.
We will also consider a derived (from the combination of the original ones and the
added Age operator) operator stop that represents any deadlocked behaviour. All
the classes of basic behaviour expressions of definitions § and 6 can be extended
by allowing also the appearance of these new operations in their definitions. The
extended classes will be known as the original ones, but suppressing from their
names the adjective “basic™.

If not otherwise specified, Bs will represent infinite behaviour expressions
(IBEs) in the rest of the paper.
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2.2. Operational Semantics

The operational semantics of the calculus is defined by means of a labelled
transition system. Let us first define the empty event which is used to represent
the passing of time.

Notation:

(i) We will consider a new event ¢, called empty event, such that ¢ € 4.
(ii) The set of extended actions will be the set # = & U {e}.
(iii) We will denote by e, ¢, e,... an arbitrary element in 2"
(iv) The sct of extended timed events is the set #.5& = 77 & U ({e} = N).

Definition 7. We define the operational semantics of an IBE B, as the labelled
transition system (2. 4.7 &, TR, B) where TR is the set of labelled transitions
derived from applying the following rules: O

Timed Deadlock:

’

<
Stop(t) —et’ — Stopl(t —1') % .

The timed deadlock —Stop(t }- represents a deadlock after time 1. It only generates
empty transitions until time ¢ has elapsed.

The stop( 1) behaviour could have been omitted, but it has been included for the
purpose of having an explicit representation of deadlock situations.

Idle:

Idle —er — Idle

The idle behaviour allows the lime Lo pass, by deriving empty transitions at any
moment. 1t is used for representing the graceful termination of a behaviour,

Action Prefix:

ar:B—ar — B
The next rule defines the spontaneous passing of time in action prefix statement.
Intuitively, time is allowed to pass (empty transition) whenever it does not cause
the behaviour to deadlock.

i}

< <t
B —et' = alt —1'):B

Timed Choice:
al':B—at— B = 682

Timed choice is an extension of the simple action prefix operator. It constrains
an action to occur at any instant of the given set T'. It is a combination of action
prefix and choice over time from the semantic point of view. If the set of time
instants T is finite, timed choice can be defined in terms of action prefix and
choice. In fact, action prefix is a particular case of timed choice, when T has only
one element; but due to the frequent use of action prefix. it has been considered
convenient to maintain this simpler syntactic form.

The spontaneous passing of lime in a timed choice statement is again allowed only
when the executed empty transition does not cause the behaviour to deadlock.
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For T = [r—,17] we have

A
aT:B—er —al':B =
where T' = [max(t™ —.0), 1" —1].
Choice:
By, —at — B By —at — B,
B\[1B: —at — B| By[|B: — at — B;

The spontaneous passing of time in a choice statement may age the whole
composition if one of the components can be aged. It must be noted that the
Aging operator will disallow the transitions whose occurrence time has passed.

B; —et — B _ By —et — B
Bi[1B: —et — Agelt, Bi[| B3) B\[)Bs — et — Age(t, B|[]1B:)

Parallel: The definition of the parallel operator includes two conceptually different
types of operations: synchronization and interleaving. Synchronization may occur
when both counterparts offer the same event at the same instant,

B| — el — Bi. B — et — BE
B,|[G]|B; — e1 — B{|[G]|B;

Remark: Note that the spontaneous passing of time is always synchronized in
parallel behaviours.

Example: (b2;idle|[b]|b3;idle) would not synchronize because both b’s oceur at
different instants; whereas (b2;idle|[b]|h2;idle) could synchronize, generating the
event b2,

By —at— B|,By—¢et — Bt <! 2
B,|[G]|B: — at — Bi|[G]|Agelt. B>)

By—at— B, By —¢t' = B.r <t
B\|[G]|B: — at — Age(t. B))|[G]|B}

Interleaving may occur when one process can evolve while the other remains
idle. But as time passes everywhere, the passing of time associated with the
executed transition must also pass in the idle component. This is the reason
for introducing the Aging operator Age. As the Aging function disables all the
transitions whose time has passed, in the future only the transitions occurring
after the executed one (also including zero time separation,) will be allowed.

On the other hand. interleaving must be consistent with timing: if a component
must execute some action at some given instant 1, it is not possible that the first
action executed by the parallel composition will be executed, even by the other
component, at some later instant ' > 1. This is what is expressed by the second
premise of the rule. Nevertheless we do not impose maximal parallelism: so far
as a component may execute a transition at the instant 1, the other one may
execule an action at any instant " < 1 even if the first component has lost in this
way some other possible transitions corresponding to instants t” < r". Only if all
the possible transitions of the first component correspond to instants 1 < ', will
it not be possible to execute as first action the one at t'

Any parallel composition containing a blocked behaviour as a component
will also be blocked. This means that the defined semantics is very sensitive to
deadlock situations.

< ¢eGU el

a &G

< agG
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Example:
(h2:idlel[c]|bd;idle) would interleave. [t has only one possible evolution:

(h2:idle|[c]|hd;idle) — b2 — (idle|[c]|Age(2, (b4:idle))
(idle|[c]|Agel2, (b4;idle)) — b2 — (Age(2.idle)|[c]|id le)
Only non empty transitions are shown. There are additional empty transitions.
Aging:
B—e' +B P
Age(t, By —e(l' — 1) = B’

The passing of time disallows transitions which should have occurred before the
adjusted time. Besides, 4ge adjusts the relative time count of the behaviour to
which it is applied. Note that the effect of the Age operator is local to the first
actions executed by the aged process.

Example:

(Age(3, (a5;idle)) — a2 — idle

==Y

Stop: This behaviour generates no transition at all. Thus, the parallel operator
is strict with respect to deadlock.

Hiding:
B—et — B
PR ATY R T EE e
B—gt— B
hdeGmB—it—>hideGing - 5€C
Example:
(hide b in bl;idle) — il — hide b inidle
Relabelling:

B T_t?l’ - .BF
Blgi/g} - gn/g] —elgi/8), - gu/gn)t = B'[g1/815 - 8/ 8]

The meaning of the “meta-action™ ¢[g)/g}.... g/g,]t 1 quite obvious: it is gjt if
e =g for some i€ {l,.,n} and er otherwise.
Example:

(b1:idle)[e/b,b/c] — c1 — idlele/b. b/c]

Process:
Bi—et — B
— <
(|P:B|,P)—et— B

This is the only rule in which the system of equations defining the named processes
is made explicit. We systematically try to avoid this cumbersome notation, using
it only in those cases in which an explicit reference to the subsumed system of
equations is needed. On the other hand, the fact that this system of equations is
never modified by the application of the rules justifies the avoidance of explicit
relerences.

il
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Remarks:

(i) We have not identified internal and empty events, even il both of them

(1)

i

(i11)

3.

generate no observable actions. The reason can be found in the choice rule in
which the execution of some nternal event by any of the components would
make the choice, whereas this must not be the case with empty events. The
passing of time can disallow actions whose occurrence time is in the past
but it can never disallow actions whose occurrence time is in the present or
future.

As one can observe, time 1s dealt with as an extension of the gate names n
nearly all cases. The only exception 1s interleaving in which an aging function
is used for preemptive time passing.

The time values appearing in the labels of the defined labelled transition
system are relative counts with respect to the previous action. However, from
these local clocks we can infer an implicit global clock in a very natural and
simple way by considering the tree of transitions generated by the transition
system. We can associate a global time stamp with each node of this tree
(representing a state of the process) that is computed by adding all the time
attributes of the arcs of the path reaching the node from the root of the tree.
An example is seen in Fig. 1, where the value of the global time clock ¢k is
shown for each node.

initial state, ck=0

ck=3 ck=2 ck=10 ck=6

Fig. 1. Global time count.

Strong Timed Bisimulation: Some Properties

Strong Timed Bisimulation {STB) is defined by introducing time in the classical
definition.

Definition 8.

(i)

(i1)

A relation STB € # x4 is a Strong Timed Bisimulation relation iff ¥(B,. B:) €
STB.,Yet € 7 &, the following conditions hold:

* VB Bi—et —B] = 3B} B,—et— B. (B].B}) € STB
* VB By—et— By = 3B] Bi—et > B| (B|.By) € STB

We say that By and B, are strongly bisimilar 1T there exists some Strong
Timed Bisimulation STB such that (B, B;) € STB. O

Some equational properties of the Age operator are presented in the next

proposition, which will illustrate the defimition of Strong Timed Bisimilarity.
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Notation: The equality symbol is used to represent Strong Timed Bisimilarity.

Proposition 1. These are some of the properties of Strong Timed Bisimilarity
concerning the Age operator.

Age(t,idle) = idle Agel1.stop) = stop (1)
<t => Age(t',stop(1)) = stop(t — ') (2)
' <t => Agelt',stop(t)) = stop (3)
t=<t == Age(t,(at’;B)) = alt'—1);B (4)
t' <t => Agelt, (at': B)) = stop (5)
t<tt => Age(t,(a[t”,t*]:B) = a[max(t” —1,0)," —i]:B (6)
=17 == Age(t.(a[t”.17):B)) = stop (7
Agel(t, hide G in B) = hide G in Age(r, B) (8)
Agelt, B1[|B2) = Age(r. B,) [] Agelr. Ba) (9
Age(t, B,|[G]|B2) = Age(r. B)) |[G]| Agelt, B:) (10)
Age(t, Blg1/8},-+ 80/81]) = Age(t, B)[g1/8). - 8/ 8] (1)
Age(t,((P : B), P)) = Age(1. B)) (12)
Age(ry, Age(ta, B)) = Ageltz +11.B) (13)

Proof. Let us first relate the transitions generated by Age(t.B) with those generated
by B. We have that

e If B—at' — B with t' = t then Age(r,B) —a(r' — 1) — B
s Age(L.B) has no other transitions. In particular, if B — at’ — B" with t' <1
then Age(t.B) has no corresponding transition.

The proof of the equational properties based on this characterization is an easy
but cumbersome exercise. Let us present as examples the proofs of 10 and 13.

Equation 10: The right hand side can derive a transition only by applying either
the synchronization, or any of the interleaving rules.

e Synchronization: We would have Age(t. By)—at' — B} and Age(r, By)—at" — B..
Then B —alt+t') — Bj and By —a(t+1') — B3, so that (B,|[G]|B:)—a(t+1) —
(B{|[G]|B-), and finally Age(t. By|[G]|B2) —at’ — (B}|[G]]B3).

o Interleaving: If Age(t, B)—at’ —+ B| and Age(t, B;)—et” — B; for some 1" > t',
then By—a(t+t) — B} and Br—e(r+t") — B}, and as 141" = r+1' we can apply
the interleaving rule to obtain (B;|[G]|Bs) — alt + t') — Bj|[G]lAge(t + t'. Ba),
and then Age(t, B)|[G]|B2) —at" — Bi|[G]|Age(t +1', B>). and applying (1) we
conclude taking B' = B||[G]|Age(r + ', B2), that Age(t, B||[G]|B:) — at” — B’
for some B’ = B)|[G]|Age(t’, Agelt, B2)).

The case corresponding to the application of the other interleaving rule is
symmetrical.

On the other hand, using the characterization given at the beginning of this
proof, we have that each transition of the left hand side of (8) corresponds to a
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transition of By|[G]|B2, and the rest of the proof is just the converse of the one
just developed.

Equation 13: Age(t,, Age(t, B)) —at — B' == Age(t>.B)) —a(t+1n) = B —
B—alt+41t +1:) = B <= Age(ty +t3,B) —at - B'. O

Remarks: Equations (1)-(11) give us a denotational definition of the Aging
operator, equivalent to our former operational definition. This means that Age
is indeed a derived operator that does not generate any new semantic process
—excepl for stop- when applied to behaviour expressions (that by definition do
not include the Aging operator). This is true even for infinite processes: if, for
instance, we have (P : B) and we consider the process Age(t, P), we can take the
equation Age(t, P) = Age(t, B), and il we unfold its right hand side we obtain an
expression B’ in which the only appearances of the Aging operator would have
the form Age(t', P) with ' < 1. Then we can consider the corresponding equations
Age(t’, P) = Age(’. B), obtaining a system whose unknowns are the processes
Age(r', P) with t' < r. But as this system is an ordinary one, once we forget about
the names of the unknowns, its solution is just a collection of ordinary infinite
behaviours,

However we can obtain new semantic processes if we allow the appearance
of the Aging operator on the right hand side of the system defining an infinite
behaviour. This will not happen in practice, since Age is an auxiliary operator.
Therefore we can omit the consideration of the Aging operator when developing
proofs by structural induction.

Let us give more equational properties of the basic operators.

Proposition 2. The following pairs of [BEs are Strongly Timed Bisimilar.

Bi[1B: = B2[18,,  (B[]B:)[]Bs = B, [1(B:[1B3) (14)
BB =8, B[lstop(0) = B, Bllstap= B, idle[]stop(t) = idle  (15)
hide G in stop(t) = stop(t) (16)
acG == hideGinat:B=it;hide Gin B

a& G => hideGinat:B =at;hide Gin B (17
hide G in B, (]B2 = (hide G in B))[J(hide G in By) (18)
stop(t)[g1/81 -+ &n /4] = stoplt) (19)
idle[g) /8] gu/g.] = idle (20)
(at; B)[g1/81s s &n/8h) = alg1/81s s 8/ €u)0: (B81/8) s 81/ 81)) (21)
(Bi[1B2)[g1/8)s - 8/ 8] = Bilgi /g gu/g,] [ Balgr /g1, 8n/20) (22)
B,|[G]|B: = B:|[G]| B, (23)
(B |[G]|B2) |[G]| B: = B, |[G]] (B2][G]|Bs) (24)

Proof. Except for the last one, all are more or less immediate checks. The difficulty
of the proof of associativity of the parallel operator is due to the application
of the interleaving rule. Let us suppose, for instance, that (B([G](B;) |[G]| Bs
execules a lransition —at — corresponding to By. Then we have B, —e't’ —
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with r < t and Bs —¢"t" — witht < t". But if ¢ € G or ¢ € G it is not
trivial that we have some ¢”t" with Ba|[G]|By — ™1™ — and t < (™. In order to
prove it, we need first to check, by structural induction, that whenever we have
B —at — B’ we also have for any ' <t B—et’ — . Then we can take &' = ¢’ = ¢
and ¢’ = 1", obtaining B:|[G]|Bs — €t —=. O

Finally we present without full proof. the fact that strong timed bisimulation is a
congruency with respect to all the operators of our algebra.

Theorem 1. Strong Timed Bisimulation is preserved by all the operators of our
algebra, including the auxiliary ones.

Proof. We do not include the [ull proof for strong equivalence because we have
already proved several rules in detail and we include also the proof of the
congruency of all the operators for weak bisimulation, except for choice.

Nevertheless, we will present the proof of congruency of the choice operator,
for we will see that {(P[JR,Q[JR)|P,Q,R € # # = 2] is a strong bisimulation.
Let P[JR —et — § be a transition from P[JR. We distinguish two cases:

e ¢ =g € & Then we have two possibilities:

- P —at — P" and then § = P'. In such a case we have 0 —ar — @' for some P’ = @', since
P =0, and thus Q[JR —ar — 0.
- R —at — R’ and the § = R'. This is an immediate case.

e ¢ = ¢ There are again two possibilities:

- P —el — P'and then S = Age(r, P[JR). But as P = 0 we have 0 — et — (' for some Pr=10,
and thus QIR — et — Ageir, Q[IR) = Agelt. P[IR). since Age operator also preserves strong
equivalence.

- R—¢r — R is similar to the previous casc. O

4. Expansion Theorems

Two expansion theorems are presented. The first one considers only processes
with finite choices of timed actions, whereas the second one is the generalization
in which the Timed Choice operator can also appear, and therefore includes
infinite choices.

Theorem 2. (Expansion theorem without timed choice)

Le! B, = Z;F;ﬂfh;ﬂf, B: = :5-:}?:-‘ ajt;: B; two behaviours. where [, J are two
finite disjoint sets, and Y, represents the generalization of choice as a multi-ary

operator (remember that choice is a commutative and associative operator). Let
End, = Max(!t; | i€ 1)) and End> = Max({t; | j € J}). Then, we have

Bi|[G)IB: = ) ait;:(B|[G]lAge(t;, B2)) [I

el
ZH;'fj:(Age{fj».B”l[G]EB;] [l
jel

> e (B/IIG1B) O stop(m)
l.r|'='ll'||l'|——!J

where ' ={iel|a@& G, ti<Endyy. J={j€J|a;¢é G ;< End,} and
m = min{Endy, Ends}.
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Proof. It is again a routine check, We will merely explain the role of the stop
summand in the rhs. It covers the case in which the lhs cannot generate any
nonempty transition; in that case we have a deadlocked behaviour, but this is
detected only after time m has elapsed, and one of the components becomes
deadlocked itself. If the lhs is not deadlocked, then it can also execute an et
transition for any t < m, and thus the stop summand is also correct, [J

Remark: The former theorem can be generalized to cover the case in which idle
behaviours appear as summands of By or By by considering the following three

Cascs.

s If B] = B[lidle the expansion of Bj|[G]|B; is defined exactly as that of
B,|[G]| B>, but taking End = .

e If B, = By[lidle the expansion of By|[G]|B; is defined exactly as that of
By|[G]|Ba, but taking End; = oo,

e Il B] = Bi[Jidle and B, = Bi[lidle the expansion of B,|[G]|B; is defined
exactly as that of Bi|[G]|B:. but taking End; = =, Endy = w ; then the
stop(m) summand would be substituted by idle.

A similar extension can be developed to cover the case in which we have timed
deadlocked behaviours as summands of By or Ba.

Theorem 3. (Expansion theorem including timed choice)
Let By = 3., aTi: B[, B = ) ;.,a;T;: B} two behaviours, where I, J are two

finite disjoint sets, Ty = [17.¢7]. T; = [t; ,f]‘]_ and, as in the previous theorem,
S represents multi-ary choice. Let us define

Begin, = Max({r7 |ieljuftf+1|iel, f #x})
Begin, = Max({t7 |jeJjUity +1|je€J, (] Fx}
End, = Max({t] |iel]
End; = Max({t7 |j€J;

Then we have
B |[G]|B: =

DU Y, an(BlG]|Age(t, B2))

fel” 1Tl Beging]
[ &T; " [Beginy, min{t", End»}]; (B;|[G]| Age(Begin,, B2))) ]
YU D ajti(Age(r, By)I[G]IB))

jeb €Tyl Beging )
[ a;T; N [Begin,.min{r;, End}];(Age(Begin,, B))|[G]|B)) [I
Z a;[max{r,_,r_',_},minirf.tj}];{Bf[[G]iB}]:l [l stop(m)

ay=uy

wherec again I'={iel |a;¢ G, {; <End:}, /' ={jeJ|a; &G, t; < End}
and m = min{ End), End}.
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Remarks:

(i) By convention, any summand in the expression above, including an empty
interval of time r—.t% with t = 1", can be remaoved from the expression.

(ii) The choice of Begin, is motivated by the need to find a finitc bound so
that. for instance, whenever we would execute any action from B; at any
instant later than Begin, we could put as a continuation of the second
component a uniform behaviour Age(Begin,, By) . whatever the instant might
be. This is because if K = {j € J | ;7 = =, for all t = Begin, we have
Age(t, B) = 5, ax[0, %] : By = Age(Begin,, Bs).

(iii) The meaning of the remaining parameters is the same as in the case not
including timed choice.

(iv) The theorem can also be generalized to cover idle and timed deadlock
summands exactly as in the case not including timed choice.

Proof. The key idea underlying the proof is included in the previous remarks:
when considering interleaving, we have to distinguish the different continuations
of the idle component, which initially depend on the exact instant at which the
corresponding action is executed. Fortunately this is true only until an instant is
reached. after which the continuation remains the same lorever. Thanks to this
fact we avoid infinite sums that of course would not be admissible at the practical
level at which we desire to apply the expansion. [

Remark: The use of time intervals to define the set of options of a Timed Choice
allows the existence of a generalized expansion theorem. A more general language
allowing more or less arbitrary sets instead of these intervals would have led to
an infinite number of different continuations alter the execution of a first action,
depending on the instant at which it is executed. This would lead us to an
inadmissible infinite expression. However. it is true that with some additional
work it would be possible to generalize somewhat the class of intervals. without
loosing the expansion theorem. For instance we could accept finite unions of
intervals, sets such as {1 € N | 1 = k mod n}, or finite intersections of both classes
of sets. And probably some other regular sets would be also admissible.

We think that these expansion theorems together with the previous rules
constitute a reasonable set of rules for strong equivalence. Nevertheless we have
not included any completeness result for two main reasons:

First, we are mainly interested in weak equivalence and in the properties
of strong and weak equivalence which ensure the practical applicability of the
calculus, such as the congruency of the parallel operator. Secondly, our experi-
ence shows that completeness results for timed caleuli are in general much more
complicated than the corresponding results for untimed cases and would justify
a complete work by itself. The only detailed proof of completeness of an axiom-
atization of an equivalence between timed behaviours known to the authors 1s
[OdF91], in which a timed version of CSP is studied and in which the normal
forms are indeed much more complicated than those for ordinary CSP.

5. Weak Timed Bisimulation

As in the non timed case (see Milner [Mil80]), strong bisimulation is too strong
because it is based on the observation of internal and visible actions. Internal
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actions should not be observable. In order to formalize this idea, we have to
derive an operational semantics showing only the execution of external actions,
There is an important difference between the timed and the untimed case: in
the untimed case internal actions disappear (we should say nearly disappear if
we want to be strict), while now the time dedicated to the execution of internal
actions remains as a track of the execution.

The new operational semantics will show only the execution of external
actions, the time between them, and the time elapsed since the execution of the
last one. The time associated with the internal actions is accumulated in the next
observable action, or constitutes a part of the time elapsed since the execution
of the last of them. All this is formalized by the new transition system described
below.

Definition 9.

(i) OT = {gt|g € G,re N} is the set of observable timed events.

(ii) IT = {it |t € NjUlet |t € N} is the set of internal timed events. We will
represent by xt the elements of 1T,

{iii) Let B,B' infinite behaviour expressions, a .., dpty € X F & with n > 0
we say that B — aity,... dut, — B is an extended transition it IBg...., By
infinite behaviour expressions with B = By and B" = B, such that Vi €
:U' ..... H— ].} B,'—HH.“','.,-.; —*Bj+1.

(iv) Let B — o goto. 11, 81t1s s due1y Bumttu—ts In — B’ be an extended transition,
where for each i € {0,.... n—1} gst; € OT. and each I, represents a possibly
empty sequence Xfij,-...Xtj,. Then, for cach j € {0,....n} we define r} by

iy
=1+ tix YI€0....n—1]
k=1
r1n’l
i‘;; = Z ril.,l‘\'
k=1
Then, we say that B = golg.....Bn it _,t, => B is the observable rimed
transition associated with the given extended transition. O

Remark: Only external actions can appear as labels of observable timed actions.
When a transition does not contain external actions we have an empty observable
timed action which corresponds to the case where n = 0. The time consumption
of such a transition is determined by the time label Io. Nevertheless, contrary
to what happens in the Untimed Calculus, extended transitions must contain at
least one transition. This is always possible because any derivative B’ of any
behaviour (in which only the basic operators can appear) can generate the empty
transition €0, becoming Age(0, B') which is strongly timed bisimilar to B'. Thus
we have B’ = (),0 = Age(0, B') which corresponds to the idle transition B = B
of the Untimed Calculus. The following lemma formalizes our previous assertion.

Lemma 1. For any infinite basic behaviour expression B, and for any extended
transition B — a1y, .... ayt, — B’ we have B' — 0 — Age(0, B).

Proof. 1t is easy to check that only the appearance of the auxiliary operators
stop and Age can make the transition €0 non executable. But stop never appears
in a derivative of a process that does not contain it already. A behaviour B
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cannot contain it, since stop is an auxiliary operator. On the other hand, the Age
operator only appears when the interleaving and some of the choice rules are
applied. But the executability of €0 is always maintained. Let us take for instance
an application of the first interleaving rule:

By —at — Bj,B>— ¢t = Byt =t -
B\|[G]|By — ar — Bi|[G]|Agelt, B2)

agG

Then, as t < (' we have Age(r, Ba) —¢&'(t — ') — B} and by applying the result
given on the proof of prop. 2, we have that Age(t, B:) — 0 — Age(0, Agelt, By)).
]

Definition 10,

(i) A relation WTB < % = # is a Weak Timed Bisimulation iff ¥{(B,, B:)
WTB, Vg € OT" we have
e B =¢4,1,=> B = 3B, B;=gq,1,= B, A (B|,B))€ WIB
o By=gq,1,= By => 1B, B, =q.1,= B, A (B,.B))¢c WTB

(1) We say that B, and B, are weakly timed bisimilar, and we will write By ~ B,
iff there exists some weak timed bisimulation WTB with (B,.B.) € WTB. O

Bi B2 Bl B2
i3 il i i 3 i i1
*
bl b3 all bl all b3
A) whe B) not whe
Bl B2 Bl B2
a N1 a i 1 a a2 a2
¥ * + % *
cll a2 c2 al c2l ¢3 il N
&2 cl cl] c2
C) not whe D) not whe

Fig. 2. Examples of weak timed bisimulation.

Some examples illustrating this definition are presented in Fig. 2, where whe
stands for weak tmed bisimilar, empty transitions are omitted and the states
which cannot be bisimulated by the peer behaviour, if any, are indicated by an
asterisk. From cases B) and D), you can see that our definition of equivalence is
perhaps too strong, as possibly you would like to identify the pairs of processes
involved. It is in fact probable that a reasonable definition of testing equivalence
would declare them to be equivalent. But in any case, it is well known that already
in the ordinary untimed case, bisimulation is stronger than testing equivalences.
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Let us see in detail why the pairs of processes compared in B), C) and D),
are non-equivalent. In B) if the second process decides to execute its internal
action corresponding to the instant 1, it forces itself merely to execute b in the
future: but the first process cannot impose such an obligation on time 1 because
it cannot make a choice until the instant 3. In C). it is reasonable to declare the
processes non-equivalent because in fact they are not even failure-equivalent: a3
¢2 is always accepted by the first process, while the second one accepts it only
sometimes. Of course this is due to their respective timing because in the non
timed case they would be bisimilar. Finally D) is the timed version of one of the
classical CCS examples showing a pair of processes that are testing equivalent
but are not weak bisimilar. The two different actions ¢ and d of the untimed case.
have been substituted by the timed actions ¢2 and ¢3.

Bl B2
T
alt = 2mod3) a2/ \3 |
i
c 2 c2
E) wbe

Fig. 3, Example of i-loop removal.

Another interesting example is shown in Fig. 3. The example illustrates an
internal action loop elimination. This is also possible in the untimed case, but
now we have to keep the time consumption due to the executed internal actions.
We introduce a time choice to represent this time consumption, where the set of
time instants at which the action @ can be executed is the set |t | { = 2mod 3}.
This is a case in which the use of one of the already proposed extensions of our
original definition of time choice is necessary. Thus, the effect of i-loops does not
vanish as in an untimed calculus, but is kept as a potentially unbounded time

delay.
Bl B2 B4 B3
HA4 a i 3 a a il i il
b1 3 b3 all b3

Fig. 4. Choce, internal actions and time.

Finally, Fig. 4 depicts a set ol examples selected to show the interrelation
between choice, internal actions and time. In it B7 and B2 are whe, and B4 and
B3 are also equivalent, but there are no more equivalences between the shown
processes. Equivalence of Bl and B2 indicates that the time at which the internal
decisions occur is relevant, The internal event, i3, in B2 can occur only after
the visible event a2, offered in choice with it. Therefore, it cannot influence the
occurrence of a2. In B3 the internal event, il, can occur before a2, which thus
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can be rejected. In B4 the internal event, il, may not occur at instant 1 in such a
case only event a would be offered at instant 2. Thus, we have an internal choice
hetween a2 and b4, which is made explicit in B3,

It is interesting to note that the classic notion of weak bisimulation. applied to
the untimed versions of the depicted processes, would relate the four behaviours
in a completely different way: we would have Bl ~ B3, and B2 ~ B4, with
BS not equivalent to any one of them. An untimed calculus, like basic LOTOS,
can be obtained in TIC by having actions with no time restrictions as shown in
definition 11, but not just by removing the timing.

We have not yet gone deeply enough into the subject of an equational char-
acterization of weak timed bisimulation. Nevertheless, we have already studied
the basic axioms from the classical theory covering internal actions, finding that
it is possible to extend them to the timed case, although to do it, we need a trivial
generalization of the Aging operator to cover also negative periods of time. Using
it we have

Proposition 3. The following pairs of processes are weakly timed bisimilar.
ar:it’: B ~ ar; Age(—t', B)
Age(—1, B)[]it; B ~ it; B
at: (B [it'; Ba)[Jat; Age(—t', B2) ~ at: (B []it': By)

Proof. Again they are easy but tedious checks. [

Of course, all the axioms and rules presented in the previous sections for
strong equivalence remain valid for weak equivalence.

Concerning the congruence properties of the equivalence, the situation is very
similar to that in LOTOS or in CCS: between our basic operators, only the
choice operator does not preserve the equivalence. Nevertheless, it is also true
that our Aging operator does not preserve it. Take for instance By = il ;a2;idle ~
By = a3;idle. Aging them two instants, we obtain Age(2,B) ~ stop + al ;idle ~
Age(2, B:). But as we explained before, this kind of negative result concerning an
auxiliary operator does not matter, since it cannot appear in user’s specifications.

Theorem 4. Weak Timed Bisimulation is preserved by Action Prefix, Time Choice,
Parallel Composition, Hiding and Relabelling. O

To develop the proof we lirst present a characterization of Weak Timed

Bisimulations.

Proposition 4. WTB is a Weak Timed Bisimulation iff ¥(B,.B,) € WTB Vgt €
OT.¥xt € IT we have

e By —gt — B, — 3B, B, = {(gt),0= B, (B|,B;) € WTB

o By—gt — B, = 3 B| B, = (g1),0= B| (B),B}) € WTB

e By —xt— B = 3B, B,={),t=B; (B,B;) € WTB

e B, —xt— B, = 3B B =(),t= B (B|.B})e WTB
Proof. == In the first case we have B, = (g1),0 = B and then we just apply
the definition of weh. The other case is similar: we would have B, = (), = B|,

and apain we would apply the definition.
«— Let By = gq,t = B). This observable timed transition will be the one
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associated with some extended transition B, — ajly.....axts — Bj, Then we
distinguish two cases:

e a; € G. Then we have By — ajty — B} —axta,....axty — Bj ., so that we have
some BY verifying B> = (a1;).0 = B} and (B}.B3) € WTB.

e g, = x & G In this case B| — xty — B —axtz,....ayty — By, and we would
have some BY verifving Bx = ().1; == By with (BY, BY) € WTB.

And iterating we would obtain an extended transition By — at),...,ar; — B}
whose associated observable timed transition is By = ¢.t = Bj. and such that
(B),B5)e WIB. O

Let us go now to the proof of the congruency theorem.
Proof. The only difficult cases correspond to Parallel Composition and Hiding.
¢ Parallel Composition: For we will prove that
WTB = [(P|[G]IR. QI[G]IR) | P.Q.Rc #, P ~Q, GE%

is o weak timed bisimulation. We wil. use the former characterization of weak
bisimulation. Let P|[G]|R — gt — P'|[G]|R". We have three cases:

(i) g € G. Then we have P — gt — P’ and R — gt — R’. and then as
O~ P.0Q=(er)0= 0 with Q" ~ P’, and it is casy to check that then
we have Q|[G]|R = (g).0 = Q'|[G]|R’, since applying the interleaving
rule Q|[G]|R can execute the internal actions of Q before its execution of
g and then synchronize to execute this g.

Remark: One could think that a separate consideration of the case must
be made where the extended transition leading from Q to Q° contains
empty events, since these are not considered by our interleaving rule.
But this is not necessary because observing how these empty lransitions
are generated. it can be concluded that whenever they appear in an
extended transition followed by an observable or internal action. they
can be removed to get a new extended transition which generates the
same obscrvable transition. This means that for any observable transition
B = ¢.0 = B' we can always find an equivalent extended transition free
ol emply events,

(i) g€ G, P—gr— P', R = Age(t.R). and R —et' — R" with t < ¢’ Then,
as in the previous case, we have some Q@ = (g1),0 = Q' with Q' ~ P’
and then. repeating the application of the interleaving rule, and applying
property (9) of the Aging operator. we obtain the observable transition
QI[G]IR = {g1).0 = Q'|[G]|R".

(iii) g€ G. R—gi = R, P'= Age(t,P), and P —et' = P" witht < 1.
Then. by definition of empty transitions, we have P — et — Age(r, P).
and as P ~ @ we will have some observable transition Q@ = ().t = Q'
with Age(t. P) ~ Q. Some extended transition generating this observable
one could be decomposed in the form Q — g — Q" —e(t — (") — 0.
where ¢, is a —possibly empty - sequence of internal actions that takes 1"
instants to execute. We also have Q' = Age(t — (", Q"). And finally we
can interleave the computations R — gt — R and @ — g; — Q" obtaining
O|[G]IR = {g1).0 = Age(t —1".Q")[[G]|R". as desired.

Remark: The reason why we do not allow observable transitions generated
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by extended transitions of length zero is related to the current case. If the
(now disallowed) idle extended transition @ — {} — O could generate the
observable transition @ = (}.0 = (. then we would have no transition
0 —e0 — @, and then if 1 = 0 we could not apply the interleaving rule 1o
generate the desired computation Q|[G]|R = (g0),0 = Age(0, 0"} [G]|R.

A consequence of the present definition of observable transition (at first
glance a bit tricky) is that:
i0; stop  +  stop

These two behaviours could be made equivalent i we allow B = (),0 =
Age(0, B) for any B, and in particular srop = (),0 = Age(0, stop). We
have not allowed this transition because it is clear that with cither of the
definitions we would have:

aO;srap [[0]] i0;stop & al;stop
With the choice made, we obtain the congruency of all the basic operators
except choice, not only over basic behaviours but also over arbitrary ones.
As a matter of fact, our proof already covers the general case.
Anyway, if the reader dislikes our choice and prefers the definition which
leads to i0;staop ~ stop, the proof of congruency of the basic operators
except choice is still possible if it is made on behaviours that are basic or
derivatives of basic ones. But this proof is much more difficull because a
careful application of lemma 1 is necessary in order to prove that stop or
equivalent behaviours can never appear. This would lead us to a difficult
situation since we have seen that in this case congruency is lost when
these behaviours appear.

Concerning non-observable transitions P|[G]|R—xr — P'|[G]|R" with xr € IT',
we will have that either x =i or x = . In the first case. we will be in one of
the following subcases:

{i)

(i)

P—it — P, R = Age(t.R). and R—et' — R” with t < {". Then we
have some @ = (),1 = @' with @' ~ P'. As before, some extended
transition generatling this observable one, can be decomposed as Q —
gi — Q" — et —1") — @', where ¢; 15 a possibly empty sequence of
internal actions which needs " instants to get executed. Then we have
QIG]IR — g — Q"||G]|Age(r". R), and we can apply the parallel rule,
obtaining Q"|[G]|Age(t", R) —el(t —1") — Q'|[G]|Age(r —1", Age(t”, R)), and
finally Q[[GIR = ().t = Q'[[G]|4ge(r. R).

R—it = R, P' = Age(t,P), and P —et' — P" with 1 < t'. This case is
identical to the corresponding one for the previously considered case of
transitions executing an observable action.

Finally, it x = ¢, we must apply the parallel rule. Then we would also have
P—er— P and R—er — R, and the rest is as in the previous case,

o Hiding: We will prove that WTB = {(hide Gin P, hide GinQ)|P,Q € #, P ~
@ is & weak timed bisimulation.

(1)

(i)

Let hide Gin P — it — hide G in P' be an internal transition generated by
hiding a transition of P corresponding to some action g € . Then we have
P —gt — P', and since P ~ (0, we have some Q" with Q = {ar),0 = @’
with P ~ Q'. Then we also have hide Gin Q = ().t = hide G in Q'

Any other transition of hide G in P is also a transition of P, and then the
corresponding transitions of @ are also transitions of hide G in Q. o
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As a final result, before turning to the applications of TIC, we will assert without
providing the proof, that our calculus is indeed a timed extension of the untimed
one. The proof is again a lengthy but easy check. Let us define the mapping
between the timed and the untimed case.

Definition 11.

(i) We define (the different classes of) untimed behaviours as basic timed ones,
but removing time labels from the action prefix operator, and eliminating the
timed choice operator. The operational and bisimulation semantics of untimed
behaviours are defined in the usual way (see [ISO8E]).

(i) Let B be an untimed behaviour. We define its associated timed behaviour
Timed(B) by substituting any appearance of an action prefix operator a; in
it, by the Timed Choice operator a[0,o0]; and any appearance of a LOTOS
stop by an idle. a

Theorem 5. Let B, B, B» untimed behaviours, then we have

(i) B—a— B'=V%te N 3B, B, = Timed(B') Timed(B)—at — B
(ii) Timed(B) —at — B, = 3B’ B; = Timed(B") B—a— B
(iii} B) = By == Timed(B) = Timed(B1)
(iv) By ~ By <= Timed(B,) ~ Timed(B;)

where = represents in each case the corresponding notion of strong bisimulation
equivalence. O

Remark: Observe that we have defined untimed behaviours taking idle and
not stop as the sole constant. If you prefer to name by stop the constant in
the untimed algebra, you must take care of substituting stops by idles when
computing the associated timed behaviours: otherwise the theorem would not
work at all. Remember that

i;stop ~  stop
but
i[0.oc] : stap  #+  stop
On the other hand we have:
0] s idle  ~  idle
as desired.

6. Applications

Examples of application of TIC to model behaviours, where precise timing con-
straints are necessary, are presented in this section. This timed calculus has been
developed with the purpose of modelling systems which have a time dependent
behaviour. Such behaviours are understood as situations where the time at which
the events occur may influence not only the performance of a system, but also
the correctness behaviour.

The first example is a stop and wait protocol which illustrates the way time
outs are modelled in TIC. Time outs are one of the main reasons why quantitative
time is needed in asynchronous protocols.

The second example is a railroad crossing. This example is very adequate to
illustrate a timing dependent behaviour, because the correct behaviour of the
system depends entirely on the timing of the individual actions.
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6.1. A Stop and Wait Protocol

The time-out mechanism is one of the most frequent time dependent behaviours
in the protocol world. A stop and wait protocel is used to show how TIC models
such a behaviour. As shown in Fig. 5, a whole unidirectional communication link
is specified including a transmitter process (transmitting entity), a receiver process
{recciving entity) and a line process, which is a simplified model of a semiduplex
line.

get give
L L 3
Transmitter Receiver
Sendlnfo RecAck Reclnfo SendAck
SendInfo RecAck Reclnfo SendAck
Line

Fig. 5. The stop and wait protocol,

The stop and wait protocol is a very simple and unreliable protocol, but it is
small enough to allow its inclusion here. The protocol uses two types of frames:
information and acknowledgment frames. The transmitter sends an information
frame SendInfo and wails for an acknowledgment [rame RecAck. It also has
a time-out mechanmism that causes a retransmission of the previous information
frame if the acknowledgment [rame does not arrive before a given time. Once
the acknowledgment frame has been received, new data can be accepted (rom the
user. Once it has been obtained, they can be sent in a new information frame.

The receiver waits for information frames, Each time an information frame is
received, the data part is given to the user and an acknowledgment frame is sent
back. This protocol is unreliable and may duplicate information, but shows quite
clearly how a timed specification evolves in time.

The time-out mechanism and the loss of data in the line because of errors are
both modelled with internal events.

LINE := ((Transmitter |[]| Receiver)
| [GendInfeo, SendAck, RecInfo, RechAek]| Line)

Tranamitter :=
get {0, .no_limit} {# waiting for a new information unit =)

; SENDING
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SENDING :=
BendInfo 8
I | RechAck {0..39}
+ Tranamitter
[ i 40
; SENDING

)

Heceivaer :=
RecInfo {0..no_limit}
3 Eive 0
; BendAck 2
; Beceiver

{ SendInfo {0..no_limit}
bl | RecInfo 10
; Line
[1] i 10
+ Line
)
[1 SendAck {0..ne_limit}
{ RecAck 10
; Line
[1] i 10
; Line

)

e

}

J. Quemada, D. de Frulos and A, Azcorra

(# transmit frame =)
(# ack arrives )

(% time-out =)}
(wretransmissions)

(# transmission times)

{# transm. errors, transm. time =)
(# transmission times)
(# transm, errors, transm., time =)

The timing assigned tries to model a typical point to point line, where a
fixed transmission delay exists and a variable transmission time depending on the
length of the frame and the modem setup time. Fig. 6 explains the interpretation

ol each one.

get {0..no. limit}

Waiting to get user data

BendInfo 8

Frame Sending time

Rechck {0..39]

Waiting for RecAck before t-out

i 40

Time out

RecInfo {0..no limit}

Waiting for info [rame

give © Give data to user immediately
SendAck 2 Ack Sending time
- Reclnfo 10 Line delay
RecAck 10 Line delay
i 10 Line delay

Fig. 6. Meaning ol the events.

Event occurrence is assumed instantaneous. TIC events represent the end of
the real events. For example SendInfo 8 represents the instant where the last
bit goes into the line interface or ReeInfo 10 the instant of time where the last

bit 1s received at the other end.
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Fig. 7. Evolution of the stop and wait protocol.

The evolution of the system is represented graphically by the tree shown
in Fig. 7. The dashed lines represent a recursive definition in the transitions
generated. In the left tree all the events remain visible. In the rightmost tree all
the communication between the transmitter and the line and between the receiver
and the line is hidden. This evolution shows clearly how the information can be
duplicated by such a protocol.

The important difference between the evolution of the system obtained here
and other asynchronous calculi lies in the way the merging of events is done,
In a non timed interpretation (for example. LOTOS without time) other evo-
lutions of the system which do not make sense in a timed context would have
occurred.

6.2. The Railroad Crossing Example

A second example of the use of TIC which has been taken from Leveson's paper
[LeS87] where it is used as a paradigm of time is presented in this section. The
example models a simple railroad crossing. The system is composed of three parts
{Fig. 8): the train model, the computer or controlling device model and the gate
model.

The exact TIC description of the railroad crossing is given in the specifi-
cation of RailRoadCrossing. Each process of this specification models one
part of the system: Sensors models the train approach as detected by the
sensors, Controller models the compuler o controlling device and Gate mod-
els the gate behaviour. The time attributes of the specification reflect a given
set of hypotheses about train speed, distance between trains and gate moving
times.
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EnterCrossing® Sensors

LeaveCroggingg

Train¥ear®

NearInd

Qutlnd

Do wnCﬂmmandI kpcomand
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Controller

Gale

& b
Down Up

Fig. 8. The railroad crossing: Block structure.

Process RailRoadCrossing =

(

Sensors

{
| [NearInd, OutInd]| Contreller

]

| [DownCommand, UpCommand]| Gate

)

Endproc

Process Sensors =

TrainNear {0..no_limit} (»

; Nearlnd 0 (=
; EnterCrossing 35000 {*
; LeaveCrossing 20 (#
; OutInd O {
;1101 (£
; Bensors

Endproc

Process Controller :=

(

NearTnd {0..no_limit} (=

; DownCommand O (%
: Controller

1 OutInd {0..no_limit} (=
; UpCommand 0O (=
; Contreller

Endproc

Procezs Gate :=

(

DownCommand {0..no_limit}

waiting for the train approaching w»)
sensor sends signal to controller «)
train enters the crossing +)

train leaves the crossing =)

gansor sends signal to conlroller )
stabilization delay »)

controller waiting for Nearind signal «)
controller sends command to gate «)

controller waiting for OutInd signal #)
controller sends command to gate )

{#» gate waiting for command &)
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; Down 100 (# gate reaches down position «)
; Gate
[] UpCommand {0..no_limit} (# gate walting for command =)
: Up 100 (# gate reaches up position =)
:» Gate
)
Endproc

The evolution of the timed system is shown in Fig. 9. The left hand side
evolution includes all the events of the model. The right hand side shows an
abstraction of the evolution where the internal communication between the parts
has been removed. This simplified evolution is weak bisimulation equivalent to
the BailRoadCrossing behaviour when the internal communication between
parts is hidden, i.e. gates NearInd, OutInd, DownCommand and UpCommand.

The correctness of the behaviour should be determined by assuring that the
Down event occurs before the EnterCrossing event. Some safety time interval
should be also assured between both events.

®
TrainNear {0..o0} TrainNear {O. co}I
L ]
HearInd O Down 100
L] L ]
DownCommand O EnterCreossing 2900
®
Down l()(]I LeaveCrossing 20
®
EnterCrossing 2900 Up 100
\ L
LeaveCrossing 20 )
L
OutInd O
L
UpCommand 0
®
Up 100

Fip. 9. The railroad crossing: Evolution in time.

7. Conclusions and Further Work

The paper presents a calculus which is an upward compatible extension of basic
LOTOS. The calculus differs strongly from the untimed case in the definition
of interleaving of events in the presence of timing constraints. The paper also
includes the definition of timed bisimulation equivalences. The three main goals
of this development have been: 1) To give a definition of interleaving for which
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equivalences may be given, which has similar properties to the untimed case.
2) To define the interleaving in such a way that the merge of events in lime
of interleaved behaviours follows the natural evolution of events in time. 3} To
have an operational definition of the calculus, so that it is possible to extend the
definition of tools like LOLA [QPF89], to the timed case. The three goals have
been achieved, although the definition of the new interleaving operator may be a
bit complex.

From the expressiveness point of view, the compositionality in time of inter-
leaved behaviours is adequate. This means that you can compose limed systems,
and the evolution of the composition models the natural evolution of such a sys-
tem. On the other hand, the new interleaving could look rather counterintuitive,
because interleaved behaviours are not independent. Nevertheless, this definition
of the evolution of a system has given no problems in any of the studied examples.
The main limitation of TIC is its inability to represent as soon as possible (asap )
timing requirements. The introduction ol asap requirements is one of the future
directions of work.

The use of null separation time between events is also a controversial point.
From the expressiveness point of view, it i5 a good approximation ol negligible
time separation, and from the semantic point of view it is necessary for the
representation of interleaving. To be exact, it 1s necessary, in that the calculus
does not allow simultancous execution of two events. The introduction of real
parallelism to represent simultaneous events could have avoided the allowance of
the zero separation time.

From the applicability point of view, the calculus has been developed to make
possible the study of the evolution of systems in time. This evolution will be
studied mainly by state exploration and testing, using tools like LOLA [QPF89],
which can be easily adapted to the timed semantics, and hopefully will have a
more or less similar performance as in the non timed case. Testing TIC processes
is 4 practical necessity, so a definition and study of testing equivalence i1s needed.

Although it seems that the defined equivalences have the properties required
from the application point of view, the development of a complete equational
characterization of the weak timed bisimulation would be of interest because it
would provide a more complete knowledge of the properties of the equivalence,
and it would probably lead to a denotational model of the induced semantics.
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