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1 Introduction
In the current IPv4 (Internet Protocol version 4) infra-

structure, configurations in which a network obtains con-
nectivity through two or more providers are gaining mo-
mentum [1]. These networks are known as multihomed. The
main advantage provided by this configuration is fault
tolerance, although additional capabilities such as traffic
engineering can also be obtained.

The most popular multihoming configuration for IPv4
relies on interdomain routing, relaying on the injection into
the BGP (Border Gateway Protocol) routing system of the
prefix or prefixes of the multihomed network [2], as it is
shown in Figure 1. If a failure occurs and affects one of the
paths in the meshed topology, the routing system will find a
valid alternative path, if one exists.

Providing multihoming benefits for a network implies
adding to the global routing table new entries that corre-
spond to the prefixes of the multihomed networks. These
entries were not needed before becoming multihomed, be-
cause reachability was propagated through an aggregated
prefix of a larger provider. The addition of new entries in
the global routing table is deemed as undesirable, since it
results in scalability problems for the BGP route processing
that yields to increases in the convergence time [3] among
other inconveniences. To limit the number of entries propa-
gated into BGP, some providers impose de facto restrictions
by filtering overly specific prefixes, precluding small net-
works and residential users from the benefits of multihoming.
Despite this, BGP configuration hassles and stringent re-
quirements for the stability in the operation would result in
too many obstacles for these users. For these cases it is still
possible to deploy solutions based on Network Address
Translation (NAT) to obtain limited fault tolerance and traf-
fic engineering capacities [4], as it is shown in Figure 2.
However, besides the problems inherent in NAT [5][6], pre-
viously established communications are not preserved in case
of a failure, because the change of the addresses being used
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would result in an interruption of the communication (e.g.
consider a TCP, Transmission Control Protocol, connection).

For IPv6 (Internet Protocol version 6) deployment there
is a consensus in keeping the number of entries in the rout-
ing table as low as possible, so it is not acceptable in an
IPv4-like multihoming solution. Medium and small IPv6 net-
works will receive addresses from address blocks assigned
to large providers. These large providers exchange routing
information through BGP. A medium or small network that
seeks multihoming benefits, i.e. a residential user with two
connectivity providers, receives different address blocks
from each provider. Therefore, the end systems of this net-
work will be configured with addresses built upon the pre-
fixes of each one of the providers. This configuration is
known as multiaddressing.

There are several problems for a system with addresses
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Figure 1: BGP Route Injection for the Provision of
Multihoming in Ipv4 Networks.
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Figure 2: NAT-based Multihoming in IPv4 Networks.
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from several providers. First, the possibility of establishing
a communication with a remote element is not guaranteed
even in the absence of failures. Some providers perform in-
gress filtering for security reasons, filtering those packets
that are sent by their clients with source addresses that do
not belong to the address block assigned to the clients. If a
system in a multiaddressed network sends through provider
A packets that carry addresses obtained from provider B,
these packets will be discarded by provider A due to ingress
filtering. Even if this problem is solved, there still remain
some adjustments to current networking functionalities to
assure that a valid path is found for a communication that is
to be initiated after a network failure. Finally, more complex
modifications are required for the preservation of commu-
nications that were established prior to a failure.

In this article we present tools for handling the estab-
lishment of new communications when multiaddressed net-
works are considered, and additional tools for preserving
previously established communications in case of failure.
For establishing new communications, we propose the de-
ployment in the multihomed networks of routing systems
that rely on source address for packet forwarding in addi-
tion to the common use of the destination address. We also
propose the exploration of different pairs <source address,
destination address> when a failure occurs. For the preser-
vation of established communications, a new sublayer within
the network layer is proposed for dynamically managing,
by means of a specific protocol, the multiple locators
available in a multiaddressing scheme. The following tools
required for solution are currently been discussed by the
IETF (Internet Engineering Task Force) [7]: tools for locator
management, tools for failure detection, tools for the deter-
mination and enforcement of valid alternative paths, and
tools for flow identification regardless of the selected path.

The article is structured as follows: in the next section
the tools required for the proper establishment of new con-
nections in a multiaddressing environment are discussed,
considering scenarios with and without failures. In Section
3 we present the tools that allow the preservation of a com-
munication in case of a failure. Finally, conclusions are pre-
sented.

2 Initiating Communications in A
Multiaddressing Environment
As it has been presented in the introduction, a

multiaddressing environment can suffer from connectivity
problems without the occurrence of any failure. We can il-
lustrate this by the case study depicted in Figure 3, in which
Host1 is going to initiate a communication with Host2. In a
common situation, Host1 would access the DNS to obtain
the IPv6 addresses in which Host2 is accessible. Host1 will
perform the Default Address Selection procedure [8], taking
as inputs all Host2 addresses that have been acquired from
the DNS, and all Host1 addresses locally available, to obtain
a <source address, destination address> pair to be used in
the communication.

Even though there is no failure in the network infrastruc-
ture, it may happen that ingress filtering [9] may preclude
the possibility of communication. This filtering is applied
to avoid the malicious usage of addresses that are not owned
by the users, i.e. address spoofing. The motivation is as
follows: If a user spoofs an address, in particular an address
that does not belong to the topological IP region in which
the user is placed, it could perform attacks anonymously,
since the real location of the attacker could not be easily
obtained. Note that if the attacker is not placed in the path
between the attacked node and the network from which it
has spoofed the address, the attacker may send packets, but
could not receive the responses, since these responses will
be sent to the network that owns the address. However,
Denial of Service attacks can be issued in this situation, by
flooding the network to which the attacker’s packets are
directed, or by flowing the network from which the source
addresses have been spoofed (if the response traffic gener-
ated upon the attacker’s request is high). A protection meas-
ure against address spoofing is to deploy ingress filtering in
the providers. Ingress filtering consists of filtering those
packets generated by a client with source addresses that does
not belong to the address range assigned to that client.
Coming back to the multihoming scenario, a packet gener-
ated by Host1, with a legitimate address obtained from
ProviderA, will be discarded if the packet is forwarded
through ProviderB. Note that when Host1 chooses a source
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address for the packet, it selects the provider through which
packets coming from Host2 are received (and therefore, part
of the reception path). As a consequence of the deployment
of ingress filtering, source address selection also defines the
provider through which packets can exit without being
filtered. Analogously, the destination address also establishes
a particular path through which packets will arrive to Host2,
and the path that Host2 has to use for outgoing packets.
Therefore, we can state that in a multiaddressing scenario
the node that initiates the communication defines the ingress
and exit path that will be used by the packets of the
communication.

To avoid packet losses due to ingress filtering, we pro-
pose the deployment in the multihomed network of an intra
-site routing scheme in which the source address is also taken
into account for forwarding [10][11]. For this purpose, the
routers in the multihomed networks will have, in addition to
the default routing table, as many routing tables as different
providers for the multihomed networks. In the packet
forwarding process, the source address of the packet con-
sidered will determine the routing table to use, that will re-
sult in forwarding outgoing packets through the provider
that has delegated the address block used in the source
address (or the default routing table if the packet is an in-
coming one and the source address does not match with any
local prefix). An especially simple configuration occurs when
a single router is responsible for connecting to all the
providers, because it is only required to configure a single
router. This may be a typical case in residential networks.

Once the basic connectivity issues have been solved, we
should address the initiation of new connections in case of
failures. If the failure arises in one of the providers or links
close to Host2 (for example in ProviderK), and Host1 starts
the communication, it can happen the following: Host1 ac-
cesses DNS to obtain the addresses of Host2. With the re-
ceived addresses, the Default Address Selection procedure
[8] selects a <source address, destination address> pair.
Suppose that the destination address belongs to the address
range delegated to the network of Host2 by ProviderK. The
application tries to establish the communication using these
parameters, but it is not possible, and detects the communi-
cation problems (the transport connection establishment
process indicates a failure, or a timer in the
application expires). In this case, the behaviour
recommended to the applications is to retry with
another destination address from the set
obtained from the DNS [8]. Repeating this
process, connectivity failures close to Host2
can be solved if at least one valid path to the
destination exists, with a time penalty of the
sum of the time required for the timer expira-
tion for all the explored paths.

If the failure occurs close to Host1, the ex-
ploration of alternative paths is achieved by the
variation of source addresses. This would
require modifications in the Default Address

Selection mechanism, modifications that are currently under
discussion. Note that in the proposed scheme, failure
detection at the endpoints relies only on the information
provided by timer expiration, and this information is not
enough to determine if the failure has occurred in the desti-
nation endpoint (for example, because the destination has
been turned off), in a location close to the destination
endpoint (requiring changes in the destination address), or
close to the source (requiring changes in the source address).
Additionally, multiple failures may arise, restricting the
combinations of source and destination addresses that are
valid. Therefore, only the exploration of all the possible pairs
<source address, destination address> assures connectivity
if there is at least one valid path among the endpoints. The
sequential exploration of these alternatives can be slow, while
parallel exploration can be expensive in bandwidth and may
require changes in the applications or in the network stack
interface.

3 Preservation of Communications in A
Multiaddressing Environment
After the discussion in the previous section of basic issues

about the establishment of communications in
multiaddressing multihomed environments, we approach in
this section the problem of preserving established commu-
nications (such as a TCP connection - but not exclusively)
in case of a failure. It would be desirable that this function-
ality were provided to the applications in a transparent fash-
ion, i.e. without requiring changes in the applications for
benefiting from the service. We can also consider that it could
also be beneficial if the service is also provided transpar-
ently to the transport layer (TCP, UDP - User Datagram
Protocol - and other protocols). To fulfil both requirements,
it has been proposed that the multihoming functionality can
be provided at the network layer. The following considera-
tions are developed from the information available in sev-
eral working documents ([12][13][14][15]).

A network layer multihoming solution would be in charge
of changing the IP addresses used for packet forwarding, to
ensure that addresses that define valid paths for a consid-
ered communication are used. The addresses included in the
actual IP packets, addresses that are used for packet

Figure 3: Multiaddressing-based Multihomed in IPv6.
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forwarding, are known as locators. However, the transport
layer usually employs IP addresses as part of the basic pa-
rameter set that identifies a communication. TCP, for exam-
ple, uses the source address and destination address, apart
from source port and destination port, to uniquely identify a
connection. These addresses are usually provided by the
application of the host that is starting the communication,
and they can also be used by the applications for identifying
the communication. When we use the IP addresses this way,
we call them identifiers. After establishing a communica-
tion in a similar fashion to the one commented in the previ-
ous section, a multihoming solution will be in charge of
managing different locators to ensure that connectivity be-
tween endpoints is preserved if there is at least one valid
path between them, while presenting a single identifier to
the upper layers.

The management of identifiers and locators will be per-
formed in an entity at the endpoints, included in the network
layer as an identification sublayer. This sublayer will ex-
change the locators that are available for a given communi-
cation in each of the endpoints, to make the locators ready
to be used in case of failures. Following the example pre-
sented in the previous section, once established the commu-
nication between Host1 and Host2, either host (for example
Host2) could initiate an exchange in which it could inform
the other about all the locally available locators, triggering
the corresponding answer. This task would be performed by
a specific protocol for multihoming, and a new state will be
generated for the participants in the information exchange.
From now on, if a problem is detected when a given pair is
used in the communication, any host can modify the pair to
find a valid path.

Tools for identifying flows after a change in the locator
pair are required. It can be necessary to include in the pack-
ets a flow identifier that should have been pre-accorded
between both endpoints by means of the multihoming spe-
cific protocol. This identifier can be included in the packets
in an IPv6 header extension.

To detect a failure, there are several alternatives [14].
First, there are mechanisms that allow the detection of local
problems, such as an interface that is no longer operational.
Additionally, we can rely on the information provided by
upper layers to be able to detect problems in communica-
tions from explicit notifications of failure, or from the ab-
sence of positive confirmations. TCP, for example, could
inform the network layer about communication problems if
a TCP confirmation has not been received within a specified
time. Finally, we can add specific signalling procedures for
multihoming, sending packets that could check reachability
between a given pair of locators. This procedure can be
analogous to an ICMP (Internet Control Message Protocol)
ping (an echo request with its corresponding response), and
it can be used for checking the state of the locators currently
being used for the communication, in parallel to the data
exchange, i.e., out of band. A timer will check if the responses
are received within the appropriate period, and if this is not
the case, a process for the selection of a new locator pair

will be started. The selection process will include a
reachability test for different locator pairs. Once selected a
new pair will be used for subsequent data packet exchanges.
When the remote host receives packets with the new locators,
this host will start a reachability test using as the candidate
pair the locators received from the host that has initiated the
change.

The ability to change locators while a communication is
being held introduces security problems. As a criterion for
the analysis of the security offered by the new multihoming
solutions, it is usually required that the new mechanisms
should not enable vulnerabilities that are not possible in the
current IPv4 infrastructure [16]. With the tools that have
been presented so far, we can think of new attacks that are
not possible when the identifier and locator functions are
integrated in a single IPv4 address, as it is the current case.
A redirection attack consists in abusing of the multihoming
mapping mechanisms to create false identifier-to-locator
mapping. For example, this can be used to induce a victim
to associate one of the attacker’s locators to the target iden-
tifier. Consequently, when the victim sends packets to the
target identifier, he will actually be sending packets to the
attacker.

The main obstacle in defining a mechanism for the man-
agement of multiple locators in multihoming environments
has been the provision of the appropriate security level.
Mechanisms based on cryptography and cryptographically
generated addresses have been proposed to avoid identity
theft [17][18], but these solutions suffer from the high com-
putational cost of performing asymmetric key operations,
cost that can be unacceptable in scenarios such as a server
with a large number of requests per second. Recently it has
been proposed a mechanism, named Hash Based Addresses
(HBA) [19], which protects the relationship between a set
of locators with an identity without incurring large compu-
tational costs. In this proposal, a multihomed host Host1,
located in a network with different prefixes corresponding
to different providers, generates interface identifiers (the 64
less significant bits of the IPv6 address) for its own addresses
by performing a hash of all the available prefixes. In this
way, a ‘signature’ obtained from the prefixes assigned to the
host is included in all its addresses. When a corresponding
host Host2 establishes a communication using a particular
address of Host1 (obtained, for example, from the DNS),
and Host2 receives by means of the multihoming protocol
the alternative locators of Host1, Host2 can check that the
received locators are legitimate. To do so, Host2 performs a
hash of the prefixes of the locators, which should generate
the interface identifier of the address originally used for
establishing the communication. An attacker would require
in the order of 2^63 operations (due to the number of bits of
the hash) to obtain a set of prefixes different from the initially
specified that fulfil the hash check and at the same time
include a locator for the attacker.

4 Conclusions
In this article we have presented the mechanisms that
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are currently under discussion for the support of multihoming
in IPv6 networks. The large availability of IPv6 addresses
allows the deployment of multiaddressing configurations,
which circumvent the scalability problems that pose current
IPv4 solutions. Two sub-problems have been covered: the
initiation of new communications in a multiaddressing
environment, either with or without failures, and the
preservation of established communications in case of a
failure.

For the first scenario, it is proposed that there be a modi-
fication in the routing system within the multihomed net-
works to avoid packet discarding due to ingress filtering,
and also variations in the Default Address Selection mecha-
nism to allow the exploration of different <source address,
destination address> pairs in case of failure. For the preser-
vation of established communications larger changes are
required such as a model in which identifiers and locators
are split, the definition of a new protocol, new states in the
hosts, and the deployment of failure detection mechanisms
in the paths. The 128 bits of the length of the IPv6 address
allows the inclusion of cryptographic information or a hash
of relevant information to provide sufficient security when
performing locator redirections.

As opposed to the IPv4 case, IPv6 allows small networks
- even residential ones - to benefit from multihoming. Even
though there is not yet an outstanding IPv6 application, we
expect that IPv6 multihoming support will contribute to IPv6
success.
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