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Abstract

Simulation frameworks are important tools for 
the analysis and design of communication net-
works and protocols, but they can be extremely 
costly and/or complex (for the case of very spe-
cialized tools), or too naive and lacking prop-
er features and support (for the case of ad-hoc 
tools). In this article, we present an analysis 
of three 5G scenarios using simmer , a recent 
R package for discrete-event simulation that sits 
between the above two paradigms. As our results 
show, it provides a simple yet very powerful syn-
tax, supporting the efficient simulation of relatively 
complex scenarios at a low implementation cost.

Introduction
Simulation frameworks are undoubtedly one of 
the most important tools for the analysis and 
design of communication networks and protocols. 
Their applications are numerous, including the 
performance evaluation of existing or novel pro-
posals, dimensioning of resources and capacity 
planning, or the validation of theoretical analy-
ses, which are based on simplifying assumptions 
whose impact is to be assessed.

In fact, simulation frameworks also make 
a number of simplifying assumptions, typical-
ly about components of the considered system 
that are not directly related to the performance 
variable of interest, to reduce complexity so the 
development of the scenario is easier and numer-
ical figures are obtained faster. This “complexity” 
axis goes from very specialized, large simulation 
tools such as NS-3, OMNeT++, OPNET to ad-hoc 
simulation tools, consisting of hundreds of lines 
of code, typically used to validate a very specific 
part of the network or a given mathematical anal-
ysis. (The list of network simulation tools is vast; 
see e.g., http://people.idsia.ch/∼andrea/sim/sim-
net.html, accessed on Feb. 2018.) The latter are 
often developed over general-purpose languages 
such as C/C++ or Python, over numerical frame-
works such as Matlab, or over some framework 
for discrete-event simulation. See e.g., https://
en.wikipedia.org/wiki/Listofdiscreteeventsimula-
tionsoftware (accessed on Feb. 2018).

On the one hand, the complexity of special-
ized tools (such as their cost, if applicable) pre-
clude their use for short-to-medium research 

projects, as the learning curve is typically steep, 
plus they are difficult to extend, which is mandato-
ry to test a novel functionality. On the other hand, 
the development of ad-hoc tools also requires 
some investment of time and resources, lack a 
proper validation of their functionality, and fur-
thermore, there is no code maintenance once the 
project is finished, for the few cases in which the 
code is made publicly available.

In this article, we introduce the use of a recent 
event-driven simulation package, simmer, and 
show its applicability in fast prototyping three 
5G-related scenarios. simmer sits between the 
above two complexity extremes, and combines 
a number of features that support, among oth-
ers, versatility and repeatability. More specifically, 
some of the key advantages of simmer are as 
follows:
•	 It is based on the very popular R program-

ming language, which benefits from a large 
community of users and contributors, but 
also natively supports the analysis of results 
via the many R statistical and visualization 
packages.

•	 The code has been peer-reviewed [1], and it 
is an official package, with numerous exam-
ples readily available, potentially supported 
by a notable user population.

•	 In addition to its ease of use and versatility, 
its code is partially optimized for speed, and 
therefore it can simulate relatively complex 
scenarios under reasonable times.
We illustrate the use of simmer by simulating 

three different networking scenarios, which are 
inspired by current research trends regarding the 
design of fifth-generation (5G) mobile networks 
[2]. These diverse scenarios confirm the validity 
of simmer as a useful simulation tool that can 
support (at least as a first step) the dimensioning 
of communication systems, or can serve to quan-
tify the trade-offs imposed by a given technology 
decision. More specifically, we consider the analy-
sis of the following scenarios:
•	 Different design options for a crosshaul 

scenario, where packetized in-phase and 
quadrature samples from fronthaul traffic are 
transmitted along backhaul data frames over 
the same links. Thanks to simmer and its 
support for statistical analysis, we can easily 
quantify delays under several queueing disci-

Iñaki Ucar, José Alberto Hernández, Pablo Serrano, and Arturo Azcorra

ACCEPTED FROM OPEN CALL

The authors present 
an analysis of three 5G 
scenarios using simmer, 
a recent R package for 
discrete-event simulation 
that sits between the 
above two paradigms. 
As their results show, it 
provides a simple yet 
very powerful syntax, 
supporting the efficient 
simulation of relatively 
complex scenarios at a 
low implementation cost.

The authors are with Universidad Carlos III de Madrid; Arturo Azcorra is also with IMDEA Networks Institute.
Digital Object Identifier:
10.1109/MCOM.2018.1700960

Design and Analysis of 5G Scenarios with 
simmer: An R Package for 

Fast DES Prototyping



IEEE Communications Magazine • Accepted for Publication 3

plines for different fronthaul/backhaul ratios, 
these being the metrics of interest for these 
scenarios.

•	 The impact of installing small cells in a fiber-
to-the-premises scenario. Here, we analyze 
two different approaches to support the 
highly-demanding cellular traffic along with 
the existing residential traffic, namely, the 
deployment of a remote radio head vs. the 
deployment of a small cell.

•	 Massive Internet-of-Things scenarios, where 
thousands of metering devices share the 
same channel to upload their readings. Here, 
we analyze the impact of access parameters 
on performance, with a particular interest in 
the energy required to deliver the informa-
tion, which will ultimately impact the lifetime 
of devices running on batteries.
This article provides a quick overview of sim-

mer  and its key features. The analyses of the 
three considered 5G-related scenarios showcase 
the multiple benefits of different approaches, and 
the versatility of simmer to easily implement their 
key features.

An Introduction to simmer
simmer  (available for download on the 

Comprehensive R Archive Network (CRAN), 
https://CRAN.R-project.org/package=simmer, 
accessed on Feb. 2018) [1] is a discrete event 
simulation (DES) library for the R Project (https://
www.R-project.org/, accessed on Feb. 2018), the 
open source programming language for statisti-
cal computing that has been receiving increased 
attention, primarily due to its widespread adop-
tion for data science, analytics, and statistical 
research.

By developing simmer  for R, it can benefit 
from this growing ecosystem. Note that sim-
mer is not intended to be a substitute for NS-3 or 
OMNeT++, which are the de facto standards for 
open-source network simulations. Instead, simmer 
is designed as a general-purpose DES framework 
with a human-friendly syntax, and a very gentle 
learning curve. It can be used to complement other 
field-specific simulators as a rapid prototyping tool 
that enables insightful analysis of different designs. 
As we will illustrate in the next section, with sim-
mer it is simple to simulate relatively complex sce-
narios, with the added benefit of the availability of 
many convenient data analysis and representation 
libraries, thanks to the use of R.

The R application programming interface (API) 
exposed by simmer revolves around the concept 
of trajectory, which defines the “path” in the simu-
lation for entities of the same type. A trajectory is 
a recipe for the arrivals attached to it, an ordered 
set of actions (or verbs) chained together with the 
pipe operator (%>%, whose behavior is similar to 
the command-line pipe). The following example 
illustrates a basic simmer workflow, modeling 
the classic case of customers being attended by 
a single clerk with infinite waiting space in a few 
lines of code:

1	library(simmer)

3	cust <- trajectory(“customer”) %>%
		  seize(“clerk”, amount=1) %>%
5		 timeout(function() rexp(1, 2)) %>%

		  release(“clerk”, amount=1)
7
	 env <- simmer(“bank”) %>%
9		 add_resource(“clerk”, capacity=1, 
			  queue_size=Inf) %>%
		  add_generator(“cust”, cust,  
			  function() rexp(1, 1)) %>%
11	 run(until=1000)

13	 arrivals <- get_mon_arrivals(env)
		  resources <- get_mon_resources(env)

Given that both the time at the clerk and 
between customers are exponential random vari-
ables, and the infinite queue length, this example 
corresponds, in Kendall’s notation, to an M/M/1 
queue. It serves to illustrate the two main elements 
of simmer : the trajectory object and the 
simmer environment (or simulation environment).

The customer trajectory (line 3) defines the 
behavior of a generic customer: seize a clerk, 
spend some time, and release it. The env simula-
tion environment (line 8) is then defined as one 
clerk with infinite queue size and a generator 
of customers, each one following the trajectory 
defined above. Based on this syntax, the flexibility is 
provided through a rich set of activities (more than 
30) that can be appended to trajectories, which 
support changing arrivals’ properties (attributes, 
priority, batches); different interactions with the 
resources (select, seize, release, change their prop-
erties); and the generators (activate, deactivate, 
change their properties), and even the definition 
of branches (simple, depending on a condition, or 
parallel) and loops. Finally, some support for asyn-
chronous programming is also provided (subscrip-
tion to signals and registration of handlers).

In addition to providing a powerful yet sim-
ple syntax, simmer  is also fast, for example, 
faster than equivalent frameworks such as SimPy 
and SimJulia for the Python and Julia languag-
es, respectively [1]. The key for this speed is its 
underlying simulation core, which is written in 
C++. Furthermore, and perhaps more importantly, 
simmer implements automatic monitoring capa-
bilities: every event is accounted for by default, 
both for arrivals (starting and ending times, activity 
time, ending condition, resources traversed) and 
resources (server and queue status), and all this 
information can be easily retrieved in standard R 
data frames for further processing of results (lines 
13-14 of the clerk example).

Modeling 5G Scenarios
In what follows, we will model and analyze three 
representative 5G scenarios using simmer. The 
source code for the use cases presented here, 
including configuration (definition of constants 
and parameters), simulation and analysis of 
results, is available online (see the “Articles” sec-
tion at http://r-simmer.org, and the GitHub repos-
itory at https://github.com/r-simmer/simmer, 
accessed on Feb. 2018), while summary statistics 
of the simulations performed and their complexity 
are provided below.

Crosshauling of FH and BH Traffic

This scenario is motivated by the Cloud Radio 
Access Network (C-RAN) paradigm [3], where 
the mobile base station functionality is split into 
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simple remote radio heads (RRH), spread across 
the deployment, and connected by fiber to cen-
tralized (and possibly virtualized) base-band units 
(BBU), at the operators’ premises. C-RAN is an 
architectural shift, aiming at providing capital and 
operational expenditure savings while supporting 
better interference reduction, and improved per-
formance via Coordinated Multi-Point (CoMP).

In this C-RAN paradigm, fronthaul (FH) traffic 
from the RRH has stringent delay requirements, 
while backhaul (BH) traffic from the BBU has mild 
delay requirements. In a general topology, such 
as the one illustrated in Fig. 1a (“scenario no. 1”) 
[4], packet switches will forward both types of 
traffic, and therefore introducing service differen-
tiation might improve the ability to fulfil the deliv-
ery guarantees of FH traffic, which is in-line with 
the IEEE 802.1CM Time-Sensitive Networking for 
Fronthaul standard under development (http://
www.ieee802.org/1/pages/802.1cm.html, Draft 
0.6, accessed on Feb. 2018). To quantify the ben-
efits of this differentiation, we use simmer to sim-
ulate the scenario, thus supporting, for example, a 
design decision about the best scheme to deploy.

We assume that packet switches are at 75 per-
cent load, and operate at 40 Gb/s line rate. We 
assume 50 percent of this load corresponds to FH 
traffic, and the other 50 percent corresponds to 
BH traffic. Packet arrivals follow a Poisson process 
(although any other arrival process may be used 
in the simulation, for instance, bursty, self-similar). 
Regarding packet sizes, FH packets are assumed 
to be CPRI (Common Public Radio Interface) basic 
frames of 80 byte length (i.e., CPRI option 4, see 
[5]), while BH packets follow the classic AMS-IX 
(Amsterdam Internet Exchange) trimodal func-
tion, namely seven out of 12 packets are short 
(40 bytes), four out of 12 are medium size (576 
bytes), and one out of 12 packets is long (1500 
bytes) (Amsterdam Internet Exchange Ethernet 
Frame Size Distribution, statistics available online 
at https://ams-ix.net/technical/statistics/sflow-stats/
frame-size-distribution, accessed on Feb. 2018).

We consider three different policies for service 
differentiation at the N switches:
•	 No service differentiation.
•	 Strict priority (SP) is given to FH over BH, but 

without preemption.
•	 SP is given to FH over BH with preemption.

For each of these policies, we first simulate a 
one-switch scenario with the traffic characteris-
tics described above, and compute the queueing 
delay for FH and BH traffic. The results are depict-
ed in Fig. 2a, where we use box-plots to illustrate 
the {5, 25, 50, 75, 95}-th percentiles.

As the figure shows, the first strategy (“without 
SP”) results in both types of traffic experiencing 
the same queueing delay. The second strategy 
(“with SP”), that is, service differentiation without 
preemption, results in a much improved service 
for FH traffic, as FH packets only have to wait 
for other FH packets ahead, and sometimes one 
BH packet being served (i.e., the residual service 
time). The third strategy (‘with SP & preemption’) 
implements a preemption strategy, discarding BH 
traffic from the transmission line if a FH packet 
arrives which, as the figure shows, does signifi-
cantly improve delay performance (the 95th per-
centile drastically decreases), which was caused 
by the long transmission times of long BH frames 
(1500 bytes). For this scenario, we conclude that 
a preemption strategy reduces queuing delay to 
the minimum, with very high delivery guarantees.

We next analyze scenarios where the FH has 
to transverse N packet switches in tandem, each 
one also serving BH traffic, as illustrated in Fig. 1a. 
We depict in Fig. 2b the queueing delays of FH 
traffic for N = {1, 2, 5}, under the three considered 
policies (the N = 1 case corresponds to the same 
results as in the previous experiments). As shown, 
FH queueing delay accumulates after traversing 
multiple switches for the first and second policies, 
both in terms of median and percentiles, hence 
jitter too. Only the SP strategy with preemption 
keeps both delay and jitter values extremely low, 
since FH packets need to wait only if the server is 

Figure 1. Use cases: description of: a) scenario no. 1; b) scenario no. 2; c) scenario no. 3.
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occupied by other FH packets. In contrast, the SP 
strategy without preemption shows accumulated 
packet delay and packet delay variability after tra-
versing multiple switches.

Implementation Details: The simulation 
implements a single trajectory for the FH traffic, 
fh_traffic, which seizes the N packet switches 
sequentially. Additionally, a list of N trajectories 
called bh_traffic, one for each switch, models 
the interfering BH traffic. The switches are defined 
as resources with capacity=1, and infinite queue 
length. A generator of FH traffic plus N generators 
of BH traffic are attached to their respective tra-
jectories. All the elements are encapsulated into a 
function, and a number of constants are parame-
terized, namely, the number of switches, FH traf-
fic’s priority, and whether the switches should be 
preemptive or not. As can be seen, all the cases, 
defined as a data frame (one case per row), are 
easily parallelized using standard R tools (i.e., the 
R-core parallel package).

All the monitoring information automatical-
ly collected by simmer for the arrivals (BH and 
FH packets) can be retrieved as a data frame 
using the get_mon_arrivals() method. This 
enables further analysis and visualization in only 
a few lines of code using the dplyr  (https://
CRAN.R-project.org/package=dplyr, accessed on 
Feb. 2018) and ggplot (https://CRAN.R-project.
org/package=ggplot2, accessed on Feb. 2018).} 
packages.

Mobile Traffic Backhauling with FTTx

We next consider the case of a residencial area 
with a Fiber-To-The-Premises (FTTx) infrastructure, 
that is, an optical distribution network (ODN), 
composed of the optical line terminal (OLT), split-
ters, and the optical network unit (ONU) at the 
users’ premises. As Fig. 1b illustrates (“scenario 
no. 2”), we assume that an operator is planning 
to deploy an antenna, carrying the mobile traffic 
over the ODN, and is considering two implemen-
tation options:
•	 Deployment of a small cell, reducing the 

amount and requirements of the generated 
traffic.

•	 Deployment of an RRH, following the C-RAN 
paradigm discussed above, which would 
therefore generate time-sensitive FH traffic.

In both cases, we analyze the upstream chan-
nel of a time-division multiplexed passive optical 
network (TDM-PON) providing broadband access 
to the residential and mobile users. We assume for 
simplicity the case of ITU-T G.984 Gigabit PON (it 
would be straightforward to extend the results to 
other TDM-based PONs, such as XG-PON, XGS-
PON, EPON, 10G-EPON), with a total capacity of 
1.25 Gb/s in the upstream, and where each ONU 
generates 20 Mb/s of upstream traffic.

Small Cell: Here we assume that the small 
cell generates 150 Mb/s peak traffic, and shares 
the ODN with 31 residential users, which corre-
sponds to an average total load of 61.6 percent. 
We assume bursty arrivals following a compound 
Poisson model, where both the bursts and the 
burst length are Poisson-distributed, with a mean 
of 20 packets. As in the previous use case, packet 
sizes are randomly chosen following the AMS-IX 
trimodal distribution, yielding an average burst 
size of 6407 Bytes. In this case, we assume a 
dynamic bandwidth allocation (DBA) algorithm 
similar to the IPACT protocol[6], where each 
ONU requests at the end of its transmission win-
dow resources for the next cycle, while the OLT 
receives such requests, and decides when and 
for how long each ONU may transmit its data in 
the next cycle granting transmission windows in 
a round-robin fashion. We assume a 1 ms guard-
time between transmission windows of consecu-
tive ONUs.

We consider four different quality-of-service 
(QoS) policies for the DBA, these being defined 
by the maximum supported request per cycle per 
ONU (the cellular traffic is always granted their 
requests in each case). If an ONU requests more 
than this maximum transmission window (namely, 
1500 B, 3000 B, 6000 B or infinite, which means 
no limit), the OLT will only grant this maximum, 
and therefore the rest of the traffic will queue at 
the ONU.

RRH Backhauling: Next, we assume an RRH 
generating FH traffic, following the MAC-PHY 
(Media Access Control, physical layer) functional 
split, that is, one OFDM (Orthogonal Frequency 
Division Multiplexing) symbol is sampled, quan-
tized (approx. 6000 B), and transmitted to the 
BBU every 66.67 ms, this resulting in an approxi-
mate rate of 720 Mb/s. This FH traffic now shares 

Figure 2. Queueing delay experienced by FH and BH traffic under different QoS policies: a) FH/BH queueing delay comparison for a 
single switch; b) accumulated FH delay for several packet switches. The whiskers represent the 5th and 95th percentiles.
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the ODN with seven residential ONUs, resulting 
in an approximate total load of 68.8 percent. To 
fulfil the tight delivery requirements of FH traffic, 
we assume that the DBA algorithm guarantees 
periodic TDM reservations for the FH traffic, and 
then the ONUs use a similar algorithm as before 
to share the rest of the available bandwidth.

We depict in Fig. 3 (left) the results corre-
sponding to the uplink delay in Case 1, that is, 
one small cell and 31 ONUs, for both types of 
traffic and the four QoS policies. As in the pre-
vious case, we focus on the queueing delay, 
and represent the different percentiles with box-
and-whisker plots. As the figure shows, when 
requests are not limited (“Inf”), the traffic from 
the ONUs and the small cell experience the 
same delay, as expected. However, the moment 
the DBA algorithm enforces a limit to ONU 
requests, differences appear: the small cell delays 
are smaller and less disperse, while the results for 
the ONU are longer and show more variability. It 
can be seen that with a 1500 B limit, the delivery 
guarantees for the small cell traffic are very tight 
(e.g., 95th percentile around 250 ms), which is 
achieved at the expense of significant delays for 
the ONUs.

Next we depict in Fig. 3 (right) the results for 
the uplink delay in Case 2, that is, a RRH and 
seven ONUs. We do not depict here the delay 
results corresponding to the FH traffic, as in this 
case the reservation mechanism guarantees its 
delivery with zero queueing delay. As the fig-
ure shows, the delay performance obtained by 
users is slightly better than in the previous case, 
although fewer users can be accommodated due 
to traffic demands.

Implementation Details: This scenario serves 
to illustrate a different strategy to code a simula-
tion with simmer. Instead of a trajectory attached 
to an unlimited generator of arrivals, the OLT is 
defined here as a trajectory with a single worker in 
an infinite loop by using the rollback() activi-
ty. This OLT executes the DBA logic encapsulated 
into the set_next_window() function, and 
timely activates the ONUs, defined as resourc-
es, in a round-robin fashion. This is achieved by 
modifying the capacity of a given ONU resource 

to meet the number of packets allocated for the 
next transmission window.

N generators feed traffic into N trajectories 
defined as a list of ONUs. Packets arriving there, 
similar to the previous use case, first seize the cor-
responding ONU resource (which acts as a token 
bucket), and as soon as the OLT increments the 
capacity, they seize the link to be transmitted. An 
additional ONU is defined with a different traffic 
rate for the small cell case. As for the RRH case, 
the RRH trajectory is added, which holds a single 
worker in a loop seizing and releasing the link 
periodically.

As in the previous use case, a number of con-
stants are parameterized (scenario, number of 
ONUs, and TDM reservation limit), and all the 
combinations are parallelized with the R-core 
parallel package. Finally, the monitoring sta-
tistics for the arrivals are retrieved, and a similar 
analysis is made using dplyr  and ggplot  in 
very few lines of code.

Energy Efficiency for Massive IoT
Finally, we consider the case of a massive Inter-
net-of-Things (mIoT) scenario, a use case for 
Long Term Evolution (LTE) and next-generation 
5G networks, as defined by the Third Generation 
Partnership Project (3GPP) in [7]. As Fig. 1c (top) 
illustrates, we consider a single LTE macrocell in 
a dense urban area. The buildings in the cell area 
are populated with N smart meters (for electricity, 
gas, and water), and each meter operates inde-
pendently as a Narrowband IoT (NB-IoT) device.

The devices’ behavior is modeled following 
the diagram depicted in Fig. 1c (bottom), which 
is a simplified version of the Markov chain model 
developed in [8] (Fig. 5). A device may stay in 
RRC Idle (“Off”), and awakes with some peri-
odicity to upload its reading. This communication 
phase encompasses a contention-based random 
access (RA) procedure, with a backoff time ran-
domly chosen between (0, W) time slots, and up 
to m retransmissions. If the connection request 
fails, the reading is dropped, and the device 
returns to the “Off” state. If the connection is suc-
cessful, we assume that the device implements 
the Control Plane Cellular IoT (CP) optimization 
[8], so that the data is transmitted over the RRC 
connection request phase using the non access 
stratum (NAS) level. Then, the device has to wait 
(“Inactive”) until the connection is released, and 
eventually returns to the “Off” state.

The goal of this use case is to study the 
effect of synchronization across IoT devices (for 
instance, due to a power outage) in the energy 
consumption. As in [9], we assume that a device 
provides its readings as often as every hour, and 
the cases of N = {5, 10, 30} · 103 devices in one 
cell are considered. In order to study different lev-
els of synchronization, each node implements an 
additional backoff window prior to the RA proce-
dure. Furthermore, we selected m = 9 and W = 
20; the rest of the parameters (power consump-
tion, timings, message sizes, etc.) can be found in 
[8] (Table 1).

Figure 4 shows the results of the simulation 
for one day. It depicts the energy consumed per 
reading considering a uniform backoff window 
between 0 and 5 (highly synchronized), 10, 30, 
and 60 seconds (non-synchronized). As the num-

Figure 3. Upstream delay for small cell and residential users sharing the 
upstream channel in a TDM-PON.
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ber of devices and the level of synchronization 
grow, the random-access opportunities (RAOs) 
per second grow as well, producing more and 
more collisions. These collisions cause retries, and 
a noticeable impact on energy consumption (up 
to 12 percent more energy per reading). There-
fore, this use case shows the paramount impor-
tance of randomizing node activation in mIoT 
scenarios in order to avoid RAO peaks and pre-
mature battery drain.

Implementation Details: This scenario requires 
a single meter trajectory implementing the logic 
of each IoT device in an infinite loop, and N work-
ers are attached to it at t = 0. Each device regis-
ters itself for a given signal (“reading”), and waits 
in sleep mode until a new reading is requested, 
which is triggered by a secondary trajectory 
(trigger). As soon as a new reading is signalled, 
the RA procedure starts by randomly selecting 
one of the 54 preambles available, which are 
defined as resources. The process of seizing a pre-
amble encompasses two sub-trajectories:
•	 If there are no collisions, the preamble is 

successfully seized, and the post.seize 
sub-trajectory is executed, which transmits a 
reading.

•	 If there is a collision, rejection occurs, and 
the reject  sub-trajectory is executed, 
which performs the RA backoff (for a ran-
dom number of slots), and restarts the RA 
procedure (for a maximum of m retries).
Both sub-trajectories set the appropriate 

power levels P for the appropriate amount of 
time. In this case, these power levels throughout 
the simulation time are retrieved with the get_
mon_attributes() method. Again, the ener-
gy is concisely computed, and represented using 
dplyr and ggplot packages.

Wrapup

Thanks to these scenarios, we have demonstrated 
the usability and suitability of simmer for fast pro-
totyping of three different 5G scenarios. The code 
developed highlights some of the characteristics 
that make simmer attractive for researchers and 
practitioners in communications research:
•	 A novel and intuitive trajectory-based 

approach that simplifies the simulation of 
large networks of queues, including those 
with feedback.

•	 Flexible resources, with dynamic capacity 
and queue size, priority queueing and pre-
emption.

•	 Flexible generators of arrivals that can draw 
inter-arrival times from any theoretical or 
empirical distribution via a function call.

•	 Asynchronous programming features and 
monitoring capabilities, which helps the 
researcher focus on the model design.
Table 1 summarizes the main simulation sta-

tistics for each scenario (simulation time is com-
puted with a machine equipped with an Intel(R) 
Xeon(R) CPU E5-2620 v4 @ 2.10GHz x4 (32 
cores), and 64 GB of RAM, Debian GNU/Linux 8, 
R 3.3.2, and simmer 3.6). These numbers attest 
that simmer can be used to simulate relatively 
complex scenarios with very few lines of code 
(under 100 lines in all cases). Furthermore, the 
automatic monitoring capabilities embedded in 
simmer, and the integration with the R language, 

enable sophisticated analyses and visualizations 
with only a few more lines. It is likewise remark-
able the ease with which multiple scenarios, with 
different parameters, can be simulated concur-
rently thanks to base R functions. Thus, exploring 
a large number of combinations of parameter val-
ues is not only straightforward, but also as fast as 
the slowest thread given a sufficient number of 
CPU cores available.

Conclusions
In this article, we have introduced the use of the 
simmer R package for the simulation of com-
munication scenarios. We have illustrated its sim-
ple yet powerful syntax, and have demonstrated 
its ease of use and functionality with the analy-
sis of three 5G-inspired scenarios, correspond-
ing to radio, access, and metro deployments. The 
results obtained, which can be easily computed 
thanks to the powerful capabilities of R, help take 
design decisions related to hardware choices, 
traffic prioritization or access scheme configura-
tion. Because of these, we believe simmer is a 
powerful tool to validate analytical studies, or to 
complement the use of more complex and costly 
simulation frameworks.
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Table 1. Overview of simulation features.

 Use case 1 Use case 2 Use case 3

Simulation time(s) ~10 ~150 ~150

No. of parallel scenarios 12 5 12

Max. events, 1 scenario 2 215 076 4 427 839 28 364 172

Total no. of events 14 565 424 11 196 337 98 952 165

Implementation lines 30 97 42

Analysis + plotting lines 28 18 14

Figure 4. Energy consumption per transmission attempt for different traffic 
models and number of devices.
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It is likewise remarkable 

the ease with which 

multiple scenarios, with 

different parameters, 

can be simulated 
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base R functions. Thus, 
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also as fast as the slow-

est thread given enough 
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available.


