
IEEE Communications Magazine • Accepted for Publication 2 0163-6804/18/$25.00 © 2018 IEEE

Abstract

Simulation frameworks are important tools for
the analysis and design of communication net-
works and protocols, but they can be extremely
costly and/or complex (for the case of very spe-
cialized tools), or too naive and lacking prop-
er features and support (for the case of ad-hoc
tools). In this article, we present an analysis
of three 5G scenarios using simmer , a recent
R package for discrete-event simulation that sits
between the above two paradigms. As our results
show, it provides a simple yet very powerful syn-
tax, supporting the efficient simulation of relatively
complex scenarios at a low implementation cost.

Introduction
Simulation frameworks are undoubtedly one of
the most important tools for the analysis and
design of communication networks and protocols.
Their applications are numerous, including the
performance evaluation of existing or novel pro-
posals, dimensioning of resources and capacity
planning, or the validation of theoretical analy-
ses, which are based on simplifying assumptions
whose impact is to be assessed.

In fact, simulation frameworks also make
a number of simplifying assumptions, typical-
ly about components of the considered system
that are not directly related to the performance
variable of interest, to reduce complexity so the
development of the scenario is easier and numer-
ical figures are obtained faster. This “complexity”
axis goes from very specialized, large simulation
tools such as NS-3, OMNeT++, OPNET to ad-hoc
simulation tools, consisting of hundreds of lines
of code, typically used to validate a very specific
part of the network or a given mathematical anal-
ysis. (The list of network simulation tools is vast;
see e.g., http://people.idsia.ch/∼andrea/sim/sim-
net.html, accessed on Feb. 2018.) The latter are
often developed over general-purpose languages
such as C/C++ or Python, over numerical frame-
works such as Matlab, or over some framework
for discrete-event simulation. See e.g., https://
en.wikipedia.org/wiki/Listofdiscreteeventsimula-
tionsoftware (accessed on Feb. 2018).

On the one hand, the complexity of special-
ized tools (such as their cost, if applicable) pre-
clude their use for short-to-medium research

projects, as the learning curve is typically steep,
plus they are difficult to extend, which is mandato-
ry to test a novel functionality. On the other hand,
the development of ad-hoc tools also requires
some investment of time and resources, lack a
proper validation of their functionality, and fur-
thermore, there is no code maintenance once the
project is finished, for the few cases in which the
code is made publicly available.

In this article, we introduce the use of a recent
event-driven simulation package, simmer, and
show its applicability in fast prototyping three
5G-related scenarios. simmer sits between the
above two complexity extremes, and combines
a number of features that support, among oth-
ers, versatility and repeatability. More specifically,
some of the key advantages of simmer are as
follows:
•	 It is based on the very popular R program-

ming language, which benefits from a large
community of users and contributors, but
also natively supports the analysis of results
via the many R statistical and visualization
packages.

•	 The code has been peer-reviewed [1], and it
is an official package, with numerous exam-
ples readily available, potentially supported
by a notable user population.

•	 In addition to its ease of use and versatility,
its code is partially optimized for speed, and
therefore it can simulate relatively complex
scenarios under reasonable times.
We illustrate the use of simmer by simulating

three different networking scenarios, which are
inspired by current research trends regarding the
design of fifth-generation (5G) mobile networks
[2]. These diverse scenarios confirm the validity
of simmer as a useful simulation tool that can
support (at least as a first step) the dimensioning
of communication systems, or can serve to quan-
tify the trade-offs imposed by a given technology
decision. More specifically, we consider the analy-
sis of the following scenarios:
•	 Different design options for a crosshaul

scenario, where packetized in-phase and
quadrature samples from fronthaul traffic are
transmitted along backhaul data frames over
the same links. Thanks to simmer and its
support for statistical analysis, we can easily
quantify delays under several queueing disci-

Iñaki Ucar, José Alberto Hernández, Pablo Serrano, and Arturo Azcorra

ACCEPTED FROM OPEN CALL

The authors present
an analysis of three 5G
scenarios using simmer,
a recent R package for
discrete-event simulation
that sits between the
above two paradigms.
As their results show, it
provides a simple yet
very powerful syntax,
supporting the efficient
simulation of relatively
complex scenarios at a
low implementation cost.

The authors are with Universidad Carlos III de Madrid; Arturo Azcorra is also with IMDEA Networks Institute.
Digital Object Identifier:
10.1109/MCOM.2018.1700960

Design and Analysis of 5G Scenarios with
simmer: An R Package for

Fast DES Prototyping

IEEE Communications Magazine • Accepted for Publication 3

plines for different fronthaul/backhaul ratios,
these being the metrics of interest for these
scenarios.

•	 The impact of installing small cells in a fiber-
to-the-premises scenario. Here, we analyze
two different approaches to support the
highly-demanding cellular traffic along with
the existing residential traffic, namely, the
deployment of a remote radio head vs. the
deployment of a small cell.

•	 Massive Internet-of-Things scenarios, where
thousands of metering devices share the
same channel to upload their readings. Here,
we analyze the impact of access parameters
on performance, with a particular interest in
the energy required to deliver the informa-
tion, which will ultimately impact the lifetime
of devices running on batteries.
This article provides a quick overview of sim-

mer and its key features. The analyses of the
three considered 5G-related scenarios showcase
the multiple benefits of different approaches, and
the versatility of simmer to easily implement their
key features.

An Introduction to simmer
simmer (available for download on the

Comprehensive R Archive Network (CRAN),
https://CRAN.R-project.org/package=simmer,
accessed on Feb. 2018) [1] is a discrete event
simulation (DES) library for the R Project (https://
www.R-project.org/, accessed on Feb. 2018), the
open source programming language for statisti-
cal computing that has been receiving increased
attention, primarily due to its widespread adop-
tion for data science, analytics, and statistical
research.

By developing simmer for R, it can benefit
from this growing ecosystem. Note that sim-
mer is not intended to be a substitute for NS-3 or
OMNeT++, which are the de facto standards for
open-source network simulations. Instead, simmer
is designed as a general-purpose DES framework
with a human-friendly syntax, and a very gentle
learning curve. It can be used to complement other
field-specific simulators as a rapid prototyping tool
that enables insightful analysis of different designs.
As we will illustrate in the next section, with sim-
mer it is simple to simulate relatively complex sce-
narios, with the added benefit of the availability of
many convenient data analysis and representation
libraries, thanks to the use of R.

The R application programming interface (API)
exposed by simmer revolves around the concept
of trajectory, which defines the “path” in the simu-
lation for entities of the same type. A trajectory is
a recipe for the arrivals attached to it, an ordered
set of actions (or verbs) chained together with the
pipe operator (%>%, whose behavior is similar to
the command-line pipe). The following example
illustrates a basic simmer workflow, modeling
the classic case of customers being attended by
a single clerk with infinite waiting space in a few
lines of code:

1	library(simmer)

3	cust <- trajectory(“customer”) %>%
		 seize(“clerk”, amount=1) %>%
5		 timeout(function() rexp(1, 2)) %>%

		 release(“clerk”, amount=1)
7
	 env <- simmer(“bank”) %>%
9		 add_resource(“clerk”, capacity=1,
			 queue_size=Inf) %>%
		 add_generator(“cust”, cust,
			 function() rexp(1, 1)) %>%
11	 run(until=1000)

13	 arrivals <- get_mon_arrivals(env)
		 resources <- get_mon_resources(env)

Given that both the time at the clerk and
between customers are exponential random vari-
ables, and the infinite queue length, this example
corresponds, in Kendall’s notation, to an M/M/1
queue. It serves to illustrate the two main elements
of simmer : the trajectory object and the
simmer environment (or simulation environment).

The customer trajectory (line 3) defines the
behavior of a generic customer: seize a clerk,
spend some time, and release it. The env simula-
tion environment (line 8) is then defined as one
clerk with infinite queue size and a generator
of customers, each one following the trajectory
defined above. Based on this syntax, the flexibility is
provided through a rich set of activities (more than
30) that can be appended to trajectories, which
support changing arrivals’ properties (attributes,
priority, batches); different interactions with the
resources (select, seize, release, change their prop-
erties); and the generators (activate, deactivate,
change their properties), and even the definition
of branches (simple, depending on a condition, or
parallel) and loops. Finally, some support for asyn-
chronous programming is also provided (subscrip-
tion to signals and registration of handlers).

In addition to providing a powerful yet sim-
ple syntax, simmer is also fast, for example,
faster than equivalent frameworks such as SimPy
and SimJulia for the Python and Julia languag-
es, respectively [1]. The key for this speed is its
underlying simulation core, which is written in
C++. Furthermore, and perhaps more importantly,
simmer implements automatic monitoring capa-
bilities: every event is accounted for by default,
both for arrivals (starting and ending times, activity
time, ending condition, resources traversed) and
resources (server and queue status), and all this
information can be easily retrieved in standard R
data frames for further processing of results (lines
13-14 of the clerk example).

Modeling 5G Scenarios
In what follows, we will model and analyze three
representative 5G scenarios using simmer. The
source code for the use cases presented here,
including configuration (definition of constants
and parameters), simulation and analysis of
results, is available online (see the “Articles” sec-
tion at http://r-simmer.org, and the GitHub repos-
itory at https://github.com/r-simmer/simmer,
accessed on Feb. 2018), while summary statistics
of the simulations performed and their complexity
are provided below.

Crosshauling of FH and BH Traffic

This scenario is motivated by the Cloud Radio
Access Network (C-RAN) paradigm [3], where
the mobile base station functionality is split into

simmer implements

automatic monitoring

capabilities: every

event is accounted for

by default, both for

arrivals (starting and

ending times, activity

time, ending condition,

resources traversed)

and resources (server

and queue status), and

all this information can

be easily retrieved in

standard R data frames

for further processing

of results (lines 13-14 of

the clerk example).

IEEE Communications Magazine • Accepted for Publication4

simple remote radio heads (RRH), spread across
the deployment, and connected by fiber to cen-
tralized (and possibly virtualized) base-band units
(BBU), at the operators’ premises. C-RAN is an
architectural shift, aiming at providing capital and
operational expenditure savings while supporting
better interference reduction, and improved per-
formance via Coordinated Multi-Point (CoMP).

In this C-RAN paradigm, fronthaul (FH) traffic
from the RRH has stringent delay requirements,
while backhaul (BH) traffic from the BBU has mild
delay requirements. In a general topology, such
as the one illustrated in Fig. 1a (“scenario no. 1”)
[4], packet switches will forward both types of
traffic, and therefore introducing service differen-
tiation might improve the ability to fulfil the deliv-
ery guarantees of FH traffic, which is in-line with
the IEEE 802.1CM Time-Sensitive Networking for
Fronthaul standard under development (http://
www.ieee802.org/1/pages/802.1cm.html, Draft
0.6, accessed on Feb. 2018). To quantify the ben-
efits of this differentiation, we use simmer to sim-
ulate the scenario, thus supporting, for example, a
design decision about the best scheme to deploy.

We assume that packet switches are at 75 per-
cent load, and operate at 40 Gb/s line rate. We
assume 50 percent of this load corresponds to FH
traffic, and the other 50 percent corresponds to
BH traffic. Packet arrivals follow a Poisson process
(although any other arrival process may be used
in the simulation, for instance, bursty, self-similar).
Regarding packet sizes, FH packets are assumed
to be CPRI (Common Public Radio Interface) basic
frames of 80 byte length (i.e., CPRI option 4, see
[5]), while BH packets follow the classic AMS-IX
(Amsterdam Internet Exchange) trimodal func-
tion, namely seven out of 12 packets are short
(40 bytes), four out of 12 are medium size (576
bytes), and one out of 12 packets is long (1500
bytes) (Amsterdam Internet Exchange Ethernet
Frame Size Distribution, statistics available online
at https://ams-ix.net/technical/statistics/sflow-stats/
frame-size-distribution, accessed on Feb. 2018).

We consider three different policies for service
differentiation at the N switches:
•	 No service differentiation.
•	 Strict priority (SP) is given to FH over BH, but

without preemption.
•	 SP is given to FH over BH with preemption.

For each of these policies, we first simulate a
one-switch scenario with the traffic characteris-
tics described above, and compute the queueing
delay for FH and BH traffic. The results are depict-
ed in Fig. 2a, where we use box-plots to illustrate
the {5, 25, 50, 75, 95}-th percentiles.

As the figure shows, the first strategy (“without
SP”) results in both types of traffic experiencing
the same queueing delay. The second strategy
(“with SP”), that is, service differentiation without
preemption, results in a much improved service
for FH traffic, as FH packets only have to wait
for other FH packets ahead, and sometimes one
BH packet being served (i.e., the residual service
time). The third strategy (‘with SP & preemption’)
implements a preemption strategy, discarding BH
traffic from the transmission line if a FH packet
arrives which, as the figure shows, does signifi-
cantly improve delay performance (the 95th per-
centile drastically decreases), which was caused
by the long transmission times of long BH frames
(1500 bytes). For this scenario, we conclude that
a preemption strategy reduces queuing delay to
the minimum, with very high delivery guarantees.

We next analyze scenarios where the FH has
to transverse N packet switches in tandem, each
one also serving BH traffic, as illustrated in Fig. 1a.
We depict in Fig. 2b the queueing delays of FH
traffic for N = {1, 2, 5}, under the three considered
policies (the N = 1 case corresponds to the same
results as in the previous experiments). As shown,
FH queueing delay accumulates after traversing
multiple switches for the first and second policies,
both in terms of median and percentiles, hence
jitter too. Only the SP strategy with preemption
keeps both delay and jitter values extremely low,
since FH packets need to wait only if the server is

Figure 1. Use cases: description of: a) scenario no. 1; b) scenario no. 2; c) scenario no. 3.

...

FH flow

(a)

(b) (c)

BH cross -traffic

Switch #N

OLT
Splitter

ONUs

SC/RRH

SC ONU 1 SCONU N...

RRH ONU 1 RRH RRH

1)

2)

CR + Tx Connect

Inactive

0,0Off

1,0

m,0

1,11,W-1

m,1m,W-1

Drop

......

...

...
...

= Idle

= Random access

IEEE Communications Magazine • Accepted for Publication 5

occupied by other FH packets. In contrast, the SP
strategy without preemption shows accumulated
packet delay and packet delay variability after tra-
versing multiple switches.

Implementation Details: The simulation
implements a single trajectory for the FH traffic,
fh_traffic, which seizes the N packet switches
sequentially. Additionally, a list of N trajectories
called bh_traffic, one for each switch, models
the interfering BH traffic. The switches are defined
as resources with capacity=1, and infinite queue
length. A generator of FH traffic plus N generators
of BH traffic are attached to their respective tra-
jectories. All the elements are encapsulated into a
function, and a number of constants are parame-
terized, namely, the number of switches, FH traf-
fic’s priority, and whether the switches should be
preemptive or not. As can be seen, all the cases,
defined as a data frame (one case per row), are
easily parallelized using standard R tools (i.e., the
R-core parallel package).

All the monitoring information automatical-
ly collected by simmer for the arrivals (BH and
FH packets) can be retrieved as a data frame
using the get_mon_arrivals() method. This
enables further analysis and visualization in only
a few lines of code using the dplyr (https://
CRAN.R-project.org/package=dplyr, accessed on
Feb. 2018) and ggplot (https://CRAN.R-project.
org/package=ggplot2, accessed on Feb. 2018).}
packages.

Mobile Traffic Backhauling with FTTx

We next consider the case of a residencial area
with a Fiber-To-The-Premises (FTTx) infrastructure,
that is, an optical distribution network (ODN),
composed of the optical line terminal (OLT), split-
ters, and the optical network unit (ONU) at the
users’ premises. As Fig. 1b illustrates (“scenario
no. 2”), we assume that an operator is planning
to deploy an antenna, carrying the mobile traffic
over the ODN, and is considering two implemen-
tation options:
•	 Deployment of a small cell, reducing the

amount and requirements of the generated
traffic.

•	 Deployment of an RRH, following the C-RAN
paradigm discussed above, which would
therefore generate time-sensitive FH traffic.

In both cases, we analyze the upstream chan-
nel of a time-division multiplexed passive optical
network (TDM-PON) providing broadband access
to the residential and mobile users. We assume for
simplicity the case of ITU-T G.984 Gigabit PON (it
would be straightforward to extend the results to
other TDM-based PONs, such as XG-PON, XGS-
PON, EPON, 10G-EPON), with a total capacity of
1.25 Gb/s in the upstream, and where each ONU
generates 20 Mb/s of upstream traffic.

Small Cell: Here we assume that the small
cell generates 150 Mb/s peak traffic, and shares
the ODN with 31 residential users, which corre-
sponds to an average total load of 61.6 percent.
We assume bursty arrivals following a compound
Poisson model, where both the bursts and the
burst length are Poisson-distributed, with a mean
of 20 packets. As in the previous use case, packet
sizes are randomly chosen following the AMS-IX
trimodal distribution, yielding an average burst
size of 6407 Bytes. In this case, we assume a
dynamic bandwidth allocation (DBA) algorithm
similar to the IPACT protocol[6], where each
ONU requests at the end of its transmission win-
dow resources for the next cycle, while the OLT
receives such requests, and decides when and
for how long each ONU may transmit its data in
the next cycle granting transmission windows in
a round-robin fashion. We assume a 1 ms guard-
time between transmission windows of consecu-
tive ONUs.

We consider four different quality-of-service
(QoS) policies for the DBA, these being defined
by the maximum supported request per cycle per
ONU (the cellular traffic is always granted their
requests in each case). If an ONU requests more
than this maximum transmission window (namely,
1500 B, 3000 B, 6000 B or infinite, which means
no limit), the OLT will only grant this maximum,
and therefore the rest of the traffic will queue at
the ONU.

RRH Backhauling: Next, we assume an RRH
generating FH traffic, following the MAC-PHY
(Media Access Control, physical layer) functional
split, that is, one OFDM (Orthogonal Frequency
Division Multiplexing) symbol is sampled, quan-
tized (approx. 6000 B), and transmitted to the
BBU every 66.67 ms, this resulting in an approxi-
mate rate of 720 Mb/s. This FH traffic now shares

Figure 2. Queueing delay experienced by FH and BH traffic under different QoS policies: a) FH/BH queueing delay comparison for a
single switch; b) accumulated FH delay for several packet switches. The whiskers represent the 5th and 95th percentiles.

0

250

500

750

1000

Without SP With SP SP & preempt.

Q
ue

ue
in

g
de

lay
 [n

s]
Flow

BH
FH

0

500

1000

1500

1 2 5
No. of switches

Q
ue

ue
in

g
de

lay
 [n

s]

Queue
Without SP
With SP
With SP & preemption

IEEE Communications Magazine • Accepted for Publication6

the ODN with seven residential ONUs, resulting
in an approximate total load of 68.8 percent. To
fulfil the tight delivery requirements of FH traffic,
we assume that the DBA algorithm guarantees
periodic TDM reservations for the FH traffic, and
then the ONUs use a similar algorithm as before
to share the rest of the available bandwidth.

We depict in Fig. 3 (left) the results corre-
sponding to the uplink delay in Case 1, that is,
one small cell and 31 ONUs, for both types of
traffic and the four QoS policies. As in the pre-
vious case, we focus on the queueing delay,
and represent the different percentiles with box-
and-whisker plots. As the figure shows, when
requests are not limited (“Inf”), the traffic from
the ONUs and the small cell experience the
same delay, as expected. However, the moment
the DBA algorithm enforces a limit to ONU
requests, differences appear: the small cell delays
are smaller and less disperse, while the results for
the ONU are longer and show more variability. It
can be seen that with a 1500 B limit, the delivery
guarantees for the small cell traffic are very tight
(e.g., 95th percentile around 250 ms), which is
achieved at the expense of significant delays for
the ONUs.

Next we depict in Fig. 3 (right) the results for
the uplink delay in Case 2, that is, a RRH and
seven ONUs. We do not depict here the delay
results corresponding to the FH traffic, as in this
case the reservation mechanism guarantees its
delivery with zero queueing delay. As the fig-
ure shows, the delay performance obtained by
users is slightly better than in the previous case,
although fewer users can be accommodated due
to traffic demands.

Implementation Details: This scenario serves
to illustrate a different strategy to code a simula-
tion with simmer. Instead of a trajectory attached
to an unlimited generator of arrivals, the OLT is
defined here as a trajectory with a single worker in
an infinite loop by using the rollback() activi-
ty. This OLT executes the DBA logic encapsulated
into the set_next_window() function, and
timely activates the ONUs, defined as resourc-
es, in a round-robin fashion. This is achieved by
modifying the capacity of a given ONU resource

to meet the number of packets allocated for the
next transmission window.

N generators feed traffic into N trajectories
defined as a list of ONUs. Packets arriving there,
similar to the previous use case, first seize the cor-
responding ONU resource (which acts as a token
bucket), and as soon as the OLT increments the
capacity, they seize the link to be transmitted. An
additional ONU is defined with a different traffic
rate for the small cell case. As for the RRH case,
the RRH trajectory is added, which holds a single
worker in a loop seizing and releasing the link
periodically.

As in the previous use case, a number of con-
stants are parameterized (scenario, number of
ONUs, and TDM reservation limit), and all the
combinations are parallelized with the R-core
parallel package. Finally, the monitoring sta-
tistics for the arrivals are retrieved, and a similar
analysis is made using dplyr and ggplot in
very few lines of code.

Energy Efficiency for Massive IoT
Finally, we consider the case of a massive Inter-
net-of-Things (mIoT) scenario, a use case for
Long Term Evolution (LTE) and next-generation
5G networks, as defined by the Third Generation
Partnership Project (3GPP) in [7]. As Fig. 1c (top)
illustrates, we consider a single LTE macrocell in
a dense urban area. The buildings in the cell area
are populated with N smart meters (for electricity,
gas, and water), and each meter operates inde-
pendently as a Narrowband IoT (NB-IoT) device.

The devices’ behavior is modeled following
the diagram depicted in Fig. 1c (bottom), which
is a simplified version of the Markov chain model
developed in [8] (Fig. 5). A device may stay in
RRC Idle (“Off”), and awakes with some peri-
odicity to upload its reading. This communication
phase encompasses a contention-based random
access (RA) procedure, with a backoff time ran-
domly chosen between (0, W) time slots, and up
to m retransmissions. If the connection request
fails, the reading is dropped, and the device
returns to the “Off” state. If the connection is suc-
cessful, we assume that the device implements
the Control Plane Cellular IoT (CP) optimization
[8], so that the data is transmitted over the RRC
connection request phase using the non access
stratum (NAS) level. Then, the device has to wait
(“Inactive”) until the connection is released, and
eventually returns to the “Off” state.

The goal of this use case is to study the
effect of synchronization across IoT devices (for
instance, due to a power outage) in the energy
consumption. As in [9], we assume that a device
provides its readings as often as every hour, and
the cases of N = {5, 10, 30} · 103 devices in one
cell are considered. In order to study different lev-
els of synchronization, each node implements an
additional backoff window prior to the RA proce-
dure. Furthermore, we selected m = 9 and W =
20; the rest of the parameters (power consump-
tion, timings, message sizes, etc.) can be found in
[8] (Table 1).

Figure 4 shows the results of the simulation
for one day. It depicts the energy consumed per
reading considering a uniform backoff window
between 0 and 5 (highly synchronized), 10, 30,
and 60 seconds (non-synchronized). As the num-

Figure 3. Upstream delay for small cell and residential users sharing the
upstream channel in a TDM-PON.

SmallCell + 31 ONUs RRH + 7 ONUs

Small cell ONU ONU
0

500

1000

1500

Q
ue

ue
in

g
de

lay
 [µ

s]
Limit [bytes]

1500
3000
6000
Inf

IEEE Communications Magazine • Accepted for Publication 7

ber of devices and the level of synchronization
grow, the random-access opportunities (RAOs)
per second grow as well, producing more and
more collisions. These collisions cause retries, and
a noticeable impact on energy consumption (up
to 12 percent more energy per reading). There-
fore, this use case shows the paramount impor-
tance of randomizing node activation in mIoT
scenarios in order to avoid RAO peaks and pre-
mature battery drain.

Implementation Details: This scenario requires
a single meter trajectory implementing the logic
of each IoT device in an infinite loop, and N work-
ers are attached to it at t = 0. Each device regis-
ters itself for a given signal (“reading”), and waits
in sleep mode until a new reading is requested,
which is triggered by a secondary trajectory
(trigger). As soon as a new reading is signalled,
the RA procedure starts by randomly selecting
one of the 54 preambles available, which are
defined as resources. The process of seizing a pre-
amble encompasses two sub-trajectories:
•	 If there are no collisions, the preamble is

successfully seized, and the post.seize
sub-trajectory is executed, which transmits a
reading.

•	 If there is a collision, rejection occurs, and
the reject sub-trajectory is executed,
which performs the RA backoff (for a ran-
dom number of slots), and restarts the RA
procedure (for a maximum of m retries).
Both sub-trajectories set the appropriate

power levels P for the appropriate amount of
time. In this case, these power levels throughout
the simulation time are retrieved with the get_
mon_attributes() method. Again, the ener-
gy is concisely computed, and represented using
dplyr and ggplot packages.

Wrapup

Thanks to these scenarios, we have demonstrated
the usability and suitability of simmer for fast pro-
totyping of three different 5G scenarios. The code
developed highlights some of the characteristics
that make simmer attractive for researchers and
practitioners in communications research:
•	 A novel and intuitive trajectory-based

approach that simplifies the simulation of
large networks of queues, including those
with feedback.

•	 Flexible resources, with dynamic capacity
and queue size, priority queueing and pre-
emption.

•	 Flexible generators of arrivals that can draw
inter-arrival times from any theoretical or
empirical distribution via a function call.

•	 Asynchronous programming features and
monitoring capabilities, which helps the
researcher focus on the model design.
Table 1 summarizes the main simulation sta-

tistics for each scenario (simulation time is com-
puted with a machine equipped with an Intel(R)
Xeon(R) CPU E5-2620 v4 @ 2.10GHz x4 (32
cores), and 64 GB of RAM, Debian GNU/Linux 8,
R 3.3.2, and simmer 3.6). These numbers attest
that simmer can be used to simulate relatively
complex scenarios with very few lines of code
(under 100 lines in all cases). Furthermore, the
automatic monitoring capabilities embedded in
simmer, and the integration with the R language,

enable sophisticated analyses and visualizations
with only a few more lines. It is likewise remark-
able the ease with which multiple scenarios, with
different parameters, can be simulated concur-
rently thanks to base R functions. Thus, exploring
a large number of combinations of parameter val-
ues is not only straightforward, but also as fast as
the slowest thread given a sufficient number of
CPU cores available.

Conclusions
In this article, we have introduced the use of the
simmer R package for the simulation of com-
munication scenarios. We have illustrated its sim-
ple yet powerful syntax, and have demonstrated
its ease of use and functionality with the analy-
sis of three 5G-inspired scenarios, correspond-
ing to radio, access, and metro deployments. The
results obtained, which can be easily computed
thanks to the powerful capabilities of R, help take
design decisions related to hardware choices,
traffic prioritization or access scheme configura-
tion. Because of these, we believe simmer is a
powerful tool to validate analytical studies, or to
complement the use of more complex and costly
simulation frameworks.

Acknowledgments

This article has been partially supported by the
5G-City project (TEC2016-76795-C6-3-R), and the
TEXEO project (TEC2016-80339-R), both funded

Table 1. Overview of simulation features.

 Use case 1 Use case 2 Use case 3

Simulation time(s) ~10 ~150 ~150

No. of parallel scenarios 12 5 12

Max. events, 1 scenario 2 215 076 4 427 839 28 364 172

Total no. of events 14 565 424 11 196 337 98 952 165

Implementation lines 30 97 42

Analysis + plotting lines 28 18 14

Figure 4. Energy consumption per transmission attempt for different traffic
models and number of devices.

8.0

8.5

9.0

9.5

10.0

5000 10000 30000
No. of devices

En
er

gy
 p

er
 T

x [
m

J]

Backoff window [s]
5
10
30
60

IEEE Communications Magazine • Accepted for Publication8

by the Spanish Ministry of Economy and Compet-
itiveness.

References
[1] I. Ucar, B. Smeets, and A. Azcorra, “simmer: Discrete-Event

Simulation for R,” J. Statistical Software, 2018.
[2] J. G. Andrews et al., “What Will 5G Be?” IEEE JSAC, vol. 32,

no. 6, June 2014, pp. 1065–82.
[3] A. Checko et al., “Cloud RAN for Mobile Networks — A

Technology Overview,” IEEE Commun. Surveys Tutorials, vol.
17, no. 1, First Quarter 2015, pp. 405–26.

[4] A. D. L. Oliva et al., “Xhaul: Toward an Integrated Fronthaul/
Backhaul Architecture in 5G Networks,” IEEE Wireless Com-
mun., vol. 22, no. 5, Oct. 2015, pp. 32–40.

[5] A. de la Oliva et al., “An Overview of the CPRI Specification
and its Application to C-RAN-based LTE Scenarios,” IEEE
Commun. Mag., vol. 54, no. 2, Feb. 2016, pp. 152–59.

[6] G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A
Dynamic Protocol for an Ethernet PON (EPON),” IEEE Com-
mun. Mag., vol. 40, no. 2, Feb. 2002, pp. 74–80.

[7] C. Hoymann et al., “LTE Release 14 Outlook,” IEEE Commun.
Mag., vol. 54, no. 6, June 2016, pp. 44–49.

[8] P. Andres-Maldonado et al., “Optimized LTE Data Transmis-
sion Procedures for IoT: Device Side Energy Consumption
Analysis,” Proc. 2017 IEEE Int’l. Conf. Commun. Workshops
(ICC Workshops), May 2017, pp. 540–45.

[9] R. G. Cheng et al., “RACH Collision Probability for Machine-
Type Communications,” Proc. 2012 IEEE 75th Vehicular
Technology Conf. (VTC Spring), May 2012, pp. 1–5.

Biographies
Iñaki Ucar (inaki.ucar@uc3m.es) received his M.Sc.Eng. in tele-
communications engineering and the M.Sc. in communications
from the Universidad Pública de Navarra (UPNA) in 2011 and
2013 respectively, and his M.Sc. in telematics engineering from
the Universidad Carlos III de Madrid (UC3M) in 2014. Current-
ly, he holds the position of teaching assistant and is pursuing his

Ph.D. in the Department of Telematics Engineering at UC3M.
His work focuses on energy efficiency of wireless networks.

José Alberto Hernández (jahgutie@it.uc3m.es) completed his
five-year degree in telecommunications engineering at UC3M
in 2002, and his Ph.D. degree in computer science at Lough-
borough University, Leicester, United Kingdom, in 2005. He
has been a senior lecturer in the Department of Telematics
Engineering since 2010, where he combines teaching and
research in the areas of optical WDM networks, next-generation
access networks, metro Ethernet, energy efficiency, and hybrid
optical-wireless technologies. He has published more than 80
articles in both journals and conference proceedings on these
topics. He is a co-author of the book Probabilistic Modes for
Computer Networks: Tools and Solved Problems.

Pablo Serrano (pablo@it.uc3m.es) received his degree in tele-
communications engineering and his Ph.D. from the Universidad
Carlos III de Madrid (UC3M) in 2002 and 2006, respectively.
He has been with the Telematics Department at UC3M since
2002, where he currently holds the position of associate profes-
sor. He has over 80 scientific papers in peer-reviewed interna-
tional journal and conferences. He has served as a guest editor
for Computer Networks, and on the TPC of a number of con-
ferences and workshops including IEEE INFOCOM, IEEE WoW-
MoM and IEEE Globecom.

Arturo Azcorra (azcorra@it.uc3m.es) received his M.Sc. degree
in telecommunications engineering from the Universidad
Politécnica de Madrid in 1986 and his Ph.D. from the same
university in 1989. In 1993, he obtained an M.B.A. from the
Instituto de Empresa. He has a double appointment as a full
professor (with chair) in the Telematics Engineering Department
of the University Carlos III of Madrid, and as Director of IMDEA
Networks. He has coordinated the CONTENT and E-NEXT Euro-
pean Networks of Excellence, has served as a program com-
mittee member in numerous international conferences, and
has published over 100 scientific papers in books, international
journals and conferences.

It is likewise remarkable

the ease with which

multiple scenarios, with

different parameters,

can be simulated

concurrently thanks to

base R functions. Thus,

exploring a large num-

ber of combinations of

parameter values is not

only straightforward, but

also as fast as the slow-

est thread given enough

number of CPU cores

available.

