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Abstract

Network slicing is an emerging paradigm in 
mobile networks that leverages NFV to enable 
the instantiation of multiple virtual networks — 
named slices — over the same physical network 
infrastructure. The operator can allocate to each 
slice dedicated resources and customized func-
tions that allow meeting the highly heterogeneous 
and stringent requirements of modern mobile ser-
vices. Managing functions and resources under 
network slicing is a challenging task that requires 
making efficient decisions at all network levels, 
in some cases even in real time, which can be 
achieved by integrating artificial intelligence (AI) 
in the network. We outline a general framework 
for AI-based network slice management, introduc-
ing AI in the different phases of the slice life cycle, 
from admission control to dynamic resource 
allocation in the network core and at the radio 
access. A sensible use of AI for network slicing 
results in strong benefits for the operator, with 
expected performance gains between 25 and 80 
percent in representative case studies.

Introduction
There is consensus among industry and standard-
ization communities that network slicing [1] will 
represent a key paradigm in 5G mobile systems. 
Slicing allows the physical infrastructure to be 
“sliced” [2] into logical network instances, which 
are operated by different entities and may be tai-
lored to support specific quality of service (QoS) 
requirements. A network slice is thus a collection 
of resources and functions that are orchestrated 
to support a specific service [3], encompassing 
software modules running in virtual machines, 
computational resources, and communication 
capacity in the backhaul and radio networks. 
Such modules and resources are customized to 
provide what is necessary for the service, avoiding 
unnecessary overheads and complexity.

The implementation of network slicing poses 
significant challenges from a technology view-
point. The network infrastructure needs to be effi-
ciently shared among different slices [4], while 
isolating slices from each other and customizing 
their functions to different requirements. This 
affects the operation of all of the different func-
tions in the protocol stack, hence mandating that 
the design of mobile networks is completely revis-
ited.

Much of the complexity in redesigning 
mobile networks for slicing relates to decision 
making toward efficient, dynamic management 
of resources in real time. As a matter of fact, 
sliced networks necessitate that a large number 
of logical network instances, each independent-
ly operated by a different tenant, must coexist 
within the same infrastructure and dynamically 
share the available physical resources. This dras-
tically increases the complexity of the network 
management process with respect to legacy non-
sliced systems controlled by a single entity (i.e., 
the network operator) and renders traditional 
human-driven approaches inadequate. Instead, 
what operators need is automated management 
of slices that takes advantage of the large volume 
of data flowing through the network and carrying 
information potentially relevant to a knowledge-
able resource allocation; and is proactive, by fore-
casting and exploiting the upcoming behavior of a 
system involving many different players.

In this article, we discuss the potential utility of 
artificial intelligence (AI) for the management of 
a sliced network, and propose a framework that 
integrates AI into different key functions of the 
system, described in the following section. Follow-
ing that the proposed framework brings together 
three different AI-based solutions for network slic-
ing along with their possible shortcomings and 
countermeasures. The experimental results con-
firm that AI offers very effective and scalable solu-
tions in multiple case studies of network slicing 
management. Our conclusion, drawn in the final 
section, is that AI is well positioned to become 
a cost-effective approach in the context of sliced 
mobile networks, although there is an important 
margin of improvement in terms of trustworthi-
ness and interpretability.

AI-Based Slice Management Framework
The problem of managing a network slicing infra-
structure can be decomposed into several funda-
mental tasks, each of which can then be realized 
with suitable AI tools.

Management Functions in Network Slicing

Resource sharing across slices applies throughout 
all phases of network slice life cycle management 
[5], which consists of four main steps: prepara-
tion, instantiation, configuration, and activation; 
plus runtime and de-commissioning. Our pro-
posed framework covers three key functions that 
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underlie the first three phases (the last phase does 
not involve management decisions):
•	 Admission control is the critical decision mak-

ing mechanism during slice preparation, as it 
determines whether upcoming network slice 
requests can be admitted or not in the system, 
and is enacted so as to ensure that the require-
ments of the admitted slices are satisfied.

•	 Network resource (re)-orchestration is central 
to both slice instantiation and runtime oper-
ation, since it allocates the available network 
resources to the admitted slices in the most 
efficient way possible, and then dynamical-
ly updates such an allocation at runtime in 
order to fulfill the time-varying demands of 
each slice while avoiding capacity outages.

•	 Radio resource scheduling is paramount at run-
time, as it manages the sharing of the radio 
access resources among the network slices, 
ensuring that the potentially stringent require-
ments of all the slices (e.g., in terms of latency 
and throughput) are met over the air interface. 

Figure 1 illustrates the functions above, each of 
which involves different timescales: 
•	 Admission control runs at frequencies that 

match those of arrivals of new network slice 
requests, which may be on the order of 
hours.

•	 The orchestration of resources in soft-
warized networks occurs at frequencies that 
depend on the time required to resize virtual 
machines’ resources, typically on the order 
of minutes.

•	 Scheduling of radio resources applies at a 
finer granularity, down to millisecond inter-
vals in extreme cases.

We remark that different functions may interact 
among them. As an example, information on 
radio resource utilization can be leveraged for 
admission control to understand if accepting new 
slices may cause shortages at the radio access.

Bringing AI into the Picture

All functions above need to make decisions to 
meet the requirements of the individual slices 
while maximizing the overall system performance. 
To this end, they need to learn the dynamics of 
per-slice data traffic and automatically react to 
their impact on the network architecture toward 
their respective management goals. Self-adapt-
ing network function configurations were intro-
duced over a decade ago; however, the solutions 
designed so far typically apply control on limit-
ed sets of parameters that change slowly in time 
(e.g., eNB transmission power). Also, current 
approaches produce outputs that then need 
human intervention to be translated into modifica-
tions of the network configuration (e.g., updating 
the transport network so as to optimize hando-
vers in a given region).

These characteristics are not compatible with 
the novel requirements introduced by network 
slicing. The parameters that may need reconfigu-
ration are much more numerous, as each virtual 
network function may expose several of them in 
a programmatic way. The timescale at which deci-
sions must be made is drastically reduced, as one 
must ideally be capable of acting at radio level 
timings or even at wire-speed. Decisions often 
need to take into account metrics that go beyond 

pure network performance, such as energy effi-
ciency or infrastructure monetization, which may 
hide complex cross-relationships.

This context provides a fertile ground for AI 
to become instrumental in mobile network oper-
ation. All classes of AI may be useful to this end, 
including supervised solutions, which require 
ground truth data for training,unsupervised tech-
niques, which work in the absence of ground 
truth, and reinforcement learning (RL) approaches 
where different forms of interaction with the sys-
tem that has to be controlled are possible [6]. The 
most appropriate AI tools must be selected case 
by case, depending on the involved algorithmic 
requirements and operation timescales.

For instance, RL is particularly well suited when 
the time dynamics of the problem can accom-
modate a learning curve, and the objective is to 
define a sequence of actions that maximize a 
certain reward: this is the case in both admission 
control algorithm and radio resource scheduling, 
as demonstrated by the practical implementations 
presented below.

Note that RL techniques need to be trained 
over a very large amount of data, which makes 
their application complex in real-world environ-
ments where historical data is scarce. Moreover, 
RL approaches suffer from the curse of dimen-
sionality, when the underlying model becomes 
too large. Thus, in some cases, such as in the one 
detailed below, the usage of unsupervised learn-
ing combined with RL may be needed to model 
very complex relationships in the input data. Con-
versely, when the target is to provide decisions 
that are independent of those previously made 
and whose quality can be assessed during system 
training, supervised learning solutions are a strong 
option: this is precisely the settings where network 
resource orchestration takes place, as illustrated 
by the applied solution below. Here, the challenge 
is to provide labeled data for the algorithm, which 
may be an unfeasible task if such labels cannot be 
directly obtained from the network.

Before proceeding further, we remark that 
those presented next are examples of success-
ful integration of AI across the framework in Fig. 
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Figure 1. Comprehensive network slicing frame-

work. The diagram outlines the timescales 
and composition of the key slice management 
functions.
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1. They do not exhaust the application space 
of AI for network operations; rather, they real-
ize important components in the comprehensive 
design of self-organizing sliced mobile networks.

AI-bAsed slIce MAnAgeMent FunctIons
We present viable implementations of the slice 
management functions in our framework that rely 
on AI to perform admission control, orchestration, 
and radio resource scheduling.

AI For AdMIssIon control oF slIces

Network infrastructure resources are limited and 
network slice demand quality guarantees, which 
calls for admission control on new slice requests. 
According to 3rd Generation Partnership Project 
(3GPP) standardization on network slicing, the com-
munication service client (CSC) [5] (i.e., the tenant) 
will request specifi c services to the communication 
service provider (CSP), (i.e., the network provider) 
from among those available in the off ered portfolio. 
Then it will pay for the service according to metrics 
such as the number of served users, the service cov-
erage area, and the duration of the slice instance. 
Such admission control decisions have profound 
business implications: the choices of how many 
network slices to run simultaneously and how to 
share the network infrastructure among slices have 
an impact on the revenues of the network provider.

During the admission control phase, a trade-off  
between resource sharing and key performance 
indicator (KPI) fulfi llment needs to be tackled. If 
resource sharing is too aggressive, the required 
KPIs cannot be met, and revenues drop as net-
work slices do not provide the expected service; if 
instead network operators have exceedingly con-
servative approaches, they may miss substantial 
opportunities for profi t.

Ultimately, the fact that stronger guarantees 
on KPIs require isolated, non-shared resources 
draws a boundary on admissible confi gurations. In 
operational settings, this already tangled trade-off  
is further complicated by many technological and 
possibly time-varying variables, which makes fi nd-
ing the equilibrium point that maximizes revenues 
based on the admitted slices a difficult task. To 
identify the best operating point, slice admission 
control must learn the arrival dynamics of slices 
and make revenue-maximizing decisions based on 
the current system occupation and its expected 
long-term evolution.

Exact methods require that all the variables 
are known and do not scale to large space states 

(which grow exponentially with the number of 
slices). Instead, AI provides apt tools to find the 
ridge between the maximum revenue per unit 
of time and the parameter space where KPIs are 
not met anymore, while proactively taking into 
account the whole set of time-varying relevant 
variables [7]. Specifically, deep reinforcement 
learning (DRL) approaches interact with the large 
set of variables that characterize the system, infer 
its stochastic behavior, and then determine the 
best admission strategy according to the given 
target. A practical implementation is depicted in 
Fig. 2. It leverages two fully connected neural net-
works to estimate the average long-term rewards 
when admitting and rejecting a request, respec-
tively [8]. More precisely, feed-forward neural 
networks (NNs) are used in both components as 
a suitable architecture when dealing with func-
tion approximation. In a nutshell, the DRL solution 
operates as follows:
• Upon arrival of a new slice request, the sys-

tem takes the action (i.e., accepting or reject-
ing the request) that maximizes long-term 
revenue; each NN is in charge of forecasting 
the revenue associated with one action.

• After an action is taken, the algorithm inter-
acts with the system and evaluates the 
quality of the generated revenue through a 
specifi c loss function. This value is then uti-
lized to train the corresponding NN.

• During such a training phase, the wrong
action (i.e., the one related to lower long-
term revenue) is used instead of that actually 
performed with a low probability , which 
allows exploring the system and adjusts to its 
variations over time.

• When a substantial change in the system 
behavior is observed, a complete retraining 
of the system may be triggered to adapt the 
algorithm to the new conditions.
This AI-based approach has a number of 

advantages, including: fl exibility in adapting to sys-
tem settings changes thanks to short convergence 
time; effective operation in situations never met 
before, thanks to the reliable estimations provided 
by the feed-forward NN architectures in those 
cases; and scalability to large network sizes.

AI For network resource orchestrAtIon

Once admitted, slices must be allocated suffi  cient 
resources. Due to the prevailing softwarization of 
mobile networks, such resources are increasingly 
computational in nature. Ensuring strong KPI guar-

Figure 2. High-level design of AI-based slice admission control.
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antees often requires that computational resourc-
es are exclusively allocated to specific slices and 
cannot be shared across others [9]. The dynamic 
allocation of network resources to the different 
admitted slices is, in fact, a chief management 
task in network slicing.

In this context, the network operator needs to 
decide in advance the amount of resources that 
should be dedicated to the different slices so as 
to ensure that the available capacity is used in 
the most efficient way possible and thus minimize 
operating expenses (OPEX). The key trade-off is 
between:
•	 Underprovisioning — If the operator allocates 

less capacity than that required to accom-
modate the demand, it incurs into violations 
of the Service Level Agreement (SLA) estab-
lished with the tenant.

•	 Overdimensioning — Excess resources 
assigned to a slice imply a cost in terms of 
unnecessarily allocated resources that go 
unused.
Finding the correct operational point requires:

1.	Predicting the future demand in each slice [10]
2.	Deciding what amount of resources is need-

ed to serve such demand
These two problems are complex because 

forecasting future demands at the service level 
requires designing dedicated, accurate predictors; 
instead, allocating resources in a way that under-
provisioning and overdimensioning are poised 
to minimize the OPEX of the operator requires 
estimating the expected (negative and positive) 
error of the prediction. Moreover, addressing 1 
and 2 above as separate problems risks leading to 
largely suboptimal solutions, since legacy predic-
tors do not provide reliable information about the 
expected error they will incur.

While the complexity of the complete solution 
may be daunting with traditional techniques, AI 
can be leveraged to address both aspects at once 
by solving a capacity forecast problem. This can 
be realized by training a typical convolutional NN 
(CNN) architecture for time series prediction with 
a dedicated loss function that, instead of simply 
minimizing the error, accounts for the respective 
costs of service level agreement (SLA) violations 
and capacity overprovisioning [11]. Note that 
we employ a CNN-based architecture instead of 
recurrent NN (RNN) models traditionally used for 
regression problems. Unlike RNN, CNN allows 
exploiting inherent spatial correlations in the traf-
fic generated at different geographical locations. 
Moreover, we adopt a 3D-CNN architecture that 
can accommodate a tensor input; by having time 
as the third dimension, the model can properly 
account for relevant temporal autocorrelations.

The operation of the proposed approach is 
exemplified in Fig. 3, where a typical traffic predic-
tion minimizing the mean absolute error (MAE) is 
compared to a capacity forecast that accounts for 
the actual costs of underprovisioning and overdi-
mensioning. As shown in the top plot of Fig. 3, 
the network trained with MAE tries to anticipate 
the exact demand. By doing so, it incurs expen-
sive underprovisioning during a substantial por-
tion of the time, as depicted in the bottom plot. 
Instead, the network trained with Deepcog can 
learn how to dimension capacity in the next time 
slot so as to avoid SLA violations, while keeping 

overprovisioning at a minimum, as also illustrated 
in the middle plot. Such a properly tuned AI-based 
solution allows determining the resources that 
should be proactively allocated to each slice to 
accommodate their future demand. Ultimately, 
this approach solves 1 and 2 at once via AI, while 
minimizing the overprovisioning and avoiding the 
service requirement violations generated by a leg-
acy traffic predictor, with major monetary savings 
for the operator.

AI for Slice Scheduling at Radio Access

At radio access, a key challenge of network slicing 
is the design of a radio access network (RAN) 
virtualization (vRAN) mechanism that jointly pro-
vides isolation between network slices and adapts 
the allocation of pooled physical resources to the 
needs of each virtual RAN. As highlighted above, 
this must occur at much faster timescales than 
those considered before. Thus, the design of algo-
rithms that implement adaptive policies to multi-
plex resources is paramount.

However, optimizing the allocation of resourc-
es is particularly challenging as there is a strong 
nonlinear coupling between computing and 
radio control policies, which makes it very hard 
to determine the compute resources that should 
be allocated to a slice depending on the amount 
of radio resources dedicated to it. The compli-
cated relationship between radio and compute 
resources is made evident by the experimental 
results shown in Fig. 4. The plots depict the uplink 
throughput performance in high signal-to-noise 
ratio (SNR) regimes of a virtualized LTE baseband 
unit (BBU) for a wide set of radio (abscissa) and 
computing (ordinate) allocation policies and dif-
ferent data load conditions. The plots refer to 
two different compute nodes hosting the BBU. 
These observations imply that traditional model-
ing approaches, which require pre-calibration for 
specific conditions and platforms, are not appro-
priate for practical (v)RAN slicing. This is because 
the coupling between modulation and coding 
schemes (MCSs) and CPU time is far from trivial 
and depends on SNR conditions, traffic load, and 
the platform hosting the BBU.

Figure 3. Top: predictions of a sample one-week 
demand, as produced by a legacy MAE traffic 
predictor and by a capacity forecasting model; 
middle: error incurred by the capacity fore-
casting model, which only generates overpro-
visioning; bottom: error incurred by the MAE 
traffic predictor, which leads to frequent service 
requirement violations.
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In this context, a combination of unsuper-
vised learning and deep reinforcement learning 
is a promising solution [12]. Indeed, unsupervised 
learning methods such as deep auto-encoders 
(and popular variants) are particularly helpful to 
project high-dimensional contextual data such as 
data load patterns or SNR patterns into (sparse) 
latent spaces, while DRL algorithms design pol-
icies that map such (encoded) context informa-
tion into optimal resource control actions such as 
CPU or radio scheduling decisions, which handle 
the aforementioned challenges. Building on these 
techniques, a deep deterministic policy gradient 
(DDPG) algorithm, implemented by actor-critic 
NN structures, can deal with large and/or con-
tinuous action spaces, which are common in 
resource control problems [13]. More precise-
ly, actor-critic algorithms are the most suitable 
type of solution for the class of problems we are 
addressing as they combine the advantages of 
both classic RL approaches (policy-based), which 
support large action spaces, and value-based RL, 
which provides higher sample efficiency and sta-
bility. Actor-critics split the model into the actor, 
which takes the context as input and learns the 
optimal policy, and the critic, which evaluates the 
action by estimating the value function.

Resource control can indeed be formulated as 
a contextual bandit problem, which is a particular 
case of RL. There, one observes a context vector, 
chooses an action, and receives a reward signal as 
feedback, sequentially at different time stages. The 
goal is to find a policy that maximizes the expected 
reward. In our case we adopt the following formu-
lation for the context, action and reward [12].

State or Context Space: At each stage, several 
samples, representatives of the current context 
(i.e., the channel conditions and the load), are 
collected.

Action Space: Figure 4 (along with addition-
al results in [12]) illustrates the strong coupling 
between CPU control decisions (x-axis in Fig. 4) 
and the MCS used for radio communication (y-ax-
is in Fig. 4). As a result, two sets of actions are 
designed, the computing control decision, which 
allocates the necessary CPU to support the radio 
control decisions, which fix an upper-bound eli-
gible MCS index. The action space comprises all 
pairs of compute and radio control decisions.

Rewards: We designed the reward function 
to weight and balance the costs related to higher 
delays, decoding errors, and CPU utilization with 
the goal of minimizing operational costs due to 
CPU reservations, and maximizing performance 
by reducing decoding error rates and latency.

Figure 5 illustrates the closed-loop decision 
making process implementing the RL formulation 
above.

Trial Gains of 
AI-Based Slice Management

A frequent controversy of integrating AI in net-
work systems is whether these novel architectures 
actually bring a substantial advantage in perfor-
mance over traditional approaches, sufficient to 
justify the added complexity and loss of interpret-
ability. Network slicing is no exception; hence, we 
conclude our discussion with quantitative figures 
that are representative of the gain margin that AI 
can provide when applied to the slice manage-
ment functions presented earlier.

Increasing the Infrastructure Monetization with 
Optimal Admission Policies

We first evaluate the advantages brought by the 
intelligent admission control of network slices from 
a monetary perspective. Specifically, we analyze 
the revenues obtained by a provider when facing 
the decision of whether to accept two kinds of net-
work slices: one (enhanced mobile broadband, 
eMBB, less expensive) including elastic traffic and 
one (ultra-reliable low-latence communications, 
URLLC, more expensive) including inelastic traffic 
with strong QoS requirements. Results considering 
admission requests that follow a Poisson process 
for both kinds of slices are summarized in Table 1.

We compare the AI-based algorithm described 
earlier with two benchmarks: the optimal admis-
sion policy, computed through the expensive 
value-iteration algorithm, and a set of smart ran-
dom policies (which mimic a large number of 
heuristics, 10,000 in our setup). Experiments are 
performed for different price ratios between the 
URLLC and eMBB (where a ratio x means that 
URLLC is x times more expensive than eMBB) and 
different network sizes (the comparison against 
the optimal policy is performed on a smaller scale 
scenario as the optimal policy cannot be run for 
large scenarios). Results show that the AI-based 
algorithm described previously makes intelligent 
admission decisions and provides very substantial 
gains over heuristic approaches, while incurring 
an almost negligible penalty when compared to 
an optimal, infeasible in practice, benchmark.

Real-World and Data-Driven Capacity Forecasting

To assess the performance of AI for the orchestra-
tion of sliced network resources described above, 
we consider three representative case studies:
•	 A slice dedicated to Facebook traffic in a 

core network data center that controls all 
470 4G eNodeBs deployed in a large metro-
politan area

•	 A slice allocated to Snapchat traffic in a 
multi-access edge computing (MEC) data 
center that handles the traffic of around 70 
eNodeBs

Figure 4. Virtualized LTE BBU with high SNR. The performance model is highly 
complex and nonlinear. Reproduced from [12].
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• A slice accommodating traffi  c generated by 
the YouTube app at a cloud RAN (C-RAN) 
data center located in proximity of the radio 
access, which performs baseband processing 
and scheduling for 11 eNodeBs. 

We use as a benchmark a legacy mobile traf-
fic predictor, which minimizes the MAE of the 
forecast. The prediction returned by this model 
is overprovisioned by 5 percent — a reason-
able fi gure in the presence of decently accurate 
prediction — to try to avoid SLA violations. The 
results are summarized in Table 1. The AI-based 
approach to network resource orchestration out-
lined earlier achieves a substantial reduction of 
monetary cost associated with the allocation of 
resources, with savings above 50 percent in all 
cases.

AI-bAsed cPu oPtIMIzAtIon At the edge

Finally, the joint radio/CPU scheduling approach 
described earlier is evaluated by means of an 
experimental proof of concept. The testbed 
comprises a set of software-defi ned radio (SDR) 
USRPs as radio front-ends connected to a com-
puting node hosting a softwarized LTE eNodeB 
BBU, namely, srsLTE eNB [14]. We selected 
this software platform mostly for its flexibility in 
the internal software design [15]. The aforemen-
tioned DDPG reinforcement learning algorithm 
and interface with the eNodeB are implement-
ed through Docker’s application programming 
interface (API) to control the allocation of com-
putational resources of each stack (specifi cally, to 
govern the CFS CPU scheduler used by Docker), 
and a simple socket to induce bounds on the eli-
gible MCS by the UEs associated to the eNB.

Two scenarios are considered for perfor-
mance evaluation. In the first scenario, compu-
tational capacity is unbounded and the goal is 
to strive a good balance between system cost 
(CPU usage) and QoS performance (a proxy for 
the system delay). We can observe that, even in 
highly dynamic scenarios, an AI-based approach 
can achieve a 25 percent improvement on QoS 
performance over static CPU allocation policies 
employing the same amount of computational 
resources on average, and up to 30 percent of 
CPU average savings with minimal QoS penal-
ty over CPU-blind schedulers. In the second sce-
nario, we constrain the computational resources 

running available to two competing eNBs. In this 
setup, AI ensures 25 percent more throughput 
with almost zero decoding errors.

conclusIons
In this article, we discuss the potentially critical role 
of AI for the management and operation of mobile 
networks that implement network slicing. AI-based 
solutions can address the diff erent and very com-
plex problems that emerge at multiple levels, 
including scheduling of slice traffic at the RAN, 
resource allocation to slices in the network core, 
and admission control of new slices. We outline 
practical deep learning architectures that can solve 
such problems in three diff erent case studies, and 
illustrate the high typical gain that one can expect 
from integrating AI in network slicing. We con-
clude that AI has a clear potential to become a car-
dinal technology for future-generation zero-touch 
mobile networks. This also implies that present lim-
itations of AI architectures in general, for example, 
curbed trustworthiness and interpretability, shall 
be seriously considered and solved, ensuring that 
operators retain full control over their systems.
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Figure 5. AI-based closed control-loop vRAN resources management for slicing [12]. 

ot
sety

B tra
ns

m
it

T

T

langis
oida

R
qu

al
ity

TTT

T

CPU scheduler Radio schedulersRadio schedulersRadio schedulers

Apply policies

Measure KPIs 
at the end of the interval

Use feedback to
fine-tune models

E
ve

ry
T

vrAIn

d l

Performance RAP1

Performance RAP2

Performance RAP3

Compute reward
Aggregate all KPIs

into one reward

Table 1. Summary of gains attained by AI over legacy solutions for sliced net-
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Function Performance metric % improvement — benchmark use case

Network slice 
admission 
control

Revenue 
improvement

– 0.23% — Optimal, ratio 1

– 3.77%- — Optimal, ratio 20 

33.3% — Random policies, ratio 15 

Cloud 
resource 
allocation

Reduction of 
monetary cost

81.6% — Facebook, core data center 

59.2% — Snapchat, MEC data center

64.3% — YouTube, C-RAN data center

Virtual RAN 
resource 
allocation

CPU savings, delay, 
throughput

30% — CPU savings over CPU-blind schedulers

5% — Delay-based QoS over CPU-blind schedulers

25% — Throughput upon computational capacity defi cit
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