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Abstract

5G and beyond are not only sophisticated and 
difficult to manage, but must also satisfy a wide 
range of stringent performance requirements and 
adapt quickly to changes in traffic and network 
state. Advances in machine learning and parallel 
computing underpin new powerful tools that have 
the potential to tackle these complex challeng-
es. In this article, we develop a general machine-
learning-based framework that leverages artificial 
intelligence to forecast future traffic demands and 
characterize traffic features. This makes it possi-
ble to exploit such traffic insights to improve the 
performance of critical network control mech-
anisms, such as load balancing, routing, and 
scheduling. In contrast to prior works that design 
problem-specific machine learning algorithms, our 
generic approach can be applied to different net-
work functions, allowing reuse of existing con-
trol mechanisms with minimal modifications. We 
explain how our framework can orchestrate ML 
to improve two different network mechanisms. 
Further, we undertake validation by implement-
ing one of these, mobile backhaul routing, using 
data collected by a major European operator and 
demonstrating a 3 reduction of the packet delay 
compared to traditional approaches.

Introduction
Recent advances in machine learning (ML) enable 
optimization at levels of complexity that were 
previously unaffordable. This has led to dramatic 
performance improvements, fostering the use of 
ML algorithms like neural networks across a wide 
range of fields.

Harnessing ML to enhance the performance 
of wireless networks started with 5G and will be 
essential to promote zero-touch configuration 
and management, thereby enabling self-con-
figuration and self-optimization envisioned for 
6G networks [1]. Wireless network operation 
depends on many variables that are not always 
known at the time decisions need to be made 
and which cannot be easily forecast or inferred. 
Furthermore, wireless networks are increasingly 
complex and heterogeneous, as they comprise 
many different radio access technologies and 
modules that mutually interact, need to satis-
fy diverse evolving requirements, and have to 
adapt quickly to changes. This renders the prob-
lem of real-time performance optimization of 
wireless systems prohibitive for traditional tech-

niques. In contrast, the ability of ML tools to han-
dle very complex systems makes them suitable 
for managing highly dynamic wireless networks 
and make more intelligent decisions (e.g., based 
on predicted future traffic patterns) [2].

Stemming from these observations, this article 
proposes a modular ML-based wireless network 
optimization framework, which enables plug-and-
play integration of machine intelligence into new, 
as well as existing, network functions. Specifically, 
we leverage ML to forecast future traffic volume, 
and characterize traffic features. We then feed 
this information into network control mechanisms 
to improve their performance. The advantage of 
our approach is two-fold: it is sufficiently gener-
al and allows instantiating ML pipelines across 
different network elements and functions, thus 
being compliant with the recent International 
Telecommunication Union — Telecommunication 
Standardization Sector (ITU-T) Recommendation 
Y.3172 for integrating ML in future networks [3], 
and it permits retrofitting ML to legacy architec-
tures and reusing existing network control mecha-
nisms with minimal or no modifications.

Previous works embed ML into the design of 
specific algorithms, focusing on network functions 
including:
•	 Mobility management, resource manage-

ment and orchestration, and service provi-
sioning [4]

•	 Detection and channel estimation in massive 
multiple-input multiple-output (MIMO) sys-
tems [5]

•	 Routing [6]
•	 Resource scaling of virtual network functions 

(VNFs) [7]
Their main drawback is precisely that they are 
mechanism-specific, that is, each network control 
mechanism requires a purpose-built ML approach 
and cannot easily be reused.

In contrast, we use ML to make accurate traffic 
predictions that can be straightforwardly used as 
input to well-established algorithms and decision 
modules. Traffic forecasting and characterization 
using ML has received significant research interest 
[8, 9]. However, previous work largely focuses on 
traffic analysis to optimize specific network oper-
ations, for example, routing (see [10] for a sur-
vey of ML techniques applied to software defined 
networking, SDN) or VNF resource scaling [7], 
while our approach relies on traffic analytics to 
improve the performance of generic network con-
trol mechanisms.
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In addition, we incorporate an ML orchestrator 
that is responsible for managing and monitoring 
resources, but also for deriving suitable configu-
rations for training ML models. We expect that 
instantiating an ML pipeline for a specific function 
with the aid of our framework will bear similar 
costs to those incurred by purpose-built ML algo-
rithms serving the same purpose. The one-off sig-
naling cost associated with the orchestration of a 
function in our approach is a small price to pay 
for the flexibility it enables.

To demonstrate the feasibility and perfor-
mance gains achievable with our framework, 
we show how to orchestrate two ML pipelines: 
traffic-driven VNF scaling and routing in mobile 
backhaul networks. We practically evaluate the 
latter use case. By feeding a state-of-the-art rout-
ing scheme with city-scale forecasts of future traf-
fic consumption, obtained with a deep learning 
structure, our framework attains 3 reductions in 
packet delay.

ML-Based 5G Network Optimization
We propose an ML-based framework for network 
optimization and explain how to incorporate it 
within 5G networks.

ML-Based Framework

Figure 1 illustrates the building blocks of our 
framework, which comprise:
•	 The ML orchestrator
•	 Modules to measure mobile network traffic
•	 ML algorithms that process this data
•	 Modules performing specific network optimi-

zations based on the output of the ML algo-
rithms
According to the specific network function to 

optimize, the orchestrator defines in the form of 
a template the set of collector nodes, the dura-
tion and the aggregation level of traffic measure-
ments, and ML pipeline-specific parameters, such 
as number of epochs, layers, and possibly a cus-
tom loss function as in [11]. Different functions 
require different inputs; for example, while routing 
needs to monitor traffic from a set of base sta-
tions to decide optimal routes, scaling computa-
tional resources of VNFs executing core services 
requires monitoring control traffic from the same 
set of base stations. The orchestrator thus coordi-
nates the instantiation of an ML pipeline accord-
ingly, along with the mechanisms to update the 
decisions for each network function (e.g., by inter-
acting with the VNF orchestrator) and ensures suf-
ficient computing capacity is provisioned to train 
ML models in either a centralized or a distributed 
manner.

Gathering measurements requires direct 
access to flow information available at, for exam-
ple, SDN switches or base stations. Rather than 
defining a limited set of input features, the mea-
surement modules extract sequences of packets 
of each flow, along with their lengths, inter-arrival 
times, direction (uplink/downlink), and possibly 
even parts of the payload. The key advantage of 
working with such comprehensive data as input 
is that abstract features can be extracted auto-
matically during training, instead of relying on a 
restricted and manually identified set. Indeed, fea-
ture engineering is costly and may lead to poor 
performance [12]. Further, new use cases may 

require different features. Thus, our approach is 
future-proof.

Our framework is general enough to allow for 
different learning techniques. We focus on deep 
learning (DL) because:
•	 DL algorithms scale better than ML approach-

es as the volume of data grows.
•	 In network settings where inferences must 

be made based on a large number of input 
parameters, DL produces highly accurate 
outputs.

•	 Advances in parallel computing enable com-
plex neural networks to be trained rapidly 
and applying them in different settings with-
out re-training.
We are especially interested in DL structures 

that can identify distinct types of flows within 
large aggregates in order to accommodate spe-
cific requirements, such as latency and reliability 
(traffic classification), and predict essential charac-
teristics of future network traffic, such as average 
and peak data rates, level of burstiness, and so on 
(traffic forecasting). Depending on the target task, 
different DL structures can be employed [12]. 
Auto-encoders are particularly effective in traffic 
classification based on TCP traffic flow informa-
tion. Structures typically used for image segmen-
tation (e.g., convolutional neural networks, CNNs) 
are also effective in classification. Optimization of 
network functions like scheduling and load bal-
ancing depends on the ability to accurately clas-
sify traffic.

Traffic forecasting depends significantly on 
temporal features. Long short-term memories 
(LSTMs) work well with time series. Similarly, 
the convolution operation can be extended to 
the temporal dimension to construct a 3D-CNN, 
thereby extracting spatio-temporal features that 
are characteristic of mobile traffic [13]. Figure 
2 illustrates a deep learning pipeline tailored to 
mobile traffic forecasting. City-level traffic mea-
surements are fed into stacks of such 3D-CNNs 
and ConvLSTMs to extract spatio-temporal fea-
tures within traffic snapshots that a group of fully 
connected layers uses to make future traffic pre-
dictions per eNB.

Finally, our decision modules (Fig. 1) are based 
on existing algorithms that only need to be updat-
ed to take as input the predictions made by the 

Figure 1. Building blocks of the proposed framework. ML algorithms used to 
characterize and forecast traffic based on measurements and flow metadata. 
Knowledge extracted is fed to modules implementing network functions.
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DL algorithms. Thus, with our framework the basic 
operation of these algorithms remains unmodi-
fi ed. This provides much greater control over their 
operation, unlike fully ML-based solutions whose 
decisions are made directly by ML algorithms.

5G ArchItecture InteGrAtIon

The design of our framework adheres to the ITU-T 
guidelines [3]. Although it is tailored specifically 
for (beyond) 5G networks, the solution is back-
ward-compatible with 4G networks (except with 
limited range of network mechanisms that can be 
optimized). Our framework can instantiate mea-
surement modules in the core, backhaul/fronthaul, 
and radio access network (RAN), while exploiting 
standard interfaces to extract measurements from 
the network equipment.

Figure 3 shows a realization of our archi-
tecture. The sources (src) are user equipments 
(UEs) and base stations (eNodeB/eNBs and gNBs 
according to 4G and 5G terminology respective-
ly) with diverse radio access technology (RAT). 
Our framework can also interact with other 
sources, such as network data analytics func-
tions (NWDAFs), which 3GPP has introduced 
in Release 15, and the RAN data analytics func-
tion (RAN-DAF — not within 3GPP’s umbrella) to 
extract user location, cell/slice ID, cell/slice load, 
channel quality, amount of transmitted/received 
data, and so on. This allows data collection (col-
lector c) close to where it can undergo pre-pro-
cessing, so as to expose properly formatted inputs 
to deep learning algorithms by applying a set of 
transformations to map the measurements into 
a tensor format that learning algorithms can pro-
cess.

According to the specifi c optimization objec-
tive, the training and inference phases take place 
either in edge clouds or at the level of individu-
al base stations/routers/UEs, depending on the 
required computing capabilities. Traditionally, 
training an ML model requires moving all the 
data into a central location, which is the result 
of trading privacy and bandwidth (e.g., backhaul 
links) to obtain accurate models. With federated 
learning, an ML model is trained in a distributed 
manner, which better suits scenarios with the UE 
in the loop and entails minimal communication 
overhead, for example, with data compression or 
reduction on the number of updates per node. 
This allows the computing resources of the feder-
ated nodes to be harnessed, while partial model 

parameter updates affect the model’s conver-
gence speed only marginally. Once the output 
parameters are determined (e.g., an update of the 
scheduling or routing policy), they are distributed 
to the sink nodes (e.g., the RATs in Fig. 3).

use cAses For network optIMIzAtIon
We now cover a diverse set of use cases that our 
framework can serve.

seMI-persIstent, 
eLAstIcItY-AwAre, And LAtencY-AwAre scheduLInG

Different types of traffic have different levels of 
latency requirements, ranging from extremely 
small (e.g., ultra-reliable low-latency communica-
tions, URLLC), to medium (interactive voice or 
video), all the way to slack latency requirements 
(media streaming). ML can extract specific flow 
characteristics and the associated latency require-
ments, and feed this information to schedulers.

With semi-persistent scheduling, periodic 
uplink flows can be assigned transmission slots 
without notifying the scheduler of the UE’s queue 
occupancy. Such allocations will change dynami-
cally over time to adapt to changes in the modu-
lation and coding scheme (MCS) that refl ect the 
perceived channel quality. Reserving resources 
in advance brings significant advantages, that 
is, reduced control overhead and signaling load 
(which is critical in dense networks) and notifi ca-
tions to neighboring cells of these reservations, 
to better coordinate transmissions and limit inter-
cell interference. While this technique has many 
advantages, it requires fl ow classifi cation, that is, 
inferring whether a given fl ow is amenable to this 
type of scheduling, its periodicity, and the resourc-
es required for each period.

Elastic flows can (within limits) adapt to the 
available capacity; for example, HTTP video 
streaming applications can switch between 
codecs of diff erent rates. Dropping packets of a 
fl ow directly reduces its rate by the corresponding 
fraction of packets in the case of UDP. When TCP 
is employed, packet dropping indirectly reduc-
es the rate of that flow by triggering congestion 
control. Further, dropping packets of elastic fl ows 
reduces the quality of experience (QoE) of the 
corresponding users signifi cantly less than reduc-
ing the rate of inelastic traffi  c. In contrast, URLLC 
traffic of industrial automation and tactile appli-
cations poses extreme requirements in terms of 
latency and reliability (1 ms target latency and 
10–5 reliability as per 3GPP Rel. 15 specifi cations).

A prompt and correct classifi cation of latency 
requirements enables the prioritization and sched-
uling of diff erent fl ows to meet their deadlines, if 
necessary at the expense of serving less import-
ant traffi  c with higher delay. The classifi cation of 
the level of elasticity allows intelligently dropping 
packets of specific flows so as to minimize QoE 
degradation and shaping the traffic of known 
applications early on, thereby preventing conges-
tion.

LoAd bALAncInG

Advance knowledge of behavior and charac-
teristics of different flows, such as the average/
peak rate and level of burstiness, allows intelligent 
assignment of diff erent fl ows to base stations and 
scale in and out VNF resources.

Figure 2. Example of a deep learning pipeline for mobile traffi  c forecast-
ing adapted from [13]. City-level measurements are fed into stacks of 
3D-CNNs and ConvLSTMs, which extract spatio-temporal features to pre-
dict future traffi  c demands at the eNodeB level.
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Load balancing may be based on average load 
or the statistical behavior of the different flows 
and the probability that they congest the corre-
sponding base station. More importantly, predic-
tion-based load balancing can occur proactively 
rather than reactively (i.e., when some base sta-
tions have already become congested). In 5G 
scenarios, users may benefi t from being simulta-
neously attached to conventional LTE and New 
Radio (NR) base stations. NR will typically operate 
in millimeter-wave (mmWave) bands, which off er 
much higher data rates but are more susceptible 
to blockage. Early prediction of blockage on NR 
links allows steering traffic over proper fallback 
LTE links.

Load balancing is also essential for VNF orches-
tration. The placement of the diff erent VNFs serv-
ing a given fl ow depends on the traffi  c generated 
by that fl ow and the latency requirements of the 
application. Since moving or start-up new VNFs 
incur high overheads, it is important to predict 
these features as far in advance as possible, thus 
minimizing the disruption of their operation. For 
example, co-location in the same rack of VNFs 
executing RAN and core services that exchange 
a signifi cant amount of signaling traffi  c, for exam-
ple, access and mobility function (AMF) and ses-
sion management functions (SMFs) is beneficial 
to reduce load peaks, queuing delays, and energy 
consumption. Additionally, traffi  c prediction is an 
enabler for joint optimization of radio confi gura-
tion (MCS) and CPU allocation of VNFs executing 
RAN services [11]. Unlike core services, for which 
statistics about control traffi  c are required to opti-
mize resource allocation and orchestration of 
VNFs, RAN services and fl ow assignment require 
data traffi  c statistics.

MobILe trAFFIc routInG

Effi  cient route management is essential for mobile 
networks, especially for high-rate and low-latency 
traffi  c fl ows, which may originate in edge clouds, 
be routed to the core, and then continue on to 
servers responsible for cloud RAN (C-RAN) pro-
cessing. Poorly chosen paths lead to network con-
gestion and degrade the quality of service. While 

typically routing protocols assign (static or dynam-
ic) weights to links, the increasing popularity of 
SDN offers new degrees of freedom for routing 
(e.g., fl ow-based routing). With an ML algorithm 
that can learn flow statistics with high accura-
cy and mine traffic patterns, more sophisticated 
and accurate routing policies can be devised. In 
the next section, we present a realization of our 
framework that addresses this particular routing 
use case. 

orchestrAtIon And 
use cAse IMpLeMentAtIon

We demonstrate how the proposed ML-based 
optimization framework can be instantiated to 
orchestrate simultaneous ML pipelines for learn-
ing-driven routing and VNF scaling. Further, we 
assess the benefi ts of ML in the former use case.

Let us consider part of a mobile core network, 
a cluster of eNBs deployed in the city of Milan 
(Fig. 4). We envision a set of routing nodes that 
connect the eNBs to the core network via diverse 
backhaul links. The traffic measurements were 
collected by Telecom Italia between November 
and December 2013 [14]. The experiments pre-
serve the trends in the original dataset, but we 
scale up the demands by a factor of 10 according 
to current market studies on traffi  c consumption 
growth. Figure 5 illustrates diff erent 30-min snap-
shots of the ground truth observations and the 
demand forecast with our D-STN at 4 selected 
eNBs (as numbered in Fig. 4).

orchestrAtIon

In a 5G core network with control-user plane sep-
aration, the user plane function (UPF) takes care 
of the data path, while AMF and SMF cover the 
control path. AMF performs functions related to 
user authentication and authorization, and han-
dles mobility management. SMF is in charge of 
all session management functions, allocates IP 
addresses, and selects the UPF (Fig. 4).

Our ML framework (Fig. 1) will simultaneously 
orchestrate the scaling of AMF and routing. The 
orchestrator instructs one ML-pipeline to gather 

Figure 3. Integration of our framework in a 5G architecture. Workfl ow execution shown by highlighting 
measurement points and functions benefi ting from ML.
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control traffic to determine the number of accept-
ed UEs and the time they need to attach to the 
network [7]. A second ML-pipeline is instructed 
to aggregate data traffic into minute-granularity 
summaries along with timing information and the 
coordinates of the corresponding source nodes 
(“Extraction of Input Parameters”). Both ML pipe-
lines extract these parameters from mobile traffic 
observed at different eNodeBs (“Measurement 
Points” and “Data” in Fig. 1). Input parameters 
are fed to specific ML algorithms, for example, 
LSTM, and ConvLSTM and 3D-CNN structures 
for VNF scaling and routing, respectively (“Traffic 
Forecasting” module). Finally, the outputs, (i.e., 
the optimal number of VNFs and paths) are fed to 
the “Decision Module,” which instructs the VNF 
orchestrator and routers.

Learning-Driven Proactive Routing

We now quantify the benefits of a specific ML 
pipeline. Our approach stems from the obser-
vation that traditional shortest path routing is 
increasingly being phased out because of the 
highly dynamic nature of traffic demands within 
mobile networks and progressively denser net-
work deployments. More often, alternatives like 
backpressure routing [15] that forward packets 
based on information about queue sizes along 
possible paths are preferred. DL was proven to 
outperform conventional Open Shortest Path 
First (OSPF) by making routing decisions based 
on observed traffic patterns [6]. However, both 
load-based and early DL-powered solutions select 
routing paths a posteriori (i.e., only after network 
conditions changed). This increases delays, as traf-
fic demand information may be stale by the time 
forwarding decisions are enforced.

Forecasting future traffic demands and mak-
ing routing decisions proactively can circumvent 
these limitations. Unfortunately, widely used 
forecasting techniques (e.g., ARIMA) need to be 
fed continuously with measurement time series, 
which is expensive. Furthermore, such tools must 
be reconfigured each time they are deployed in 
a new network topology. In contrast, our frame-
work adopts DL techniques that are trained offline 
once, and afterward can provide city-scale traffic 
predictions to routing logic without retraining.

Therefore, we incorporate our recently devel-
oped deep spatio-temporal neural network (D-STN) 
[13], which through ConvLSTM and 3D-CNN 
structures extracts abstract spatial and temporal 
features of mobile traffic, achieving high forecast-
ing accuracy with only limited measurements. Our 
approach does not require fine-grained information 
about individual flows because it makes predictions 
based on aggregate traffic volumes. Further, by 
mixing predictions with historical information, this 
solution estimates the future traffic demand with 
small errors for long periods of time.

We assume the backhaul routers are intercon-
nected with wireless backhaul links that employ 2 
 2 MIMO transceivers (up to 300 Mb/s nominal 
data rates). We emulate the traffic flowing from 
each of the eNBs (Fig. 4), assuming UDP pack-
ets with 1000-byte payload. UDP is commonly 
employed to tunnel user traffic traveling from eNBs 
to the core network. To assess the gains attainable 
with traffic forecasting driven routing, we mea-
sure the delay that packets experience from the 
moment they are injected into the backhaul at the 
eNB level until they reach the core network. We 
examine this delay when routes are established 
with a vanilla backpressure algorithm that makes a 
posteriori decisions (without any ML logic) to bal-
ance queue sizes as traffic arrives. We compare the 
performance of this approach with an enhanced 
version that makes path computation decisions 
based on traffic forecasting obtained with D-STN. 
Decisions are made with  the granularity of one 
traffic prediction step (1 s), whereas the compu-
tation time is dominated by the inference time of 
the neural network (on the order of milliseconds). 
Figure 6 shows the cumulative distribution func-
tion (CDF) of the delays. Observe that even in 
the small topology considered, the median of the 
packet delay is 3 smaller with traffic forecasting 
driven routing. To appreciate the potential negative 
effects of incorrect traffic forecasts, we also show 
the latency performance in the ideal case where 

Figure 4. Example of an eNB cluster in the city of Milan, with our ML framework orchestrating, in the core 
network, VNF scaling and proactive routing, both based on traffic forecast measured per eNB.
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perfect knowledge of future traffic is available (i.e., 
no prediction errors). Our approach closely fol-
lows the ideal scenario, as the median of the delay 
is only marginally higher, which confirms that the 
proposed ML-based framework can bring substan-
tial performance benefits in (beyond) 5G mobile 
networks.

Conclusions
In this article, we present an ML-based framework 
to optimize the operation of (beyond) 5G net-
works. Unlike current approaches that embed ML 
directly within network control systems, our frame-
work does not require designing use-case-spe-
cific ML algorithms and changing existing 
network algorithms. Our framework instantiates 
ML pipelines to characterize traffic features and 
predict future traffic demands. The predictions 
are subsequently fed into existing network con-
trol mechanisms. Our approach brings togeth-
er and harmonizes concepts from ITU-T, 3GPP, 
and other specifications in a single comprehen-
sive framework. We show how our framework 
can instantiate multiple ML pipelines for different 
objectives. We implement and test our framework 
for one (i.e., proactive routing). Results indicate 
that even in small topologies, our solution reduces 
packet delay significantly.
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Figure 6. Delay CDF for the topology shown in Fig. 
4. The path selection is made using a vanilla 
backpressure algorithm, an enhanced version 
that uses mobile traffic forecasts, and the ideal 
case where perfect knowledge of future traffic 
is available. 
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We show how our 

framework can instan-

tiate multiple ML 

pipelines for different 

objectives. We imple-

ment and test our 

framework for one 

(i.e., proactive routing). 

Results indicate that 

even in small topol-

ogies, our solution 

reduces packet delay 

significantly.
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