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Abstract— In this letter we present a model to analyze the delay
behavior of the EDCA mechanism of IEEE 802.11e. Simulation
results validate the accuracy of our analysis.
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I. INTRODUCTION

IN this letter we present a model for the backoff delay under
saturation conditions of the Enhanced Distributed Channel

Access (EDCA) mechanism of the upcoming 802.11e standard
[1]. By backoff delay we understand the time elapsed between
the start of the backoff process of a packet and its successful
transmission. This is one of the main components of the end-
to-end delay in a WLAN. With saturation conditions we mean
that all the stations in the WLAN always have packets to
transmit. Note that this corresponds to the worst case and thus
provides us with an upper bound of the delay.

With EDCA, transmissions are regulated by the follow-
ing backoff algorithm. Upon starting the backoff process,
a station i initializes its backoff time counter to a random
value uniformly distributed in the range (0, CWi − 1), with
CWi initially set to CWmin

i . The backoff time counter is
decremented once every time interval σ as long as the channel
is sensed idle, ”frozen” when a transmission is detected on
the channel, and reactivated when the channel is sensed idle
again for a period of time equal to AIFSi. The value of σ is
a constant defined by the standard, and AIFSi takes a value
of the form DIFS + nσ, where DIFS is another constant
defined by the standard and n is a nonnegative integer.

The station transmits when the backoff time counter reaches
zero. A collision occurs when two or more stations start trans-
mission simultaneously. After each unsuccessful transmission,
CWi is doubled, up to a maximum value CWmax

i , and the
backoff process is restarted. If the number of failed retries
reaches a predetermined retry limit R, the packet is discarded.

From the above explanation, it can be seen that the behavior
of a station depends on a number of configurable parameters
(AIFSi, CWmin

i and CWmax
i ) that can be set to different

values for different Access Categories (AC’s). The rest of this
letter is devoted to the study of the delay as a function of the
number of stations and configuration of each AC.
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L. Vollero is with the Università degli Studi di Napoli ”Federico II”, 80125
Naples, Italy (email: vollero@unina.it).

Digital Object Identifier 10.1109/LCOMM.2005.06015.

II. DELAY ANALYSIS

Consider a WLAN with a fixed number of EDCA stations,
each belonging to some AC i, i ∈ {1, . . . , n}. Let ni be the
number of stations of AC i and {CWmin

i , CWmax
i , AIFSi}

the corresponding EDCA parameters. Let us define mi such
that CWmax

i = 2mi CWmin
i and Ai such that AIFSi =

DIFS + Ai σ. Let us further define Sk as the set of AC’s
with Ai ≤ k and N as the largest Ai in the WLAN.

In saturation conditions, a station always has a packet
available for transmission, and needs to wait for a random
backoff time before transmitting it. Let b represent the backoff
time counter, and s the number of retransmissions suffered,
after a backoff counter decrement of the station. With the
assumption of [2] that each transmission attempt collides with
a constant and independent probability, it is possible to model
the process {b, s} with the same Markov chain as Fig. 5 of
[2]. Then, the probability that a station of AC i transmits upon
a backoff counter decrement can be computed as [2],

τi = 2(1−2pi)(1−pR+1
i

)

CW min
i

(1−(2pi)
mi+1)(1−pi)+(1−2pi)(1−pR+1

i
)+

+CW min
i

2mip
mi+1
i

(1−2pi)(1−p
R−mi
i

)

(1)

where pi is the probability that a transmission attempt of a
station of AC i collides.

Let us define a slot time as the time interval between
two consecutive backoff counter decrements of a station with
minimal AIFSi, i.e. AIFSi = DIFS. We say that the slot
time is empty when there is no transmission ongoing on the
channel during this interval. Let us further define a k-slot time
as a slot time that is preceded by k or more empty slot times,
and let p(ek) denote the probability that a k-slot time is empty.

As a station with Ai = k starts decrementing its backoff
counter only after k empty slot times following a nonempty
slot time, the backoff counter decrements of this station
coincide with the boundaries of the k-slot times. Therefore,
a station of AC i, with Ai = k, transmits in a k-slot time with
probability τi, and does not transmit in any other slot time
(see Fig. 1).

To compute pi, we use the assumption of [3] that backoff
times follow a geometric distribution of parameter τi, with
which a station of AC i transmits in each k-slot time with
an independent probability τi. With this assumption, the
probability pi that a transmission of a station of AC i collides
is equal to the probability that some other station transmits in
a k-slot time, and the probability that a k-slot time is empty
can be computed as the probability that the considered station
does not transmit multiplied by the probability that no other
station transmits,

p(ek) = (1 − τi)(1 − pi) (2)
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Fig. 1. k-slot times and probability of transmission (example with k = 2).

nonempty nonempty... ...

1-slot
times

... ...

2-slot
times

... ...

nonempty only AC's of set
S1 may transmit

empty 2-slot
time

slot
times

Fig. 2. Probability of an empty k-slot time (example with k = 1).

which yields

pi = 1 − p(ek)
1 − τi

(3)

If the previous k-slot time before a given k-slot time is not
empty, in this k-slot time only the AC’s with Ai ≤ k (i.e. the
AC’s that belong to the set Sk according to our previous
definition) may transmit, and, with the above assumption, they
transmit with an independent probability τi. If the previous
k-slot time is empty, the given k-slot time is preceded by
k+1 or more empty slot times, which is exactly the definition
of (k+1)-slot time, and therefore such a k-slot time is empty
with probability p(ek+1). Applying this reasoning (see Fig. 2),
p(ek) can be written as

p(ek) = (1 − p(ek))
∏

j∈Sk

(1 − τj)nj + p(ek)p(ek+1) (4)

As (with our definition of N ) in a N -slot time the stations
of all AC’s may transmit, the following equation holds

p(eN ) =
∏

j∈SN

(1 − τj)nj (5)

Starting from τi ∀i, with (5) we can compute p(eN ). Then,
with (4) for k = N − 1, we can compute p(eN−1). Applying
this recursively, we can compute p(ek) ∀k. Then, from (3) we
can compute pi from which we can compute τi with (1). We
conclude that with the above equations we can express each
τi as a function of τi ∀i, with i ∈ {1, . . . , n}. We therefore
have a system of n non-linear equations on the τi’s that can
be resolved using numerical techniques.

Once the values τi ∀i have been derived, the average backoff
delay experienced by a non-dropped packet of a station of AC
i, di, is computed as

di =
1

Ptx,i

R∑
j=0

Ptx,i,j di,j (6)

where Ptx,i and Ptx,i,j are the probabilities that a packet of
a station of AC i is not dropped and that it is successfully
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Fig. 4. Components of the delay (example with k = 2).

transmitted with j retries, respectively,

Ptx,i =
R∑

j=0

(1 − pi)p
j
i , Ptx,i,j = (1 − pi)p

j
i (7)

and di,j is the average delay in case of j retries (see Fig. 3),

di,j =
j∑

l=0

(
T k,i

inter,tx + Bi,l(T
k,i
slot + T k,i

inter)
)

+ jTc +Ts (8)

where Bi,l is the average backoff time before retry l, T k,i
slot is

the average duration of a k-slot time in which the considered
station of AC i does not transmit, and T k,i

inter,tx and T k,i
inter

are the average duration of the time between two k-slot times
when the considered station transmits and does not transmit in
the first one, respectively. Ts and Tc are the average duration
of a slot time that contains a success and a collision. Fig. 4
illustrates these delay components under a given sequence of
slot times following a collision of the considered station.

Expressions to compute Tc and Ts, both for RTS/CTS and
no RTS/CTS, are given in [2]. Bi,l is computed as

Bi,l =
CWmin

i 2min(mi,l) − 1
2

(9)

T k,i
slot is computed as the sum of probability of success,

empty and collision multiplied by the average slot time
duration in each case,

T k,i
slot = p(sk,i)Ts+p(ek,i)σ+(1 − p(sk,i) − p(ek,i)) Tc (10)

where p(ek,i) and p(sk,i) are the probabilities that a k-
slot time in which the considered station does not transmit1

is empty and contains a success, respectively. We compute
p(ek,i) by applying a similar reasoning to (2),

p(ek,i) =
p(ek)
1 − τi

(11)

and p(sk,i) by applying the theorem of total probability on
the number of empty k-slot times preceding the k-slot time,

p(sk,i) =
N−1−k∑

j=0

p(ek,i,j)p(sk,i,j) + p(ek,i,N−k)′p(sk,i,N−k)′

(12)

1The condition that the considered station does not transmit holds in the
computation of all probabilities until (16).
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where p(ek,i,j) is the probability that a k-slot time is preceded
by exactly j empty k-slot times, p(sk,i,j) is the success proba-
bility of such a k-slot time, p(ek,i,N−k)′ is the probability that
a k-slot time is preceded by N−k or more empty k-slot times
and p(sk,i,N )′ the success probability of such a slot time.

p(ek,i,j) corresponds to having a generic k-slot time not
empty followed by j empty k-slot times in which, respectively,
AC’s of sets Sk, Sk+1, . . . , Sj+k−1 may transmit,

p(ek,i,j) = (1 − p(ek,i))
k+j−1∏

l=k

∏
m∈Sl

(1 − τm)nm,i (13)

where nm,i = nm−δim (the Kronecker function δim accounts
for the fact that the considered station does not transmit).

To compute p(sk,i,j), we note that, after exactly j empty
k-slot times, only the AC’s of set Sk+j may transmit,

p(sk,i,j) =
∑

l∈Sk+j

nl,iτl(1 − τl)nl,i−1
∏

m∈Sk+j\l

(1 − τm)nm,i

(14)
p(ek,i,N−k)′ and p(sk,i,N )′ are computed as follows,

p(ek,i,N−k)′ = 1 −
N−k−1∑

j=0

p(ek,i,j) (15)

p(sk,i,N−k)′ =
∑

l∈SN

nl,iτl(1 − τl)nl,i−1
∏

m∈SN\l

(1 − τm)nm,i

(16)
Finally, T k,i

inter and T k,i
inter,tx are computed as

T k,i
inter = (1 − p(ek,i))

k∑
j=0

p(ek,i,j)∗T
k,i,j
inter (17)

T k,i
inter,tx =

k∑
j=0

p(ek,i,j)∗T
k,i,j
inter (18)

where p(ek,i,j)∗ is the probability that the interval between
a nonempty k-slot time and the next k-slot time starts with
exactly j empty slot times, and T k,i,j

inter is the average duration
between the two k-slot times in this case. For j = k,

p(ek,i,k)∗ =
k−1∏
l=0

∏
m∈Sl

(1 − τm)nm , T k,i,k
inter = kσ (19)

and for j < k (see Fig. 5),

p(ek,i,j)∗ =
(

1 −
∏

m∈Sj

(1 − τm)nm

) j−1∏
l=0

∏
m∈Sl

(1 − τm)nm

(20)
T k,i,j

inter = jσ + T k,i,j
slot + T k,i,j

next (21)
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Fig. 6. Saturation backoff delay: simulation versus analysis.

where T k,i,j
slot is the average duration of a nonempty slot time

preceded by a nonempty k-slot time followed by j empty slot
times, and T k,i,j

next is the average duration between the end of
this slot time and the next k-slot time,

T k,i,j
slot =

(
1 −

∑
m∈Sj

nmτm(1−τm)nm−1
∏

p∈Sp\m
(1−τp)np

1−
∏

m∈Sj
(1−τm)nm

)
·

·Tc +

∑
m∈Sj

nmτm(1−τm)nm−1
∏

p∈Sp\m
(1−τp)np

1−
∏

m∈Sj
(1−τm)nm

Ts

(22)
T k,i,j

next = T k,i
inter,tx (23)

Equations from (18) to (23) form a first order equation on
T k,i

inter,tx, from which we can isolate this term and then derive
T k,i

inter, which terminates the analysis.

III. SIMULATION RESULTS

We validated the accuracy of our analysis by comparing
analytical results against simulations.

Fig. 6 gives the average delays, obtained analytically (lines)
and via simulation (points), corresponding to 4 AC’s. The
subplot in the figure gives a zoom of the y-axis for a better
observation of the low delays. Experiments are performed
for a varying number of stations (ni in the x axis) and{
mi, CWmin

i , Ai

}
configurations (given on top of the figure).

For all tests, a fixed packet length of 1500 bytes, the system
parameters of the IEEE 802.11a physical layer and the no
RTS/CTS option have been used.

We can observe that, for all experiments, analytical results
coincide almost exactly with simulations, the error in all
cases being well below 1%. We also assessed that the times
required to compute the analytical results were very short (a
few tenths of ms with a Pentium 4 PC of 2.66 GHz CPU
speed). We conclude that the proposed analysis is accurate
and computationally efficient.
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