
Computer Networks 57 (2013) 258–272
Contents lists available at SciVerse ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet
Control theoretic optimization of 802.11 WLANs: Implementation
and experimental evaluation

Pablo Serrano a,⇑, Paul Patras b, Andrea Mannocci a,c, Vincenzo Mancuso a,c, Albert Banchs a,c

a University Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganés (Madrid), Spain
b Hamilton Institute, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
c Institute IMDEA Networks, Avenida del Mar Mediterraneo, 22, 28918 Leganés (Madrid), Spain
a r t i c l e i n f o

Article history:
Received 14 November 2011
Received in revised form 5 June 2012
Accepted 1 September 2012
Available online 21 September 2012

Keywords:
WLAN
802.11
Control theory
Experimentation
1389-1286/$ - see front matter � 2012 Elsevier B.V
http://dx.doi.org/10.1016/j.comnet.2012.09.010

⇑ Corresponding author. Address: Universidad C
Avenida de la Universidad 30, E-28911 Leganés, Ma
91 624 6236; fax: +34 91 624 8749.

E-mail address: pablo@it.uc3m.es (P. Serrano).
a b s t r a c t

In 802.11 WLANs, adapting the contention parameters to network conditions results in
substantial performance improvements. Even though the ability to change these parame-
ters has been available in standard devices for years, so far no adaptive mechanism using
this functionality has been validated in a realistic deployment. In this paper we report our
experiences with implementing and evaluating two adaptive algorithms based on control
theory, one centralized and one distributed, in a large-scale testbed consisting of 18 com-
mercial off-the-shelf devices. We conduct extensive measurements, considering different
network conditions in terms of number of active nodes, link qualities, and data traffic.
We show that both algorithms significantly outperform the standard configuration in
terms of total throughput. We also identify the limitations inherent in distributed schemes,
and demonstrate that the centralized approach substantially improves performance under
a large variety of scenarios, which confirms its suitability for real deployments.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The IEEE 802.11 standard for Wireless LANs [1] has be-
come one of the most commonly used technologies to pro-
vide broadband connectivity to the Internet. The default
channel access mechanism employed in IEEE 802.11 net-
works is based on a CSMA/CA scheme, regulated by a set
of parameters that determines the aggressiveness of the
stations when trying to access the channel. In particular,
the contention window (CW) parameter controls the prob-
ability that a station defers or transmits a frame once the
medium has become idle, and therefore has a key impact
on the WLAN performance.

Commercial devices implement a fixed CW configura-
tion, which is known to yield suboptimal performance
[2]. Indeed, for a fixed CW, if too many stations contend
. All rights reserved.

arlos III de Madrid,
drid, Spain. Tel.: +34
the collision rate will be very high, while if few stations
are backlogged the channel will be underutilized most of
the time. This behavior has been analyzed by several works
in the literature, e.g. [2–4], which have shown that adapt-
ing the CW to the number of backlogged stations signifi-
cantly improves performance.

Following the above result, an overwhelming number of
solutions have proposed to adapt the 802.11 MAC behavior
to the observed network conditions with the goal of max-
imizing the WLAN performance [5–15]. However, as we
detail in the related work section, these previous works
suffer from both theoretical and practical limitations.

In this paper, we present our experiences with the
implementation of two adaptive algorithms, namely the
Centralized Adaptive Control (CAC) [16] and the Distributed
Adaptive Control (DAC) [17], both based on a Proportional
Integrator (PI) controller that dynamically tunes the CW
configuration to optimize performance. In contrast to pre-
vious proposals [5–13,18,14,15], both algorithms are
supported by solid theoretical foundations from control
theory and can be easily implemented with unmodified

http://dx.doi.org/10.1016/j.comnet.2012.09.010
mailto:pablo@it.uc3m.es
http://dx.doi.org/10.1016/j.comnet.2012.09.010
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

P. Serrano et al. / Computer Networks 57 (2013) 258–272 259
existing devices. Further, as compared to the few existing
implementations of adaptive MAC mechanisms that
require complete interface redesign and enhanced compu-
tational capabilities [15] or rely on proprietary firmware
code and are tight to a specific platform [18], our proto-
types can be deployed with off-the-shelf devices, demand
minimal system resources and do not alter the networking
stack, as they are executed as userland processes.

CAC and DAC have been carefully designed following
detailed performance analyses of 802.11 and employing
control-theoretic techniques, to ensure both optimal per-
formance and system stability. While previous simulation
results illustrate the benefits of these algorithms [16,17],
in this paper we demonstrate the feasibility of running these
mechanisms on real devices, and extensively assess their
behavior in a real deployment under a wide range of net-
work conditions.

First, we provide a detailed description of the implemen-
tation of our adaptive mechanisms with commodity hard-
ware and open-source drivers. The algorithms run as user
space applications and rely on standardized system calls
to estimate the contention level in the WLAN and adjust
the CW configuration of 802.11 stations. We also provide in-
sights into the differences between the theoretical design
and the practical implementation of the algorithms, which
arose with the inherent limitations of the real devices. Sec-
ond, by conducting exhaustive experiments in a large-scale
testbed consisting of 18 devices, which is able to emulate
realistic deployments such as office environment, and sem-
inar room, we evaluate the performance of our proposals
under non-ideal channel effects and different traffic condi-
tions. Additionally, we compare the performance of our
algorithms against the default IEEE 802.11 configuration,
and identify those scenarios where a network deployment
can benefit from using such adaptive mechanisms.

Our results confirm that both approaches outperform
the standard’s default scheme, improving the performance
by up to 50%. Our experiments also reveal that the distrib-
uted algorithm suffers from a number of problems with
heterogeneous radio links, which are inherent in its distrib-
uted nature and the limitations of the wireless interfaces. In
contrast, the centralized scheme exhibits remarkable per-
formance under a wide variety of network conditions. The
conclusions drawn from our analysis prove the feasibility
of using adaptive MAC mechanisms in realistic scenarios
and provide valuable insights for their design.

The remainder of the paper is organized as follows. Sec-
tion 2 summarizes the IEEE 802.11 EDCA protocol and the
underlying principles of CAC and DAC. Section 3 details the
implementation of the functionality comprised by the pro-
posed schemes. Section 4 describes our testbed and Section
5 validates the implementation of the algorithms. Section 6
presents a thorough experimental study of the algorithms in
a wide set of network conditions. Finally, Section 7 summa-
rizes the related work and Section 8 concludes the paper.

2. Background

This section summarizes the behavior of IEEE 802.11
EDCA [1] and the two adaptive protocols implemented in
this paper.
2.1. IEEE 802.11 EDCA

The IEEE 802.11 Enhanced Distributed Channel Access
(EDCA) mechanism [1] is a CSMA/CA-based protocol that
operates as follows. If a station with a new frame to trans-
mit senses the channel idle for a period of time equal to the
arbitration interframe space parameter (AIFS), the station
transmits. Otherwise, if the channel is busy (either imme-
diately or during the AIFS period), the station continues to
monitor the channel until it is sensed idle for an AIFS inter-
val, and then executes a backoff process.

Upon starting the backoff process, stations compute a
random integer uniformly distributed in the range
½0;CW � 1�, and initialize their backoff time counter with
this value. The CW value is called the contention window,
and depends on the number of failed transmission at-
tempts. For the first transmission attempt the minimum
contention window (CWmin) is used. In case of a collision,
its value doubles, up to a maximum value CWmax. The back-
off time counter is decremented once every time slot if the
channel is sensed idle, frozen when a transmission is de-
tected on the channel, and reactivated when the channel
is sensed idle again for an AIFS time. When the backoff time
counter reaches zero, the station transmits its frame in the
next time slot.

When two or more stations start transmitting simulta-
neously, a collision occurs. Acknowledgment (ACK) frames
are used to notify a transmitting station of successfully re-
ceived frames. In the case of a failed transmission, the sta-
tion doubles its CW and reenters the backoff process. Once
a frame has been successfully transmitted or the retry
limit has been exceeded, the CW value is set again to
CWmin. To prevent duplicates, the standard uses a retry
flag R to mark those frames that are being retransmitted,
i.e., the flag is set to 0 on the first transmission attempt,
and set to 1 on every retransmission (see Fig. 1). As we
discuss later, our algorithms exploit this functionality to
infer the network conditions and adapt the CW of the sta-
tions accordingly.

To support service differentiation, EDCA implements
different access categories (ACs) at every station, each hav-
ing a different backoff configuration. The parameters of
each AC are announced by the Access Point using the Bea-
con Frames. In the rest of the paper we do not consider ser-
vice differentiation and assume that all stations only
execute the Best Effort AC.

2.2. Optimal point of operation of the WLAN

Both CAC and DAC share the goal of adjusting the CW to
drive the WLAN to the optimal point of operation that
maximizes the total throughput given the observed net-
work conditions. Let p denote the probability that a trans-
mission attempt collides. Following the work of [2], that
derives the optimal transmission probability sopt , the cor-
responding optimal conditional collision probability can
be computed as

pcol ¼ 1� ð1� soptÞn�1 ¼ 1� 1� 1
n

ffiffiffiffiffiffiffiffi
2Te

Tc

s !n�1

; ð1Þ

R=0 R=1R=0 collisionother station R=0

U[0,CWmin-1] U[0,CWmin WC,0[U]1- min-1]U[0,2xCWmin-1]

Fig. 1. Retry flag marking upon collisions.

Fig. 2. CAC algorithm.

2 In our experiments we use the PHY layer parameters of IEEE 802.11a,
hence m ¼ 6 is chosen.

3 This is the default beacon interval value recommended by the 802.11
specification and standard compliant devices must be able to update their
configuration with this frequency. Existing devices support setting this

260 P. Serrano et al. / Computer Networks 57 (2013) 258–272
which, following [16,17], can be approximated for large n
by

popt � 1� e�
ffiffiffiffiffi
2Te
Tc

p
; ð2Þ

where Te is the duration of an idle slot (a PHY layer con-
stant) and Tc is the average duration of a collision. Further,
previous simulations demonstrate that this approximation
does not impact the performance even when n is small
[16,17]. Therefore, popt does not depend on the number of
stations, but only on the average duration of a collision
Tc , i.e.,

Tc ¼ TPLCP þ
L
C
þ EIFS; ð3Þ

where TPLCP is the duration of the Physical Layer Conver-
gence Protocol (PLCP) preamble and header, C is the mod-
ulation rate, EIFS is a PHY layer constant and L denotes the
frame length.1

2.3. Centralized Adaptive Control algorithm

The Centralized Adaptive Control (CAC) algorithm [16],
illustrated in Fig. 2, is based on a PI controller located at
the Access Point (AP). This controller computes the config-
uration of the CWmin parameter as an integer ranging be-
tween the default minimum and maximum values
defined by the standard specification, while CWmax is set
1 The duration of a collision is given by the longest packet involved in a
collision. For simplicity, here we consider a fixed frame length, but the
analysis can be easily extended for the case of different frame sizes
following [4].
as CWmax ¼ 2mCWmin, following the standard binary expo-
nential backoff procedure.2 By adjusting the CW configura-
tion to be used by the stations, the AP controls the collision
probability in the WLAN, with the goal of driving the net-
work to the optimal point of operation that maximizes
throughput.

Following the above, the controller performs two tasks
every beacon interval (approx. 100 ms)3: (i) it estimates
the current point of operation of the WLAN as given by the
observed collision probability pobs, and (ii) based on this esti-
mation and popt , it computes the CW configuration to be used
during the next beacon interval and sends it to the stations
in a beacon frame.

The computation of pobs is based on the observation of
the retry flag of successful frames. Let us denote by
R1ðR0Þ the number of observed frames with the retry bit
set (unset) during a beacon interval. Assuming that no
frames exceed the retry limit given by the MAX_RETRY
parameter,4 and that transmission attempts collide with a
constant and independent probability,5 the observed proba-
parameter to different values, however larger values may slow the reaction
to network changes.

4 Note that this assumption is accurate as in an optimally configured
WLAN the collision probability is very low.

5 This assumption has been widely used and shown to be accurate, see
e.g. [2].

P. Serrano et al. / Computer Networks 57 (2013) 258–272 261
bility of a collision in the WLAN can be estimated with (see
[16]):

pobs ¼
R1

R0 þ R1
; ð4Þ

which can also be seen as the probability that the first
transmission attempt from a station collides. Given the
short length of a frame transmission relative to the bea-
con interval, on average there will be a large number of
samples to accurately compute pobs. Still, in order to pre-
vent inaccuracies, if the number of available samples of
R0 and R1 is smaller than 20, the update is deferred until
the next beacon, which results in a good accuracy for
our purposes as experiments demonstrate.

To calculate the new CWmin, CAC employs a PI controller
that takes as input an error signal e, computed as the dif-
ference between the observed collision probability pobs

and the target value popt:

e ¼ pobs � popt: ð5Þ

In this way, when the observed collision probability is
above the target value, the error signal will be positive
and trigger an increase of the CWmin, and consequently a
decrease of the collision rate in the next beacon interval.
Similarly, when the collision probability is below the target
value, CWmin is decreased in order to increase the activity
on the channel. The operation of CAC is summarized in
Algorithm 1.

Algorithm 1. Centralized Adaptive Control algorithm.
1: while true do
2: repeat
3: if new frame sniffed then
4: retrieve retry flag
5: if retry flag is set then
6: Increment R1

7: else
8: Increment R0

9: end if
10: end if
11: until new beacon interval
12: compute pobs½t� using (4)
13: e½t� ¼ pobs½t� � popt

14: CWmin½t� ¼ CWmin½t � 1� þ KP � e½t�
15: þðKI � KPÞ � e½t � 1�
16: send beacon with new CW configuration
17: end while

The fKP;KIg parameters of the PI controller are obtained
using the Ziegler–Nichols rules, to achieve a proper trade-
off between stability and speed of reaction to changes. Spe-
cifically, these are computed as Kp ¼ 0:4Ku, respectively
Ki ¼ Kp=ð0:85TiÞ, where Ku is the Kp value that turns the
system unstable when Ki ¼ 0 and Ti is the oscillation per-
iod under these conditions [19]. Then, Kp and Ki are config-
ured as follows:
KP ¼
0:8

p2
opt 1þ popt

Pm�1
k¼0 ð2poptÞ

k
� � ;

KI ¼
0:4

0:85 � p2
opt 1þ popt

Pm�1
k¼0 ð2poptÞ

k
� � : ð6Þ

The detailed computation of the fKP ;KIg parameters and
the proof that the system behaves stably with this config-
uration are given in [16].

2.4. Distributed Adaptive Control algorithm

The Distributed Adaptive Control (DAC) algorithm [17]
employs an independent PI controller at each station to
compute its CW configuration, to drive the overall collision
probability to the target value popt . As illustrated in Fig. 3,
each controller computes the CWmin value employed by
its Network Interface Card (NIC), based on the locally ob-
served network conditions. Similarly to CAC, CWmax is set
as CWmax ¼ 2mCWmin.

While with centralized approaches all stations use the
same configuration provided by a single entity, and there-
fore fairly share the channel, with distributed approaches
this is not necessarily the case. Indeed, given that the
collision probability in a network of n stations is
p ¼ 1�

Qn
i¼1ð1� siÞ, in general there are multiple

ðs1; . . . ; snÞ solutions that satisfy p ¼ popt , with si – sj.
These solutions maximize the total network throughput
but result in dissimilar allocations among stations. There-
fore, to guarantee a fair throughput distribution, the error
signal utilized in DAC consists of two terms: one to drive
the WLAN to the desired point of operation, and another
one to achieve fairness between stations. More specifically,
the error signal at station i is given by

ei ¼ ecollision;i þ efairness;i: ð7Þ

The first term of (7) ensures that the collision probability in
the network is driven to the target value:

ecollision;i ¼ pobs;i � popt; ð8Þ

where pobs;i denotes the collision probability as measured
by station i. When the collision probability observed by
station i is larger than the target value, the above term
yields a positive error that increases the CW of station i,
thereby reducing the collision probability.

The second term of (7) is computed as

efairness;i ¼ pobs;i � pown;i; ð9Þ

where pown;i is the collision probability experienced by
station i. The purpose of this second component of ei

is to drive the CW of all stations to the same value. In-
deed, the higher the CWmin, the lower the number of
collisions caused, and thereby, the lower the observed
collision probability pobs;i is. Therefore, a station will in-
crease its CWmin if it experiences less collisions than
the others.

With the above, the error signal at the input of the con-
troller can be expressed as:

ei ¼ 2 � pobs;i � pown;i � popt: ð10Þ

Fig. 3. DAC algorithm.

262 P. Serrano et al. / Computer Networks 57 (2013) 258–272
Algorithm 2. Distributed Adaptive Control algorithm.
6 Applications rarely request service differentiation using e.g. the ‘‘Type
of Service’’ field (ToS) within the IP header. Therefore the MAC layer is
unable to classify the received packets, which are assigned to a single
queue. Still, it should be noted that our scheme could be extended to the
case of multiple access categories, as we did in [20] for the case of video
transmission in the presence of data traffic.
1: while true do
2: repeat
3: if new frame sniffed then
4: retrieve retry flag and
5: increment R0 or R1 accordingly
6: end if
7: until beacon received
8: compute pobs;i using (4)
9: fetch T and F from driver stats
10: compute pown;i using (11)
11: e½t� ¼ 2 � pobs;i½t� � pown;i½t� � popt

12: CWmin½t� ¼ CWmin½t � 1� þ KP � e½t�
13: þðKI � KPÞ � e½t � 1�
14: update the local CW configuration
15: end while

To compute the error signal, each station needs to mea-
sure pobs;i and pown;i. The former is computed as pobs in CAC.
For the computation of pown;i, we rely on the following sta-
tistics which are readily available from wireless cards: the
number of successful transmission attempts T and the
number of failed attempts F. With these statistics, pown;i is
computed as:

pown;i ¼
F

F þ T
: ð11Þ

Each station will estimate pobs;i and pown;i and compute the
error signal ei, which is provided to the PI controller for the
computation of the new CWmin;i. Like in CAC, we choose to
trigger an update of the CWmin;i every beacon interval, as
this is compatible with existing 802.11 hardware, which
is able to update the EDCA configuration at the beacon
frequency.
Although the analysis of DAC, based on multivariable
control theory, significantly differs from the analysis of
CAC, based on standard control theory, the fKP ;KIg param-
eters that each station uses are the same ones of (6), as
proved in [17]. The DAC operation is summarized in Algo-
rithm 2.

Finally, it is important to notice that both approaches do
not require to estimate the number of active stations in the
WLAN and do not introduce any signaling among nodes,
thus scale well with the network size. However, DAC fits
more naturally the ad hoc mode of operation where there
is no entity maintaining node synchronization and propa-
gating the MAC parameters through beacons. On the other
hand, we will show that by having a global view of the
WLAN conditions, CAC can ensure better fairness among
stations. Therefore, there exists tradeoff between through-
put fairness and operation paradigm when choosing one of
the two approaches in a practical deployment.
3. Implementation details

A major advantage of CAC and DAC is that they are
based on functionalities already available in IEEE 802.11
devices, and therefore can be implemented with commer-
cial off-the-shelf (COTS) hardware. We address the WLAN
operation with nodes employing a single access category,
namely best-effort, as this the usual case in existing
WLANs.6 In what follows we describe the hardware used
in our deployment and the implementation of the function-
ality required by CAC and DAC.

P. Serrano et al. / Computer Networks 57 (2013) 258–272 263
3.1. Implementation overview

We have implemented our algorithms using Soekris
net4826-48 devices [21]. These are low-power, low-costs
computers equipped with 233 MHz AMD Geode SC1100
CPUs, 2 Mini-PCI sockets, 128 Mbyte SDRAM and 256
Mbyte compact flash circuits for data storage. To accom-
modate the installation of current Linux distributions, we
have extended the storage capacity of the boards with 2-
GB USB drives. As wireless interfaces, we used Atheros
AR5414-based 802.11a/b/g devices.

As software platform we installed Gentoo Linux OS (ker-
nel 2.6.24) and the popular MadWifi open-source WLAN
driver (version v0.9.4) [22], which we modified as follows:
(i) we enabled the dynamic setting of the EDCA parameters
for the best effort AC, since the driver disables by default
changing the configuration of the parameters for this cate-
gory (which is not inline with the standard specification);
(ii) we overwrote the drivers’ EDCA values for the best-ef-
fort traffic with the standard recommended ones [1], and
(iii) for the case of DAC we modified the driver to enable
the stations to employ the locally computed EDCA configu-
ration using standardized system calls (as described in Sec-
tion 3.4). The source code of the modified drivers and our
implemented prototypes is available online [23].

Fig. 4 illustrates the main modules of our implementa-
tion of CAC and DAC. The algorithms do not require intro-
ducing modifications to the hardware/firmware nor have
tight timing constraints, and therefore they can run as
user-space applications that communicate with the driver
by means of IOCTL calls. We also take advantage of the
ability of the MadWifi driver to support multiple virtual
devices using different operation modes (master/man-
aged/monitor) with a single physical interface. In the fol-
lowing we detail the implementation of the different
modules.
Fig. 4. CAC (left) and DAC (ri
3.2. Estimation of pobs

Both algorithms require to estimate the collision proba-
bility observed in the WLAN. For the case of CAC this is per-
formed only at the AP and results in pobs, while for the case
of DAC this is performed independently at each station i
and results in pobs;i. The estimators are computed with
(4), which relies on observing the retry flag of the over-
heard frames. We next explain how these values are ob-
tained from a practical perspective.

To overhear frames, we utilize a virtual device operating
in the so called monitor mode with promiscuous configu-
ration. With this configuration, the device passes all traffic
to user-space applications, including frames not addressed
to the station. We also configure the device to pass the re-
ceived frames with full IEEE 802.11 link layer headers, such
that the Frame Control field of the frames (where the retry
flag resides) can be examined.

With this set-up, the algorithms open a raw socket to
the driver, which enables the reception of Layer 2 frames.
Through this socket, the algorithms listen for transmitted
frames and process their headers in an independent thread
(the ‘‘Frame Sniffer’’ module of Fig. 4). For every observed
frame, one of the counters used in the estimation of the
collision probability is incremented: R0 if the retry flag
was unset, R1 if the retry flag was set. Every beacon interval
the computation of pobs or pobs;i using (4) is triggered, and
then the counters are reset to zero.

3.3. Estimation of pown

In addition to the observed collision probability pobs;i,
the DAC algorithm requires to estimate the experienced
collision probability pown;i. We perform this computation
in the ‘‘Statistics Collector’’ module of Fig. 4 using informa-
tion recorded by the wireless driver. More specifically, at
ght) implementations.

264 P. Serrano et al. / Computer Networks 57 (2013) 258–272
the end of a beacon interval we open a communication
channel with the driver instance, configured in managed

mode, and perform a SIOCGATHSTATS IOCTL request.
Upon this request, the driver populates an ath_stats data
structure, which contains detailed information about the
transmitted and received frames since the Linux kernel
has loaded the driver module. Out of the statistics re-
trieved, the records that are of particular interest for our
implementation are:

� ast_tx_packets: number of unique frames sent to the
transmission interface.
� ast_tx_noack: number of transmitted frames that do

not require ACK.
� ast_tx_longretry: number of transmission retries of

frames larger than the RTS threshold. As we do not use
the RTS/CTS mechanisms, this is the total number of
retransmissions.
� ast_tx_xretries: number of frames not transmitted

due to exceeding the retry limit, which is set by the
MAX_RETRY parameter.

To compute pown;i we need to count the number of suc-
cessful transmissions and the number of failed attempts.
To compute the former, we subtract from the number of
unique frames those that are not acknowledged (e.g., man-
agement frames) and those that were not delivered,

Successes ¼ ast tx packets� ast tx xretries

� ast tx noack: ð12Þ

Similarly, to compute the number of failed attempts, out of
the total number of retransmissions we do not count those
retransmissions caused by frames that were eventually
discarded because the MAX_RETRY limit was reached,
therefore,

Failures ¼ ast tx longretry

� ast tx xretries � MAX RETRY: ð13Þ

With the above, the terms F and T of (11) used to estimate
pown;i are computed as

F½t� ¼ Failures½t� � Failures½t � 1�;
T½t� ¼ Successes½t� � Successes½t � 1�;

ð14Þ

where t denotes the time of the current beacon interval
and t � 1 the previous one. Note that in the above we take
the difference between the total number of failures and
successes, respectively, counted by the driver at the end
of the current and previous intervals, as these counters
accumulate values since the driver module has been
loaded in the kernel and cannot be reset by the user.

3.4. Contention window update

With the estimated collision probabilities, CAC and DAC
compute the error signal at the end of a beacon interval
according to (5) and (7), respectively. Depending on this
value, the PI controller triggers an update of the CWmin to
be used in the next beacon interval t, according to the fol-
lowing expression:
CWmin½t� ¼ CWmin½t � 1� þ KP � e½t� þ ðKI � KPÞ � e½t � 1�:
ð15Þ

To ensure a safeguard against too large and too small
CWmin values we impose lower and upper bounds for the
CWmin. We set these bounds to the default CWDCF

min and
CWDCF

max values specified by the standard, which are 16 and
1024, respectively, for IEEE 802.11a [24].

The algorithms assume that the CWmin can take any
integer value in the ½16;1024� range. However, with our
devices only integer powers of 2 are supported (i.e.,
CWmin 2 f16;32; . . . ;1024g). Therefore, the value actually
used is obtained as:

CW½t� ¼ powð2;rintðlog2ðCWmin½t�ÞÞÞ: ð16Þ

where rint(x) is a function that returns the integer value
nearest to x.

To commit the computed CW configuration, first we re-
trieve the list of private IOCTLs supported by the device
to search for the call that sets the CWmin. Once this call
has been identified, we prepare an iwreq data structure
with the following information: the interface name, the
base-2 exponent of the CW computed with Eq. (16), the ac-
cess category index as defined by the standard (0 for Best
Effort) and an additional parameter that identifies if the va-
lue is intended to be used locally or propagated. For the
case of DAC this value is set to 0, as the CW is only intended
to the local card, while for the case of CAC is set to 1, there-
by requesting the driver to broadcast the new CW within
the EDCA Parameter Set element of the next scheduled
beacon frame.
4. Testbed description

In this section we describe our testbed and analyze the
link qualities between each node and the AP, showing that
our set-up is able to mimic a realistic deployment with sig-
nificant differences in terms of SNR.

Our testbed is located in the Torres Quevedo building at
University Carlos III de Madrid. It consists of 18 devices de-
ployed under the raised floor, a placement that provides
physical protection as well as radio shielding to some ex-
tent (see [25]).

Fig. 5 illustrates the location of the nodes. We placed
one node towards the center of the testbed, which acts as
the Access Point throughout our experiments and we de-
note as AP, while stations are distributed at different dis-
tances from the AP and numbered from 1 to 17 in
decreasing order of their links’ SNR values towards the
AP, which we measure as explained next. In this way, our
deployment emulates several popular scenarios, e.g. cafés,
offices, conference rooms, both in terms of number of
nodes and mobility. Indeed, in such scenarios nodes are
mostly static, experiencing dissimilar link qualities to-
wards the AP with small variations, as our measurements
confirm. Although we focus on a single AP topology, in
the considered scenarios careful channel allocation is usu-
ally performed to avoid inter-AP interference, and there-
fore our algorithms can be independently executed
within each WLAN.

Fig. 5. Deployed testbed.

 30

 40

 50

 60

 70

SN
R

 [d
B]

P. Serrano et al. / Computer Networks 57 (2013) 258–272 265
All nodes are equipped with 5 dBi omnidirectional
antennas and are configured to operate on channel 64
(5.32 GHz) of IEEE 802.11a standard [24], where no other
WLANs were detected. All nodes use the 16-QAM modula-
tion and coding scheme, which provides 24 Mbps channel
bit rate, as calibration measurements showed that this
was the highest rate achievable by the node with the worst
link to the AP (node 17). Additionally, we disabled the RTS/
CTS, rate adaptation, turbo, fast frame, bursting and
unscheduled automatic power save delivery functionality,
as well as the antenna diversity scheme for transmission/
reception.

Unless otherwise specified, all nodes use the same
transmission power level of 17 dBm. Given the node place-
ment of Fig. 5, this setting results in dissimilar link quali-
ties between each station and the AP (e.g., node 1 is very
close to the AP, while e.g. node 16 is far away, which will
affect the perceived SNR). To confirm this link heterogene-
ity, we designed the following experiment. For a given
node, we ran a 10-s ping test between the station and
the AP, recording the SNR values of the received frames
as obtained by the wireshark packet analyzer [26] from
the radiotap header.7 This test was performed on a
7 With the radiotap option, the driver provides additional information
about received frames to user-space applications, including the signal-to-
noise ratio.
node-by-node basis, and repeated for 18 h. The average
and standard deviation of the SNR for each link are shown
in Fig. 6.
5. Validation of the algorithms

Our first set of experiments aims at confirming that the
good operation properties of CAC and DAC, obtained ana-
 20
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Station index

Fig. 6. SNR of the links between each node and the Access Point.

 1y p

16

32

64

128

256

C
W

m
in

CWmin,1
CWmin,10
CWmin,13
CWmin,14

266 P. Serrano et al. / Computer Networks 57 (2013) 258–272
lytically and via simulations in [16,17], are also achieved in
a real testbed. Specifically, we want to confirm that the use
of the algorithms results in stable behavior despite the de-
scribed hardware/software limitations and the impair-
ments introduced by the channel conditions, and also
assess their resource consumption in terms of CPU and
memory usage.
 0

 0.25

 0.5

 0.75

 0 5 10 15 20 25 30

C
ol

lis
io

n
pr

ob
ab

ilit

time [s]

own
pobs
popt

Fig. 8. CWmin used by four selected nodes (1, 10, 13 and 14) and the
estimated pobs and pown for node 10 with DAC.
5.1. Point of operation

We consider a scenario with N ¼ 10 stations randomly
selected, namely 1, 2, 5, 6, 8, 9, 10, 12, 13, and 14, which
corresponds to a network with heterogeneous link quali-
ties. Stations are constantly backlogged with 1500-Byte
UDP frames, which they send to the AP utilizing iperf

[27] for a duration of 5 min. For the case of the centralized
algorithm (CAC) we log its key variables, namely, the CW

announced in beacon frames and the observed collision
probability pobs. Both are obtained every 100 ms and de-
picted in Fig. 7.

As the 30-s snapshot in the figure shows, CAC drives the
WLAN to the desired point of operation. Indeed, the an-
nounced CW oscillates between the two power of 2 values
closest to the optimal CWmin (i.e., 64 and 128), while pobs

fluctuates stably around the desired popt given by (2). We
conclude that, despite the hardware limitations imposed
on the values of CW and the channel impairments, CAC is
able to drive the WLAN to the desired point of operation.

Next we validate the operation of the distributed algo-
rithm (DAC). We consider the same scenario as before, log-
ging the key parameters of the algorithm at each station,
namely CWmin;i; pown;i and pobs;i. In Fig. 8 we depict in the
upper subplot the evolution of the CWmin used by four rep-
resentative nodes. More specifically, we select out of the 10
considered nodes the one with the best link (node 1) and
the one with the worst link (node 14), as well as two sta-
tions with similar link qualities, (nodes 10 and 13). Addi-
tionally, in the lower subplot we show the collision
probabilities estimated by node 10 (pobs;10 and pown;10).

From the two subplots we see that DAC also drives the
average collision probability in the WLAN to the desired
value. However, there is a key difference as compared to
the previous case: while with CAC all stations use the same
 0

 0.25

 0.5

 0.75

 1

 0 5 10 15 20 25 30

C
ol

lis
io

n
pr

ob
ab

ilit
y

time [s]

pobs
popt

16

32

64

128

256

C
W

m
in

Fig. 7. Announced CWmin and observed collision probability with CAC.
CWmin value, with DAC they operate at different average
CWmin. Indeed, the four stations considered in the experi-
ment use average CWmin values of 300, 92, 92 and 64,
respectively. As we will explain in Section 6.2, this behav-
ior is caused by the relative differences in link qualities,
combined with the inability of the wireless interface to
identify the reasons for a packet loss.
5.2. Resource consumption

In addition to analyzing the performance of CAC and
DAC, it is also important to assess their resource consump-
tion. For this purpose, we analyzed the CPU and memory
usage of the algorithms utilizing the top Linux application,
which provides a dynamic real-time view of a running sys-
tem. With this tool, we recorded the used shares of the CPU
time and available physical memory with a frequency of 1
sample per second and computed the average usage. CAC,
which runs exclusively at the AP, demands on average
14% of the CPU time and only 0.8% of the physical memory.
For the case of DAC, which runs at every station, the aver-
age CPU time consumption is 17%, while the physical
memory consumption is 0.9%. Given the low speed of the
nodes’ CPU (233 MHz) and their reduced physical memory
(128 MB), these results show that both CAC and DAC are
suitable for commercial deployments as they do not pose
stringent resource requirements.8
6. Performance evaluation

We next assess the performance of the algorithms un-
der a large number of different scenarios and evaluate their
improvements over the default EDCA configuration, which
we use as a benchmark. Each considered experiment runs
for 2 min and is repeated 10 times to obtain average values
of the measured metrics with good statistical significance.
8 In order to have a benchmark to compare against, we measured the
CPU and memory usage of the popular packet sniffer tcpdump, running on
the same device type. Measurements revealed that tcpdump consumes 28%
of the CPU time, while its memory usage reaches 4.3%, these values being
significantly larger than the ones for CAC and DAC.

 0

 5

 10

 15

 20

EDCA CAC DAC

To
ta

l t
hr

ou
gh

pu
t [

M
bp

s]

Fig. 9. Total throughput with UDP traffic.

 0

 0.5

 1

 1.5

 2

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

In
di

vi
du

al
 th

ro
ug

hp
ut

 [M
bp

s]

Station index

EDCA
CAC
DAC

Fig. 10. Throughput per station with UDP traffic.

9 Since in most scenarios the network operates close to saturation and all
nodes have the same traffic requirements, we argue that JFI is the most
suitable metric for assessing the fairness properties of CAC and DAC.
Specifically, our goal is to quantify the dissimilarity in the resource
distribution, independent of the number of users.

 0

 0.5

 1

 1.5

 2

 30 40 50 60 70

Pe
r n

od
e

th
ro

ug
hp

ut
 [M

bp
s]

SNR [dB]

EDCA
CAC
DAC

Fig. 11. Per node throughput obtained vs. SNR.

P. Serrano et al. / Computer Networks 57 (2013) 258–272 267
We evaluated the behavior of the proposed algorithms
with both unidirectional (UDP) and bidirectional (TCP)
traffic, under diverse conditions in terms of link qualities
and number of active nodes. Unless otherwise stated, we
assume nodes have similar traffic demands and are
constantly backlogged, thus the network is mostly
saturated.

6.1. UDP throughput

We first measure the achievable throughput between
the nodes and the AP when all the stations are transmitting
UDP traffic at the same time. Fig. 9 plots the average and
standard deviation of the total throughput obtained with
each mechanism. We observe that the EDCA default config-
uration achieves around 11 Mbps, while the use of DAC
and CAC results in a performance gain of approximately
45%. Therefore, we confirm that both approaches, by prop-
erly adapting the CW configuration to the number of con-
tending stations, achieve a much higher efficiency.

To further examine the performance of the algorithms
we plot the per-station throughput in Fig. 10. According
to the figure, the use of the EDCA recommended values
not only provides the lowest overall throughput figures,
but also fails to provide a fair sharing of the available band-
width. Indeed, it can be seen that, e.g., the node with the
best link quality to the AP (node 3) achieves more than
three times the throughput obtained by the station with
the poorest link (node 15).

While DAC provides a larger total throughput than
EDCA, it does not improve the level of fairness. Actually,
it results in a somehow opposite performance as the one
obtained with EDCA: stations that obtained a relatively
large bandwidth with EDCA (e.g., nodes 3 and 6) now ob-
tain a relatively small bandwidth with DAC. Furthermore,
due to the poor short-term fairness properties of 802.11
MAC [28], the results show a notable variability. The use
of CAC, on the other hand, provides the best performance
both in terms of total throughput and fairness, as it pro-
vides all stations with very similar throughput values.

To quantify the throughput fairness achieved by the
considered mechanisms we compute the Jain’s fairness in-
dex (JFI) [29].9 The resulting JFI values are 0.865, 0.997 and
0.817 for the case of EDCA, CAC and DAC, respectively. These
figures confirm the good fairness properties of CAC, and
shows that DAC and EDCA suffer from a higher level of
unfairness, a result that we analyze next.

6.2. Impact of SNR on throughput

We have seen that link quality affects throughput distri-
bution, in particular for EDCA and DAC. To analyze this im-
pact, we plot in Fig. 11 the average UDP throughput per
station vs. the SNR of the link between the station and
the AP. Note that, in this analysis we do not modify sta-
tions’ SNR by tuning their transmission power, but instead
we investigate how the SNR dissimilarity that arises due to
their relative position to the AP affects the throughput per-
formance of CAC and DAC as compared to EDCA. For ease of
visualization we also plot natural smoothing splines over
the data points.

 0

 1

 2

 3

 4

 5

 6

STA #10 STA #13

Th
ro

ug
hp

ut
 [M

bp
s]

EDCA
CAC
DAC

Fig. 12. Performance with hidden nodes.

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

JF
I

Number of stations

EDCA
CAC
DAC

 10

 12

 14

 16

 18

Th
ro

ug
hp

ut
 [M

bp
s]

Fig. 13. Total throughput and fairness for different number of stations.

268 P. Serrano et al. / Computer Networks 57 (2013) 258–272
From the figure we observe that: (i) for EDCA there is a
noticeable and positive correlation between SNR and
throughput; (ii) for CAC, performance is not much affected
by SNR dissimilarities, as significantly better link qualities
result in very small throughput improvements; (iii) for
DAC there is a large and negative correlation between
SNR and throughput, with small differences in terms of
SNR causing large differences in terms of throughput.

For the case of EDCA, the positive correlation is caused
by the capture effect [30]. With this effect, in case of a col-
lision the receiver can decode the packet with the higher
SNR. As a result, stations with better link quality obtain
higher throughput. In contrast, the use of CAC reduces
the number of collisions in the WLAN, and therefore the
impact of the capture effect is significantly reduced.

For the case of DAC, the negative correlation is also dri-
ven by the capture effect as follows. Nodes with high cap-
ture probability will experience smaller collision rates than
the others, and therefore will have pown;i smaller than pobs;i.
This will cause a positive error signal according to the
efairness;i term in (9), which will result in large CWmin values.
Conversely, nodes with low capture probability will expe-
rience larger pown;i values and smaller pobs;i ones, and there-
fore will have smaller CWmin configurations. In this way,
capturing nodes will transmit less often and therefore will
obtain low throughput figures, while the other nodes will
transmit more often and experience a higher throughput.
Additional experiments with different transmission power
settings, not reported due to space constraints, confirmed
that a careful equalization of the link qualities is able to re-
store fairness to some extent.

6.3. Hidden nodes scenario

Our adaptive algorithms have been designed for scenar-
ios where all stations are in radio range of each other and
coordinate their transmissions by means of carrier sensing.
However, in real deployments hidden nodes may be pres-
ent, and therefore we want to investigate their behavior
under such circumstances.

To this aim, we ran extensive measurements, selecting
different topologies and different transmission power set-
tings, to determine the most pathological scenario. This is
obtained when node 1 acts as AP, and nodes 10 and 13
act as stations, using a transmission power level of
5 dBm. With this setting, each EDCA station transmitting
in isolation (i.e., with the other station silent) obtains
about 16.3 Mbps of UDP throughput, while if both stations
transmit simultaneously the throughput of each one drops
to 1.6 Mbps. Thereby we managed to reproduce a hidden
node scenario.

We then repeated the experiment with CAC and DAC,
and obtained the results depicted in Fig. 12. We observe
that the use of DAC does not improve performance over
EDCA. In contrast, CAC provides a dramatic throughput in-
crease, i.e., more than three times the throughput attained
with the other mechanisms. We conclude that CAC detects
the large collision rate and commands hidden nodes to be
less aggressive by announcing a higher CWmin, which less-
ens (but does not eliminate) the hidden node problem. On
the other hand, a station running DAC is not able to over-
hear MAC (re-)transmissions from hidden nodes, and
hence cannot correctly estimate the collision probability
in the network.
6.4. Impact network size

We next evaluate the performance of the algorithms as
a function of the number of stations. To this aim, we mea-
sure the total throughput and JFI for an increasing number
of contending nodes, adding new stations in ascending or-
der of their link quality. We plot the obtained results in
Fig. 13.

We observe that for both DAC and CAC the total
throughput performance is practically flat, regardless of
the number of stations. This result confirms that both ap-
proaches are able to adapt the CW to the number of sta-
tions present in the WLAN.

For the case of EDCA, performance degrades with the
number of stations, which is the expected result from the
use of a fixed set of (relatively small) contention parame-
ters. However, for N > 15 the total throughput perfor-
mance slightly grows again, a behavior caused by the
capture effect as the last nodes to be added in our experi-
ments are the ones experiencing better link qualities

 0

 5

 10

 15

 20

EDCA CAC DAC

To
ta

l t
hr

ou
gh

pu
t [

M
bp

s]

Fig. 14. Total throughput of FTP-like traffic.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

In
di

vi
du

al
 th

ro
ug

hp
ut

 [M
bp

s]

Station index

EDCA
CAC
DAC

Fig. 15. Throughput per station with FTP-like traffic.

P. Serrano et al. / Computer Networks 57 (2013) 258–272 269
(nodes 2 and 1). This is confirmed by the fairness values, as
for N > 15 there is a drop in the JFI for the case of EDCA. JFI
values also confirm that DAC is more sensitive to heteroge-
neous link conditions, as its performance noticeably de-
grades with N. In contrast, with CAC the fairness index is
practically constant for all N values.
6.5. TCP throughput

We next evaluate performance in scenarios in which
stations use TCP. We start by evaluating the throughput
and fairness performance when all stations are constantly
backlogged sending TCP traffic to the AP, replicating bulky
FTP transfers. Note that this scenario is substantially differ-
ent from the ones considered in the previous subsections,
as TCP congestion control10 introduces a ‘‘closed loop’’ that
can lead to extreme unfairness conditions and even starva-
tion [32]. Precisely, we expect nodes that use a more aggres-
sive CW configuration to leave less channel access
opportunities for the more conservative ones, thus causing
the latter to reach congestion much faster and reduce their
TCP windows more frequently. This behavior will exacerbate
the difference in the throughput values they obtain and im-
pact the fairness performance more severely.

We plot in Fig. 14 the total throughput values for the
three mechanisms. According to the results, both CAC
and DAC significantly outperform EDCA, improving
throughput by 50% and 40%, respectively.

The per-station throughput distribution is depicted in
Fig. 15. With EDCA, the node with the poorest link quality
(node 17) suffers from a large performance degradation,
this being worse than in the UDP case (see Fig. 9). The
use of DAC with TCP traffic also exacerbates the uneven-
ness in the traffic distribution, with node 15 clearly out-
standing among the other nodes. DAC results also present
a large deviation, caused by relatively frequent TCP time-
outs from nodes with weak radio link (e.g., node 17). Con-
versely, CAC yields a remarkably fair and stable throughput
distribution.
10 The Linux distribution used in our deployment executes the TCP CUBIC
variant [31].
Like in the UDP case, we compute the JFI values for the
resulting throughput distributions. In this case, the values
for EDCA, CAC and DAC are 0.787, 0.996 and 0.692, respec-
tively. We conclude that, as expected, the performance of
EDCA and DAC worsens with TCP, while CAC preserves
its good properties in this scenario.

6.6. TCP transfer delay

We finally consider a scenario involving finite-size TCP
connections. More specifically, all stations alternate peri-
ods of activity—during which a transmission of 10 MB oc-
curs—with silent periods exponentially distributed with
mean k�1 [33]. We consider three different values for k,
corresponding to three different levels of activity, namely
high, moderate and low. For each case we ran 1-h experi-
ments, logging all transfer durations and computing the
per-station average delay. We use a box-and-whisker dia-
gram to illustrate the distribution of the average delay
among nodes: we provide the median, first and third quar-
tiles of the average delay, as well as its maximum and min-
imum values.

Results are depicted in Fig. 16. With k�1 ¼ 30 s, which
corresponds to high activity, we see that CAC provides
the smallest and most uniform distribution of transfer de-
lay among nodes, with practically no difference between
the best and worst performing node. In case of EDCA, the
delay shows a larger median and higher variability. How-
ever, the small distance between the first and third quar-
tiles shows that most of the stations experience similar
performance. Finally, for the case of DAC, despite the med-
ian is similar to the one of CAC, results show a much larger
dispersion. This further confirms that, although DAC
achieves the main objective of optimizing the total
throughput, nodes adjust their CW based on different, lo-
cally observed conditions, which results in some stations
being more aggressive than others, and correspondingly
yields large variations in the delay figures.

When the traffic activity is moderate (k�1 ¼ 60 s), the
absolute values decrease, but the relative results are simi-
lar, i.e., CAC provides again the smallest and most uniform
delays among nodes. Finally, when the activity of the

 0

 100

 200

 300

 400

 500

 600

 700

Tr
an

sf
er

 ti
m

e
[s

]

(a) λ-1 = 30 [s]

EDCA
CAC
DAC

 0

 50

 100

 150

 200

 250

 300

Tr
an

sf
er

 ti
m

e
[s

]

(b) λ-1 = 60 [s]

EDCA
CAC
DAC

 0

 10

 20

 30

 40

 50

 60

Tr
an

sf
er

 ti
m

e
[s

]

(c) λ-1 = 90 [s]

EDCA
CAC
DAC

Fig. 16. TCP delay performance.

270 P. Serrano et al. / Computer Networks 57 (2013) 258–272
nodes is low (k�1 ¼ 90 s), medians are very similar but still
CAC provides the most fair distribution of the transfer de-
lays. From these experiments, we conclude that CAC also
provides the best performance under dynamic traffic
scenarios.
7. Related work

The scientific literature offers many examples of MAC
optimization approaches. Many of them are based on a
centralized entity, responsible for monitoring system per-
formance and adapting the system parameters to current
conditions. Other works focus on distributed approaches
to adapt MAC parameters. Very little experimental work
is available, and it is based on complex algorithms, non-
standard functionality and small-sized networks. In the
following we review the most significant contributions in
each of these areas and describe the novelty of our work.

7.1. Centralized approaches

A significant number of approaches exists in the litera-
ture [5,7,14,16] that use a single node to compute the set of
MAC parameters to be used in the WLAN. With the excep-
tion of our CAC algorithm [16], the main drawbacks of
these approaches are that they are either based on heuris-
tics, thereby lacking analytical support for providing per-
formance guarantees [5,7], or they do not consider the
dynamics of the WLAN under realistic scenarios [14].

7.2. Distributed approaches

Several works [8,10,13,34,35] have proposed mecha-
nisms that independently adjust the backoff operation of
each stations in the WLAN. The main disadvantages of
these approaches are that they change the rules of the IEEE
802.11 standard and therefore require introducing signifi-
cant hardware or firm-ware modifications.

7.3. Implementation experiences

Very few schemes to optimize WLAN performance have
been developed in practice [14,15,18]. While the idea be-
hind Idle Sense [13] is fairly simple, its implementation
[18] entails a significant level of complexity, introducing
tight timing constraints that require programming at the
firmware level. Nonetheless, the microcode that achieves
the desired functionality is proprietary and thus subject
to portability constraints. Similar limitations hold for the
approach of [15], which introduces changes to the MAC
protocol that require redesigning the whole NIC imple-
mentation. Further, this involves complex DSP and FPGA
programming and demands non-negligible computational
resources. Finally, the work of [14] does not propose or
evaluate any adaptive algorithm to adapt the CW but just
evaluates the performance of static configurations. Addi-
tionally, our testbed is substantially larger than the one
used in these previous works.
8. Conclusions

We have prototyped with standard 802.11 devices two
adaptive mechanisms that tune the contention window
based on the observed network conditions. In contrast to
other proposals that require complex modifications, these
mechanisms rely on functionalities already supported by
COTS hardware/firmware, and do not introduce any exten-
sions to the standard 802.11 MAC. We have extensively
evaluated the performance of the mechanisms in an 18-
nodes testbed, considering a large variety of network con-
ditions. With our experimental study we have identified
the key limitations of the distributed scheme, inherent in

P. Serrano et al. / Computer Networks 57 (2013) 258–272 271
realistic scenarios, and we have confirmed that the central-
ized mechanism significantly improves network through-
put, transfer delay and fairness among stations in a broad
range of circumstances, including the pathological case of
hidden nodes. A major conclusion from our work is that,
by simply adding a few lines of code at the AP to exploit
the functionality readily available, we can achieve perfor-
mance improvements of up to 50%. We believe that the re-
sults presented herein pave the way for a widespread
deployment of the centralized mechanism.

Acknowledgement

This work has been supported by the European Com-
munity’s Seventh Framework Programme (FP7-ICT-2009-
5) under Grant Agreement No. 257263 (FLAVIA project).

References

[1] IEEE 802.11, Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications, Revision of IEEE Std 802.11-
1999, 2007.

[2] G. Bianchi, Performance analysis of the IEEE 802. 11 distributed
coordination function, IEEE Journal on Selected Areas in
Communications 18 (3) (2000) 535–547.

[3] A. Banchs, L. Vollero, Throughput analysis optimal configuration of
802. 11e EDCA, Computer Networks 50 (11) (2006).

[4] P. Serrano, A. Banchs, P. Patras, A. Azcorra, Optimal configuration of
802. 11e EDCA for real-time data traffic, IEEE Transactions on
Vehicular Technology 59 (5) (2010) 2511–2528.

[5] J. Freitag, N.L.S. da Fonseca, J.F. de Rezende, Tuning of 802. 11e
network parameters, IEEE Communications Letters 10 (8) (2006)
611–613.

[6] L. Scalia, I. Tinnirello, J.W. Tantra, Chuan Heng Foh, Dynamic MAC
parameters configuration for performance optimization in 802.11e
networks, in: Proc. GLOBECOM, San Francisco, CA, USA, Dec 2006, pp.
1–6.

[7] A. Nafaa, A. Ksentini, A. Ahmed Mehaoua, B. Ishibashi, Y. Iraqi, R.
Boutaba, Sliding contention window (SCW): towards backoff range-
based service differentiation over IEEE 802. 11 wireless LAN
networks, IEEE Network 19 (4) (2005) 45–51.

[8] Y. Yang, J.J. Wang, R. Kravets, Distributed optimal contention
window control for elastic traffic in single-cell wireless LANs, IEEE
Transactions on Networking 15 (6) (2007) 1373–1386.

[9] Q. Xia, M. Hamdi, Contention window adjustment for IEEE 802.11
WLANs: a control-theoretic approach, in: Proc. International
Conference on Computer Communications (ICC), Istanbul, Turkey,
June 2006.

[10] Q. Ni, I. Aad, C. Barakat, T. Turletti, Modeling and analysis of slow CW
decrease for IEEE 802.11 WLAN, in: Proc. IEEE Personal, Indoor, and
Mobile Radio Communications Conference (PIMRC), Beijing, 2003.

[11] Lijun Chen, Steven H. Low, John C. Doyle, Joint congestion control
and media access control design for wireless ad hoc networks, in:
Proc. IEEE INFOCOM, Miami, Florida, March 2005.

[12] Lijun Chen, Steven H. Low, John C. Doyle, Random access game and
medium access control design, IEEE Transactions on Networking 18
(4) (2010) 1063–6692.

[13] Martin Heusse, Franck Rousseau, Romaric Guillier, Andrzej Duda,
Idle Sense: an optimal access method for high throughput and
fairness in rate diverse wireless LANs, in: Proc. ACM SIGCOMM,
Philadelphia, PA, USA, 2005, pp. 121–132.

[14] Vasilios A. Siris, George Stamatakis, Optimal CWmin selection for
achieving proportional fairness in multi-rate 802.11e WLANs: test-
bed implementation and evaluation, in: Proceedings of the 1st
International Workshop on Wireless Network Testbeds,
Experimental Evaluation & Characterization, Los Angeles, CA, USA,
2006, pp. 41–48.

[15] Ralph Bernasconi, Silvia Giordano, Alessandro Puiatti, Raffaele
Bruno, Enrico Gregori, Design and implementation of an enhanced
802.11 MAC architecture for single-hop wireless networks, EURASIP
Journal on Wireless Communications and Networking 2007 (1)
(2007) 33.
[16] P. Patras, A. Banchs, P. Serrano, A control theoretic approach for
throughput optimization in IEEE 802. 11e EDCA WLANs, Mobile
Networks and Applications (MONET) 14 (6) (2009) 697–708.

[17] P. Patras, A. Banchs, P. Serrano, A. Azcorra, A control theoretic
approach to distributed optimal configuration of 802. 11 WLANs,
IEEE Transactions on Mobile Computing 10 (6) (2011) 897–
910.

[18] Yan Grunenberger, Martin Heusse, Franck Rousseau, Andrzej Duda,
Experience with an implementation of the idle sense wireless access
method, in: Proceedings of the ACM CoNEXT conference, New York,
New York, 2007, pp. 1–12.

[19] G.F. Franklin, J.D. Powell, M.L. Workman, Digital Control of Dynamic
Systems, second ed., Addison-Wesley, 1990.

[20] Paul Patras, Albert Banchs, Pablo Serrano, A Control Theoretic
Scheme for Efficient Video Transmission over IEEE 802.11e EDCA
WLANs, ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMCCAP) 8 (3) (2012).

[21] Soekris Engineering, Inc. <http://www.soekris.com/>.
[22] The MadWifi Project. <http://madwifi-project.org/>.
[23] Personal Page, <http://www.hamilton.ie/ppatras/#code>.
[24] IEEE 802.11, Supplement to Wireless LAN Medium Access Control

and Physical Layer Specifications: High-speed Physical Layer in the
5 GHz Band, IEEE Std 802.11a, 1999.

[25] Pablo Serrano, Carlos J. Bernardos, Antonio de la Oliva, Albert Banchs,
Ignacio Soto, Michael Zink, FloorNet: Deployment and Evaluation of
a Multihop Wireless 802.11 Testbed, EURASIP Journal on Wireless
Communications and Networking, 2010.

[26] Wireshark Network Protocol Analyzer. <http://wireshark.org>.
[27] Iperf Traffic Generator. <http://sourceforge.net/projects/iperf/>.
[28] Gilles Berger-Sabbatel, Andrzej Duda, Martin Heusse, Franck

Rousseau, ‘‘Short-term fairness of 802.11 networks with several
hosts, in: Proceedings of the Sixth IFIP TC6/WG6.8 Conference on
Mobile and Wireless Communication Networks (MWCN 2004), vol.
162, Paris, France, 2004, pp. 263–274(25–27).

[29] R. Jain, Chiu, D.M., W. Hawe, A Quantitative Measure of Fairness and
Discrimination for Resource Allocation in Shared Systems, DEC
Research Report TR-301, 1984.

[30] Z. Hadzi-Velkov, B. Spasenovski, Capture effect in IEEE 802.11 basic
service area under influence of Rayleigh fading and near/far effect,
in: Proc. IEEE Personal, Indoor, and Mobile Radio Communications
Conference (PIMRC), 2002, vol. 1, pp. 172–176.

[31] Sangtae Ha, Injong Rhee, Lisong Xu, CUBIC: a new TCP-friendly high-
speed TCP variant, ACM SIGOPS Operating Systems Review 42
(2008) 64–74.

[32] O. Gurewitz, V. Mancuso, Jingpu Shi, E.W. Knightly, Measurement
and modeling of the origins of starvation of congestion-controlled
flows in wireless mesh networks, IEEE Transactions on Networking
17 (6) (2009).

[33] P. Barford, M.E. Crovella, Generating representative web workloads
for network and server performance evaluation, in: Proc. ACM
SIGMETRICS, 1998, pp. 151–169.

[34] L. Bononi, M. Conti, E. Gregori, Runtime optimization of IEEE 802.11
wireless LANs performance, IEEE Transactions on Parallel and
Distributed Systems 15 (1) (2004) 66–80.

[35] F. Cali, M. Conti, E. Gregori, IEEE 802. 11 Protocol: design
performance evaluation of an adaptive backoff mechanism, IEEE
Journal on Selected Areas in Communications 18 (9) (2000) 1774–
1786.

Pablo Serrano received his Telecommunica-
tion Engineering degree and his PhD from the
University Carlos III of Madrid (UC3M) in
2002 and 2006, respectively. He has been with
the Telematics Department of UC3M since
2002, where he currently holds the position of
Assistant Professor. In 2007 he was a Visiting
Researcher at the Computer Network
Research Group at Univ. of Massachusetts
Amherst partially suported by the Spanish
Ministry of Education under a José Castillejo
grant. His current work focuses on perfor-

mance evaluation of wireless networks. He has over 30 scientific papers
in peer-reviewed international journal and conferences. He also serves as
TPC member of several international conferences, including IEEE Globe-

com and IEEE INFOCOM.

http://www.soekris.com/
http://madwifi-project.org/
http://www.hamilton.ie/ppatras/#code
http://wireshark.org
http://sourceforge.net/projects/iperf/

272 P. Serrano et al. / Computer Networks 57 (2013) 258–272
Paul Patras received the M.Sc. and Ph.D.
degrees in telematics engineering from Uni-
versity Carlos III of Madrid in 2008 and 2009,
respectively. He is currently a Post-Doctoral
research fellow at the Hamilton Institute. In
2010 he was a visiting intern at the Rice
Networks Group of Rice University, Houston,
USA. He serves as a reviewer for several
international journals and conferences,
including Elsevier Computer Networks, IEEE/
ACM Transactions on Networking, IEEE
Transactions on Communications, IEEE INFO-

COM, IEEE Globecom and IEEE ICC. His current research interests include
performance optimization of IEEE 802.11 wireless LANs, adaptive MAC
mechanisms, dynamic spectrum access, prototype implementation and

testbeds.

Andrea Mannocci received a M.Sc. degree in
Computer Science Engineering from Univer-
sity of Pisa in 2010. His Masters thesis, enti-
tled ‘‘Stepwise Evolution of Java Applications
using Dynamic Updates’’, was developed
during an Erasmus exchange period at The
Maersk Mc-Kinney Moller Institute, Syddansk
Universitet (University of Southern Denmark,
Odense, Denmark) under the supervision of
Prof. Bo Nø rregaard Jø rgensen and Dr. Allan
Raundahl Gregersen. In 2011 he also received
a M.Sc. degree in Telematics Engineering from

University Carlos III of Madrid. He is a research assistant at Institute
IMDEA Networks. His current research activities mainly focuses on the
IEEE 802.11 and 802.16 protocols.
Vincenzo Mancuso received his master
degree in Electronics from the University of
Palermo, Italy, in 2001, and a Ph.D. in Elec-
tronics, Computer Science and Telecommuni-
cations from the same University in 2005. In
2004–2005 he was with University of Roma
‘‘Tor Vergata’’, working on SATNEX, an IST
Network of Excellence. He was then back to
University of Palermo as postdoc, from June
2005 to May 2009. Also, during that period he
has been visiting scholar at the ECE depart-
ment of Rice University, Houston, Texas

(September 2006 to January 2008). In June 2009 he joined the MAESTRO
team at INRIA Sophia Antipolis, France. Since September 2010, Vincenzo
is with Institute IMDEA Networks in Madrid, Spain.
Albert Banchs received his Telecommunica-
tions Engineering degree from the Polytech-
nical University of Catalonia in 1997, and the
Ph.D. degree from the same university in
2002. His Ph.D. received the national award
for best thesis on broadband networks. He
was a visitor researcher at ICSI, Berkeley, in
1997, worked for Telefonica I+D, in 1998, and
for NEC Europe Ltd., Germany, from 1998 to
2003. Since 2003, he is with the University
Carlos III of Madrid and since 2009 he is also
Deputy Director of IMDEA Networks. His

authors over 50 publications in peer-reviewed journals and conferences
and five patents. He is associated editor for IEEE Communications Letters
and has been guest editor for IEEE Wireless Communications and for

Computer Networks. He has served on the TPC of a number of conferences
and workshops including IEEE INFOCOM, IEEE ICC and IEEE Globecom,
and was TPC chair for European Wireless 2010.

	Control theoretic optimization of 802.11 WLANs: Implementation and experimental evaluation
	1 Introduction
	2 Background
	2.1 IEEE 802.11 EDCA
	2.2 Optimal point of operation of the WLAN
	2.3 Centralized Adaptive Control algorithm
	2.4 Distributed Adaptive Control algorithm

	3 Implementation details
	3.1 Implementation overview
	3.2 Estimation of ?
	3.3 Estimation of ?
	3.4 Contention window update

	4 Testbed description
	5 Validation of the algorithms
	5.1 Point of operation
	5.2 Resource consumption

	6 Performance evaluation
	6.1 UDP throughput
	6.2 Impact of SNR on throughput
	6.3 Hidden nodes scenario
	6.4 Impact network size
	6.5 TCP throughput
	6.6 TCP transfer delay

	7 Related work
	7.1 Centralized approaches
	7.2 Distributed approaches
	7.3 Implementation experiences

	8 Conclusions
	Acknowledgement
	References

