
Random Early Marking: Improving TCP Performance
in DiffServ Assured Forwarding

Sandra Tartarelli and Albert Banchs
Network Laboratories Heidelberg, NEC Europe Ltd.

Abstract—In the context of Active Queue Management, intelli-
gent dropping algorithms have been proposed to achieve a better
link utilization with TCP. In this paper we apply this research to
the problem of achieving a better utilization of a customer’s con-
tracted throughput when it is sending a TCP traffic aggregate. We
propose a scheme, Random Early Marking (REM)1, that improves
the throughput of a TCP aggregate by early marking some pack-
ets asout. The proper configuration of REM has been analyzed
from a control theoretical standpoint. Simulation results show that
REM leads to a significant improvement in a wide range of envi-
ronments.

Index Terms— Differentiated Services, Assured Forwarding,
Random Early Marking, Token Bucket, guaranteed throughput,
TCP

I. I NTRODUCTION

The Differentiated Service (DiffServ) architecture [1] has
been proposed as a scalable way of providing Quality of Service
(QoS) in the Internet. Scalability is achieved by moving com-
plicated functionality toward the edge and leaving the core with
very simple functionality. With DiffServ, packets are marked at
the ingress of the network with a DiffServ codepoint (DSCP)
and at the core they are given a forwarding treatment according
to their DSCP. Each DSCP corresponds to a Per-Hop Behavior
(PHB).

The IETF’s DiffServ Working Group has defined two PHB
groups: the Expedited Forwarding (EF) PHB [2] and the As-
sured Forwarding (AF) PHB [3]. This paper focuses on the
latter. Typically, an ISP would use the AF PHB to provide a
service where the packets of a customer are forwarded with a
very high probability as long as the aggregate traffic from the
customer does not exceed the target rate he has contracted, the
Committed Information Rate (CIR).

Even though the AF PHB has become a standard, there are
still some open issues that need to be understood. The most im-
portant question relates to the kind of end-to-end services that
can be provided [4], [5]. There is the concern that AF should
show some measure of predictability for paying customers. If
charging is based on the CIR, then in a predictable system a
customer would expect to receive a throughput at least equal to
the CIR.

Unfortunately, in case the customer is sending an aggregate
of TCP traffic, current schemes proposed for AF do not always
show this predictable behavior. TCP traffic increases its send-
ing rate steadily and decreases it upon detecting packet drops.
In case of congestion, AF drops customer’s packets when his
total sending rate exceeds his CIR. In some situations, the com-
bination of AF and TCP results in a synchronized behavior of

1The Random Early Marking scheme has a patent application pending on it.

the customer’s TCP sources, that decrease all their sending rate
at the same time. As a consequence, the customer’s sending
rate is oscillating, which results in a lower throughput than the
CIR.

In the context of queue management in routers, numerous
Active Queue Management (AQM) schemes (see e.g. [6], [7])
have been proposed to fight TCP synchronization in order to
achieve a better link utilization. These schemes are based on
the idea of performing some intelligent early dropping before
the buffer is completely filled up.

In this paper we take up the research done in the context of
AQM and apply it to the problem of achieving a better utiliza-
tion of the customer’s CIR. Specifically, we propose to intelli-
gently mark the customer’s packets such that TCP sources are
randomly early notified of congestion and synchronization is
avoided. Our performance objective is to guarantee a through-
put to a customer sending a TCP traffic aggregate the closest
possible to his CIR.

The rest of the paper is structured as follows. In Section II
we propose our scheme,Random Early Marking, to improve
the performance of TCP in AF. Section III analyses the pro-
posed scheme from a control theoretical standpoint, and uses
this analysis to give guidelines on its configuration. We present
our simulation results in Section IV and conclude the paper with
a summary in Section V.

II. RANDOM EARLY MARKING

In this paper we assume that the Assured Forwarding PHB
is implemented with the WRED algorithm [8] with two levels
of drop precedence (in andout). The proposed scheme, how-
ever, could be easily extended to three levels of drop precedence
(green, yellow andred).

WRED works as follows. Packets entering the network are
markedin profile or out of profile at the ingress according to
the Token Bucket algorithm of Figure II. In this algorithm, a
token bucket of depthB is filled at the rate specified by the CIR,
whereB and CIR are part of the contract with the customer.
Then, when a packet from the customer is received, it is marked
in if there are enough bytes in the bucket for this packet, and it
is markedout otherwise. In case ofin marking, a number of
bytes equal to the packet length is substracted from the bucket.

At core nodes, all packets,in andout, are put into the same
buffer. This buffer is managed in such a way that in case of con-
gestionout packets are dropped first. In this way, the WRED
algorithm guarantees that, as long as the network is configured
such thatin packets alone do not cause congestion,in packets
are never dropped. In [9] we provide configuration guidelines
to achieve this behavior.

0-7803-7400-2/02/$17.00 (C) 2002 IEEE



Packet length: L
(bytes)

Token rate: CIR
(bytes/s)

Token Bucket
occupancy:

b (bytes)

Token Bucket
size: B (bytes)

in if b >=  L
out otherwise

Fig. 1. Token Bucket algorithm.

It can be easily seen that, in the case of a customer sending
non-responsive UDP traffic, WRED achieves the goal of guar-
anteeing to a customer a throughput at least equal to the CIR he
has contracted. This is because, as long as the customer is not
sending above the CIR, the token bucket is never emptied and
all packets are marked in.

Providing throughput guarantees for TCP traffic with
WRED, though, is more complex. While no packet drops are
detected, TCP traffic increases steadily its sending rate. When
the sending rate reaches the CIR, the token bucket is emptied
and packets are marked out. This out marking leads to drops in
case of congestion. TCP then reacts to these drops by decreas-
ing its sending rate to a lower value than the CIR. As a con-
sequence, TCP’s sending rate oscillates between the CIR and a
lower value, which results in an average throughput lower than
the committed.

The behavior of TCP described above is better illustrated
with the following example. Two customers who have con-
tracted a 10 Mbps CIR share a 20 Mbps link. Both customers
are sending 20 TCP flows each and have RTTs of 20 (customer
1) and 100 ms (customer 2). According to simulation results,
the throughputs obtained by customers 1 and 2 in this scenario
are 9.83 and 8.32 Mbps respectively. We can observe that the
throughput obtained by customer 2 is considerably lower than
his CIR.

Figure 2 plots the occupancy of the token bucket for customer
2. The plot shows the oscillating behavior of his TCP traffic ag-
gregate. When the token bucket gets empty it is because the
TCP traffic has increased its rate over the CIR. In case of con-
gestion, some low priority packets are dropped by the WRED
mechanism. TCP reacts to the drops by significantly decreas-
ing its rate. At this point, the token bucket fills up again. It
is not until TCP increases its rate over the CIR again that the
token bucket occupancy decreases. In the time period while the
bucket is full the customer is transmitting at a lower rate than
the CIR.

The objective of providing a throughput equal to the CIR can
be reformulated as stabilizing the token bucket occupancy to a
value smaller than the bucket size. A constant not full token
bucket occupancy implies a sending rate of in packets equal to
the CIR. Since in packets are very unlikely to be dropped, this
leads to the committed throughput.

Let b be the token bucket occupancy, B its size, r(t) the
customer’s sending rate and C the contracted CIR. Then the
problem of stabilizing the token bucket occupancy b can be ex-

0

20000

40000

60000

80000

100000

120000

140000

10 15 20 25 30 35 40 45 50

B
uc

ke
t O

cc
up

an
cy

 (
by

te
s)

Time (sec)

C2

Fig. 2. Token Bucket occupancy for customer 2.

pressed as having the time derivative of the token bucket occu-
pancy ( _b) equal to 0:

_b = C � r(t) = 0 (1)

with 0 < b < B.
The above problem is similar to the problem of stabilizing the

occupancy q of a queue of size B and capacity C filled at a rate
r(t). Actually, assuming constant round-trip delays and that
all out packets are dropped, the two problems are equivalent,
which can be easily seen with the change of variable:

q = B � b (2)

The problem of stabilizing the buffer occupancy has been ex-
tensively studied in the context of Active Queue Management
(AQM), where numerous schemes have been proposed in the
last few years. While these schemes differ in details, they are
similar at the architectural level. They monitor the evolution of
the buffer occupancy and process this data with an algorithm to
obtain a dropping probability for incoming packets. Different
AQM schemes basically differ in the algorithm used to obtain
the dropping probabilities.

In this paper we use the algorithms proposed in the context
of AQM to stabilize the occupancy of the token bucket. The
AQM algorithm that we have chosen to use in this paper is the
Proportional Integrator (PI) proposed in [7].

Hence, the Random Early Marking (REM) scheme we pro-
pose is based on using the PI algorithm of [7] with the change of
variable defined above (Equation 2) to determine the probability
p of marking an incoming packet as out. This leads to the pseu-
docode of Algorithm 1 for computing p. Note that when mark-
ing out, no bytes are substracted from the token bucket. Note
also that when the token bucket is empty, packets are marked
out independently of p.

Algorithm 1 REM pseudocode
For every incoming packet:
p = k1(b ref � b)� k2(b ref � b old) + p old
p old = p
b old = b

The stability of the token bucket occupancy with Algorithm 1
depends on the parameters k1 and k2. b ref is the desired

0-7803-7400-2/02/$17.00 (C) 2002 IEEE



0

20000

40000

60000

80000

100000

120000

140000

10 15 20 25 30 35 40 45 50

B
uc

ke
t O

cc
up

an
cy

 (
by

te
s)

Time (sec)

C2

Fig. 3. Token Bucket occupancy with REM.

Token Bucket
dynamics

REM

bp

Fig. 4. REM feedback control system.

buffer occupancy to which we want to regulate. Therefore, the
appropriate choice for k1 and k2 is key to achieve the perfor-
mance objective of REM. In the following section we study how
to configure these parameters.

Figure 3 corresponds to the example of Figure 2 but us-
ing REM with the configuration of Section III. It can be ob-
served that REM stabilizes the token bucket occupancy around
b ref = 0:75B. The throughput obtained by customer 2 in
this case is 9.65 Mbps, which is much closer to the CIR than
the 8.32 Mbps obtained without REM. Note that in Figure 3, as
compared to Figure 2, the time intervals over which the token
bucket is full are shorter.

III. ANALYSIS AND CONFIGURATION

In this section we apply the control theoretic analyses of [7]
and [10] to the problem of stabilizing the token bucket occu-
pancy in REM.

Figure 4 shows a feedback control system depiction of REM.
The action of REM is to mark packet out (with probability p)
as a function of the token bucket occupancy b.

In the rest of this section we assume the worst possible sce-
nario for the throughput, in which all out packets are dropped.
With this assumption, the dependency of the token bucket oc-
cupancy b on the probability of marking out p is expressed with
the following two equations [11]:

_W =
1

R(t)
�
W (t)W (t�R(t))

2R(t�R(t))
p(t�R(t))

_b = �
W (t)

R(t)
N(t) + C (3)

where W is the TCP window size, R(t) is the round-trip time,

N(t) is the number of TCP sources and C is the contracted
CIR.

Taking (W; b) as the state and p as the input, the operation
point (W0; b0; p0) is defined by _W = 0 and _b = 0 so that

W 2
0 p0 = 2

W0 =
R0C

N
(4)

Assuming N(t) = N and R(t) = R0 as constants, we lin-
earize (3) to obtain

Æ _W = �
N

R2
0C

(ÆW + ÆW (t�R0))�
R0C

2

2N2
Æp(t�R0)

Æ _b = �
N

R0

ÆW (5)

where

ÆW = W �W0

Æb = b� b0

Æp = p� p0

Performing a Laplace transform on the above differential
equations leads to the block diagram of Figure 5 for the lin-
earized REM control system.

With the assumption that N
R2
0
C
� 1

R0
(this assumption is

justified in [10]), H(s) can be written as

H(s) = �
R0C

2

2N2

1

s+ 2N
R2
0
C

e�SR0 (6)

C(s) is the Laplace transform on the controller of Algo-
rithm 1:

C(s) = K
s
z
+ 1

s
(7)

where K and z are functions of the parameters k1 and k2.

− −
0

N

R

C(s)

H(s)
ÆWÆp Æb

Fig. 5. Block diagram of linearized REM control system.

The above gives us the following open loop transfer function:

L(jw) = e�jwR0 �
C2K

2N
�
jw
z

+ 1

jw
�

1

jw + 2N
R2
0
C

(8)

Let’s assume a range for the number of TCP sessions, say
N � N�, and the round-trip time, R0 � R+. The objective
is to select REM values K and z to stabilize the linear control
system of Figure 5.

0-7803-7400-2/02/$17.00 (C) 2002 IEEE



We first choose the following zero for the controller:

z = wg = 0:1
2N�

R+2C
(9)

The rationale behind the above choice is to have C(s) to
dominate the closed-loop behavior. This is done making the
closed loop constant (� 1=wg) greater than the TCP time con-

stant 2N�

R+2C
.

Then we invoke the Nyquist stability criterion [12], which
states that if j L(jwg) j� 1 and 6 L(jwg) > �180o then the
system is stable at wg . By imposing j L(jwg) j= 0:1 we obtain
the following value for K:

K = 0:007
(2N�)3

(R+2C2)2
(10)

and computing 6 L(jwg) with the above conditions we obtain

6 L(jwg) � �146o > �180o (11)

Finally, transformingC(s) from the s domain (Laplace trans-
form) back to the z domain by using the bilinear transformation
yields the following configuration rules for k1 and k2:

k1 = K

�
T

2
+

1

wg

�

k2 = �K

�
T

2
�

1

wg

�
(12)

where K and wg are defined in Equations 9 and 10, and T is
the packet interarrival time, which we have taken as T = 1=C
(i.e. we assume that the customer is transmitting at his CIR).

IV. SIMULATION RESULTS

In [9] we proposed some rules to configure a DiffServ sce-
nario, that uses a token bucket and a WRED queue. These rules
proved very efficient in providing the agreed CIR in many sim-
ulated scenarios.

However, we observed that in a number of cases of inter-
est in the practice, such an architecture is not able to contrast
fairness problems due to the TCP flow control mechanism. In
this section we show that by employing REM, results can be
significantly improved. We configured the simulation scenar-
ios following the guidelines given in [9]. In particular, the dis-
carding thresholds for conforming traffic are set to a value that
avoids in packets drops. Besides we set OUTmax = 10 (max-
imum threshold for out packets). Finally, for simulations with
the REM mechanism, we considered the instantaneous queue
length for the AQM mechanism, so that the system reacts faster
to the early marking. Simulations were run by using ns-2 [13].

In the following we first show some simulation results we ob-
tained by considering a number of heterogeneous scenarios. In
the first three cases we assumed a fully subscribed link, i.e. the
sum of the CIRs is equal to the bottleneck capacity, while in the
fourth example we explored the behavior when the link is only
partially subscribed. We then conclude the section, by evaluat-
ing the performance of the proposed marking scheme as a func-
tion of different parameters. For all simulations we considered
TCP Reno.

A. Scenario 1: TCP-UDP interaction

The first scenario we considered is described by Table I and
also depicted in Figure 6. The access links do not introduce
either delay or packets drops.

40 ms
100Mbps

0 ms
100Mbps

40 Mbps, 10ms

C2

C3

C4

C1

D2

D1

Fig. 6. Simulation scenario.

It is known that non-responsive UDP traffic causes problems
of fairness when interacting with TCP flows. Therefore, in this
scenario we study the interaction between customers transmit-
ting either TCP only flows or mixed TCP and UDP traffic. To
model UDP traffic, we considered Constant Bit Rate (CBR)
flows, each sending at 1.5 Mbps. In this case the UDP rate
sums up to 75% of the agreed CIR.

CIR # of Flows RTT noREM REM
(Mbps) TCP+UDP (ms) (Mbps) (Mbps)

Total - - - 37.88 39.47
C1 10 10 + 0 20 9.46 10.10
C2 10 10 + 0 100 7.99 9.05
C3 10 10 + 5 20 10.35 10.21
C4 10 10 + 5 100 10.06 10.09

TABLE I
SCENARIO 1

Table I reports some settings we selected for this test and in
the last two columns it shows the results in terms of through-
put, for the standard approach and the proposed scheme respec-
tively. Table I confirms that REM helps customers sending only
TCP flows to receive a higher share of the total bandwidth.
In particular C1, characterized by a small RTT, achieves the
agreed CIR while C2 gets more than 90% of it, against the 80%
allowed by the standard approach.

B. Scenario 2: heterogeneous CIR values

A fairness problem arises also when different customers con-
tract heterogeneous values for the CIR. In fact, those customers
characterized by a lower CIR value are favored in achieving the
agreed CIR. With this scenario we give an example of a possi-
ble behavior. The bottleneck link speed is set equal to 22 Mbps.
Table II shows that in the considered case, REM allows to im-
prove the overall link utilization by more than 15% and above
all it leads to a significantly more fair bandwidth distribution.

C. Scenario 3: large number of customers

When the number of customers and of flows grows to high
values, then the multiplexing gain has a positive effect towards

0-7803-7400-2/02/$17.00 (C) 2002 IEEE



CIR # of Flows RTT noREM REM
(Mbps) TCP (ms) (Mbps) (Mbps)

Total - - - 18.18 21.62
C1 10 10 20 8.63 10.16
C2 10 10 100 7.07 9.23
C3 1 10 20 1.43 1.16
C4 1 10 100 1.03 1.06

TABLE II
SCENARIO 2

better link utilization and bandwidth distribution, even when
the standard token bucket is used. The bottleneck link speed is
set equal to 100 Mbps. In Table III we show simulation results
that confirm this. However, also in this case, the REM approach
seems to slightly improve the overall performance.

CIR # of Flows RTT noREM REM
(Mbps) TCP (ms) (Mbps) (Mbps)

Total - - - 97.17 98.63
C1 10 40 20 10.36 10.58
C2 10 10 100 9.16 9.25
C3 10 10 20 9.91 10.10
C4 10 40 100 10.11 10.27
C5 10 20 20 10.20 10.33
C6 10 20 100 9.79 9.89
C7 10 15 20 10.11 10.25
C8 10 15 100 9.47 9.66
C9 10 5 20 8.88 9.05
C10 10 10 100 9.14 9.22

TABLE III
SCENARIO 3

D. Scenario 4: undersubscribed link

In the last example, we investigate the interaction among cus-
tomers with only TCP flows and only UDP flows respectively
in an under-subscribed link. We considered a link speed of 53
Mbps, while

P4

i=1 CIRi = 40 Mbps (75% subscribed link).
C3 and C4 transmit both 10 CBR flows, each at a rate of 1.5
Mbps, i.e. their sending rate is significantly above the CIR.

CIR # of Flows RTT noREM REM
(Mbps) TCP+UDP (ms) (Mbps) (Mbps)

Total - - - 49.56 51.31
C1 10 10+0 20 11.34 14.30
C2 10 10+0 100 9.72 10.48
C3 10 0+10 20 14.25 13.44
C4 10 0+10 100 14.24 13.08

TABLE IV
SCENARIO 4

Table IV shows that REM allows TCP to obtain a signifi-
cantly higher share of the excess bandwidth as compared to the
standard approach. This is especially true for more aggressive
TCP customers (C1 has a smaller RTT), while C2 having a rel-
atively small number of flows and a large RTT (respectively 10
and 100ms) can only achieve the agreed CIR.

E. Number of customers

Scenario 3 showed that if the number of flows per customer
is high enough, the number of customers is large and if the net-
work is properly configured, then the target throughput is ap-
proximately achieved by all customers, even when not using
early marking.

In the following we intend to investigate the benefit offered
by the REM approach as a function of the number of customers.
To this end, we considered again the setting implemented for
Scenario 3 and we evaluated the throughput achieved respec-
tively by C1 and C2 as a function of the total number of cus-
tomers. C1 is characterized by a low RTT and a large number
of flows, therefore it is very likely that it will achieve the agreed
CIR. C2 on the contrary has a large RTT and a relatively small
number of flows, thus it is penalized in the bandwidth sharing.
In the simulations, we always considered the first n customers
in Table III for a scenario with n customers.

In Figure 7 we compare the throughput obtained by C1 and
C2 when using REM and the standard token bucket. REM al-
ways allows to achieve the best performance. However, the
most significant improvement is achieved by customer C2 when
the total number of customers is below 8. By employing REM,
C2 always obtains at least 90% of the committed CIR, while the
standard token bucket considerably penalizes it when the total
number of customers is low. Note that the latter case might be
common for access links.

8000

8500

9000

9500

10000

10500

11000

2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

K
bp

s)

Number of Customers

C1 - REM
C2 - REM

C1 - noREM
C2 - noREM

CIR

Fig. 7. Achieved throughput as a function of the number of customers.

F. Utilization

For the same experiment, we also evaluated the total link uti-
lization. The results are reported in Figure 8. The improvement
due to the REM mechanism is noticeable.

G. Number of flows per customer

We conclude this section, by considering the effect of a low
number of flows per customer, of the order of a few units (for
instance home users). In particular we analyze the performance
of a scenario with 10 customers, each transmitting 10 flows, ex-
cept for one customer that sends a smaller number of flows. All
customers are assigned a CIR=10 Mbps, the RTT varies for the
different customers between 20 and 100 ms and the bottleneck
speed link is equal to 100 Mbps.

0-7803-7400-2/02/$17.00 (C) 2002 IEEE



0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

2 3 4 5 6 7 8 9 10

Li
nk

 U
til

iz
at

io
n

Number of Customers

REM
noREM

Fig. 8. Achieved link utilization as a function of the number of customers.

We focus on the single customer sending a small number
of flows. Based on previous results, we expect it to receive a
smaller share of the total bandwidth. We therefore evaluate the
achieved throughput as a function of the number of flows, when
employing REM as compared to the standard token bucket. Re-
sults are reported in Figure 9. As expected, when the number
of flows is small, the throughput obtained is significantly lower
than the agreed CIR. However, by using REM we observe a rel-
evant improvement. In our example, by transmitting 5 flows,
the customer already obtains the agreed CIR, while when no
early marking is applied, the throughput achieved is still 10%
lower than the agreed one.

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

K
bp

s)

Number of TCP Flows

REM
noREM

Fig. 9. Achieved throughput as a function of the number of TCP flows.

V. CONCLUSIONS

In this paper we have proposed REM (Random Early Mark-
ing), a mechanism to improve the performance of TCP in Diff-
Serv Assured Forwarding. REM relies on early notifying TCP
sources of upcoming congestion via out marking. In this way,
REM avoids synchronization among the TCP sources of a cus-
tomer, resulting in a better utilization of the contracted through-
put (i.e. a more predictable service) and a better distribution of
the total bandwidth (i.e. a higher level of fairness between cus-
tomers).

REM is integrated into the widely used token bucket algo-
rithm. The only modification introduced by REM to this algo-
rithm is that in some cases packets are marked out before the

token bucket gets empty. Hence, the good features of the to-
ken bucket algorithm for controlling the rate of in packets are
preserved with REM.

One of the key aspects of REM is its simplicity. Instead of
keeping state for each active connection, REM only requires a
small number of additional fixed and variable parameters for
each token bucket. Another key aspect is that its configuration
does not require specific knowledge about the customer’s traf-
fic, but only a lower bound for the number of TCP session and
an upper bound for the round-trip time.

Simulation results show that the improvement obtained by
using REM is notable when one of the following two conditions
holds: a) the total number of customers traversing a congested
link is small or b) the number of flows per customer is small.
With a large number of customers sending a large number of
flows each, results without REM are already good and there is
little room for improvement.

We conclude that REM leads to a significant improvement
in a wide range of environments, since access links (condition
a)) are often bottleneck links in the Internet, and home users
(condition b)) represent a large number of potential customers
of the DiffServ AF service.

ACKNOWLEDGEMENTS

We would like to thank S. Sato, K. Kobayashi and H. Pan for
many fruitful discussions on TCP performance in DiffServ. We
would also like to thank F. Raspall and M. Molina for useful
comments and suggestions on earlier drafts of this paper.

REFERENCES

[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
Architecture for Differentiated Services,” RFC 2475, December 1998.

[2] V. Jacobson, K. Nichols, and K. Poduri, “An Expedited Forwarding
PHB,” RFC 2598, June 1999.

[3] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured Forward-
ing PHB Group,” RFC 2597, June 1999.

[4] N. Seddigh, B. Nandy, and J. Heinanen, “An Assured Rate Per-Domain
Behavior for Differentiated Services,” Internet draft, February 2001.

[5] M. Brunner, A. Banchs, S. Tartarelli, and H. Pan, “A one-to-any As-
sured Rate Per-Domain Behavior for Differentiated Services,” Internet
draft, April 2001.

[6] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Con-
gestion Avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no.
1, pp. 397–413, August 1993.

[7] C. V. Hollot, V. Mishra, D. Towsley, and W. Gong, “On Designing Im-
proved Controllers for AQM Routers Supporting TCP Flows,” in Pro-
ceedings of IEEE INFOCOM 2001, Anchorage, Alaska, April 2001.

[8] CISCO SYSTEMS, “Congestion Avoidance Overview,” http://www.
cisco.com/univercd/cc/td/doc/product/software/
ios122/122cgcr/fqos_c/fqcprt3/qcfconav.htm.

[9] S. Sato, K. Kobayashi, H. Pan, S. Tartarelli, and A. Banchs, “Config-
uration Rule and Performance Evaluation of Diffserv Parameters,” in
Proceedings of Seventeenth International Teletraffic Congress (ITC17),
Salvador da Bahia, Brazil, September 2001.

[10] C. V. Hollot, V. Mishra, D. Towsley, and W. Gong, “A Control Theoretic
Analysis of RED,” in Proceedings of IEEE INFOCOM 2001, Anchorage,
Alaska, April 2001.

[11] V. Mishra, W. Gong, and D. Towsley, “Fluid-based Analysis of a Network
of AQM Routers Supporting TCP Flows with an Application to RED,”
in Proceedings of ACM/SIGCOMM 2000, Stockholm, Sweden, August
2000.

[12] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of
Dynamic Systems, Addison-Wesley, 1995.

[13] UCB/LBNL/VINT, “Network Simulator (ns), version 2,” http://
www.isi.edu/nsnam/ns/.

0-7803-7400-2/02/$17.00 (C) 2002 IEEE


	ICC 2002
	Return to Main Menu


