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Abstract
While the application of artificial intelligence 

(AI) to 5G networks has raised strong interest, 
standard solutions to bring AI into 5G systems 
are still in their infancy and have a long way to go 
before they can be used to build an operational 
system. In this article, we contribute to bridging 
the gap between standards and a working solu-
tion by defining a framework that brings together 
the relevant standard specifications and comple-
ments them with additional building blocks. We 
populate this framework with concrete AI-based 
algorithms that serve different purposes toward 
developing a fully operational system. We evalu-
ate the performance resulting from applying our 
framework to control, management, and orches-
tration functions, showing the benefits that AI can 
bring to 5G systems.

Introduction
Network control, management, and orchestration 
entail the dynamic placement, configuration, and 
resource provisioning of virtual network functions 
(VNFs) within the network function virtualization 
(NFV) infrastructure. The complexity of these oper-
ations exceeds substantially that of equivalent tasks 
in legacy 4G LTE networks. There, the relatively 
limited amount of variables in one-size-fits-all in the 
core and radio access network domains accom-
modates management models that mainly rely on 
expert monitoring and intervention. Instead, the 
traditional human-based approach is hardly viable 
in virtualized 5G networks where the coexistence 
of heterogeneous mobile services, diversified net-
work requirements, and tenant-defined manage-
ment policies create a need for specialized and 
time-varying infrastructure deployments. This calls, 
in turn, for automated solutions in the control, 
management, and orchestration of the network.

Artificial intelligence (AI) is a natural choice 
to support the emerging need for autonomous 
network operation and management. The Third 
Generation Partnership Project (3GPP) and other 
standards development organizations (SDOs) 
have started delineating the road for the integra-
tion of AI into the mobile network architecture. 
Such a process starts with an efficient collection 
of data in the network infrastructure and knowl-
edge inference from these data, which are par-
amount to effective AI-assisted decision making. 

In this sense, SDOs are pushing efforts toward 
defining AI-based data analytics frameworks that 
are suitable for autonomous and efficient control, 
management, and orchestration of mobile net-
works. For instance, 3GPP has incorporated the 
following modules into its standardized architec-
ture: (i) network data analytics function (NWDAF) 
[1] and (ii) management data analytics function 
(MDAF) [2]. Other organizations, such as the 
O-RAN alliance, envision similar entities in their 
architectures [3]. The European Telecommunica-
tions Standards Institute (ETSI) has also defined 
comparable assisting elements within the Industry 
Specification Groups (ISGs) on Experiential Net-
worked Intelligence (ENI) and Zero touch network 
& Service Management (ZSM) [4]. Furthermore, 
open source initiatives such as ONAP [5] are also 
including data analytics in their architecture.

All these ongoing efforts are, however, at an 
early stage. The frameworks they propose and 
the solution designs they foster are preliminary 
and mainly aim at introducing several key building 
blocks at a very high level of abstraction. They 
are still far from detailed, full-blown network data 
analytics that are ready for deployment.

In this context, the goal of this article is to com-
plement and support ongoing standardization activ-
ities by (i) proposing a comprehensive framework 
that leverages data analytics for network control, 
management, and orchestration, bringing together 
the corresponding efforts at relevant initiatives such 
as 3GPP, ETSI, and O-RAN; and (ii) populating the 
proposed framework with practical algorithms that 
build on AI and machine learning (ML) solutions.

AI-Driven Data Analytics Framework
Figure 1 depicts the network data analytics frame-
work we propose. The framework design encom-
passes the management and orchestration plane 
as well as the control plane functionalities, as AI 
can indeed improve the performance at all levels. 
Within each plane, we take as reference archi-
tecture the one proposed by 3GPP, integrating 
it with an ETSI NFV MANO architecture and 
expanding it with O-RAN modules.

Management and Orchestration Plane
In the management and orchestration plane, the 
MDAF module is responsible for the so-called 
management data analytics service (MDAS) for 
all network slice instances, sub-instances, and net-

AI-Based Autonomous Control, Management, and Orchestration in 5G: From Standards 
to Algorithms
Dario Bega, Marco Gramaglia, Ramon Perez, Marco Fiore, Albert Banchs, and Xavier Costa-Pérez

AI FOR MOBILE NETWORKS 

Digital Object Identifier:
10.1109/MNET.001.2000047

Dario Bega and Albert Banchs are with IMDEA Networks Institute and University Carlos III of Madrid; Marco Gramaglia is with University Carlos III of Madrid; 
Ramon Perez is with Telcaria Ideas; Marco Fiore is with with IMDEA Networks Institute; Xavier Costa-Pérez is with NEC Laboratories Europe, i2CAT, and ICREA.

BANCHS_LAYOUT.indd   14BANCHS_LAYOUT.indd   14 11/18/20   4:50 PM11/18/20   4:50 PM

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on December 05,2020 at 21:27:45 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Network • November/December 2020 15

work functions hosted within the network infra-
structure. This involves the centralized collection 
of network data for subsequent publishing to 
other network management and orchestration 
modules. In the proposed framework, we specif-
ically employ this service to collect mobile data 
traffic loads generated in the radio access domain 
by the individual slices; in particular, the MDAS 
[2] comprises the load level at both the network 
function (NF) and network slice levels, provided 
as a periodic notification and expressed either 
in absolute terms or relative to the provisioned 
capacity. As a result, the MDAF allows building 
historical databases of the network demands for 
each base station and slice. These data are then 
exposed to the AI-based prediction algorithms 
for long-term forecasting (AI-LTF) and mid-term 
forecasting (AI-MTF).

The AI-LTF  algorithm aims to assist the 
VNF placement decisions made by the orches-
tration system. To this end, AI-LTF  leverages 
the network demand history to predict the future 
aggregate load across the different infrastructure 
locations. Then, the NFV orchestrator (NFVO) 
compares this prediction against the current avail-
able capacity in each infrastructure location and 
anticipates potential overload conditions. The 
NFVO can react, for example, by moving VNFs 
out of the congested infrastructure (while meeting 
the requirements of the corresponding network 
slice). The AI-LTF algorithm operates on long 
timescales, typically on the order of hours: indeed, 
VNF repositioning is quite a drastic action that 
involves substantial overhead, and consequently 
it is only performed infrequently and as an answer 
to substantial traffic fluctuations.

The second algorithm, AI-MTF, has a different 
purpose: it fuels the resource scaling decisions 
made by the VNF manager (VNFM). The VNFM 
has an interface with the virtual infrastructure 
managers (VIMs) to monitor the resource usage 
of the VNFs of each slice, and it also leverages 
data collected and published by the MDAF to 
determine the level of unsatisfied demand and 
the amount of unused resources. Based on all 
this information, the AI-MTF algorithm assists the 
orchestration framework on the decision to pro-
vide more resources to the VNFs of a slice when 
the predicted load exceeds the current resources, 
an operation typically referred to as upscaling, or 
to downscale resources to save cost when VNFs 
are leaving a significant fraction of the resources 
unused. Such decisions must be made over faster 
timescales than those affecting the VNF place-
ment, and generally occur over intervals on the 
order of tens of minutes, which is the typical fre-
quency for the execution of new VNF instances 
involving up- and downscaling.

Note that AI-LTF and AI-MTF only take as 
input the load history from MDAF and do not 
interact between themselves or with any other 
module. The forecasts of AI-LTF and AI-MTF 
are fed into the NFVO and VNFM engines, which 
may instead also leverage information obtained 
from other modules to make their decisions.

Control Plane
On the control plane, the NWDAF module is 
responsible for collecting data on the load level 
of an NF or a network slice [1], playing a very 

similar role to that of the MDAF in the manage-
ment domain. In our framework, these data are 
fed to the AI-based short-term forecasting algo-
rithm (AI-STF), which predicts the future traf-
fic load. The forecast is leveraged by the Policy 
Control Function (PCF) module, which provides 
a unified policy framework to govern the network 
behavior. PCF can use the forecast provided by 
AI-STF to optimize its policies, such as:
•	 The QoS parameters (for those services that 

can be provided at different quality of ser-
vice, QoS, levels)

•	 The access and mobility policies
•	 The user equipment route selection policy 

(URSP)
In contrast to the previous modules, these 

updates are performed at rather fast timescales, 
down to hundreds of milliseconds.

While the NWDAF module has been 
designed for the network core, a similar 
approach can be applied to the radio access 
network (RAN). Although 3GPP has not yet pro-
posed modules equivalent to NWDAF in the 
RAN, other initiatives such as the O-RAN alli-
ance have taken this path. In the O-RAN archi-
tecture [3], the radio network information base 
(RNIB) collects load information of flows or flow 
aggregates at the RAN level, the RAN intelligent 
controller (RIC) enables near-real-time control of 
RAN elements/resources, and the RAN resource 
orchestrator handles the overall resources at the 
base station level. In this case, the AI-STF fore-
casts can be leveraged by the RIC to perform 
the optimization of the radio resources at a fine 
time granularity (on the order of hundreds of 
milliseconds) and by the RAN resource orches-
tration to update the resource and bandwidth 
allocation at larger timescales (up to the order 
of minutes).

FIGURE 1. Proposed framework with standard functions (from 3GPP, ETSI, 
and O-RAN) and the new AI-based algorithms (AI-LTF, AI-MTF, and 
AI-STF).
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AI-Based Algorithm Design
The above framework introduces three new 
AI-based algorithms: AI-LTF , AI-MTF , and 
AI-STF. The three algorithms follow the same 
design guidelines, as all of them aim to provide 
network capacity forecasts. The main difference 
between them is that they work at different gran-
ularity in terms of traffic volume (at global, slice, 
or flow levels) and timescale (intervals of hours, 
tens of minutes, minutes or shorter). In the follow-
ing, we present the unified design of these three 
algorithms.

Capacity Forecasting
In contrast to the majority of the literature in the 
area of forecasting, our algorithm design address-
es an original problem of capacity forecasting. 
Capacity forecasting goes beyond the typical 
estimation of future demands that is targeted by 
most traffic predictors. Indeed, predictors in the 
literature almost exclusively aim at matching the 
temporal behavior of traffic as closely as possible, 
giving the same weight to positive and negative 
errors [6]. While this approach produces fore-
casts that reduce as much as possible the error 
between the future and the anticipated demand, 
it is unsafe in a capacity allocation context where 
the metric of interest is the cost incurred by an 
operator when deploying the resources, rather 
than the error between the real and the forecast-
ed demand. In this case, underestimating future 
demands causes service level agreement (SLA) 
violations that have a monetary penalty much 
higher than the cost resulting from overprovision-
ing the resources, as long as the level of overdi-
mensioning is not excessive.

In contrast to the above legacy approaches, 
the aim of capacity forecasting is to find the level 
of capacity that suffices to meet the expected 
load at (almost) all times, even if this comes at the 
price of requiring a certain level of overprovision-
ing. To perform such capacity forecasting, we rely 
on AI techniques, which have been repeatedly 
shown to outperform traditional statistical models 
in mobile traffic prediction tasks that are akin to 
the capacity forecasting problem at hand [6, 7]. 
In particular, our design takes advantage of recent 
advances in supervised learning via deep neural 
network (DNN) architectures, which — unlike 
other approaches — are well suited to cope with 
the high dimensionality of the mobile data traffic, 
the complex spatial and temporal correlations it 
entails [8], and the nonlinear metric of interest 
that characterizes our problem.

Algorithm Design Overview
Our algorithm design builds on recent proposals 
that properly model the monetary costs incurred 
by the mobile network operator [9]. It is based 
on the following workflow. First, current and past 
mobile traffic information, collected at the desired 
level of granularity, is properly formatted into an 
input suitable for feeding the prediction algorithm. 
This input is fed to a DNN architecture that pro-
cesses input features to provide an output value: 
the capacity forecast. During the training phase, 
the output is used to evaluate a loss function that 
quantifies the error with respect to the ground 
truth (i.e., the label), accounting for the costs of 
resource overprovisioning (i.e., allocating more 
capacity than needed) and underprovisioning (i.e., 
allotting insufficient capacity to meet the demand).

More precisely, time is divided into slots, and 
data on the actual traffic load is collected by 
MDAF, NWDAF, and RNIB for each slot. The 
collected load refers to the total load (for the 
AI-LTF algorithm), the load of individual slic-
es (for the AI-MTF algorithm), and the load of 
flows or flow aggregates (for the AI-STF algo-
rithm). Base stations are associated with data cen-
ters such that a data center serves the aggregated 
load of all its associated base stations. Our frame-
work aims at allocating the required capacity at 
each data center or associated NFs.

Our goal is to compute a constant capacity 
to be allocated in the network data centers over 
a future time horizon Th, based on knowledge of 
the previous Tp traffic snapshots. The time hori-
zon models typical situations where the resource 
reconfiguration frequency is limited (e.g., by the 
NFV technology), and the operator must decide 
in advance the amount of resources that will stay 
assigned to a slice until the next reallocation takes 
place. As discussed before, AI-STF, AI-MTF, 
and AI-LTF target short, intermediate, and long 
time horizons, respectively.

To perform capacity forecasting, we leverage 
a DNN composed of suitably designed encod-
ing and decoding phases, which operate over an 
interval Th. The neural network architecture is gen-
eral enough that it can be trained to solve the 
capacity forecast problem for traffic loads with 
diverse demand patterns, any data center, and 
any time horizon Th. This allows leveraging the 
same DNN design to implement all three algo-
rithms. The design consists of the following three 
components.

Encoder: The historical mobile data traffic pro-
vided as input is high-dimensional, as it comprises 

FIGURE 2. Neural network encoder-decoder structure.
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a large number of base stations as well as several 
network slices or flows. The encoder projects this 
complex input space into a latent low-dimensional 
representation, which is then analyzed to produce 
the needed prediction. 

Decoder: The decoder performs the actual 
forecast. The decoder structure reflects the kind 
of output values that shall be used to assist our 
framework, including the traffic granularity (i.e., 
the data center and the traffic volume level) and 
the time horizon.

Loss Function: The supervised learning strat-
egy we adopt requires that the algorithm can 
assess the goodness of the outcome. To this end, 
we employ a dedicated loss function to measure 
the quality of the capacity forecast and steer the 
system during the training phase.

In the remainder of this section, we detail the 
implementation of the above three components. 
While the three algorithms considered in this article 
(AI-LTF, AI-MTF, and AI-STF) share the same 
encoder structure, they output the forecasts over 
different time horizons, which has an impact on the 
decoder and the loss function computation.

Encoder and Decoder Structure
The neural network architecture used by the pro-
posed algorithms is summarized in Fig. 2, and is 
composed of an encoder-decoder sequence. The 
internal structures of the encoder and decoder 
are inspired by recent breakthroughs in deep 
learning for image and video processing [10]. 
Their design stems from the intuition that subse-
quent snapshots of the spatial distribution of the 
network data traffic can be assimilated to frames 
in a video.

The encoder is composed of a stack of three 
three-dimensional convolutional neural network 
(3D-CNN) layers [10]. CNNs are a kind of deep 
learning structure specialized to infer local pat-
terns in the feature space of a matrix input. 
Two-dimensional CNNs (2D-CNNs) have been 
extensively utilized in image processing to com-
plete complex tasks on pixel matrices such as 
face recognition and image quality assessment. 
3D-CNNs extend 2D-CNNs to address the case 
where the features to be learned are spatiotem-
poral in nature, which adds the time dimension 
to the problem and transforms the input into a 
3D-tensor.

Since mobile network traffic exhibits correlated 
patterns in space and time, we design an encoder 
that employs 3D-CNN layers. We use a 3  3  
3 kernel for the first 3D-CNN layer and a 6  6  
6 kernel for the second and third layers. This limits 
the portion of input analyzed by each neuron to 
small regions — a strategy known to perform well 
when the input has strong local correlations. We 
employ ReLU activation functions, which grant 
good performance and fast learning [11].

The decoder uses multi-layer perceptrons 
(MLPs) [12], a class of fully connected neural lay-
ers where every neuron of one layer is connected 
to every neuron of the next layer. MLPs are able 
to learn global patterns in the input feature space, 
which allows forecasting the target capacity lever-
aging the local features extracted by the encoder. 
For the decoder activation functions, we employ 
ReLU in all MLP layers except for the last one, 
where a linear activation function returns real-val-

ued outputs. The last linear layer is capable of 
performing multiple capacity forecasts in parallel 
(e.g., for different slices or different data centers).

For the training procedure, we employ the 
popular Adam optimizer, a stochastic gradient 
descent (SGD) method with fast convergence 
properties [13]. This trains the neural network 
model by evaluating at each iteration the loss 
function resulting from the forecast and the 
ground truth, and back-propagating it to tune the 
model parameters to minimize such loss.

Loss Function Design
The loss function drives the learning process and 
is thus critical to the quality of the forecasting. 
To this end, it is essential to ensure consistency 
between the target metric for forecasting and the 
employed loss function. In mobile network man-
agement, the relevant metric to assess the quality 
of the capacity allocation is the cost incurred by 
the operator, referred to as operator monetary 
cost (OMC). This metric captures the costs result-
ing from (i) forecasting a lower value than the 
actual offered load (which leads to the provision-
ing of insufficient resources); and (ii) predicting a 
higher value than the actual one (which leads to 
allocating more resources than those needed to 
meet the demand).

General-purpose loss functions like mean 
squared error (MSE) or mean absolute error 
(MAE) are clearly inappropriate to optimize the 
OMC. Indeed, these loss functions weigh all errors 
equally independent of whether the forecasting 
falls above or below the real value, and hence 
cannot learn the actual impact of different types 
of errors. Instead, a customized loss function is 
required to determine the actual penalty caused 
by a prediction error. In particular, by setting the 
loss function equal to the penalty inflicted by a 
given error in terms of OMC, the neural network 
is trained to minimize the metric of interest. In line 
with this, we design the loss function as follows:
•	 A constant penalty b is associated with each 

time slot where the allocated resources are 
lower than those needed in reality, lead-
ing to an SLA violation. This penalty value 
can be customized to the desired behavior. 
For example, higher values may be used 
for cases where reliability is needed, such 
as for ultra-reliable low-latency communica-
tions (URLLC) network slices. Instead, lower 
values can be applied for slices with more 
relaxed requirements. 

•	 A monotonically increasing cost is attributed 
to resource overprovisioning, with a fixed 
rate of g per overprovisioned byte. The 
more the resources (unnecessarily) provi-
sioned, the higher the deployment cost for 
the operator. This reflects the deployment 
expenditure associated with excess allocated 
capacity, which we assume grows linearly 
with the amount of unused capacity. The 
linear scaling factor g is configurable and 
represents the monetary cost of the excess 
resource allocation.
The configuration of the two cost mod-

els above can, in fact, be controlled by a single 
parameter a defined as the ratio between b and 
g. Intuitively, a represents the amount of over-
provisioned capacity that the operator is willing 
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to deploy to avoid committing an SLA violation. 
Operators can use a as a knob to steer the opera-
tional point of the system toward higher expenses 
in resource deployments but reduced chances of 
SLA violations, or vice versa.

The resulting loss function is flexible enough 
to accommodate diff erent infrastructure locations 
(e.g., deploying resources at the network edge 
has a higher cost than at the core), resource types 
(e.g., radio resources are sensibly more expen-
sive than CPU resources), and SLA strategies (e.g., 
slices providing critical services may entail higher 
violation fees).

PerFormAnce evAluAtIon
We evaluate the proposed framework with real-
world data traffi  c recorded in the mobile network 
of a major European operator, providing cover-

age to a large metropolitan region. Our dataset 
includes information about the exchanged traffi  c 
of the most popular services, which we classify 
into seven categories (streaming, social network, 
web, cloud, gaming, messaging, and miscella-
neous). It includes per-service traffi  c information 
provided as an aggregate over 5-minute intervals 
at 470 base stations. The data spans 11 weeks, of 
which we use 8 weeks for training, 2 for valida-
tion, and 1 for testing.

For the sole purpose of evaluating our algo-
rithms with real traffi  c, we assume that each ser-
vice category is assigned a dedicated slice, and 
adopt the methodology proposed in [14] to build 
a network topology model that associates net-
work traffic to NFs and data centers. Our topol-
ogy comprises different network levels ranging 
from the edge (the lowest level) to a fully cen-
tralized node (the highest level), such that higher 
network level nodes aggregate more traffic and 
serve a larger load. We refer to the highest level 
node as “core network data center” and the low-
est level ones as “edge network data centers.”

Unless otherwise stated, we fix Tp = 6 (which 
means that the forecasting modules are fed with 
data of the previous 30 minutes of traffic) and 
configure a = 1 (implying that one SLA violation 
has the same monetary cost as provisioning excess 
capacity suffi  cient to cover the traffi  c peak).

AI-LTF: long-term ForecAstIng For vnF PlAcement
The long-term forecasting capabilities provided by 
the AI-LTF algorithm are useful to make deci-
sions about the suitable placement of the VNFs 
serving one or more slices. To evaluate its perfor-
mance, we consider a scenario where a data cen-
ter with processing capacity C serves the seven 
slices and assume that the computational demand 
of a given slice is proportional to the amount of 
transmitted bytes.

In this case study, we set Th = 8 hours to 
account for the fact that VNF placement decisions 
are typically taken with a coarse time granularity 
of hours due to the limitation of the underlying 
NFV technology. We focus on an edge network 
data center and employ AI-LTF to support the 
VNF placement decisions made by the NFVO 
module by anticipating the overall traffic load 
at the target data center. Then the NFVO can 
decide at every Th how many slices are served 
by the data center of capacity C and which slices 
shall instead be placed elsewhere.

Figure 3 depicts the result obtained with 
AI-LTF against that obtained with an oracle algo-
rithm that assists the NFVO with knowledge of 
the real future demand. (Such an oracle algorithm 
is unfeasible in practice but provides an optimal 
benchmark to assess AI-LTF ’s performance.) 
We observe that AI-LTF follows the oracle quite 
closely. The overall usage of the deployed infra-
structure remains high at all times. The algorithm 
only moves more slices than needed away from 
the data center on very limited occasions. In rare 
cases, it places more slices than it should in the 
data center, leading to an overload situation that 
results in computational outages for the served 
slices; however, even when this happens, the 
actual overload levels are negligible. These results 
confirm that AI-LTF is a promising solution to 
assist eff ective VNF placement decisions.

FIGURE 3. VNF placement of slices at one target data center. Occupation ratio 
(top) and number of admitted slices (bottom) for each 8-hour orchestration 
period. The algorithm implemented by the AI-LTF module is compared 
against an optimal but unfeasible oracle solution with perfect knowledge of 
the future traffi  c load.
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AI-MTF: Mid-Term Forecasting for NFVI Scaling
Once the VNFs serving various slices are placed 
at a given data center, it is possible to dynamically 
reallocate the resources assigned to each slice 
within the capacity C of the data center by scal-
ing up or down the resources assigned to each 
slice. The time dynamics involved in such up- and 
downscaling are faster than those analyzed in 
the previous experiment for the VNF placement. 
Indeed, resource provisioning within the same 
data center (which involves booting up a VNF 
and setting up the data plane) can be performed 
at timescales of tens of minutes.

The AI-MTF  algorithm can support this 
resource up- and downscaling process. We inves-
tigate its performance in a case study where the 
resources allotted to the slice serving streaming 
traffic at a core network data center are scaled 
every 30 minutes. Results, shown in Fig. 4, confirm 
that the proposed algorithm yields remarkable 
accuracy. The allocated capacity to the slice is 
scaled up and down to closely match the demand 
generated by the service. As highlighted in the 
bottom plot, the capacity allocated in excess is 
quite small, which implies that limited resources 
are wasted due to overprovisioning. Furthermore, 
the algorithm almost never incurs underprovision-
ing, and thus it always serves the offered demand 
and avoids violating the slice SLA.

AI-STF: Short-Term Forecasting for QoS Policies
The optimization of policies and resource alloca-
tions for individual flows or aggregates at different 
levels (PCF, RIC, RAN resource orchestration) can 
be performed at shorter timescales than those 
considered before. In particular, depending on 
the specific operation, these updates can be per-
formed within intervals of a few minutes or less.

The AI-STF module is intended to back up 
this kind of high-pace network management task. 
We provide an example of application in Fig. 5 for 
the case of resource allocation, analyzing the net-
work resources assigned to streaming flows in an 
edge network data center based on the prediction 
returned by AI-STF over time periods of Th = 5 
minutes (which is the finest time granularity avail-
able in our dataset). Specifically, the figure  shows 
the distribution of the ratio of allocated resources 
to the demand, where a value below 1 denotes 
that the capacity forecast is not sufficient to satisfy 
the demand, while values above 1 mean that we 
have allocated more capacity than needed.

We observe that AI-STF is effective in pro-
visioning sufficient resources to serve the aggre-
gate demand for streaming flows while avoiding 
wasting too many resources in overprovisioning. 
We also observe that parameter a can be tuned 
to choose the desired trade-off between resource 
overprovisioning and SLA violations. Larger a val-
ues, corresponding to higher penalties for SLA 
violations, significantly reduce the probability 
of resource shortage, obviously at the cost of 
increasing the amount of resources wasted in 
overprovisioning.

Overall Performance
We next evaluate the overall performance of 
the three algorithms when jointly running in 
a complete 5G system. We consider the total 
load generated by the seven service categories 

at a core network data center where AI-LTF 
targets the aggregate load at the data center, 
while AI-MTF and AI-STF focus on the indi-
vidual allocation for each service category. The 
results, given in Table 1, show the percent-
age of unserviced demand and the cost gains 
provided by our AI-based algorithms over a 
traditional forecasting technique, namely a sea-
sonal autoregressive integrated moving average 
(ARIMA) [15].

The results on unserviced demand confirm 
the effectiveness of a in controlling the level of 
reliability at the expense of a larger resource 
deployment. Indeed, when selecting a sufficiently 
large a, we can achieve practically zero outag-
es, which may be suitable to support, for exam-
ple, URLLC services. Even for low values of a, 
the overall unserviced traffic remains reasonably 
low (below 1 percent). As expected, accuracy 
increases when the predicted time horizon is 
shorter (which explains why AI-STF  outper-
forms AI-MTF for all as and AI-MTF outper-
forms AI-LTF  for a  = 0.5 and a  = 1) as well 
as when the traffic aggregate is larger (which 
explains why AI-LTF outperforms AI-LTF and 
AI-STF for a = 2).

The results on cost gains show the advantage 
of our approach over a seasonal ARIMA model 
[15]. In order to better align the seasonal ARIMA 
model with the requirements of the capacity fore-

FIGURE 5. Distribution of the ratio of the allocated capacity with AI-STF over the 
aggregated demand of the streaming flows at a target edge network data 
center. Different curves correspond to diverse a ratios of the monetary pen-
alty of SLA to the cost of overprovisioning. The integral of the curve for val-
ues of the abscissa below 1 corresponds to the probability of SLA violation.

1 2 3 4 5
Capacity forecast / demand

0

1

2

PD
F

α = 0.5
α = 1
α = 2

TABLE 1. Unserviced demand and cost gains for AI-LTF, AI-MTF, AI-STF, 
and the overall system, for different a values. The percentage of unserviced 
demand is given by the amount of traffic exceeding the capacity forecasted 
by AI-LTF, AI-MTF, and AI-STF. Cost gains are computed as the differ-
ence between the costs of the traditional and AI-based approaches over 
the cost of the traditional approach. The cost of the overall system is com-
puted as the sum of the costs of the three algorithms.

Unserviced demand (%) Cost gains (%)

a = 0.5 a = 1 a = 2 a = 0.5 a = 1 a = 2

AI-LTF 0.53% 0.43% 0% 37.85% 56.28% 80.52%

AI-MTF 0.09% 0.08% 2.4e–3% 21.77% 64.4% 82.15%

AI-STF 8.5e–3% 4.8e–4% 3.4e–5% 23.33% 66.44% 81.43%

Overall system 0.63% 0.51% 2.4e–3% 31.04% 60.58% 81.09%
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casting problem, we augmented it with fixed over-
provisioning on top of the predicted traffic; in line 
with benchmarks in the literature, we set an over-
provisioning of 5 percent of the estimated peak 
traffic [9]. The results confirm that our algorithms 
attain much smaller OMCs than the traditional 
technique, with gains of up to 80 percent.

Conclusions
In this article, we present some of the challenges 
and opportunities that AI offers in the context of 
5G networks. By defining a framework that joins 
contributions from various initiatives and popu-
lating it with AI-based algorithms serving different 
purposes, we show how standards can be lever-
aged to deploy AI-based 5G systems. Our perfor-
mance evaluation results illustrate the benefits of 
proper integration of AI into 5G. Importantly, this 
work also provides a basis to apply AI to other 
functions within the 5G system beyond the ones 
addressed in the article.
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