
User Fair Queing: Fair Allocation of Bandwidth for
Users

Albert Banchs
NEC Europe Ltd., Network Laboratories Heidelberg

E-mail: Albert.Banchs@ccrle.nec.de

Abstract—User Fairness aims at fairly distributing the network
resources among users, where a user is an entity that can possibly
send different flows through different paths. In this paper we first
propose a criterion for user fairness based on political economics
fairness theory: the User Maxmin Fairness criterion. Then we pro-
pose an architecture, User Fair Queuing (UFQ), that provides user
maxmin fairness without keeping per-user state in the core nodes.
UFQ requires neither admission control nor signaling. We present
simulations and analysis on the performance of the proposed ar-
chitecture.

I. INTRODUCTION

In a commercial Internet, the traffic behavior is determined
by the contracts between the ISPs and the users, where a user
can be a dial-up user, a corporate network or a group of in-
dividual customers or networks. Since the user is the entity
with whom the contract is signed, it should also be the unit to
which network resources are allocated. However, while much
research in the past has been directed to fair resource alloca-
tions for flows (see e.g. maxmin fairness [1] and proportional
fairness [2]1), much less effort has been invested on fair allo-
cation of resources for users. The work done in this paper tries
to fill this gap: we study how to fairly share the network re-
sources among users, when a user can possibly send several
flows through different paths. Hereafter we call the concept of
fairly distributing resources among users user fairness.

User fairness in the current best-effort Internet is based on
TCP fairness [4], which distributes network resources among
users on a flow basis: with TCP, each flows receives a through-
put inversely proportional to its round-trip delay. However, not
all flows in the Internet use the TCP protocol and it is relatively
easy for non-adaptive sources to gain greater shares of net-
work bandwidth and thereby starve other, well-behaved, TCP
friendly sources. For that reason the TCP fairness solution re-
lies on TCP friendly behavior of the applications in order to
fairly share the network resources. In addition, the fact that TCP
fairness assigns resources on a flow basis makes the amount of
resources received by each user dependent on the number of
flows sent, which may lead to an unfair overall distribution of
the resources.

One approach for user fairness that overcomes the above
mentioned problems of TCP fairness is the pre-allocation of re-
sources on a link-basis. This is the fairness concept behind fair
user-based queuing schemes, such as Weighted Fair Queuing
(WFQ) [5] and Class-based Queuing (CBQ) [6]. These queuing

1In [3] we provide an overview on this research.

algorithms distribute the link bandwidth among users in a fair
way, independent of the number of flows that each user is send-
ing through this link and the aggressiveness of the sources. One
of the remaining drawbacks of these approaches is that since
they work on a local basis, they cannot ensure a fair distribu-
tion of the overall network resources.

In the last few years, architectures for providing Quality of
Service (QoS) in the Internet have been the focus of exten-
sive research. These research efforts have identified two fun-
damentally different approaches for QoS: Integrated Services
(IntServ) [7] and the Differentiated Services (DiffServ) [8]. The
fairness concept behind these architectures is the resource allo-
cation on demand. With IntServ and DiffServ, users request a
certain amount of network resources; the request is processed
by an admission control entity in order to determine whether
the available resources can satisfy the request, and the user is
notified of the acceptance or rejection of his request. One of
the important challenges of these architectures is precisely how
to perform this admission control. With IntServ this was done
on a flow basis, which leads to unscalability, and with DiffServ
admission control is still an open issue (in [9] and [10] we study
this issue for one-to-one and one-to-any services, respectively).

In this paper we introduce a new concept for user fairness
that overcomes the drawbacks of the above mentioned ap-
proaches. The proposed concept distributes resources equally
among users taking into account the overall usage of the net-
work resources, while admission control is avoided. The goal
is to provide two users that pay a same price with the same
amount of resources, independent of the number of flows and
links used by each user and the aggressiveness of the sources.
We focus on elastic traffic and a single domain. In [11] we ex-
tend the work presented here for real-time traffic, and in [12]
we extend it with service differentiation and inter-domain com-
munication.

The paper is structured as follows: in Section II we provide a
review on fairness concepts in computer networks. These con-
cepts are then applied in Section III to the problem of fairly
allocating resources for users, resulting in the user maxmin
fairness criterion. In the following section we present a core
stateless mechanism, the User Fair Queuing architecture, that
implements the proposed fairness criterion. In Section V we
present our simulation results and Section VI concludes the pa-
per with a summary. A longer version of this paper contain-
ing proofs of the theoretical results as well as additional sim-
ulation results, can be found at http://www.ccrle.nec.
de/reports/2002/ufq.pdf

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

II. REVIEW ON FAIRNESS CONCEPTS IN COMPUTER

NETWORKS

The concept of fairness has been studied in various scien-
tific areas. Most thorough and theory-based approaches arose
from the field of political science and political economics. In
this field, the concepts of utility [13] and welfare [14] func-
tions were developed for the purpose of defining fairness. In
this section we review this theory from the computer network’s
viewpoint. In [3] we provide a more extensive description of
the concepts explained in this section.

A. Utility function

In order to express the user’s satisfaction with the service
delivered to him by the network, network performance must
not be measured in terms of network-centric quantities like
throughput, packet drops or delay, but should be rather eval-
uated in terms of the degree to which the network satisfies the
service requirements of each user’s applications. For instance,
if a particular application cares more about throughput than de-
lay, or vice-versa, the network service to that application should
be evaluated accordingly.

Utility functions in computer networks [15] formalize the
above notion of network performance. Let si describe the ser-
vice delivered to the i’th application or user; si contains all the
relevant measures (delay, throughput, packet drops, etc.) of the
delivered service. Then, the utility function ui maps the service
delivered si into the performance of the application; increas-
ing ui reflects increasing application performance. The utility
function, thus, describes how the performance of an application
depends on the delivered service.

In the following, we elaborate on the utility function for elas-
tic traffic, i.e. the traffic type on which we are concerned in this
paper. Examples of elastic applications are file transfer, elec-
tronic mail and remote terminal. These applications are tolerant
of delays and their satisfaction is basically measured in terms of
bandwidth. Therefore, bandwidth is the only relevant measure
for network resources in this paper and the only one that will be
considered hereafter.

Elastic applications experience a marginal rate of perfor-
mance enhancement as bandwidth is increased, so their utility
function is strictly concave everywhere. Following [2], in this
paper we use the logarithmic function to represent the utility of
elastic traffic (see Figure 1). Thus, the utility of an elastic flow
i will be

ui(ri) = log(ri) (1)

where ri is the flow’s throughput.

B. Welfare function

The basic problem of welfare is to determine which of the
feasible resource allocations should be selected. For this pur-
pose, a Welfare functionW (u1, u2, . . . , un) that aggregates the
individual utility functions ui is defined. The resource alloca-
tion selected (called the fair resource allocation) is then the one
that maximizes the welfare function:

max(W (u1, u2, . . . , un)) (2)

U
til

ity

Bandwidth

Fig. 1. Utility function of an elastic traffic flow.

For different purposes, different welfare functions exist, each
corresponding to a different fairness criterion. A fairness crite-
rion, thus, is defined by the welfare function that it maximizes.
The most widely used fairness criteria in computer networks
are maxmin fairness and proportional fairness.

1) Maxmin fairness: Maxmin fairness [1] is the most pop-
ular fairness concept in computer networks. This fairness crite-
rion corresponds to the welfare function:

W (u1, u2, . . . , un) = min(u1, u2, . . . , un) (3)

Maxmin fairness, thus, yields a solution u = (u1, u2,
. . . , un) for max(min(u1, u2, . . . , un)). A maxmin fair allo-
cation has the property that for all i, ui cannot be increased
without simultaneously decreasing uj for some j with uj ≤ ui.

The idea behind maxmin fairness is to distribute resources as
equally as possible among the competing entities. As a conse-
quence, with this criterion the most poorly treated entities are
given the greatest possible allocation.

2) Proportional fairness: The proportional fairness crite-
rion [2] is becoming increasingly popular in the field of com-
puter networks. A proportional fair allocation is the solution
to the welfare maximization problem with the welfare function
sum of utilities:

W (u1, u2, . . . , un) =
∑

i

ui (4)

and with the individual utility functions ui of Equation 1.
Proportional fairness, thus, yields a solution u for

max(
∑

i ui). A proportional-fair allocation has the property
that for any other feasible allocation u∗, the aggregate of pro-
portional changes is zero or negative, i.e.

∑
i (u∗i − ui)/ui ≤ 0.

The idea behind proportional fairness is to maximize the
overall performance. With proportional fairness, a worse
treated entity may see its utility decreased if this allows a large
enough increase to an already better treated entity.

3) Weighted Fairness: Both maxmin and proportional fair-
ness criteria can be generalized on introducing weights Wi as-
sociated with each entity as a means to express the relative value
of this entity for the system [16]. With weighted fairness, the
utility received by an entity in the fair allocation will increase
with its associated weightWi.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

The introduction of weighting leads to the following welfare
function for weighted maxmin fairness

W (u1, u2, . . . , un) = min(ui(ri/Wi)) (5)

and weighted proportional fairness

W (u1, u2, . . . , un) =
∑

i

Wi · ui (6)

Weighted maxmin fairness aims at distributing resources
among the competing entities proportionally to their weights.
Weighted proportional fairness aims at maximizing the overall
performance when some entities have a higher value than oth-
ers.

III. USER FAIRNESS

User Fairness deals with the allocation of bandwidth among
users, when a user may send one or more flows, possibly
through different paths. Each flow i of user u experiences a
certain utility ui, which depends on its allocated bandwidth ri
as defined in Equation 1.

Following the fairness concepts explained in the previous
section, a user fair allocation is the one that maximizes the
welfare function W that aggregates the individual utilities ui,
W (ui). In this section we study which is the appropriate wel-
fare function for the problem of user fairness.

A. Welfare function composition

According to the definition of welfare in Section II, the utility
experienced by a user u, uu, is the result of aggregating with
a welfare function the utility of the flows of this user (intra-
user aggregation). We call Wintra the welfare function that
performs this intra-user aggregation:

uu =Wintra
i∈Iu

(ui) (7)

where Iu is the set of flows of user u.
Similarly, the total welfare experienced in the network is the

result of aggregating the individual utilities of all the users in
the network (inter-user aggregation). We call Winter the wel-
fare function that performs this inter-user aggregation:

W = Winter
∀u

(uu) = Winter
∀u

(Wintra
i∈Iu

(ui)) (8)

The bandwidth allocation for user fairness, thus, will be the
one that maximizes the welfare function Winter(Wintra(·)),
choosing the appropriate functions for Winter and Wintra. We
will choose the functions Winter and Wintra according to the
goal of providing a good level of inter and intra user fairness as
described in the following.

B. Inter and Intra User fairness

We say that a bandwidth allocation is inter-user fair if the
network bandwidth is fairly distributed among the different
users. Similarly, we say that a bandwidth allocation is intra-
user fair if the bandwidth assigned to a user is fairly distributed

link a

link b

link c

u1 (r 1a), u2 (r 2a)

u1 (r 1c), u3 (r 3)

u1 (r 1b), u2 (r 2b)

Fig. 2. Example of inter and intra user fairness.

among his flows. Inter and intra user fairness are better illus-
trated in the example of Figure 2. In this example we have a
network with three links (a,b,c) and three users (1,2,3). The
first user (user 1) is sending three flows, one through each of
the links (a,b,c), the second (user 2) is sending two flows, one
through link a and the other through link b, and the third user
(user 3) is sending only one flow through link c. All links have
a capacity normalized to 1.

An inter-user fair allocation for the above scenario would be
the following:

r1a = 1/2 r2a = 1/2
r1b = 1/2 r2b = 1/2
r1c = 0 r3 = 1

Note that in the above allocation all users get the same total
bandwidth (1 unit of capacity) and therefore the allocation is
inter-user fair. However, if we look on how the bandwidth al-
located to user 1 is distributed among his flows, we observe an
extreme degree of intra-user unfairness. User 1 will most prob-
ably not be satisfied with the above allocation, since one of his
flows is totally starved.

Another possible allocation that corrects the intra-user un-
fairness of the first one is the following:

r1a = 1/2 r2a = 1/2
r1b = 1/2 r2b = 1/2
r1c = 1/2 r3 = 1/2

The above distribution provides a perfect level of intra-user
fairness, since for each user, all his flows experience the same
throughput. However, the level of inter-user fairness is poor:
in link c, users 1 and 3 are allocated the same bandwidth, even
though user 1 is using more network resources than user 3 in
total. User 3 will most probably not be satisfied with this allo-
cation.

We conclude that a user fair allocation should provide a good
level of both inter and intra user fairness. In the following we
study which welfare functions Winter and Wintra to choose in
order to achieve this goal.

C. User Maxmin Fairness

The goal of inter-user fairness is to treat the different users
as equally as possible. In Section II-B.1 we have argued that

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

the fairness criterion that best meets this goal is the maxmin
fairness criterion. As a consequence, we have chosen to use the
welfare function minimum for the aggregation of the utilities of
the different users:

W fairness
inter = min(uu) ∀ user u in the network (9)

The goal of intra-user fairness is to allocate the bandwidth
received by a user among his flows as equally as possible to
the user’s desired distribution. In Section II-B.3 we have ar-
gued that the fairness criterion that best meets this goal is the
weighted maxmin fairness criterion. This is the criterion we
have chosen for intra-user aggregation, as expressed by the fol-
lowing welfare function:

W fairness
intra = min

i∈Iu

(ui(ri/Wi)) (10)

with the constraint ∑
i∈Iu

Wi = 1 (11)

where Iu is the set of flows of user u andWi are the normalized
weights that express the relative value of flow i for its user.

The normalization of the sum of the weights of a user to 1
(Equation 11) comes from the necessity of being able to com-
pare the W fairness

intra of different users. Note that with Equa-
tion 11, two users that get the same total bandwidth and have
this bandwidth distributed proportionally to the weightsWi ex-
perience the sameW fairness

intra .
The combination of W fairness

inter and W fairness
intra leads to the

following definition.
Definition 1—User Maxmin Fairness: 2 A bandwidth allo-

cation r = (r1, r2, . . . , rn) is user maxmin fair when it max-
imizes

min
∀i

(ri/Wi) (12)

where ri is the throughput experienced by flow i and Wi is its
normalized weight.

The proposed criterion for user fairness leads to the following
allocation for the example of Figure 2:

r1a = 2/5 r2a = 3/5
r1b = 2/5 r2b = 3/5
r1c = 1/4 r3 = 3/4

which is a good tradeoff between the inter and intra user fair
allocations given in Section III-B.

D. User utility

The level of satisfaction of a user depends on the overall per-
formance of his flows, where some of his flows may have a
higher relative value than others. In Section II-B.3 we have
argued that the welfare function that best expresses this level
of satisfaction of a user is the weighted sum function, corre-
sponding to the weigthed proportional fairness criterion. In the
following definition of user utility we have used this welfare

2Note that in the special case when all users are sending just one flow, the user
maxmin fairness criterion coincides with the well accepted maxmin fairness
criterion for flows.

end-
system

User
Router

Ingress
Router

Core
Router

Per-Flow
state

Per-User
state

No Per-Flow
or Per-User

state

User
Network

Fig. 3. UFQ architecture.

function to perform intra-user aggregation. The definition of
user utility will be used later in the paper to model the user
behavior.

Definition 2—User Utility: The utility of user u, whose
flows experience a throughput equal to ri, is given by

uu = Wutility
intra (·) =

∑
i∈Iu

Wi · ui(ri) =
∑
i∈Iu

Wi · log(ri)

(13)

IV. USER FAIR QUEUING

In this section, we propose a network architecture, User Fair
Queuing (UFQ), that provides user maxmin fairness as defined
in the previous section.

The proposed scheme avoids keeping per-flow or per-user
state in the core and is inspired on previous work done in the
context of core-stateless fair allocation of bandwidth among
flows [17], [18], [19], [20]. While these proposals differ in de-
tails, they are all similar at the architectural level. Per-flow state
at the core is avoided by having each packet header carry some
additional state information, the label, which is initialized by
the ingress node of the network. Then, core nodes use this in-
formation carried by the packet to decide whether in case of
congestion an arriving packet should be enqueued or dropped.

UFQ is implemented in three steps: user labeling, ingress
label control and core dropping (see Figure 3). In the first step
(user labeling), the user assigns labels to his packets based on
the sending rates of his flows and their weights (i.e. per-flow
state is required). The second step (ingress label control) is
performed at the ingress of the network. In this step, the labels
assigned by the user are processed, and in case the user is la-
beling his packets with more resources than he should, packets
are relabeled. The algorithm proposed for the ingress label con-
trol only requires keeping per-user state (i.e. it avoids per-flow
state). Finally, the third step is performed at core nodes, where
in case of congestion packets are dropped depending on their
label. Since the core dropping is performed without keeping
per-user or per-flow state, the proposed architecture scales with
the number of users.

A. User labeling

At the user network, packet k of flow i is labeled with:

Lk =
rsend
i

Wi
(14)

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

where Wi is the weight of flow i as defined in Section III and
rsend
i is the flow’s sending rate.

For the estimation of the sending rate of flow i we use the
same exponential averaging formula as in [17]. Using an ex-
ponential averaging gives more accurate estimation for bursty
traffic, even when the packet inter-arrival time has significant
variance.

Specifically, let tk and lk be the arrival time and length of
the kth packet of flow i. The estimated sending rate of flow i,
rsend
i , is updated for every new packet k sent by flow i:

(rsend
i)k = (1− e−(Tk/K))

lk
Tk

+ e−(Tk/K) · (rsend
i)k−1 (15)

where Tk = tk − tk−1 and K is a constant. Following the
rationale discussed in [17], in this paper we setK = 100ms.

B. Ingress Label Control

The probability of dropping a packet of flow i should de-
crease with the relative value of this flow for its user (Wi) and
should increase with the flow’s sending rate (rsend

i). As a con-
sequence, the lower the value of the packet’s labelLk, the better
treatment this packet should be given. If there was no control
on the labels assigned by a user, a user could exploit the system
by assigning to his packets labels with lower values than Equa-
tion 14. The goal of the ingress label control is not to allow a
user to benefit from labeling his packets with too low values.

Note that keeping per-flow information at the ingress
(namely,Wi and rsend

i) label control could easily enforce Equa-
tion 14. However, this would introduce a considerable com-
plexity at ingress nodes and would require the user to signal the
values ofWi to the ingress. The algorithm we propose for label
control avoids per-flow state and only requires per-user state.

In order to control labels with only per-user state, we define
the following variable, which we call the state of user u at the
ingress, Su:

Su =
avg

k∈Ku

(
lk
Lk

)
avg

k∈Ku

(lk)
rsend
u (16)

where Ku is the set of packets of user u, rsend
u is his sending

rate, lk is the length of packet k and Lk is its label.
Su is estimated using the following formula upon receiving

the kth packet of user u:

(Su)k = (1−e−(
lk

rsend
u ·K)

)
rsend
u

Lk
+e

−(
lk

rsend
u ·K) ·(Su)k−1 (17)

where rsend
u is estimated using Equation 15. The reason for us-

ing this estimation for Su is that it allows us to bound the excess
service that a user can receive, as discussed in Section IV-D.

The ingress label control algorithm is based on the observa-
tion that the following equality holds for a user who is labeling
his packets as in (14):

Su|labeling of (14) =
∑
i∈Iu

(
rsend
i

rsend
u

)
1
Li
rsend
u =

∑
i∈Iu

Wi = 1

(18)

where Iu is the set of flows of user u, (rsend
i /rsend

u) is the por-
tion of the data sent by user u that belongs to flow i and Li is
the label of the packets of flow i according to Equation 14.

Since Su is a strictly decreasing function of Lk, if a user
labels his packets with too low labels, this will lead to his state
at the ingress, Su, being larger than 1. Therefore, in order to
avoid too low labels (which is the goal that we stated above for
the ingress label control), we enforce that the state Su of a user
can never be larger than 1:

Su ≤ 1 (19)

The above equation is enforced in the following way: if the
arriving packet of a user has a label Lk that would lead to
(Su)k > 1, then the ingress label control relabels the packet
with a new label Lnew

k > Lk such that (Su)k = 1. Thus,

Lnew
k = max

Lk,

(1 − e−(
lk

rsend
u ·K)

)rsend
u

1 − e−(
lk

rsend
u ·K) · (Su)k−1

 (20)

Note that a user who is labeling his packets as in (14) will
not have his packets relabeled, since according to Equation 18,
the labels Lk of this user will never lead to (Su)k greater than
1.

Note that the above algorithm for the ingress label control
only requires to keep per-user state at the ingress (namely, two
values have to be stored for each user: Su and rsend

u). The
effectiveness of the proposed scheme will be discussed in Sec-
tions IV-D and IV-E.

C. Core dropping

In a congested link in which there is not enough bandwidth
to serve all incoming packets, some packets must be dropped.
Our goal is to drop packets in such a way that the resulting
bandwidth distribution is user maxmin fair.

In UFQ, packets in a congested link l are dropped depending
on their label with the following probability:

dk =
{

0 Lk ≤ Lfair

1 − Lfair

Lk
Lk > Lfair, L

new
k = Lfair

(21)

where dk is the probability of dropping packet k, Lk is its label
and Lfair is the fair label of the congested link. Lfair is com-
puted such that, if packets are dropped according to (21), the
accepted rate in the congested link equals the link’s capacity.
Note that the non-dropped packets of a flow that experiences
losses in the link are relabeled with a new label equal to the
link’s fair label Lfair.

The following theorem binds the algorithms proposed for
user labeling and core dropping with the user maxmin fairness
criterion of Section III.

Theorem 1: The bandwidth allocation resulting from the
user labeling of (14) and the core behavior of (21) is user
maxmin fair.

One remaining challenge is the estimation of the fair label
Lfair. For scalability reasons, Lfair should be estimated with-
out storing any per-user or per-flow information at the core
nodes. Different solutions to the problem of estimating Lfair

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

without core state have been proposed in [17], [18], [20], [21].
The algorithm that we have used in this paper is the one pro-
posed in [17].

The UFQ architecture resulting from the user labeling,
ingress label control and core dropping algorithms is described
in pseudocode in Algorithm 1 and illustrated in Figure 4.

Algorithm 1 UFQ pseudocode
User labeling:
on receiving packet k
ri = (1 − e−(Tk/K)) lk

Tk
+ e−(Tk/K)ri

Lk = ri

Wi

write label(Lk)

Ingress Label Control:
on receiving packet k

read label(Lk)
ru = (1 − e−(Tk/K)) lk

Tk
+ e−(Tk/K)ru

Lk = max

(
Lk,

(1−e
−(

lk
ru·K)

)ru

1−e
−(

lk
ru·K)·Su

)

Su = (1 − e−(
lk

ru·K)) ru

Lk
+ e−(

lk
ru·K) · Su

write label(Lk)

Core dropping:
on receiving packet k

read label(Lk)
estimate Lfair

prob = max(0, 1 − Lfair

Lk
)

if prob > unif rand(0, 1) then
drop(packet k)

else
enqueue(packet k)

end if
if prob > 0 then

write label(Lfair)
end if

D. Ingress Label Control and Excess Service

The service data received by a user who is labeling his pack-
ets as in (14) during a time interval T is:

F = T
∑
i∈Iu

ri = T
∑
i∈Iu

Wi · Li
fair (22)

where Li
fair is the fair label of flow i’s bottleneck and

∑
i∈Iu

Wi = 1 (23)

F is the service to which a user is entitled. We call any
amount above F the excess service.

The ingress label control presented in Section IV-B has been
designed with the goal of avoiding that a user can obtain more
service than he is entitled to. In this section we study how well
the scheme we have proposed meets this goal.

We cannot study the above issue with full generality, but we
can analyze a simplified situation where the fair label Lfair of
all links is held fixed. In addition, we assume that when a packet
arrives a fraction of that packet equal to the flow’s forwarding
probability is transmitted.

Theorem 2 gives an upper bound to the excess service re-
ceived by a user in this idealized setting. This bound is inde-
pendent of the arrival process, the incoming labels and the time
interval. The bound does depend crucially on the maximal rate
R at which user’s packets can arrive at the ingress (limited, for
example, by the speed of the user’s access link); the smaller this
rate R the tighter the bound.

By bounding the excess service, we show that in the idealized
setting the asymptotic throughput received by a user cannot ex-
ceed the throughput he is entitled to. Thus, users can only ex-
ploit the system over short time scales; the ingress label control
limits their throughput effectively over long time scales.

Theorem 2: Consider a user sending n flows through n bot-
tleneck links, all links with a constant fair label Li

fair. Then,
the excess service Fexcess received by this user, that sends at a
rate no larger than R, is bounded above by

Fexcess <

(∑
i∈Iu

Li
fair ·Wi

)
·
(
lmax

Lmin
fair

+K

(
2 + ln

R

Lmin
fair

))

(24)
where lmax represents the maximum length of a packet, Iu is
the set of flows of the user, Lmin

fair = min
i∈Iu

(Li
fair) and

∑
i∈Iu

Wi = 1 (25)

E. User Labeling and User Utility

The UFQ architecture is built around the assumption that
users label their packets with Lk = rsend

i /Wi, where Wi is
the weight of flow i in the user’s utility function (user labeling,
Equation 14). However, a user is allowed to label his packets
with any label Lk with the only restriction of the ingress label
control, which is much less restrictive on account of avoiding
per-flow state at the ingress. A natural concern is whether a user
can possibly benefit from labeling his packets with Lk different
than rsend

i /Wi.
We cannot answer the above question with full generality,

but we can analyze the same simplified situation as for Theo-
rem 2 with the additional assumption that the sending rate of
all flows is constant. Theorem 3 states that, in these condi-
tions, a user sending n flows, all of them suffering from con-
gestion, maximizes his utility when labeling his packets with
Lk = rsend

i /Wi.
We conclude that, considering that all flows are susceptible

to suffer from congestion, it is reasonable to assume that users
label their packets with Lk = rsend

i /Wi, using an accurate es-
timation of flow i’s sending rate rsend

i such as the one in Equa-
tion 15.

Theorem 3: Consider a user sending n flows at a constant bit
rate ri through n bottleneck links, all links with a constant fair
label. Then, the user maximizes his utility when labeling the
packets of flow i with Lk = rsend

i /Wi, where Wi is flow i’s
weight in the user’s utility function.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

ingress?

relabel
(Eq. 20)

read
Lk

update
Lfair

Lk<=Lfair?
unif(0,1)>

Lfair/Lk?
Enqueue
packet

outgoing
packet k

new label
Lk = Lfair

Drop
packet

Yes

No

Yes

No No

Yes

congested?
Yes

No

user?incoming
packet k

label
Lk = r i

send/W i

ri
send,
Wi

Yes

No

ru
send,
Su

Fig. 4. UFQ algorithm.

V. SIMULATIONS

In this section we evaluate our algorithm by simulation. To
provide some context, we compare UFQ’s performance to three
additional mechanisms for sharing resources: FQ per-user, FQ
per-flow and TCP.

Fair Queuing (FQ) [5] is a queuing algorithm that aims at
equally distributing the bandwidth of a link among traffic ag-
gregates. In the FQ per-user approach, FQ is configured such
that each traffic aggregate corresponds to the traffic generated
by one user, in such a way that the link’s bandwidth is divided
equally among the users sending through this link. The FQ
per-user approach is the basis of the User Share Differentiation
(USD) architecture [22]. Note that USD, in contrast to UFQ,
stores information for each user at core nodes, which results in
a higher complexity.

In the FQ per-flow approach, FQ is configured such that each
traffic aggregate corresponds to one flow, in such a way that the
link’s bandwidth is divided equally among the flows sending
through the link. [17], [18], [19], [20] provide FQ per-flow
without the need of storing per-flow state in core nodes.

The mechanism used for bandwidth sharing in the current
Internet is the TCP protocol, which relies on the responsive be-
havior of the end-hosts to congestion. Active queue manage-
ment schemes such as RED (Random Early Discarding) [23]
aim at smoothening the behavior of TCP by providing early
notification of congestion. Unless stated otherwise, simulation
results for TCP will be provided using RED in the routers.

We have examined the behavior of UFQ under a variety of
conditions, comparing its bandwidth allocations with the theo-
retical user maxmin fair (UMMF) distributions. Simulations V-
A to V-E study the features of user maxmin fairness for band-
width sharing and compares them with the other mechanisms.
These simulations have been performed with constant bit rate
UDP sources. Simulations V-F and V-G study some features
of the UFQ mechanism. Finally, the support of different traf-
fic models (TCP and ON-OFF sources) is analyzed in simula-
tion V-H.

All simulations have been performed in ns-2 [24]. Unless
otherwise specified, we use the following parameters for the
simulations. All the flows of a user have the same weight. Each
output link has a capacity of 10 Mbps, a latency of 1 ms and a
buffer of 64 KB. In the RED case, the first threshold is set to 16
KB and the second to 32 KB. The fair queuing (FQ) discipline is
implemented with the weighted round-robin (WRR) scheduler.
The packet size is set to 1000 bytes.

UFQ FQuser FQflow TCP

1 Mbps

2 Mbps

3 Mbps

user 1

user 2

user 3

user 4

Bandwidth

UMMF

Fig. 5. Single Flow - One Link.

A. Single Flow - One Link

Figure 5 shows the resulting bandwidth distribution with the
various mechanisms when a 10 Mbps link is congested by four
users sending a single flow each. It can be seen that the user
maxmin fairness criterion (UMMF) distributes the link’s band-
width among the four users equally. The results provided by the
UFQ mechanism are very close to the ideal results (UMMF).
Note that in this simple scenario the other three approaches (FQ
per-user, FQ per-flow and TCP) distribute the link’s bandwidth
similarly to UFQ.

B. Single Flow - Several Links

Figure 6 shows the bandwidth distribution when four users
are sending one flow through a different number of equally con-
gested links (see Figure 7). Also in this case, UFQ distributes
the bandwidth such that the four users receive the same through-
put.

FQ per-user and FQ per-flow distribute the bandwidth in the
same way as UFQ. In contrast, TCP gives a better treatment to
those flows with a lower number of hops.

C. Several Flows - One Link

Figure 8 shows the bandwidth distribution when one link is
congested by four users transmitting each a different number of
flows (user i transmits i flows). With UFQ all users receive the
same throughput.

With FQ per-user the throughput distribution is the same as
with UFQ. In contrast, FQ per-flow and TCP favor those users
who are sending more flows, giving to each user a throughput
proportional to his number of flows. This is because FQ per-
flow and TCP distribute the bandwidth on a per-flow basis.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

UFQ FQuser FQflow TCP

1 Mbps

2 Mbps

3 Mbps

user 1

user 2

user 3

user 4

Bandwidth

UMMF

Fig. 6. Single Flow - Serveral Link.

u1 u2 u3 u4 u5 u6 u7

Fig. 7. Simulation scenario, Single Flow - Several Links.

D. Several Paths - Uniform Level of congestion

Figure 9 shows the bandwidth distribution for the case of
users sending through different paths, when the level of conges-
tion of all the links is the same (see Figure 10). UFQ provides
all users with the same throughput.

In contrast to UFQ, the other approaches (FQ per-user, FQ
per-flow and TCP) favor those users who are sending through
more paths, giving them a throughput proportional to their num-
ber of paths. This is because these approaches distribute the
bandwidth locally (either on a per-link basis – FQ per-user, on
a per-flow basis – TCP, or both – FQ per-flow). The fact that
UFQ works with overall network resources instead of locally is
one of its key aspects, as compared to other existing approaches.

E. Several Paths - Heterogeneous Level of congestion

Figure 11 shows the bandwidth distribution for the case of
users sending through different paths, when the level of con-
gestion of the links is variable (see Figure 12).

In the results of Figure 11 it can be seen that, with UFQ, user
i receives a larger throughput than user i + 1. This is because
user i is sending his flows through less congested links (in av-
erage) than user i+ 1.

UFQ FQuser FQflow TCP

1 Mbps

2 Mbps

3 Mbps

user 1

user 2

user 3

user 4

Bandwidth

4 Mbps

UMMF

Fig. 8. Several Flows - One Link.

UFQ FQuser FQflow TCP

5 Mbps

link 1

link 2

link 3

Bandwidth

15 Mbps

10 Mbps

u1

u2 u3 u4

u1

u2 u3 u4

u2 u3 u4u1

u1

u2 u3 u4

UMMF

u2 u3 u4u1

Fig. 9. Several Paths - Uniform Level of congestion.

u1, u3
link 2

u1, u2

link 1

u1, u4link 3

Fig. 10. Simulation scenario, Several Paths - Uniform Level of congestion.

With the other approaches (FQ per-user, FQ per-flow and
TCP) user i also receives a larger throughput than user i + 1.
However, with these approaches the difference between the
throughputs is larger. The reason is the same as for the pre-
vious simulation: while these three approaches distribute the
bandwidth on a local basis, UFQ takes into account the overall
network resources. For example, with FQ per-user, FQ per-
flow and TCP, bandwidth in link 1 is distributed such that all
users receive 2.5 Mbps. Instead, UFQ gives four times more
bandwidth in this link to user 4 (4.8 Mbps) than to user 1 (1.2
Mbps), on account of the fact that user 4 is sending only through
this link, while user 1 is sending to three additional links.

F. Intra-user Differentiation

In UFQ, a user expresses the relative value of his flows with
the use of weights. In order to study this feature we repeated
the experiment of simulation V-C assigning different weights
to the two flows of user 2: W1 = 0.33 and W2 = 0.66 (note
thatW1 +W2 = 1).

UFQ FQuser FQflow TCP

5 Mbps

10 Mbps

15 Mbps

link 1

link 2

link 3

link 4

Bandwidth

20 Mbps
u1

u1 u1

u2

u3

u4

u2 u2

u3 u3

u4 u4

u1

u2

u3

u4

UMMF

u1

u2

u3

u4

Fig. 11. Several Paths - Heterogeneous Level of congestion.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

u1, u2, u3

link 2

u1, u
2, u

3, u
4

lin
k 1

u1link 4

u1, u2
link 3

Fig. 12. Simulation scenario, Several Paths - Heterogeneous Level of conges-
tion.

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100

B
an

dw
id

th
 (

M
bp

s)

Time (sec)

Total
Flow 1
Flow 2

Fig. 13. Intra-user differentiation.

Figure 13 plots the receiving rates averaged over 1 second
interval for flow 1, flow 2 and the total of user 2. It can be ob-
served that the throughput received by flow 2 is twice as much
as the received by flow 1, which matches the user’s preferences.

G. Ingress label control

In order to assess the effectiveness of the ingress label control
algorithm described in Section IV-B, we repeated the previous
experiment but with the weights W1 = 3.33 and W2 = 6.66.
Note that in this case W1 +W2 = 10, i.e. user 2 misbehaves
and assigns lower labels than he should.

The results obtained from the above configuration are plotted
in Figure 14. We can observe that the ingress control is effective
since user 2 does not gain any excess service by misbehaving.
In addition, the intra-user differentiation feature is lost.

H. Different Traffic Models

So far we have only considered constant bit rate UDP traf-
fic. We now study the behavior of UFQ under different traffic
models. We consider a 40 Mbps link congested by 8 users send-
ing a mixture of constant bit rate UDP, bursty UDP and endless
TCP traffic. The bursty UDP traffic consists of an aggregate
of ON/OFF sources, with ON periods following a Pareto distri-
bution (average 50 ms), OFF periods exponentially distributed
(average 50 ms) and a sending rate in the ON period of 2 Mbps.
Table I shows the characteristics of the traffic sent by each user.
For those users sending both TCP and UDP traffic, weights are
set to equally distribute the user’s bandwidth between TCP and
UDP.

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100

B
an

dw
id

th
 (

M
bp

s)

Time (sec)

Total
Flow 1
Flow 2

Fig. 14. Ingress label control.

TCP Bursty UDP CBR UDP
sources RTT avg. rate avg. rate

user 1 - - - 10 Mbps
user 2 - - - 15 Mbps
user 3 - - 15 Mbps -
user 4 5 20 ms 10 Mbps -
user 5 5 20 ms - 10 Mbps
user 6 5 20 ms - -
user 7 10 50 ms - -
user 8 10 20 ms - -

TABLE I
SINGLE FLOW - ONE LINK

Figure 15 shows the resulting bandwidth distribution ac-
cording to the user maxmin fairness criterion (UMMF), UFQ
scheduling, a standard FIFO router and a RED router.

From these results we conclude that the bandwidth received
by a user with the UFQ architecture depends on the level of
responsiveness of his traffic. All users sending non-responsive
UDP traffic receive the same throughput, independent of the
sending rate and level of burstiness. In contrast, the through-
put received by TCP traffic depends on the level of responsive-
ness of this traffic, determined by the number of TCP sources
and their RTT. However, from the results obtained it can be
observed that TCP behaves reasonably well; in all cases TCP
receives a throughput between 60% and 90% of its fair share
rate, both when competing with UDP traffic of the same or a
different user. Note that with FIFO and RED TCP traffic is
starved.

The FBA-TCP architecture [25] has been proposed in the
context of core stateless fair queuing for flows (specifically,
within [17]) to improve the level of fairness between TCP and
UDP. This is achieved by setting the maximum congestion win-
dow of TCP to the product of the RTT and Lfair. This ap-
proach could also be used within UFQ simply by adding the
flow’s weightWi to this product.

VI. SUMMARY AND CONCLUSIONS

User Fairness aims at a fair distribution of network resources
among users. The need for user fairness is motivated by the fact
that the user is commonly the entity to which pricing schemes

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

2.5 Mbps

5 Mbps

UDP

TCP

Bandwidth

UMMF UFQ RED FIFO

7.5 Mbps

u1 u2 u3 u4 u5 u6 u7 u8

u1 u2 u3

u4 u5
u6

u7

u8

u1

u2
u3

u4
u5

u6 u7 u8

u1

u2

u3

u4

u5

u6 u7 u8

70
 %

72
 %

84
 %

63
 % 89

 %

Fig. 15. Different Traffic Models - One Link.

apply; as a consequence, the user should also be the unit to
which network resources are assigned.

However, while much effort has been invested in the past for
the definition of fairness among flows, much less effort has been
spent to address fairness among users. Our definition of user
maxmin fairness in this paper tries to fill this gap.

Along with the user maxmin fairness criterion we have also
proposed the User Fair Queuing (UFQ) architecture.

In UFQ, a user is allowed to assign any label values to his
packets to indicate their relative priority. At the ingress, we
have proposed an algorithm to control these labels assigned by
the user. We have shown that the proposed label control does
not allow the asymptotic throughput of a user to exceed its fair
rate.

The fact that neither admission control nor signaling are re-
quired strongly contributes to the simplicity of UFQ. The fact
that no per-user state is kept at core nodes makes the proposed
architecture scalable.

The bandwidth distribution resulting from UFQ depends on
the way users label their packets. In the paper we show that,
if users label their packets in order to maximize their level of
satisfaction or utility, then the resulting bandwidth allocation is
user maxmin fair.

The performance of the proposed architecture has been vali-
dated via simulation. Simulation results show that the amount
of network resources received by a user does not depend on the
number of flows or their paths, and show a fairly good indepen-
dence on the sources’ responsiveness.

REFERENCES

[1] D. Bertsekas and R. Gallager, Data Networks, chapter 6, pp. 524–529,
Prentice-Hall, 1987.

[2] F. P. Kelly, “Charging and rate control for elastic traffic,” European
Transactions on Telecommunications, vol. 8, no. 1, pp. 33–37, January
1997.

[3] R. Denda, A. Banchs, and W. Effelsberg, “The Fairness Challenge in
Computer Networks,” in Proceedings of the 1st International Workshop
on Quality of future Internet Services (QofIS 2000), Berlin, Germany,
September 2000.

[4] V. Jacobson, “Congestion Avoidance and Control,” Computer Communi-
cation Review, vol. 18, no. 4, pp. 314–329, August 1988.

[5] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a
Fair Queuing Algorithm,” Internetworking Research and Experience, pp.
3–26, October 1990.

[6] S. Floyd and V. Jacobson, “Link Sharing and Resource Management
Models for Packet Networks,” IEEE/ACM Transactions on Networking,
vol. 3, no. 4, pp. 365–386, August 1995.

[7] R. Braden, D. Clark, and S. Shenker, “Integrated Services in the Internet
Architecture: an Overview,” RFC 1633, June 1994.

[8] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
Architecture for Differentiated Services,” RFC 2475, December 1998.

[9] S. Sato, K. Kobayashi, H. Pan, S. Tartarelli, and A. Banchs, “Configura-
tion Rule and Performance Evaluation of Diffserv Parameters,” in Pro-
ceedings of the Seventeenth International Teletraffic Congress (ITC17),
Salvador da Bahia, Brazil, September 2001.

[10] M. Brunner, A. Banchs, S. Tartarelli, and H. Pan, “A one-to-any Proba-
bilistic Assured Rate Per-Domain Behavior for Differentiated Services,”
Internet draft, February 2001.

[11] A. Banchs and R. Denda, “A Scalable Share Differentiation Architecture
for Elastic and Real-Time Traffic,” in Proceedings of the Eight IEEE/IFIP
International Workshop on Quality of Service (IWQoS 2000), Pittsburg,
PA, June 2000.

[12] A. Banchs, O. Leon, and S. Sallent, “The Olympic Service Model: Issues
and Architecture,” in Proceedings of the 2nd International Workshop
on Quality of future Internet Services (QofIS 2001), Coimbra, Portugal,
September 2001.

[13] H. R. Varian, Intermediate Microeconomics - A Modern Approach, W.
W. North & Company, New York/London, fifth edition, 1999.

[14] H. R. Varian, “Distributive Justice, Welfare Economics, and the Theory
of Fairness,” Philosophy & Public Affairs, vol. 4, no. 3, pp. 223–247,
1975.

[15] S. Shenker, “Fundamental Design Issues for the Future Internet,” IEEE
Journal on Selected Areas in Communication, vol. 13, no. 7, pp. 1176–
1188, September 1995.

[16] L. Massoulie and J. Roberts, “Bandwidth Sharing: Objectives and Algo-
rithms,” in Proceedings of IEEE INFOCOM ’99, New York, NY, March
1999.

[17] I. Stoica, S. Shenker, and H. Zhang, “Core-Stateless Fair Queueing:
Achieving Approximately Fair Bandwidth Allocations in High Speed
Networks,” in Proceedings of ACM SIGCOMM ’98, Vancouver, Canada,
August 1998, pp. 118–130.

[18] Z. Cao, Z. Wang, and E. Zegura, “Rainbow Fair Queueing: Fair Banwdith
Sharing Without Per-Flow State,” in Proceedings of IEEE INFOCOM
2000, Tel-Aviv, Israel, March 2000.

[19] A. Clerget and W. Dabbous, “TUF: Tag-based Unified Fairness,” in
Proceedings of IEEE INFOCOM 2001, Anchorage, Alaska, April 2001.

[20] H. Zhu, A. Sang, and S. Li, “Weighted Fair Bandwidth Sharing Using
SCALE Technique,” Computer Communications Journal, Special Issue
in QoS, vol. 24, no. 1, January 2001.

[21] M. Nabeshima, T. Shimizu, and I. Yamasaki, “Fair Queuing with In/Out
Bit in Core Stateless Networks,” in Proceedings of the Eight IEEE/IFIP
International Workshop on Quality of Service (IWQoS 2000), Pittsburg,
PA, June 2000.

[22] Z. Wang, “A Case for Proportional Fair Sharing,” in Proceedings of the
Sixth IEEE/IFIP International Workshop on Quality of Service (IWQoS
’98), Napa, CA, May 1998.

[23] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Con-
gestion Avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no.
1, pp. 397–413, August 1993.

[24] UCB/LBNL/VINT, “Network Simulator (ns), version 2,” http://
www.isi.edu/nsnam/ns/.

[25] R. Kapoor, C. Cassetti, and M. Gerla, “Core-Stateless Fair Bandwidth
Allocation for TCP flows,” in Proceedings of IEEE ICC 2001, Helsinki,
Finland, June 2001.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

