
Rate Allocation for Layered Multicast Streaming

with Inter-Layer Network Coding

Joerg Widmer∗, Andrea Capalbo∗†, Antonio Fernández Anta∗, Albert Banchs∗†

∗ Institute IMDEA Networks, Madrid, Spain
† University Carlos III of Madrid, Spain

Email: {firstname.lastname}@imdea.org

Abstract—Multi-layer video streaming allows to provide dif-
ferent video qualities to a group of multicast receivers with
heterogeneous receive rates. The number of layers received deter-
mines the quality of the decoded video stream. For such layered
multicast streaming, network coding provides higher capacity
than multicast routing. Network coding can be performed within
a layer (intra-layer) or across layers (inter-layer), and in general
inter-layer coding outperforms intra-layer coding. An optimal
solution to a network coded layered multicast problem may
require decoding of the network code at interior nodes to ex-
tract information to be forwarded. However, decoding consumes
resources and introduces delay, which is particularly undesirable
at interior nodes (the routers) of the network. In this paper, we
thus focus on the inter-layer network coding problem without
decoding at interior nodes. We propose a heuristic algorithm
for rate allocation and code assignment based on the Edmonds-
Karp maximum flow algorithm and perform simulations that
show that our algorithm may even outperform other heuristics
that do require decoding at interior nodes.

I. INTRODUCTION

Large scale video streaming is rapidly gaining in popularity.

In case all receivers of a video stream are able to receive

the same bitrate (and hence video quality), IP multicast is

a suitable solution [1], an approach used in today’s IP-TV

broadcasting systems. When multicasting to receivers with

heterogeneous receive rates, layered coding allows to distribute

the stream over several multicast flows such that the higher

the number of flows (and thus the overall rate) a receiver

obtains, the better the video quality at that receiver. The

base layer provides a basic video quality and each additional

enhancement layer received refines this quality [2]. A higher

enhancement layer can only be decoded if the base layer and

all lower enhancement layers are already available.

Multicast with network coding [3] provides capacity gains

over plain multicast routing. While network coding achieves

the maximum flow (max-flow) [4] to each receiver for single-

rate multicast, solutions that achieve the same for the case of

multi-rate multicast do not always exist [5], i.e., an optimal

solution may provide less than the max-flow to some receivers.

Network coding solutions for single-rate multicast networks

This research was supported in part by the European Commissions Seventh
Framework Programme (FP7-ICT-2009-5) under grant agreement n. 258053
(MEDIEVAL project), Comunidad de Madrid grant S2009TIC-1692, Spanish
MICINN grants TIN2008-06735-C02-01 and TEC2011-29688-C02-01, and
National Natural Science Foundation of China grant 61020106002.

can be found in polynomial time [6], whereas the network

coded multi-rate multicast problem is NP-hard [7].

In multi-rate multicast, network coding can be performed

within a layer (intra-layer coding) or across layers (inter-layer

coding). Intra-layer network coding is conceptually simpler

than inter-layer network coding. A basic approach for intra-

layer network coding was proposed in [8]. Receivers are

grouped into subsets that support the same rates. The rate

of the base layer is selected such that it is supported by all

multicast receivers, and a multicast network code for the base

layer is constructed using [6]. The rate of the second layer is

set such that, given the remaining capacity, it can be received

by the group of receivers with the second lowest rate. Then a

multicast network code for the second layer is constructed, and

so on. Hence, each layer is transported in its own multicast

tree. The procedure is repeated until all receiver groups are

served or all capacity is used.

In general, inter-layer coding outperforms intra-layer cod-

ing, but few practical heuristics for the inter-layer network

coding problem exist. The two most prominent heuristics were

presented in [9]. Both algorithms first determine the max-flow

(equivalent to the minimum cut) value to each receiver, using

some well known max-flow algorithm (e.g., Ford-Fulkerson).

The algorithms then propagate the maximum layer constraints

given by the max-flows of the receivers up toward the source,

but they differ in how this is done. In the first algorithm

called Min-Req, the receivers propagate as rate requirement

their max-flow value to their parent nodes. A node waits until

it heard from all its children and then propagates the minimum

of the max-flow values to its parents, and so on. (Parents and

children are the next nodes toward the source and toward the

receivers.) The source then sends linear combinations on its

outgoing links coded over as many layers as is allowed by

the maximum layer constraints of those links. The rationale

for propagating up the minimum is that an interior node

can simply code over all incoming links to generate a linear

combination for an outgoing edge, without running the risk

that a downstream receiver may not be able to decode. In the

second algorithm called Min-Cut, an interior node propagates

up its own max-flow value instead of the minimum value of its

children, in case that value is larger than the minimum of the

children’s max-flows. This allows the interior node to decode

up to a number of layers corresponding to its own max-flow

The 31st Annual IEEE International Conference on Computer Communications: Mini-Conference

978-1-4673-0775-8/12/$31.00 ©2012 IEEE 2796

value. The decoded layers can then be recombined to serve

linear combinations coded over different numbers of layers to

different children in contrast to the first algorithm.

While both algorithms are simple and can be implemented

in a distributed manner, they have some disadvantages. The

Min-Req algorithm does not require decoding at interior nodes

but since it propagates minimum max-flow values, its per-

formance in topologies where receivers have heterogeneous

max-flow values may be low. The Min-Cut algorithm fares

better in such topologies as long as some of the interior

nodes have sufficiently high max-flow values, but does require

decoding at interior nodes. Decoding involves computationally

heavy Gaussian elimination and storing data in its entirety

before decoding is possible. The resulting complexity and

delay are particularly undesirable at interior nodes (the routers)

of the network, where processing overhead is one of the main

bottlenecks. Furthermore, both algorithms transport traffic on

all upstream edges of the receivers, independent of whether

they are needed for the multicast or not. This not only enforces

lower layers on edges where higher layers could be transported

but, more importantly, wastes capacity and thus may prohibit

their use in networks where links are shared with other flows.

In this paper, we focus on the inter-layer network coding

problem without decoding at interior nodes. We propose a

heuristic solution of polynomial complexity that is based on

the Edmonds-Karp max-flow algorithm. Instead of propagating

traffic along all the links of the network, each receiver runs

modified version of Edmonds-Karp max-flow algorithm to find

up to a number of paths that correspond to the max-flow

from to the source to the receiver. Paths have layer constraints

so that information carried on those paths is not coded over

more layers than can be decoded at downstream receivers.

While paths are node disjoint on a per-receiver basis, paths of

different receivers can overlap, as long as the layer constraints

of the involved receivers are compatible. Network coding

(but no decoding) is required at interior nodes where paths

merge. We analyze the performance of our algorithm through

simulations and show that it outperforms other heuristics that

do not require decoding at interior nodes, and in many cases

even reaches similar or better performance than algorithms

that do require decoding at interior nodes. At the same time,

our algorithm uses far fewer network resources.

II. ALGORITHM

We consider single-source multicast on a directed acyclic

graph G(V,E) with nodes V and edges E. We denote the

source node by s ∈ V , and the set of receivers by T =
{t1, t2, . . . , tr} ⊂ V . Further, let In(v) be the set of incoming

edges of node v and Out(v) be set of outgoing edges of

node v. The source multicasts a stream of up to k layers,

L1, . . . , Lk. Due to the properties of the layered coding, layer

Ll is only useful to a receiver, if the receiver also receives

layers L1, . . . , Ll−1. Let y(u, v) =
∑l

j=1 gjLj denote the

coded layer combination that is sent on edge (u, v) with coding

coefficients gj . We have that y(u, v) ∈ 〈∪(w,u)∈In(u)y(w, u)〉

∀u ∈ V \ T \ {s} where 〈Y 〉 denotes the linear subspace

spanned by the set of vectors Y .

For simplicity of exposition, we assume that edges have

unit capacity and layers have unit rate, as in [9]. Since our

algorithm is directly based on the Edmonds-Karp max-flow

algorithm, it is straightforward to extend it to non-unitary edge

capacities and non-unitary layer rates.

The problem under consideration is to maximize the sum

of the receive rates of all receivers, under a max-min fairness

constraint. A given allocation is max-min fair if it is not

possible to increase the number of layers received by any

receiver ti, without reducing the number of layers of another

receiver tj to less than that of receiver ti. In a connected graph

with unit capacity edges as in our model, this ensures that each

receiver is at least able to receive the base layer L1. In our

model, the source sends data of a layer always combined with

data from all lower layers.

Our heuristic first determines the max-flow from the source

to each receiver using the Edmonds-Karp algorithm. It then

processes the receivers in ascending order of their max-flow

values. This ensures that capacity is first allocated to receivers

with low max-flows. The assignment is closely related to

the notion of max-min fairness. For the assignment of layers

to flows, we design a modified multi-layer version of the

Edmonds-Karp maximum flow algorithm called MultiLayer-

MaxFlow. The algorithm in turn uses a layer constrained

version of breadth first search LayeredBFS. LayeredBFS tries

to find one additional edge disjoint path with specific layer

constraints for the current receiver. We first present the pseudo-

code and then give an example of the algorithm.

A. Algorithm Pseudocode

For simplicity we describe the algorithm as a centralized al-

gorithm, but its distributed implementation is straightforward.

1) LayerAssignment (Fig. 1): The algorithm executes

MultiLayer-MaxFlow for each receiver in ascending order

of max-flows. MultiLayer-MaxFlow returns the set of the i-

th receiver’s flow allocation Fi on edge disjoints paths, as

well as the set of maximum layer constraints Mi that ensure

decodability of the information received through these paths.

With these, the global flow allocation F and maximum layer

constraints M are updated (Lines 11-12).

2) MultiLayer-MaxFlow (Fig. 2): The algorithm tries to

find paths from source s to receiver t that allow the receiver

to decode the maximum number of layers `max , given the

existing flow assignments (starting with `max = maxFlow(t)).
This requires finding `max edge-disjoint paths that deliver

linear combinations of the first `max layers. To ensure linear

independence, a receiver may receive at most l combinations

coded over the first l layers, 1 ≤ l ≤ `max . This implies the

following minimum layer constraints for the linear combina-

tions y1, . . . , y`max
:

y`min
=

∑̀

j=1

gjLj , `min = 1, . . . , `max , ` ∈ [`min , `max] (1)

2797

1 algorithm LayerAssignment(G, s, T)
2 ∀(u, v) ∈ E : F ((u, v))← 0,M((u, v))←∞
3 for each ti ∈ T
4 | maxFlow(ti)← EdmondsKarp(s, ti)
5 end for
6 for m← 1 to maxti∈T maxFlow(ti)
7 | for each ti such that maxFlow(ti) = m
8 | | (Fi,Mi)← MultiLayer -MaxFlow(s, ti)
9 | end for

10 | for each (u, v) ∈ E such that Mi((u, v)) <∞
11 | | F ((u, v))← max{F ((u, v)), Fi((u, v))}
12 | | M((u, v))← min{M((u, v)),Mi((u, v))}
13 | end for
14 end for

Fig. 1. Layer assignment algorithm

1 procedure MultiLayer -MaxFlow(s, t)
2 for `max ← maxFlow(t) down to 1
3 | ∀(u, v) ∈ E : Fi((u, v))← 0,Mi((u, v))←∞
4 | `min ← `max

5 | do
6 | | (P, found , update)← LayeredBFS(s, t, `min , `max)
7 | | if found then
8 | | | u← s
9 | | | while u 6= t

10 | | | | (v, `)← P (u)
11 | | | | if update(u) then

12 | | | | | ∀(u′, v′) upstream of u that carry a flow
13 | | | | | that contributes to (u, v) :
14 | | | | | | Mi((u

′, v′))← min{Mi((u
′, v′)), `}

15 | | | | end if
16 | | | | if (u, v) ∈ Out(u) then
17 | | | | | Mi((u, v))← `
18 | | | | | Fi((u, v))← 1
19 | | | | else // reverse edge
20 | | | | | Mi((v, u))←∞
21 | | | | | Fi((v, u))← 0
22 | | | | end if
23 | | | | u← v
24 | | | end while
25 | | | `min ← `min − 1
26 | | end if
27 | while (`min ≥ 1) ∧ found
28 | if found then
29 | | return (Fi,Mi)
30 | end if
31 end for

Fig. 2. MultiLayer-MaxFlow algorithm

When assigning flows, our algorithm first searches for a flow

with `min = `max , then for `min = `max − 1, and so on. If

LayeredBFS fails to return a layer-` path P with `min ≤ ` ≤
`max (and thus found = FALSE), the receiver will not be be

able to decode `max layers. In that case, MultiLayer-MaxFlow

reduces `max by one and all existing temporary flows Fi and

maximum layer constraints Mi are removed (Lines 2-3).

Whenever LayeredBFS returns with a valid path, `min is

decremented and the path is backtracked from s to t. Fi

and Mi are updated on all the edges of the path (Lines 16-

22). In addition, nodes maintain a table that maps incoming

to outgoing edges (for simplicity, this is not shown in the

pseudo-code). A two-hop path segment (w, u), (u, v) creates

1 procedure LayeredBFS(s, t, `min , `max)
2 ∀v ∈ V : P (v)← (⊥,∞), δ(v)←∞, update(v)← FALSE
3 δ(t)← 0;
4 Q← ∅ // priority queue
5 enqueue(Q, (t, δ(t))) // enqueue t with highest priority 0
6 while Q 6= ∅ do
7 | v ← dequeue(Q)
8 | if v = s then
9 | | return (P,TRUE, update)

10 | end if
11 | (·, `)← P (v)
12 | `← min{`, `max}
13 | for each (u, v) ∈ In(v) such that
14 | | (P (u) = (⊥, ·)) ∧ (Fi((u, v)) = 0)
15 | | if F ((u, v)) = 0 then
16 | | | P (u)← (v, `); δ(u)← δ(v) + 1
17 | | | enqueue(Q, (u, δ(u)))
18 | | else if `min ≤M((u, v))
19 | | | if ` ≥M((u, v)) then
20 | | | | P (u)← (v,M((u, v))); δ(u)← δ(v)
21 | | | | enqueue(Q, (u, δ(u)))
22 | | | else if ` = `max then
23 | | | | P (u)← (v, `max); δ(u)← δ(v) + |E|
24 | | | | update(u)← TRUE
25 | | | | enqueue(Q, (u, δ(u)))
26 | | | end if
27 | | end if
28 | end for
29 | for each (v, u) ∈ Out(v) such that
30 | | (P (u) = (⊥, ·)) ∧ (Fi((v, u)) > 0)
31 | | if F ((v, u)) = 0 then
32 | | | P (u)← (v, `max); δ(u)← δ(v)− 1
33 | | else
34 | | | P (u)← (v,M((u, v))); δ(u)← δ(v)
35 | | end if
36 | | enqueue(Q, (u, δ(u)))
37 | end for
38 end while
39 return (∅,FALSE, update)

Fig. 3. Layered BFS algorithm

an entry (w, u) 7→ (u, v) at the local table of node u. (w, u)
may map to multiple outgoing edges, and multiple incoming

edges may map to (u, v). The algorithm also checks whether

a special flag update(u) is set for a node u on the path. This

indicates that the maximum layer constraint on edge (u, v)
had to be reduced. As a consequence, the maximum layer

constraints on all upstream edges that contribute to (u, v) have

to be updated as well (Lines 11-15). The edges can easily be

identified through the in-out tables maintained at the nodes.

3) LayeredBFS (Fig. 3): The algorithm performs breadth

first search to find a path from a receiver t to source s with

matching layer constraints. It uses a priority queue Q to store

nodes to be visited next, as well as a mapping P : u 7→ (v, `)
to store next hop nodes for backtracking and the corresponding

maximum layer constraint ` for edge (u, v).

The algorithm removes the first node from the queue and

explores all forward edges that are not yet used by t (Lines 13-

28) and virtual reverse edges that are used by t (Lines 29-37).

(Note that P (u) = (⊥, ·) marks an unvisited node.) Forward

edges that are entirely unused are enqueued with a cost of

2798

(a) Flow assignment: max-flow 1 receivers (b) Flow assignment: max-flow 2 receivers (c) Flow assignment: max-flow 3 receiver

Fig. 4. Different stages of the MultiLayer-MaxFlow algorithm: layer assignment per link and rate achieved vs. maximum flow per receiver

δ(v) + 1, since capacity would have to be allocated on a new

edge. Shared edges can only be traversed if they support a

sufficiently high layer (Line 18) and can be used at cost 0 if

the current maximum layer constraint M((u, v)) can be kept

(Line 19). If, however, the constraint has to be reduced since

` < M((u, v)), this means that other receivers downstream of

(u, v) may no longer be able to decode up to M((u, v)) but

only up to ` layers (Line 22). This is only allowed in case no

other options exist. Only when ` = `max < M((u, v)), i.e.,

the node is trying to obtain less layers than M((u, v)), is the

corresponding node enqueued, and it is enqueued last with a

high cost of δ(v)+|E|. The marker update(u) is set to indicate

that the maximum layer constraints on edges upstream of u

may have to be updated by MultiLayer-MaxFlow.

As in the original Edmonds-Karp algorithm, whenever ca-

pacity is assigned to a flow on edge (u, v) ∈ E, a correspond-

ing negative flow is assigned to a virtual reverse edge (v, u)
[4]. In case the LayeredBFS algorithm finds a suitable path

through such a reverse edge, the flow originally assigned on

the forward edge (u, v) is removed, if (u, v) is only used by the

current receiver. If however, edge (u, v) is a shared edge, the

flow on that edge is required by another receiver and cannot

be removed. The LayeredBFS may nevertheless traverse the

reverse edge to find a suitable flow, which is then combined

with the existing flows in the subtree below the shared edge.

When traversing reverse edges that are only used by t (Lines

31-32), the cost is set to δ(v) − 1 since capacity on an edge

is freed, and the layer constraint is reset to `max . Traversing

shared reverse edges leaves the cost δ(v) unchanged, and the

maximum layer constraint is reset to that of the shared edge

M((u, v)), since network coding occurs after the reverse edge.
4) Code assignment: After the LayerAssignment, the source

sends (linearly independent) combinations on each outgoing

link, coded over as many layers as is allowed by the link’s

layer constraints.

y(s, v) =

M((s,v))∑

l=1

g
(s,v)
l Ll, ∀(s, v) ∈ Out(s) (2)

An interior node u of the network codes according to its in-out

table.

y(u, v) =
∑

w:(w,u)7→(u,v)

g(w,u)y(w, u) (3)

B. Example of the Algorithm

As in the original Edmonds-Karp algorithm, we repeatedly

perform a breadth-first search to find augmenting paths to

the source. However, the LayeredBFS starts the search at the

receivers and proceeds upstream to the source. This allows to

find existing flows that can be reused, as explained later. In the

example in Fig. 4(a), first receivers t1 and t4 with a max-flow

of 1 find shortest paths to obtain L1 directly from the source.

The max-flow 2 receiver t3 first needs to find a path to

a flow coded over L1 and L2. If such a path is not found,

the receiver would attempt to at least find a path to L1. In the

example in Fig. 4(b), a suitable L2-path (s, c, t3) is found. The

receiver then uses LayeredBFS to find an edge-disjoint path

carrying L1 or a combination of L1 and L2. The algorithm

may traverse edges that are already in use by other receivers

at no cost, as long as the layer constraints on that path are not

reduced. After traversing the two edges to reach node e, the

algorithm traverses the remaining path to s before exploring

any new edges that are unused as of yet. Backtracking from

the source establishes path (s, b, e, f, t3), where edges (s, b)
and (b, e) are shared with receiver t4 and new capacity only

needs to be assigned to edges (e, f) and (f, t3).

A shared edge can also be traversed to augment the existing

flow on that edge, in case the flow is already received by the

receiver via a different path, or the flow contains layers that are

too low to be useful at this stage of the search. Such a shared

edge traversal implies network coding across flows, since the

existing flow on that edge was assigned by another receiver

and thus cannot be replaced. In the example, network coding

on a shared edge occurs when assigning paths to the max-flow

3 receiver t2. The receiver first searches for a combination of

L1, L2, and L3 which it obtains directly from the source via

a new path (s, a, d, t2), as shown in Fig. 4(c). It then needs a

combination of the first two or all three layers. It first explores

the edges (b, t2) and (f, t2). Edge (s, b) cannot be traversed

to find layer L2 or above, since t4 enforced that only L1 can

be transported. While L1 is also transported on edge (e, f),
the maximum layer constraint on that edge is 2, established by

receiver t3 which is able to decode L1 and L2 given its flow

assignment. Therefore, the LayeredBFS can continue via the

shared edge and subsequently finds a suitable combination of

2799

20 40 80 160 320
0

20

40

60

80

100

No. of Nodes (N)

%
 H

a
p
p
y
 N

o
d
e

 Min−Req

 Min−Cut

ML−MaxFlow

20 40 80 160 320
0

20

40

60

80

100

No. of Nodes (N)

%
 R

a
te

 A
c
h
ie

v
e
d

 Min−Req

 Min−Cut

ML−MaxFlow

20 40 80 160 320
0

20

40

60

80

100

No. of Nodes (N)

%
 L

in
k
 U

s
e
d

 Min−Req

 Min−Cut

ML−MaxFlow

Fig. 5. Fraction of nodes that achieve their max-flow (left), normalized rate (middle), and link usage (right) for different network sizes and 10 receivers

L1 and L2 at node c via edge (c, e). Node e thus forms a linear

combination of L1 received from b and the combination of

L1 and L2 received from c and forwards it along edge (e, f).
Note that while this alters the linear combination received on

the subtree below edge (e, f), i.e., also receiver t3 will now

receive a linear combination over the first two layers rather

than just layer 1, this does not change decodability at t3.

In this example, the MultiLayer-MaxFlow algorithm

achieves the max-flows for all receivers, whereas neither the

Min-Req and Min-Cut algorithms nor the intra-layer approach

manage to deliver all three layers to receiver t2.

III. SIMULATION RESULTS

For the performance analysis, we implement our

MultiLayer-MaxFlow heuristic (called ML-MaxFlow in

the legend of the graphs) as well as the Min-Req and Min-Cut

algorithms from [9] in Matlab. While we do not show

results for intra-layer coding and Steiner-tree packing, we

note that in the simulations shown in [9] these algorithms

have a performance similar to the Min-Req algorithm and

always perform worse than the Min-Cut algorithm. For ease

of comparison, we use the same metrics of [9] of “Happy

Nodes”, the fraction of nodes that achieve their max-flow

value, and “Rate Achieved”, the average of actual rate

achieved normalized by the max-flow value. In addition,

we measure network load in terms of number of links used

vs. total number of links. For the coding we use random

linear network coding over a finite field GF (210). Simulation

results are averaged over 1000 runs. We generate random,

connected, cycle-free topologies with |E| = 3.7|V | links.

Fig. 5 shows the performance of the different algorithms

for networks of 20 − 320 nodes (including 95% confidence

intervals). All algorithms perform relatively well for small

networks since the low max-flow values are easier to achieve.

The disadvantage of the Min-Req algorithm becomes apparent

as soon as the network size increases. The fraction of paths

that intersect with low max-flow receivers increases as well,

and the fraction of happy nodes that achieve their max-flow,

as well as the normalized rate achieved both decrease. The

Min-Cut algorithm performs significantly better. While the

normalized rate achieved is relatively stable as the number of

nodes increases, the fraction of happy nodes in fact increases.

As the network becomes more homogeneous with increasing

size, more low max-flow receivers manage to achieve the max-

flow but this is compensated by the loss of normalized rate

at some high max-flow receivers that no longer manage to

obtain the higher layers they require. For ML-MaxFlow, both

the fraction of happy nodes as well as the normalized rate

increase with a network size beyond 80 nodes. Similarly to

the Min-Cut algorithm, more low max-flow receivers achieve

their max-flow. Since only the necessary number of paths is

allocated to low max-flow receivers, high max-flow receivers

can exploit the remaining paths to obtain higher layers. ML-

MaxFlow also uses much fewer links than Min-Req and Min-

Cut which both use 100% of the links. For a small topology

of 20 nodes, less than 80% of the links are used, and as the

network size increases this fraction drops to 15%.

IV. CONCLUSIONS

In this paper we investigated rate optimization for multi-

rate multicast with inter-layer network coding. We designed a

heuristic algorithm that does not require decoding at interior

nodes of the network and delivers a rate of at least the mini-

mum of all the receivers’ max-flow values to each receiver. We

show that our algorithm outperforms an existing heuristic that

does not require decoding at interior nodes and even provides

similar or better multicast rates than a heuristic with decoding

at interior nodes, while using fewer network resources.

REFERENCES

[1] R. Jain, “I want my IPTV,” IEEE Multimedia, vol. 12, no. 3, Jul. 2005.
[2] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video

coding extension of the H.264/AVC standard,” IEEE Transactions on

Circuits and Systems for Video Technology, Special Issue on Scalable

Video Coding, vol. 17, no. 9, Sep. 2007.
[3] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information flow,”

IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204–1216,
July 2000.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, 3rd ed. MIT Press, Sep. 2009.
[5] R. Koetter and M. Medard, “An algebraic approach to network coding,”

IEEE/ACM Trans. on Networking, vol. 49, no. 11, Nov. 2003.
[6] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and

L. Tolhuizen, “Polynomial time algorithms for multicast network code
construction,” IEEE Transactions on Information Theory, vol. 51, 2005.

[7] X. Wu, B. Ma, and N. Sarshar, “Rainbow network flow of multiple
description codes,” IEEE Transactions on Information Theory, vol. 54,
no. 10, pp. 4565–4574, 2008.

[8] N. Sundaram, P. Ramanathan, and S. Banerjee, “Multirate media stream
using network coding,” 43rd Annual Allerton Conference on Communi-

cation, Control, and Computing, Sep. 2005.
[9] M. Kim, D. Lucani, X. Shi, F. Zhao, and M. Medard, “Network coding

for multi-resolution multicast,” in IEEE Infocom, San Diego, CA, Mar.
2010.

2800

