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Abstract—Mobile network operators can track subscribers via
passive or active monitoring of device locations. The recorded
trajectories offer an unprecedented outlook on the activities of
large user populations, which enables developing new networking
solutions and services, and scaling up studies across research
disciplines. Yet, the disclosure of individual trajectories raises
significant privacy concerns: thus, these data are often protected
by restrictive non-disclosure agreements that limit their avail-
ability and impede potential usages. In this paper, we contribute
to the development of technical solutions to the problem of
privacy-preserving publishing of spatiotemporal trajectories of
mobile subscribers. We propose an algorithm that generalizes
the data so that they satisfy k

τ,ǫ-anonymity, an original privacy
criterion that thwarts attacks on trajectories. Evaluations with
real-world datasets demonstrate that our algorithm attains its
objective while retaining a substantial level of accuracy in the
data. Our work is a step forward in the direction of open, privacy-
preserving datasets of spatiotemporal trajectories.

I. INTRODUCTION

Subscriber trajectory datasets collected by network opera-

tors are logs of timestamped, georeferenced events associated

to the communication activities of individuals. The analysis

of these datasets allows inferring fine-grained information

about the movements, habits and undertakings of vast user

populations. This has many different applications, encompass-

ing both business and research. For instance, trajectory data

can be used to devise novel data-driven network optimization

techniques [1] or support content delivery operations at the

network edge [2]. They can also be monetized via added-

value services such as transport analytics [3] or location-

based marketing [4]. Additionally, the relevance of massive

movement data from mobile subscribers is critical in research

disciplines such as physics, sociology or epidemiology [5].

The importance of trajectory data has also been recognized

in the design of future 5G networks, with a thrust towards the

introduction of data interfaces among network operators and

over-the-top (OTT) providers to give them online access to this

(and other) data. OTTs can leverage such interfaces to auto-

matically retrieve the data and process them on the fly, thus

enabling new applications such as intelligent transportation [6]

or assisted-life services [7].

All these use cases stem from the disclosure of trajectory

datasets to third parties. However, the open release of such

data is still largely withhold, which hinders potential usages

and applications. A major barrier in this sense are privacy con-

cerns: data circulation exposes it to re-identification attacks,

and cognition of the movement patterns of de-anonymized

individuals may reveal sensitive information about them.

This calls for anonymization techniques. The common prac-

tice operators adhere to is replacing personal identifiers (e.g.,

name, phone number, IMSI) with pseudo-identifiers (i.e., ran-

dom or non-reversible hash values). Whether this is a sufficient

measure is often called into question, especially in relation to

the possibility of tracking user movements. What is sure is that

pseudo-identifiers have been repeatedly proven not to protect

against user trajectory uniqueness, i.e., the fact that mobile

subscribers have distinctive travel patterns that make them

univocally recognizable even in very large populations [8]–

[10]. Uniqueness is not a privacy threat per-se, but it is a

vulnerability that can lead to re-identification. Examples are

brought forth by recent attempts at cross-correlating mobile

operator-collected trajectories with georeferenced check-ins of

Flickr and Twitter users [11], with credit card records [12] or

with Yelp, Google Places and Facebook metadata [13].

More dependable anonymization solutions are needed. How-

ever, the strategies devised to date for relational databases,

location-based services, or regularly sampled (e.g., GPS) mo-

bility do not suit the irregular sampling, time sparsity, and

long duration of trajectories collected by mobile operators.

Moreover, current privacy criteria, including k-anonymity and

differential privacy, do not provide sufficient protection or are

impractical in this context. See Sec. V for a detailed discussion.

In this paper, we put forward several contributions towards

privacy-preserving data publishing (PPDP) of mobile sub-

scriber trajectories. Our contributions are as follows: (i) we

outline attacks that are especially relevant to datasets of

spatiotemporal trajectories; (ii) we introduce kτ,ǫ-anonymity,

a novel privacy criterion that effectively copes with the most

threatening attacks above; (iii) we develop k-merge, an algo-

rithm that solves a fundamental problem in the anonymization

of spatiotemporal trajectories, i.e., effective generalization;

(iv) we implement kte-hide, a practical solution based

on k-merge that attains kτ,ǫ-anonymity in spatiotemporal

trajectory data; (v) we evaluate our approach on real-world

datasets, showing that it achieves its objectives while retaining

a substantial level of accuracy in the anonymized data.
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II. REQUIREMENTS AND MODELS

We first present the requirements of PPDP, in Sec. II-A, and

formalize the specific attacker model we consider, in Sec. II-B.

We then propose a consistent privacy model, in Sec. II-C.

A. PPDP requirements

PPDP is defined as the development of methods for the

publication of information that allows meaningful knowledge

discovery, and yet preserves the privacy of monitored sub-

jects [14]. The requisites of PPDP are similar for all types

of databases, including our specific case, i.e., datasets of

spatiotemporal trajectories. They are as follows.

1. The non-expert data publisher. Mining of the data is

performed by the data recipient, and not by the data

publisher. The only task of the data publisher is to

anonymize the data for publication.

2. Publication of data, and not of data mining results. The

aim of PPDP is producing privacy-preserving datasets,

and not anonymized datasets of classifiers, association

rules, or aggregate statistics. This sets PPDP apart from

privacy-preserving data mining (PPDM), where the final

usage of the data is known at dataset compilation time.

3. Truthfulness at the record level. Each record of the pub-

lished database must correspond to a real-world subject.

Moreover, all information on a subject must map to

actual activities or features of the subject. This avoids

that fictitious data introduces unpredictible biases in the

anonymized datasets.

Our privacy model will obey the principles above. We stress

that they impose that the privacy model must be agnostic

of data usage (points 1 and 2), and that it cannot rely on

randomized, perturbed, permuted and synthetic data (point 3).

B. Attacker model

Unlike PPDP requirements, the attacker model is necessarily

specific to the type of data we consider, and it is characterized

by the knowledge and goal of the adversary. The former

describes the information the opponent possesses, while the

latter represents his privacy-threatening objective.

1) Attacker knowledge: In trajectory datasets, each data

record is a sequence of spatiotemporal samples. We assume an

attacker who can track a target subscriber continuously during

any amount of time τ . The adversary knowledge consists then

in all spatiotemporal samples in the victim’s trajectory over a

continuous1 time interval of duration τ .

2) Attacker goal: Attacks against user privacy in published

data can have different objectives, and a comprehensive clas-

sification is provided in [14]. Two classes of attacks are espe-

cially relevant in the context of mobile subscriber trajectory

data. Both exploit the uniqueness of movement patterns that,

as mentioned in Sec. I, characterizes trajectory data.

1Non-continuous tracking in the attacker model is an interesting but very
challenging open problem. A mitigative solution realisable with our model is
considering a τ that covers all disjoint tracking intervals.

• Record linkage attacks. These attacks aim at univocally

distinguishing an individual in the database. A successful

record linkage enables cross-database correlation, which

may ultimately unveil the identity of the user. Record

linkage attacks on mobile traffic data have been repeat-

edly and successfully demonstrated [8]–[10]. As men-

tioned in Sec. I, they have also been used for subsequent

cross-database correlations [11]–[13].

• Probabilistic attacks. These attacks let an adversary

with partial information about an individual enlarge his

knowledge on that individual by accessing the database.

They are especially relevant to spatiotemporal trajecto-

ries, as shown by seminal works that first unveiled the

anonymization issues of mobile traffic datasets [8], [9].

Let us imagine a scenario where an adversary knows a

small set of spatiotemporal points in the trajectory of

a subscriber (because, e.g., he met the target individual

there). A successful probabilistic attack would reveal the

complete movements of the subscriber to the attacker,

who could then use them to infer sensitive information

about the victim, such as home/work locations, daily

routines, or visits to healthcare structures.

Our privacy model will address both classes of attacks above,

led by an adversary with knowledge described in Sec. II-B1.

C. Privacy model

Our privacy model is designed following the PPDP re-

quirements and attacker model presented before. We start by

considering suitable privacy criteria against record linkage and

probabilistic attacks, in Sec. II-C1 and Sec. II-C2, respectively.

We then show how the first criterion is in fact a specialization

of the second, in Sec. II-C3, which allows us to focus on

a single unifying privacy model. Finally, we present the

elementary techniques that we employ to implement the target

privacy criterion, in Sec. II-C4.

1) k-anonymity: The k-anonymity criterion realizes the

indistinguishability principle, by commending that each record

in a database must be indistinguishable from at least k−1 other

records in the same database [15]. In our case, this maps to

ensuring that each subscriber is hidden in a crowd of k users

whose trajectories cannot be told apart. The popularity of k-

anonymity for PPDP has led to indiscriminated use beyond its

scope, and subsequent controversy on the privacy guarantees

it can provide. E.g., k-anonymity has been proven ineffective

againt attacks aiming at attribute linkage (including exploits

of insufficient side-information diversity), at localizing users,

or at disclosing their presence and meetings [16]–[18].

However, k-anonymity remains a legitimate criterion against

record linkage attacks on any kind of database [14]. Therefore,

this privacy model protects trajectory data from the first type

of attack in Sec. II-B, including its variations in [8]–[13].

2) kτ,ǫ-anonymity: No privacy criterion proposed to date

can safeguard spatiotemporal trajectory data from the second

type of attacks in Sec. II-B, i.e., probabilistic attacks. This

forces us to define an original criterion, as follows.
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Fig. 1. Illustrative example of kτ,ǫ-anonymity of user i, with k=2.

The pertinent principle here is the so-called uninformative

principle, i.e., ensuring that the difference between the knowl-

edge of the adversary before and after accessing a database

is small [16]. In our context, this principle warrants that an

attacker who knows some subset of a subscriber’s movements

cannot extract from the dataset a substantially longer portion

of that user’s trajectory.

To attain the uninformative principle, we introduce the

kτ,ǫ-anonymity privacy criterion. kτ,ǫ-anonymity can be seen

as a variation of km-anonymity, which establishes that each

individual in a dataset must be indistinguishable from at least

k−1 other users in the same dataset, when limiting the attacker

knowledge to any set of m attributes [19]. kτ,ǫ-anonymity

tailors km-anonymity to our scenario, as follows.

• As per Sec. II-B, the attacker knowledge can be any

continued sequence of spatiotemporal samples covering a

time interval of length at most τ : thus, the m parameter of

km-anonymity maps to the (variable) set of samples con-

tained in any time period τ . During any such time period,

every trajectory in the dataset must be indistinguishable

from at least other k − 1 trajectories.

• The maximum additional knowledge that the attacker

is allowed to learn is called leakage; it consists of the

spatiotemporal samples of the target user’s trajectory

contained in a time interval of duration at most ǫ, disjoint

from the original τ . In order to fulfill the uninformative

principle, the leakage ǫ must be small.

The two requirements above imply alternating in time the k−1
trajectories that provide anonymization. An intuitive example

is provided in Fig. 1. There, the trajectory of a target user

i is 2τ,ǫ-anonymized using those of five other subscribers.

The overlapping between the trajectories of a, b, c, d, e and

that of i is partial and varied. An adversary knowing a sub-

trajectory of i during any time interval of duration τ always

finds at least one other user with a movement pattern that

is identical to that of i during that interval, but different

elsewhere. With this knowledge, the adversary cannot tell

apart i from the other subscriber, and thus cannot attribute

full trajectories to one user or the other. As this holds no

matter where the knowledge interval is shifted to, the attacker

can never retrieve the complete movement patterns of i: this

achieves the uninformative principle. Still, the adversary can

increase its knowledge in some cases. Let us consider the

interval τ indicated in the figure: the trajectories of i, d and e
are identical for some time after τ , which allows associating to

i the movements during ǫ: the opponent learns one additional

spatiotemporal sample of i.

3) Relationship between the privacy criteria: It is easy to

see that k-anonymity is a special case of kτ,ǫ-anonymity. As a

matter of fact, the latter criterion reduces to the former when

τ + ǫ covers the whole temporal duration of the trajectory

dataset. Then, kτ,ǫ-anonymity commends that each complete

trajectory is indistinguishable from k − 1 other trajectories,

which is the definition of k-anonymity. Our point here is that

an anonymization solution that implements kτ,ǫ-anonymity

can be straightforwardly employed to attain k-anonymity as

well, by properly adjusting the τ and ǫ parameters.

In the light of these considerations, we address the problem

of achieving kτ,ǫ-anonymity in datasets of spatiotemporal

trajectories of mobile subscribers. By doing so, we develop

a complete anonymization solution that is effective against

probabilistic attacks, but can also be specialized to guarantee

k-anonymity and counter record linkage attacks.

4) Generalization and suppression: In order to enforce

kτ,ǫ-anonymity for all users in the dataset, we need to tweak

the spatiotemporal samples in the trajectories of individuals,

so that the criterion in Sec. II-C2 is respected for all of them.

To that end, we rely on two elementary techniques, i.e.,

spatiotemporal generalization and suppression of samples.

Spatiotemporal generalization reduces the precision of tra-

jectory samples in space and time, so as to make the sam-

ples of two or more users indistinguishable. Suppression

removes from the trajectories those samples that are too hard

to anonymize. Both techniques are lossy, i.e., imply some

reduction of precision in the data. Yet, unlike other approaches,

these techniques conform to the PPDP requirement of truth-

fulness at the record level, see Sec. II-A.

III. ACHIEVING kτ,ǫ-ANONYMITY

Our goal is ensuring that an anonymized dataset of mobile

subscriber trajectories respects the uninformative principle,

by implementing, through generalization and suppression, the

kτ,ǫ-anonymity of all subscriber trajectories in the dataset.

Clearly, we aim at doing so while minimizing the loss of

spatiotemporal granularity in the data.

We start by defining the basic operation of generalizing

a set of spatiotemporal samples, and the associated cost in

terms of loss of granularity, in Sec. III-A. We then extend both

notions to (sub-)trajectories, in Sec. III-B. Building on these

definitions, we discuss in Sec. III-C the optimal spatiotemporal

generalization of k (sub-)trajectories. We implement the result

into k-merge, an optimal low-complexity algorithm that

generalizes (sub-)trajectories with minimal loss of data granu-

larity, in Sec. III-D. Once able to merge (sub-)trajectories op-

timally, we propose an approach to guarantee kτ,ǫ-anonymity

of the trajectory of a single user, in Sec. III-E, and we then

scale the solution to multiple users in Sec. III-F. Finally,

we introduce kte-hide, an algorithm that ensures kτ,ǫ-
anonymity in spatiotemporal trajectory datasets, in Sec. III-G.

A. Generalization of samples

A (raw) sample of a spatiotemporal trajectory represents the

position of a subscriber at a given time, and we model it with
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Fig. 2. Example of merging of trajectories Si = {si,j} and Si′ = {si′,j}
into a generalized trajectory G = {G}. For clarity, space is unidimensional.

a length-3 real vector s = (t(s), x(s), y(s)). Since a dataset

is characterized by a finite granularity in time and space, a

sample is in fact a slot spanning some minimum temporal

and spatial intervals. The vector entries above can be regarded

as the origins of a normalized length-1 time interval and a

normalized 1×1 two-dimensional area2.

Spatiotemporal generalization merges together two or more

raw samples into a generalized sample, i.e., a slot with a

larger span. Mathematically, a generalized sample G can be

represented as the set of the merged samples. The span of G
in all three dimensions is then equal to

∆⋆(G) = max
s∈G

⋆(s)−min
s∈G

⋆(s) + 1, (1)

where ⋆ ∈ {t, x, y}. A pictorial view of sample generalization

is included in Fig. 2: there, two raw samples si,1 and si′,1 are

merged into a generalized sample G1, spanning ∆t(G1) in time

and ∆x(G1) in (unidimensional) space.

There is a cost associated with merging samples, which is

related to the span of the corresponding generalized sample,

i.e., to the loss of granularity induced by the generalization.

The cost of the operation of merging a set of samples into the

generalized sample G that we use in the paper is given by

c (G) = ∆t (G) (∆x (G) + ∆y (G)) . (2)

Remark 1: All the discussion in Sec. III holds true for a more

general expression of c (G) that verifies specific properties

on the cost of merging two generalized samples. Details are

provided in the paper compendium [20]. Our implementation

in (2) aims at computational efficiency. Also, summing the two

space spans before multiplication allows balancing the time

and space contributions. Then, c (G) is the area of a rectangle

with sides ∆t (G) and ∆x (G) + ∆y (G), see Fig. 2.

B. Generalization of trajectories

A spatiotemporal (sub-)trajectory describes the movements

of a single subscriber during the dataset timespan. Formally, a

trajectory is an ordered vector of samples S = (s1, . . . , sN),
where the ordering is induced by the time coordinate, i.e.,

t(si) < t(si′) if and only if i < i′.

2For instance, in our reference datasets, the sample granularity is 1 minute
in time and 100 meters in space. A raw sample spans then one slot (i.e., 1
minute) in time and one slot (i.e., a 100×100 m2 area) in space.

A generalized trajectory, obtained by merging different

trajectories, is defined as an ordered vector of generalized

samples G = (G1, . . . ,GZ). Here the ordering is more subtle,

and based on the fact that the time intervals spanned by the

generalized samples are non-overlapping, a property that will

be called time coherence. More precisely, if Gi and Gi′ , i < i′,
are two generalized samples of G, then

max
s∈Gi

t(s) < min
s∈Gi′

t(s).

An example of a generalized trajectory G merging two

trajectories Si and Si′ is provided in Fig. 2. G fulfils time

coherence, as its generalized samples are temporally disjoint.

Remark 2: Time coherence is a defining property of gen-

eralized trajectories in PPDP. As a matter of fact, publishing

trajectory data with time-overlapping samples would generate

semantic ambiguity and make analyses cumbersome.

Analogously to the cost of merging samples, we can define a

cost of merging multiple trajectories into a generalized trajec-

tory. We define such cost as the sum of costs of all generalized

samples belonging to it. More precisely, if G = (G1, . . . ,GZ),
and c(·) is defined as in (2), then the cost of G is given by:

C (G) =

Z
∑

i=1

c (Gi) . (3)

Remark 3: The cost in (3) is the overall surface covered by

samples of the generalized trajectory over the spatiotemporal

plane. E.g., in Fig. 2, the cost of G is the sum of the three

areas, i.e., c(G1)+ c(G2)+ c(G3). It is thus proportional to the

total loss of granularity induced by the generalization.

C. Optimal generalization of trajectories

We now formalize the problem of optimal generalization of

spatiotemporal (sub-)trajectories. Suppose that we have k tra-

jectories S1, . . . ,Sk, with Si = (si,1, . . . , si,Ni
), i = 1, . . . , k.

The goal is a generalized trajectory G
∗ = (G∗

1 , . . . ,G
∗
Z) from

S1, . . . ,Sk, which satisfies the following conditions.

i) The union of all generalized samples of G∗ must coincide

with the union of all samples of S1, . . . ,Sk, i.e.,

G∗
1 ∪ · · · ∪ G∗

Z = S1 ∪ · · · ∪ Sk , S,

where Si =
⋃Ni

j=1{si,j}. Thus, G∗ is a partition of the set S
of all samples in the input trajectories: it does not add any

alien sample or discard any input sample.

ii) Each generalized sample contains at least one sample

from each of the k input trajectories S1, . . . ,Sk, i.e.,

G∗
i ∩ Si′ 6= ∅, i = 1, . . . , Z, i′ = 1, . . . , k.

This imposes that each input trajectory contributes to each

generalized sample of G
∗. Otherwise, the merging could

associate generalized samples to users that never visited the

generalized location at the generalized time, violating point 3

of the PPDP requirements in Sec. II-A.

iii) The cost of the merging is minimized, i.e.,

G
∗ = arg min

G∈K

C(G), (4)
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Algorithm 1: k-merge algorithm pseudocode.

input : Trajectories S1, . . . ,Sk , where Si = (si,1, . . . , si,Ni
)

output: Generalized sample set G∗, Cost C (G∗)
1 foreach i ∈ [1, k] do

2 Si =
⋃Ni

j=1
{si,j};

3 S ← timesort (S1 ∪ · · · ∪ Sk);
4 Cost ← (0,∞, . . . ,∞);
5 Partition ← (NULL, . . . , NULL);
6 foreach sθ ∈ S do

7 θ′ = θ − 1;
8 while incomplete (sθ′ , . . . , sθ) do

9 θ′ = θ′ − 1;
10 while elementary (sθ′ , . . . , sθ) do
11 G ← generalize (sθ′ , . . . , sθ);
12 if Cost [θ] > c (G) + Cost [θ′ − 1] then

13 Cost [θ] ← c (G) + Cost [θ′ − 1];
14 Partition ← (θ′ − 1,G);
15 θ′ = θ′ − 1;
16 G∗ ← visit (Partition);
17 C (G∗)← Cost [ |S| ];

where K is the set of all partitions of S satisfying time

coherence as well as condition ii) above, and C(G) is in (3).

In Fig. 2, the generalized trajectory G fulfils all these require-

ments, and is thus the optimal merge G
∗ of Si and Si′ .

Solving the problem above with a brute-force search is

computationally prohibitive, since K has a size that grows

exponentially with |S|/k, where | · | denotes cardinality. How-

ever, we can characterize G
∗ so that it is possible to compute

it with low complexity. To that end, we name elementary a

partition G ∈ K that cannot be refined to another partition

within K. In other words, none of the generalized samples

of an elementary partition can be split into two generalized

samples without violating conditions i) and ii) above, or time

coherence. Then, we have the following proposition3.

Proposition 1: Given the input trajectories S1, . . . ,Sk, the

optimal G∗ defined in (4) is an elementary partition.

The above proposition drastically reduces the search space

of G∗ to the set K∗ ⊂ K of elementary partitions of S.

D. Optimal merging algorithm

We propose k-merge, an algorithm to efficiently search

the set of raw samples S, extract the subset of elementary

partitions, K∗, and identify the optimal partition G
∗.

The algorithm, detailed in Alg. 1, starts by populating a set

of raw samples S, whose items si,j are ordered according

to their time value t(si,j) (lines 1–3). Then, it processes

all samples according to their temporal ordering (line 6).

Specifically, the algorithm tests, for each sample sθ in position

θ, all sets {sθ′, . . . , sθ}, with θ′ < θ, as follows.

The first loop skips incomplete sets that do not contain

at least one sample from each input trajectory (line 8).

The second loop runs until the first non-elementary set is

encountered (line 10). Therein, the algorithm generalizes the

current (complete and elementary) set {sθ′, . . . , sθ} to G, and

checks if G reduces the total merging cost up to sθ . If so,

the cost is updated by summing c(G) to the accumulated cost

3The proofs of all propositions are in [20].

Fig. 3. Overlapping hiding set structure realizing kτ,ǫ-anonymity for user i.

up to sθ′−1, and the resulting (partial) partition of S that

includes G is stored (lines 11–14). Once out of the loops,

the cost associated to the last sample is the optimal cost, and

it is sufficient to backward navigate the partition structure to

retrieve the associated G
∗ (lines 16–17).

Note that, in order to update the cost of including the

current sample sθ (line 13), the algorithm only checks previous

samples in time. It thus needs that the optimal decision up to

sθ does not depend on any of the samples in the original

trajectories that come later in time than sθ. The following

proposition guarantees that this is the case.

Proposition 2: Let G
∗ = (G∗

1 , . . . ,G
∗
Z) be the optimal

generalized trajectory and let us make the hypothesis that sθ
and sθ+1 do not belong to the same generalized sample of

G
∗. Let G

∗
p =

(

G∗
1 , . . . ,G

∗
Z1

)

and G
∗
f =

(

G∗
Z1+1, . . . ,G

∗
Z

)

,

so that sθ ∈ G∗
Z1

and sθ+1 ∈ G∗
Z1+1. Then, G∗

p can be derived

independently of G∗
f .

The above proposition guarantees that the algorithm is

exploring all possibilities, and as a result, the cost C(G∗)
returned by k-merge is optimal, i.e., it is the minimum loss

of granularity necessary to merge the original trajectories.

Note that k-merge has a very low complexity in practical

cases. Let l(θ) be the number of sets {sθ′, . . . , sθ} that are both

complete and elementary for a given θ. Then, the number of

computations and comparisons of sample generalization costs

that are performed in k-merge is
∑

θ l(θ) = |S|l, where l is

the average value of l(θ). If l = O(1), which happens in most

trajectory data where the samples of the input trajectories are

intercalated in the time axis, then k-merge runs in a time

O(|S|), i.e., linear in the number of samples.

E. Single user kτ,ǫ-anonymity

We implement kτ,ǫ-anonymity for a generic subscriber i as

shown in Fig. 3. We discretize time into intervals of length ǫ,
named epochs. At the beginning of the m-th epoch, we select

a set of k−1 users different from i, named a hiding set of i and

denoted as h
i
m. The hiding set hi

m provides k-anonymity to

subscriber i for a subsequent time window τ+ǫ. By repeating

the hiding set selection for all epochs, τ/ǫ + 1 subsequent

hiding sets of user i overlap at any point in time. Such a

structure of overlapping hiding sets assures the following.

First, subscriber i is k-anonymized for any possible knowl-

edge of the attacker. No matter where a time interval of length
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τ is shifted to along the time dimension, it will be always

completely covered by the time window of one hiding set,

i.e., a period during which i’s trajectory is indistinguishable

from those of k − 1 other users. As an example, in Fig. 3,

the attacker knowledge τ (bottom-right of the plot) is fully

enclosed in the time window of h
i
6, and his sub-trajectory is

indistinguishable from those of users in h
i
6.

Second, the additional knowledge leaked to the attacker is

exactly ǫ. From the first point above, the adversary cannot

tell apart i from the users in the hiding set h
i
m whose time

window covers his knowledge τ . However, the adversary can

follow the (generalized) trajectories of i and users in h
i
m for

the full time window τ + ǫ. Therefore, the adversary can infer

new information about the (generalized) trajectory of i during

the time window period that exceeds his original knowledge

τ , i.e., ǫ. E.g., in Fig. 3, the time window of hi
6 spans before

and after the attacker knowledge τ , for a total of ǫ.
The two guarantees above let kτ,ǫ-anonymity, as defined

in Sec. II-C2, be fulfilled for the generic user i. The epoch

duration ǫ maps to the knowledge leakage. The following

important remarks are in order.

1. Hiding set selection. The structure of overlapping hiding

sets is to be implemented so that the loss of accuracy in the

kτ,ǫ-anonymized trajectory is minimized. Thus, the users in

the generic hiding set hi
m shall be those who, during the time

window τ + ǫ starting at the m-th epoch, have sub-trajectories

with minimum k-merge cost with respect to i’s.

2. Reuse constraint. The uninformative principle requires

alternating the k− 1 trajectories used in different hiding sets,

as per Sec. II-C2. A simple way to enforce this is limiting the

inclusion of any subscriber in at most one hiding set of i.
3. Generalization set. As evidenced by the example in Fig. 3,

the configuration of hiding sets changes at every epoch, and

τ/ǫ + 1 hiding sets overlap during each epoch. This means

that a spatiotemporal generalization must be used to merge a

set of χ = 1 + (τ/ǫ + 1)(k − 1) trajectories at each epoch.

4. Epoch duration tradeoff. The epoch duration ǫ is a

configurable system parameter, whose setting gives rise to

a tradeoff between knowledge leakage and accuracy of the

anonymized data. A lower ǫ reduces knowledge leakage.

However, it also increases χ, which typically entails a more

marked generalization and a higher loss of data granularity.

F. Multiple user kτ,ǫ-anonymity

Scaling kτ,ǫ-anonymity from a single user to all subscribers

in a dataset implies that the choice of hiding sets cannot be

made independently for every user. Therefore, trajectory sim-

ilarity and reuse constraint fulfillment are not sufficient norms

anymore. In addition to the above, the selection of hiding sets

needs to be concerted among all users so as to ensure that

the generalized trajectories are correctly intertwined and all

subscribers are k-anonymized during each time window τ + ǫ.
An intuitive solution is enforcing full consistency: including

a subscriber i into the hiding set of user i′ at epoch m makes i′

automatically become part of i’s hiding set at the same epoch.

Formally, i ∈ h
i′

m ⇒ i′ ∈ h
i
m, ∀i 6= i′, ∀m.

Fig. 4. Example of k-pick constraint, with k=3, for user i during the m-th
hiding set selection. Here ǫ = τ , hence the time windows of hiding sets span
two epochs. For clarity, space is unidimensional. Figure best viewed in colors.

In fact, full consistency is an unnecessarily restrictive con-

dition. It is sufficient that hiding set concertation satisfies a

k-pick constraint: during the m-th epoch, each user i in the

dataset has to be picked in the hiding sets of at least other k−1
subscribers. Formally, |{i′, i ∈ h

i′

m}| ≥ k − 1, ∀i, ∀m. This

provides an increased flexibility over all existing approaches

which rely on fully consistent generalization strategies.

The rationale behind the k-pick constraint is best illustrated

by means of a toy example, in Fig. 4. The figure portrays the

spatiotemporal samples of users i, i′ and i′′ during epochs

m and m+ 1. The sub-trajectory of subscriber i in this time

interval is Si = (si,1, si,2, si,3), represented as black squares;

equivalently for i′ (orange triangles) and i′′ (red circles).

Samples denoted by letters belong to other users a, b, c and

d, and they are instrumental to our example.

Let us assume that ǫ = τ (i.e., hiding sets span an interval

2τ = 2ǫ, or epochs m and m+1), and k = 3. At the beginning

of the m-th epoch, for subscriber i (resp., i′ and i′′), one needs

to select k−1 = 2 other users that constitute the hiding set hi
m

(resp., hi′

m and h
i′′

m ). Let us consider h
i
m={a, b}, hi′

m={i, c},

h
i′′

m={i, d}, which results in the generalized sub-trajectories

Gi, Gi′ , Gi′′ in Fig. 4. The configuration satisfies the k-pick

constraint for subscriber i, who is picked in k− 1 = 2 hiding

sets, i.e., hi′

m and h
i′′

m . Suppose now that the attacker knows

the spatiotemporal samples of i’s trajectory during any time

interval τ within the m-th and (m + 1)-th epoch: as these

samples are within Gi, Gi′ and Gi′′ , then i is 3-anonymized.

The key consideration is that i is k-anonymized at epoch m
by i′ and i′′, yet it does not contribute to the anonymization

of neither i′ nor i′′, as i′, i′′ /∈ h
i
m. Thus, it is possible to

decouple the choice of hiding sets across subscribers, without

jeopardizing the privacy guarantees granted by k-anonymity.

Such a decoupling entails a dramatic increase of flexibility in

the choice of hiding sets, as per the following proposition.

Proposition 3: Given a dataset of U trajectories and a fixed

value of k, the number of hiding set configurations allowed

by full consistency is a fraction of that allowed by k-pick that

vanishes more than exponentially for U → ∞.

For large datasets of hundreds of thousands trajectories, k-

pick enables a much richer choice of merging configurations.

This reasonably unbinds better combinations of the original

trajectories, and results in more accurate anonymized data.
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Algorithm 2: kte-hide algorithm pseudocode.

input : Anonymization level k, attacker knowledge τ , leakage ǫ
input : Trajectory dataset D
output: Anonymized trajectory dataset D

1 foreach eθ ∈ epochs (D) do
2 Df ← filter (eθ,D);
3 foreach Si,Si′ ∈ Df ,Si 6= Si′ do

4 Costs [Si,Si′ ] ← k-merge (Si,Si′ );
5 Clusters [θ] ← spectralClustering (Costs);
6 if θ ≥ τ/ǫ+ 1 then

7 foreach c ∈ Clusters [θ] do

8 Subs ← split (c,Clusters [θ − τ/ǫ : θ − 1]);
9 foreach cs ∈ Subs [θ] do

10 gs ← graph (cs);
11 gsc ← greedyCycle (gs,k);
12 if ∃gsc then
13 foreach Si ∈ cs do

14 hi
θ−τ/ǫ

← gsc[Si];

15 else

16 suppression (cs);
17 foreach eθ ∈ epochs (D) do

18 foreach Si ∈ D do

19 h← filter (eθ,Si,h
i
θ−τ/ǫ

, . . . ,hi
θ);

20 D← replace (k-merge (h));

G. Practical kτ,ǫ-anonymity algorithm

Capitalizing on all previous results, we design kte-hide,

an algorithm that achieves kτ,ǫ-anonymity in datasets of spa-

tiotemporal trajectories. Since even the optimal solution to the

simpler k-anonymity problem is known to be NP-hard [14],

we resort here to an heuristic solution.

The algorithm, in Alg. 2, proceeds on a per-epoch basis

(line 1), finding, for each epoch θ, a set of χ users (with

χ defined as in Sec. III-E) that hide each subscriber at low

merging cost. An extensive search for the set of χ users would

have an excessive cost O(Uχ), where U is the number of

users in dataset, and χ ≥ 3. Thus, we adopt a computationally

efficient approach, by clustering user sub-trajectories based on

their pairwise merging cost. Costs are computed via k-merge

(lines 2–4), and a standard spectral clustering algorithm groups

similar trajectories into same clusters (line 5). This allows

operating on each cluster independently in the following.

Starting from epoch τ/ǫ+1 (line 6), the algorithm processes

each identified cluster at epoch θ separately (line 7). It

splits the current cluster c into subsets, which contain user

trajectories that share the same sequence of clusters during

the last τ/ǫ epochs (line 8).

Let cs be any of such subsets: cs is mapped to a directed

graph whose nodes are the users within cs, and there is an

edge going from user j to user i if j can be in the hiding set

h
i
θ−τ/ǫ of i without violating the reuse constraint (line 10). If

a k-anonymity level is required, k − 1 directional cycles are

then built within the graph, involving all nodes in the graph,

in such a way that each node has a different parent in each

cycle (line 11). The hiding set hi
t−τ/ǫ is then obtained as the

set of user i’s parents in the k − 1 cycles (lines 13–14).

Such a construction of hiding sets complies with the k-pick

constraint, since every user i is in the hiding set of k−1 other

users. It may however happen that no valid k − 1 cycles can

TABLE I
FEATURES OF REFERENCE MOBILE TRAFFIC DATASETS.

Dataset Surface BS BS/Km2 Users Density Samples Timespan

[Km2] [user/Km2] [per user/h] [days]

abi 2,731 400 0.14 29,191 10.68 0.90 14

dak 1,024 457 0.44 71,146 69,47 0.74 14

shn 3,329 2961 0.89 50,000 15.01 1.00 1

civ 322,463 1238 0.0038 82,728 0.26 0.75 14

sen 196,712 1666 0.0085 286,926 1.45 0.45 14

be created within cs: this means that subscribers in cs share

a sub-trajectory that is rare in the dataset, and their number

is insufficient to implement kτ,ǫ-anonymity. In this case, we

apply suppression and remove all spatiotemporal samples of

such users’ sub-trajectories (line 16). Once all hiding sets are

determined, the merging is performed, on each epoch and for

each user, using k-merge (lines 17–20).

Overall, the heuristic algorithm above guarantees that over-

lapping hiding sets that satisfy the reuse constraint (Sec. III-E)

are selected for all users. It also ensures that such a choice of

hiding sets fulfils the k-pick requirement (Sec. III-F). Together,

these conditions realize kτ,ǫ-anonymity of the trajectory data.

IV. PERFORMANCE EVALUATION

We evaluate our anonymization solutions with five real-

world datasets of mobile subscriber trajectories.

Our datasets consist of user trajectories extracted from call

detail records (CDR) released by Orange within their D4D

Challenges [21], and by the University of Minnesota [22].

Three datasets, denoted as abi, dak and shn, describe

the spatiotemporal trajectories of tens of thousands mobile

subscribers in urban regions, while the other two, civ and

sen hereinafter, are nationwide. In all datasets, user positions

map to the latitude and longitude of the current base station

(BS) they are associated to. The main features of the datasets

are listed in Tab. I, revealing the heterogeneity of the scenarios.

We run kte-hide on our reference datasets of mobile sub-

scriber trajectories, so that they are kτ,ǫ-anonymized. As the

anonymized data are robust to probabilistic attacks by design,

we focus our evaluation on the cost of the anonymization,

i.e., the loss of granularity. All results refer to the case of

2τ,ǫ-anonymization, with ǫ = τ .

1) Citywide datasets: Fig. 5 portrays the mean, median

and first/third quartiles of the sample granularity in the kτ,ǫ-
anonymized citywide datasets abi, dak and shn. The plots

show how results vary when the adversary knowledge τ ranges

from 10 minutes to 4 hours4. They refer to the anonymized

data granularity in space5, in Fig.5a-c and time, in Fig.5d-f.

We remark how the kτ,ǫ-anonymized datasets retain signifi-

cant levels of accuracy, with a median granularity in the order

of 1-3 km in space and below 45 minutes in time. These levels

of precision are largely sufficient for most analyses on mobile

subscriber activities, as discussed in, e.g., [23]. The temporal

4Except for shn, whose limited temporal span prevents us from testing
attacks with knowledge τ higher than one hour.

5The spatial granularity in Fig. 5 is expressed as the sum of spans along
the Cartesian axes. For instance, 1 km maps to, e.g., a square of side 500 m.
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Fig. 5. Spatial (a,b,c) and temporal (d,e,f) granularity versus the adversary knowledge τ in the citywide reference datasets.
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Fig. 6. Spatial (a,b) and temporal (c,d) granularity versus τ in the nationwide reference datasets.
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Fig. 7. Granularity time series, abi dataset.

granularity is negatively affected by an increasing adversary

knowledge τ , which is expected. Interestingly, however, the

spatial granularity is only marginally impacted by τ : protecting

the data from a more knowledgeable attacker does not have a

significant cost in terms of spatial accuracy.

2) Nationwide datasets: Fig. 6 shows equivalent results

for the nationwide datasets civ and sen. The evolution of

temporal granularity versus τ , in Fig.6c-d is consistent with

citywide scenarios. Differences emerge in terms of spatial

granularity: in the civ case (Fig.6a) a reversed trend emerges,

as accuracy grows along with the attacker knowledge. This

counterintuitive result is explained by the thin user presence in

the civ dataset: as per Tab. I, civ has a density of subscribers

per Km2 that is one or two orders of magnitude lower than

those in our other reference datasets. Such a geographical

sparsity makes it difficult to find individuals with similar

spatial trajectories: increasing τ has then the effect of enlarging

the set of candidate trajectories for merging at each epoch, with

a positive influence on the accuracy in the generalized data.

These considerations are confirmed by the results with the

sen dataset (Fig.6b). As per Tab. I, this dataset features a

subscriber density that is about one order of magnitude higher

than that of civ, but around one order of magnitude lower

than those of the abi, dak and shn. Coherently, the spatial

granularity trend falls in between those observed for such

datasets, and it is not positively or negatively impacted by

the attacker knowledge.

More generally, the results in Fig. 6 demonstrate that

kte-hide can scale to large-scale real-world datasets. The

absolute performance is good, as the kτ,ǫ-anonymized data

retains substantial precision: the median levels of granularity

in space and time are comparable to those achieved in citywide

datasets. Finally, we remark that, in all cases, the amount of

samples suppressed by kte-hide is in the 1%–7% range.

3) Disaggregation over time: As an intriguing concluding

remark, Fig. 7 reveals a clear circadian rhythm in the granu-

larity of kτ,ǫ-anonymized data. The plots refer to one sample

week in the abi dataset, when τ = 30 min, but consistent

results were observed in all other cases. The mean spatial

granularity, in the top plot, is much finer during daytime, when

subscribers are more active and the volume of trajectories

is larger: here, it is easier to hide a user into the crowd.

Overnight displacements are instead harder to anonymize,

since subscribers are limited in number and they tend to have

diverse patterns. Time granularity, in the bottom plot, is less

subject to day-night oscillations: the slightly higher accuracy

recorded at night is an artifact of a relatively more important

suppression of samples at those times.

4) Summary: Overall, our results show that kte-hide

attains kτ,ǫ-anonymity of real-world datasets of mobile traffic,

while maintaining a remarkable level of accuracy in the data.

Interestingly, its performance is better when most needed, at

daytime, when the majority of human activities take place.

V. RELATED WORK

Protection of individual mobility data has attracted signif-

icant attention in the past decade. However, attack models

and privacy criteria are very specific to the different data

collection contexts. Hence, solutions developed for a specific

type of movement data are typically not reusable in other

environments.

For instance, a vast amount of works have targeted user

privacy in location-based services (LBS). There, the goal is

ensuring that single georeferenced queries are not uniquely

identifiable [24]. This is equivalent to anonymizing each

spatiotemporal sample independently, and a whole other prob-

lem from protecting full trajectories. Even when considering

sequences of queries, the LBS milieu allows pseudo-identifier

replacement, and most solutions rely on this approach, see,

e.g., [25], [26]. If applied to spatiotemporal trajectories, these

techniques would seriously and irreversibly break up trajecto-

ries in time, disrupting data utility.
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Another popular context is that of spatial trajectories that do

not have a temporal dimension. The problem of anonymizing

datasets of spatial trajectories has been thoroughly explored

in data mining, and many practical solutions based on gen-

eralization have been proposed, see, e.g., [27]–[30]. Such

solutions are not compatible with or easily extended to the

more complex spatiotemporal data we consider.

Some works explicitly target privacy preservation of spatio-

temporal trajectories. However, the precise context they refer

to makes again all the difference. First, most such solutions

consider scenarios where user movements are sampled at regu-

lar time intervals that are identical for all individuals [31], [32],

or where the number of samples per device is very small [33].

These assumptions hold, e.g., for GPS logs or RFID record,

but not for trajectories recorded by mobile operators: the latter

are irregularly sampled, temporally sparse, and cover long

time periods, which results in at least hundreds of samples

per user. Second, many of the approaches above disrupt

data utility, by, e.g., trimming trajectories [34], or violate

the principles of PPDP, by, e.g., perturbating or permutating

the trajectories [31], [32], or creating fictitious samples [35].

Third, all previous studies aim at attaining k-anonymity of

spatiotemporal trajectories, i.e., they protect the data against

record linkage; this includes recent work specifically tailored

to mobile subscriber trajectory datasets [10]. As explained in

Sec. II, k-anonymity is only a partial countermeasure to attacks

on spatiotemporal trajectories.

Provable privacy guarantees are instead offered by differ-

ential privacy, which commends that the presence of a user’s

data in the published dataset should not change substantially

the output of the analysis, and thus formally bounds the

privacy risk of that user [36]. There have been attempts at

using differential privacy with mobility data. Specifically, it

has been successfully used the in the LBS context, when

publishing aggregate information about the location of a large

number of users, see, e.g., [37]. However, the requirements

of these solutions already become too strong in the case of

individual LBS access data [38]. To address this problem, a

variant of differential privacy, named geo-indistinguishability

has been introduced: it requires that any two locations become

more indistinguishable as they are geographically closer [39].

Practical mechanisms achieve geo-indistinguishability, see,

e.g., [38], [39]. However, all refer to the anonymization of

single LBS queries: as of today, differential privacy and its

derived definitions still appear impractical in the context of

spatiotemporal trajectories.

VI. CONCLUSIONS

In this paper, we presented a first PPDP solution to prob-

abilistic and record linkage attacks against mobile subscriber

trajectory data. To that end, we introduced a novel privacy

model, kτ,ǫ-anonymity, which generalizes the popular criterion

of k-anonymity. Our proposed algorithm, kte-hide, imple-

ments kτ,ǫ-anonymity in real-world datasets, while retaining

substantial spatiotemporal accuracy in the anoymized data.
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