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Abstract—The combination of network softwarization with net-
work slicing enables the provisioning of very diverse services over
the same network infrastructure. However, it also creates a com-
plex environment where the orchestration of network resources
cannot be guided by traditional, human-in-the-loop network
management approaches. New solutions that perform these tasks
automatically and in advance are needed, paving the way to zero-
touch network slicing. In this paper, we propose AZTEC, a data-
driven framework that effectively allocates capacity to individual
slices by adopting an original multi-timescale forecasting model.
Hinging on a combination of Deep Learning architectures and
a traditional optimization algorithm, AZTEC anticipates resource
assignments that minimize the comprehensive management costs
induced by resource overprovisioning, instantiation and recon-
figuration, as well as by denied traffic demands. Experiments
with real-world mobile data traffic show that AZTEC dynamically
adapts to traffic fluctuations, and largely outperforms state-of-
the-art solutions for network resource orchestration.

I. INTRODUCTION

Mobile data traffic is becoming more and more heteroge-
neous: the variety of applications run by a single smartphone is
staggering [1], and a growing number of devices are becoming
always connected, heralding new and distinctive traffic demand
models [2]. From the infrastructure provider’s viewpoint, this
trend imposes the need to support increasingly diverse spec-
ifications at once, and makes service differentiation a prime
requirement for future-generation mobile networks.

Zero-touch network slicing. Network slicing enables the
desired strong service differentiation by capitalizing on recent
developments in Network Function Virtualization (NFV). It
creates multiple logical instances of the physical network, the
so-called network slices, ensuring strict traffic isolation among
them [3], and tailoring the network resources of each slice to
a specific (class of) application [4]. Network slicing has the
potential to enable the coexistence of a wide range of mobile
services in the same network infrastructure; however, it also
poses several of technical challenges.

A prominent difficulty is resource management. Isolation of
resources across slices inherently increases network capacity
requirements [5], and a dynamic, preemptive and efficient allo-
cation of resources to slices is a key instrument to keep capital
expenditure (CAPEX) and operating expenses (OPEX) under
control in sliced networks [6]. The rapid fluctuations in service
demands, as well as the size and complexity of the slicing
ecosystem, make legacy reactive, human-driven approaches to
resource management inadequate to the emerging context. In
sliced networks, automated decisions on resource assignment

shall be taken by open-source orchestrators such as those
promoted by Open Source MANO (OSM) [7] and Open Net-
work Automation Platform (ONAP) [8]. By running dedicated
Artificial Intelligence solutions [9], network orchestrators are
expected to enable the vision of zero-touch networks [10],
i.e., fully self-operating communication infrastructures whose
standardization has lately started to be discussed [11].

Capacity forecasting for resource management. When
developing the intelligence for the automated allocation of
resources in zero-touch network slicing, forecasting holds a
fundamental role. Indeed, the orchestrator needs to know in
advance the capacity that will be required by each slice to take
informed decisions and maximize resource utilization. Unlike
traditional prediction, network capacity forecasting is driven
by monetary costs: errors lead to resource misconfigurations
that entail different economic penalties for the operator [12].

Current state-of-the-art solutions for capacity forecasting in
network slicing take into account the costs due to (i) the
allocation of unnecessary resources that go unused, and (ii)
the insufficient provisioning of resources that cannot accom-
modate the demand and lead to violations of the Service-Level
Agreements (SLA) with the slice tenant. Hence, they aim at
minimizing overprovisioning while avoiding SLA violations.

However, limiting the problem to this simple trade-off im-
plicitly assumes that resource instantiation and reconfiguration
occurs at no cost. While this may hold for some types of
resource (e.g., CPU time within the same bare metal machine),
it is not generally valid for slice resource management sce-
narios. Instantiation and reconfiguration costs are capital in
NFV technologies that enable the cloudification of the access
and core networks by entrusting many network functions to
Virtual Machines (VMs) running in datacenters. Examples
include baseband processing in Cloud Radio Access Networks
(C-RAN) [13], interconnection functionalities towards the
external packet networks through the User Plane Function
(UPF) [14], or central office operations [15].

In all the above cases, resource instantiation does not take
place for free: VM boot times in prominent public cloud
services like Amazon AWS or Microsoft Azure consistently
exceed 40 seconds, topping at 400 seconds in worst-case
scenarios [16]; even in recent tests, booting a lightweight VM
containing an Alpine Linux takes around 30 seconds in a local
deployment [17]. Reconfiguring already allocated resources
has also a non-negligible cost: modern software architectures
such as Kubernetes need several seconds to execute new pods,
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e.g., on VMs that are already running [17]. In addition, re-
orchestration often implies recomputing paths on the transport
networks and implementing them via, e.g., Software Defined
Networking (SDN) architectures: the latency is in the order of
hundreds of milliseconds in a small five-switch topology and
with precomputed routing [18], and this figure has to be scaled
to thousands of switches with on-the-fly path re-calculation.

All unavoidable delays above entail monetary fees for the
operator, in terms of both violations of the SLA with the
tenants (e.g., due to infringement of guarantees on end-to-
end latency), and user dissatisfaction (with ensuing high churn
rates). By neglecting these sources of cost, present capacity
forecast solutions risk to introduce uncontrolled data flow
latency once deployed in operational networks, ultimately
causing economic losses to the operator.

Key contribution. In this paper, we propose an original
model for the anticipatory allocation of capacity to network
slices, which is mindful of all operating costs associated to
• (i) unnecessary resource overprovisioning,
• (ii) non-serviced demands,
• (iii) resource instantiation, and
• (iv) resource reconfiguration.

To this end, we adopt a novel approach is based on the concept
of multi-timescale orchestration illustrated in Figure 1.

On the left, a state-of-the-art solution for capacity fore-
casting [19] tries to accommodate the demand and to limit
overprovisioning, by reconfiguring resources at every re-
orchestration opportunity (top); by doing so, it minimizes costs
(i) and (ii) above (second plot). However, it also ceaselessly
instantiates or de-commissions capacity, and reallocates avail-
able resources in a sustained way. This incurs in substantial in-
stantiation and reconfiguration fees (third plot) that ultimately
lead to a high overall economic cost (bottom).

On the right, our model performs the orchestration at two
timescales, and by telling apart two classes of resources. A
long-timescale orchestrator operates over extended intervals
that span multiple re-orchestration opportunities; it allocates a
dedicated capacity to each slice and also reserves an additional
shared capacity accessible by any slice. Both capacities remain
constant across the extended interval, limiting the frequency
of instantiation and thus cost (iii). Only the shared capacity
is then reallocated at every re-orchestration opportunity by a
short-timescale orchestrator, while the configuration of the
dedicated capacity is preserved throughout the extended in-
terval, thus reducing cost (iv). Both long- and short-timescale
orchestrators decide on the amount of (dedicated and shared)
resources to be allocated to each slice to also minimize the
usual costs (i) and (ii). This comprehensive strategy results in
a 47% reduction of the total cost in the example in Figure 1.

Interestingly, the sample case study also clarifies that reduc-
ing instantiation and reconfiguration costs has a price in terms
of increased overprovisioning. A multi-timescale orchestration
model allows exploring this and more trade-offs for the first
time, empowering an unprecedently comprehensive solution
for cost-driven orchestration of slice resources [20] via a
mixture of Artificial Intelligence and traditional optimization.
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Fig. 1. Toy example illustrating the costs of resource allocation in net-
work slicing. Top: traffic demand generated by a representative slice (black
solid line), along with the capacity allocated based on predictions, and
reconfigured at all available re-orchestration opportunities (i.e., shared, in
red) or only periodically over extended intervals (i.e., dedicated, in blue).
Second row: Monetary costs of (i) overprovisioning and (ii) non-serviced
slice traffic. Third row: Monetary costs of resource (iii) instantiation and
(iv) reconfiguration. The costs are obtained with a system configuration
κo = κs = κi = 1 and κr = 0.5, whose meaning is explained in
Section II. Bottom: cumulative overall cost over time, for components (i)-
(iv). Left: a legacy capacity forecasting model [19] updates the prediction at
the fastest rate possible, closely following the demand fluctuations, but forcing
continuous reconfigurations. Right: our proposed multi-timescale capacity
forecasting model trades slightly increased overprovisioning for much reduced
instantiation costs (which are only incurred once per extended interval) and
reconfiguration fees (which are completely avoided for dedicated resources).

Document outline. We present our orchestration model in
Section II, where we formalize the different costs and trade-
offs of sliced networks management. Building this model, in
Section III we introduce AZTEC, a complete framework for the
anticipatory allocation of capacity to network slices that relies
on a combination of deep learning architectures and a numer-
ical optimization method. When informed of the economic
penalty associated to each source of cost, AZTEC anticipates
the dedicated and shared capacity to be allotted to network
slices so as to cut down monetary losses due to instantiation
and reconfiguration, while keeping resource provisioning and
non-serviced demands fees under control. We demonstrate the
effectiveness of our solution with measurement data collected
in a metropolitan-scale mobile network, in Section IV; in
typical settings, AZTEC outperforms state-of-the-art traffic [21]
and capacity [19] predictors by at least a factor of 1.7. Finally,
conclusions are drawn in Section V.

II. ORCHESTRATION MODEL AND TRADE-OFFS

Our orchestration model is outlined in Figure 2, which
also serves the purpose of illustrating the notation used in
the remainder of the paper. Let us denote by λi(t) the traffic
demand generated by services running in slice i ∈ S at time t.
The long-timescale orchestrator operates on extended intervals
of duration Tl. At the beginning of each such interval, it takes
decisions on the dedicated capacity xdi (t) allotted to slice i,
∀i ∈ S, and on the additional shared capacity xs(t) available to
all slices; all capacities are conserved throughout the following
Tl. The bottom plot (A) in Figure 2 depicts an example of
allocation resulting from a long-timescale orchestration.
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Fig. 2. Orchestration model. (A) Long-timescale orchestration. The back-
ground time series represents the traffic demand generated by slice i (grey).
The curves portray the time evolution of the dedicated capacity xdi (t) allocated
to slice i (blue), and of the shared capacity xs(t) (red) over extended
intervals of duration Tl. Note that xs(t) is added to the dedicated resources
to determine the total available capacity, and, unlike xdi (t), is not reserved for
slice i but available to all slices. (B) Short-timescale orchestration during one
extended interval. At every Ts < Tl, a portion xsi (t) (black solid curve) of
the (fixed) shared capacity xs(t) is allocated to slice i, based on the residual
demand ρi(t) not satisfied by the (fixed) dedicated resources xdi (t). The
plot also highlights the volume of overprovisioned capacity and non-serviced
demand (pattern regions), and the slice traffic below dedicated capacity δi(t).

Within an extended interval, the short-timescale orchestrator
assigns resources to each slice i at all re-orchestration opportu-
nities, occurring at every Ts. Decisions are based on the (esti-
mated) future residual demand ρi(t) = max{0, λi(t)−xdi (t)},
and lead to the allocation of an additional capacity xsi (t), for
each slice i. The resources xsi (t) may be re-configured at every
Ts, and are provisioned on top of the dedicated xdi (t). The top
plot (B) in Figure 2 illustrates these definitions for a sample
short-timescale orchestration during one extended interval.

A. Sources of monetary cost

Building on the notation above, we can formally introduce
the different costs associated to the management of resources
in sliced networks. As anticipated in Section I, there are four
sources of economic penalty for the operator, as follows.
(i) Unnecessary resource provisioning: the operator incurs a
monetary cost in terms of both Capital Expenditure (CAPEX)
and Operating Expenses (OPEX) that is directly proportional
to the amount of unused resources it allocates to a slice. Such
capacity it is instantiated and configured to no purpose and
could be allotted, e.g., to other slices to increase the global
system efficiency. This cost at time t is∑

i∈S
f1

(
max{0, xdi (t)− δi(t)}

)
+∑

i∈S
f1 (max{0, xsi (t)− ρi(t)}) +

f1

(
xs(t)−

∑
i∈S

xsi (t)
)
, (1)

where δi(t) = min{λi(t), xdi (t)} denotes the portion of the
demand of slice i served by the dedicated capacity at time t,

as shown in plot (B) of Figure 2. The first two terms in (1)
denote the cost of overprovisioning at slice i and time t, due
to the unneeded allocation of dedicated and shared capacity,
respectively; again, we refer the reader to plot (B) of Figure 2
for an exemplification. The third term captures instead the
overprovisioned shared capacity that is not allocated to any
slice by the short-term orchestrator. Function f1(·) describes
the scaling of cost with capacity overprovisioning. As in [19],
in our evaluation we assume a linear increase of the penalty,
i.e., f1(x) = κox, where κo is the monetary cost of one unit of
capacity and is expressed in $/Mbps. However, our model can
easily accommodate different definitions of the scaling law,
which may apply to specific network functions.
(ii) Non-serviced demand: every time the operator does not
allocate sufficient resources to serve the traffic demand of a
slice, it violates the SLA with the tenant, which triggers a
monetary compensation. The associated cost at time t is∑

i∈S
κs · 1<ρi(t) (xsi (t)) , (2)

where 1A(x) is an indicator function that takes a value 1 if
the argument satisfies condition A, and 0 otherwise. Thus,
1<ρi(t) (xsi (t)) activates when the portion of shared capacity
assigned to i does not suffice to meet the service demand; this
corresponds to an underprovisioning situation, as depicted in
Figure 2. In these cases, the operator has to indemnify the
tenant for a value κs, in $, per SLA violation. This definition
is also in line with those used in the literature [19].
(iii) Resource instantiation: in presence of substantial vari-
ations of the total traffic demand, the operator needs to
instantiate new resources to serve the demand of the slice.
In these cases, as discussed in Section I, there exists a cost
associated to enabling such new resources. As an example, if
additional Virtual Machines (VMs) have to be bootstrapped or
migrated to serve the slice, the operator has increased expenses
in terms of power consumption and CPU cycles. In addition,
there may be an indirect penalty in terms of perceived Quality
of Service (QoS), as this operation may take minutes [17] and
disrupt the end user experience. The cost, triggered at every
Tl in our multi-timescale model, can be modeled as∑

i∈S
f2 (δi(t)) · 1>xd

i (t−1)

(
xdi (t)

)
+

f2 (min{ρi(t), xsi (t)}) · 1>xs(t−1) (xs(t)) . (3)

The first term in (3) represents the penalty incurred when new
dedicated resources must be instantiated, which occurs when
xdi (t) > xdi (t − 1). The second term is equivalent to the first
one, but refers to the shared capacity instantiated to all slices
in S. Note that the costs induced by both terms are functions
f2(·) of the affected traffic that may experience disruption, i.e.,
δi(t) and min{ρi(t), xsi (t)}, respectively.1 In our performance

1Instantiation and reconfiguration costs are proportional to the full amount
of impacted demand (rather than, e.g., to the increment of demand with respect
to the previous re-orchestration opportunity) since finding a stable and optimal
allocation of resources typically requires reconsidering their organization
within a large portion of the network, or even across all slices [22].
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evaluation, we consider the cost to be directly proportional to
the affected traffic, i.e., f2(x) = κix, where the parameter κi
captures the estimated fee for delaying one unit of capacity
due to resource instantiation, expressed in $/Mbps.
(iv) Resource reconfiguration: while resources are only
instantiated at every Tl, a short-timescale orchestration of
the shared capacity within each extended interval allows
accommodating faster fluctuations of the slice demand. Every
time the operator reconfigures the shared capacity, it incurs
a cost; as mentioned in Section I, this is the case with the
reconfiguration of the SDN transport networks, the setup of
load balancers, or the creation of new instances of a VNF on
a VM previously used by another slice. All these operations
have a price in terms of management delay [17], expressed as∑

i∈S
f3 (min{ρi(t), xsi (t)}) · 16=xs

i (t−1) (xsi (t)) . (4)

The above cost is present whenever the shared resources must
be reconfigured for a slice i, i.e., xsi (t) 6= xsi (t − 1). In
such situations, the cost is dependent on the amount of traffic
affected by the reconfiguration process, i.e., ρi(t) bounded by
xsi (t). In our study, we assume that the economic penalty is the
same for any bit of traffic using reconfigured resources, hence
f3(x) = κrx, where κr is in $/Mbps. Also in this case, other
functions can be easily embedded in the overall framework to
represent distinctive cost models identified by the operator.

B. Trade-offs in capacity allocation

The basic trade-off in anticipatory resource assignment is
that between overprovisioning and non-serviced demands.
• Trade-off A. Increasing the amount of resources makes

overprovisioning more likely, but reduces the probability
that the allocated capacity is not sufficient to serve the
future demand. This results in opposing costs (i) and (ii).

Current capacity forecasting models aim at identifying the
optimal compromise that minimizes the joint penalty of the
costs in trade-off A above [19]. However, these models do
not offer any control over instantiation and reconfiguration. By
adopting a multi-timescale approach, we are instead capable of
factoring such variables in. Specifically, the model presented in
Section II-A tells apart the capacity allocated to each slice into
a dedicated capacity, re-orchestrated over long timescales with
period Tl, and a shared capacity, re-orchestrated over short
timescales with period Ts. This unlocks additional degrees
of freedom: the orchestrator can decide not only how many
resources to assign to a slice, but also which portion of those
shall be of each type, and for how long they stay unaltered.

Our model still allows addressing trade-off A above, by
controlling the total allocated capacity during each extended
interval Tl, i.e., xs(t)+

∑
i∈S x

d
i (t), and modulate the costs of

overprovisioning and non-serviced demands. Yet, its flexibility
enables the exploration of the following additional trade-offs.
• Trade-off B. By increasing the dedicated capacity xdi (t)

allocated to slice i during an extended interval, the
orchestrator can serve a larger fraction of the slice traffic
with resources that do not need reconfiguration. However,

such resources cannot be reused by other slices during Tl
whenever they are not needed by slice i. For instance, in
plot (B) of Figure 2, increasing xdi (t) would reduce the
residual demand ρi(t) that is served with reconfiguration-
heavy shared capacity; but it would also generate addi-
tional overprovisioning, e.g., in the fourth and second to
last re-orchestration opportunities. This leads to a trade-
off between costs (i) and (iv).

• Trade-off C. Allocating a larger shared capacity xsi (t)
to slice i during an interval Ts reduces the risk that the
resources will not be sufficient to serve the future slice
demand. Nevertheless, it also causes the reconfiguration
of more resources. As an example, in plot (B) of Figure 2,
increasing xsi (t) in the third Ts slot could remove the non-
serviced demand, but would also grow the reconfiguration
penalty. A trade-off exists between costs (ii) and (iv).

• Trade-off D. Increasing the duration Tl of the extended
interval reduces the cost of resource instantiation, which
only occurs once per extended interval. However, a higher
Tl also forces the dedicated capacities xdi (t) and the total
shared capacity xs(t) to remain constant for a longer
time. With a reduced capability to tailor the network re-
sources to the fluctuations of the slice traffic demands, the
orchestrator may incur in increased overprovisioning or
underprovisioning. For instance, extending the timespan
of plot (B) in Figure 2 to cover a prolonged demand λi(t)
may create additional situations where xdi (t) > λi(t),
i.e., dedicated resources go wasted, as in the second to
last Ts interval; it can also generate new cases where
xsi (t) < ρi(t), and traffic peaks are not serviced, as in
the central part of the example. This results in a trade-off
between cost (iii) and joint costs (i) and (ii).

Next, we present a framework that takes automated, antici-
patory decisions on capacity allocation by addressing all trade-
offs outlined above, thanks to the multi-timescale model.

III. THE AZTEC FRAMEWORK

Our framework, named AZTEC (i.e., capacity Allocation for
Zero-Touch nEtwork sliCing), automatically solves trade-offs
A, B and C above by finding en effective compromise among
the opposing goals of reducing the operator’s costs in terms
of (i) overprovisioning, (ii) non-serviced slice demands, and
(iv) resource reconfiguration. In addition, AZTEC offers the
operator a handle to control, via a single system parameter,
the penalty associated with (iii) capacity instantiation, to
address trade-off D. Next, we first provide an overview of the
framework in Section III-A, and then discuss the implementa-
tion of its different components for long- and short-timescale
orchestration, in Sections III-B and III-C, respectively.

A. AZTEC in a nutshell

To solve the complex problem of finding an adequate
balance of all fees, we adopt a divide-et-impera approach. We
separate the different trade-offs between pairs of cost sources
and sequentially solve them in isolation. The overall organi-
zation of our proposed framework is outlined in Figure 3.
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Fig. 3. Overview of the AZTEC framework. The learning flow proceeds from left to right. The input mobile traffic data is processed by deep neural networks
that return, for each slice i ∈ S, the long-term dedicated capacity xdi (t) and the short-term estimated demand λ̃i(t), respectively. These values are combined
to obtain the estimated residual demands ρ̃i(t). The aggregate residual demand over all slices is input to a further deep neural network to determine the
long-term shared capacity xs(t). Such capacity is then fed, along with per-slice residuals, to an optimization module that allocates the shared resources xsi (t).

AZTEC performs both long- and short-timescale orchestra-
tion. As explained in Section I, the long-timescale orchestrator
triggers at the beginning of each extended interval, and is in
charge of allocating the dedicated capacities xdi (t) and the
total shared capacity xs(t), which will then be preserved over
the following Tl interval. This function is realized in our
framework by blocks (I) and (II), which operate as follows.

Block (I) performs the forecasting of the long-term ded-
icated capacity for each network slice xdi (t), using as input
information about the actual traffic generated by each slice
during the preceding N re-orchestration opportunities. As
discussed for trade-off B in Section II-B, the capacity xdi (t)
modulates the impact of (i) provisioning unnecessary dedi-
cated resources versus (iv) re-configuring the shared resources
needed to serve the residual demand beyond xdi (t). Hence,
block (I) identifies xdi (t) minimizing costs (i) and (iv).

Block (II) determines the long-term shared capacity xs(t)
available to any slice during the subsequent time interval Tl.
The shared capacity is used to serve the residual demands of
all slices, hence xs(t) shall be dimensioned to the aggregate
residual traffic

∑
i∈S ρi(t). Thus, block (II) receives as input an

estimate2 of such aggregate during the previous extended in-
terval, i.e.,

∑
i∈S ρ̃i(t), t ∈ [t−(Tl/Ts), t−1], and predicts the

next xs(t) such that (i) overprovisioning of shared resources
is reduced as much as possible, and (ii) all residual demands
can be accommodated within xs(t). In this way, block (II)
addresses trade-off A, jointly minimizing costs (i) and (ii).

Once the long-term capacities xdi (t), ∀i ∈ S, and xs(t) are
set, the short-timescale orchestrator assigns portions xsi (t) of

2Each approximate ρ̃i(t) = max{0, λ̃i(t) − xdi (t)} is computed from a
forecast λ̃i(t) returned by a helper legacy traffic predictor that forecasts per-
slice demands over the next re-orchestration opportunity t, as per Figure 3.
Note that, at this stage, the actual residuals ρi(t) could be directly determined
from the (known) real traffic demand λi(t) observed during the previous
interval Tl. However, we opt to feed block (II) with an estimate based on λ̃i(t)
to ensure overall system consistency. Indeed, the short-timescale orchestrator
–implemented by block (III) and presented next– necessarily operates on the
predicted residuals ρ̃i(t) over the future Ts interval. Considering the same
estimates in the long-timescale module allows allocating the shared capacity
xs(t) in a way that is conscious of the inaccuracy of the information available
during the following short-term resource assignment phase of the framework.

the total shared resources to each slice. This allocation occurs
at every re-orchestration opportunity, spaced by Ts, and is
carried out by block (III) of the AZTEC framework as follows.

Block (III) receives as input the long-term shared capacity
xs(t), and the future residual demand ρ̃i(t) expected for each
slice i during the following Ts. The available total capacity is
allotted to each slice in a way to solve the trade-off C described
in Section II-B. Therefore, block (III) computes xsi (t) for each
i ∈ S, by minimizing the combination of costs (ii) and (iv),
corresponding to insufficient allocated capacity and additional
shared resource reconfiguration, respectively.

Overall, blocks (I)-(III) return a forecast of all capacities
xdi (t), xs(t) and xsi (t) that the operator shall allocate over both
long and short intervals of duration Tl and Ts, respectively.
The resulting anticipatory allotment reduces the network man-
agement costs associated with the provisioning of exceeding
or inadequate resources, and of their reconfiguration over time.

We remark that the penalty of network resource instantiation
is not included in this picture. As explained in Section II-B,
control on instantiation costs can be achieved by acting on the
duration of the extended re-orchestration interval, i.e., Tl: the
larger this duration, the lower the costs resulting from resource
instantiation in (3). AZTEC does not take automated decisions
on the value of Tl; instead, it provides via the parameter Tl
an explicit knob for the operator to implement any strategy
for coping with trade-off D. The rationale is that Tl is
often a constant system setting, constrained by the underlying
virtualization technology and best set by the operator based
on its expert knowledge of the network architecture.

Having clarified the role of each block, we detail in the fol-
lowing their implementation, which leverages a combination
of deep learning and numerical optimization methods.3

B. Long-timescale orchestration

The long-timescale orchestration is carried out by blocks (I)
and (II) of the AZTEC framework, as follows.

3A complete Python implementation of the AZTEC framework based on
TensorFlow is available at https://github.com/wnluc3m/AZTEC.
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1) Long-term dedicated capacity forecasting: Block (I)
is implemented by a Deep Neural Network (DNN) whose
architecture is inspired by the one originally proposed in [19],
which builds on recent breakthroughs in machine learning for
image processing [23]. This approach requires pre-processing
the mobile data traffic, so as to map base station positions into
the matrix form required by DNN, which we do by means
of a correlation-preserving transformation [19]. The resulting
input is a 4D tensor λi,x̄(t−1), . . . , λi,x̄(t−N), where λi,x̄(t)
is the offered load at the base station associated with matrix
element x̄ = {m,n}, for services running in slice i ∈ S
and at time t. We enhance the implementation in [19] by
treating each slice i ∈ S in the same way of a color channel
in DNN for imaging, as also suggested by recent works in
machine learning for mobile network traffic analysis [24].
This approach lets us process the input along the {x̄, t}
dimensions via 3D Convolutional Neural Network (3D-CNN)
layers, which are very efficient in extracting spatiotemporal
features; at the same time, different slices i can be examined
in parallel as multiple levels of the same data.

The DNN architecture of block (I), summarized in Figure 3,
consists of three 3D-CNN layers interleaved by dropout lay-
ers [25]. The convolutional layers constitute the encoder, in
charge of extracting meaningful complex features from the
data. They are followed by a decoder whose objective is
learning global patterns from the feature space. Fully Con-
nected (FC) layers are especially well suited to that purpose,
and we leverage three in our implementation, with 64, 32,
and ‖S‖ neurons, respectively, where operator ‖ · ‖ denotes
the cardinality of the argument set. Note that the last layer
outputs one value per channel, resulting in one value for each
slice i ∈ S. All layers employ ReLU as the neuron activation
function, except for a linear function in the last FC layer.

The loss function that drives the DNN training is a custom
expression designed to account for the actual management
costs incurred by the operator in case of errors in the orches-
tration of the dedicated capacity. If the operator were able to
allocate to a slice i a constant capacity xdi (t) that perfectly
matched the actual demand λi(t) over the next Tl, the error
and cost would be nil: this is the ideal scenario where all
the demand is serviced, without any overprovisioning or re-
configuration. However, in practical cases, it is impossible
to perfectly predict λi(t), which is also very unlikely to
be constant over the whole Tl. In this case, positive errors
xdi (t)− λi(t) lead to overprovisioning, with a cost set by the
first term of (1) in Section II-A, and negative errors imply
that the demand in excess of xdi (t) needs to be served by the
shared capacity, with (4) setting the re-configuration penalty.4

Positive errors yield δi(t) = λi(t), while ρi(t) = λi(t) −
xdi (t) for negative errors. Then, the loss function for xdi (t)
allocated at t is

∑
t∈T `

(I)
i (t), where T is the set of concerned

4As the long-term orchestrator is agnostic of the short-timescale operation,
it cannot factor xsi (t) in the cost of negative errors. So, block (I) assumes
a perfect management of the shared capacity that always accommodates a
continuously varying residual demand, reducing (4) to

∑
i∈S f3 (ρi(t)).

re-orchestration opportunities {t, . . . , t+ (Tl/Ts)− 1}, and

`(I)
i (t) =

{
f3

(
λi(t)− xdi (t)

)
if xdi (t) ≤ λi(t)

f1

(
xdi (t)− λi(t)

)
otherwise.

(5)

Importantly, (5) has partial derivatives that form a piece-wise
constant function, which guarantees robust and fast conver-
gence under popular first-order optimizers like Adam [26].

In order to further improve the quality of the allocation
of dedicated resources, we leverage a recent result in neural
network design, which allows estimating the uncertainty of the
learning outcome. Specifically, adding dropout layers during
model testing is mathematically equivalent to generating an
approximation of the probabilistic deep Gaussian process [27].
This observation, which holds for DNNs with arbitrary depth
and non-linearities, provides a way to return a distribution
instead of a scalar output value. We thus activate the dropout
layers during testing, and adopt a Monte Carlo strategy;
namely, we perform the forward pass L times for each test
input, obtaining outputs {xd,1i (t), . . . , xd,Li (t)} for, slice i at
time t. We then compute the mean µdi (t) = 1/L ·∑L

l=1 x
d,l
i (t)

as well as the variance σdi (t) = 1/L ·∑L
l=1(µdi (t)−xd,li (t))2,

and approximate the model uncertainty as N (µdi (t), σ
d
i (t)).

Knowledge of the model uncertainty allows adding a safety
margin to the standard DNN outcome. Since the whole support
of N (µdi (t), σ

d
i (t)) represents potentially correct values of the

dedicated capacity, block (I) returns the 99th percentile of the
distribution; this makes it very unlikely to output a xdi (t) that is
lower than the best one, minimizing the risk of SLA violations.
In other words, when the DNN is confident about the quality
of the result, it returns a value close to the mean; otherwise,
it adds a substantial safety margin. We provide an example of
the advantage of this approach in Section IV-A.

2) Long-term total shared capacity forecasting: Block (II)
is similarly implemented using a dedicated DNN, although
with a simpler structure due to the reduced richness of the
input. Specifically, the DNN is fed a single time series of
the total residual demand in the past extended interval, i.e.,∑
i∈S ρ̃i(t), t ∈ [t−(Tl/Ts), t−1]. The time series is processed

by three FC layers with 128, 64 and 1 neurons, respectively;
the first two use ReLU activation functions, while the last uses
a linear function. A dropout layer is present between the first
and second FC layers.

The DNN is trained with a different custom loss function
that accounts for the correct sources of monetary penalty in
case of errors. As with the previous DNN, an ideal case where
a fixed long-term shared capacity xs(t) perfectly matches a
constant aggregate residual demand is unrealistic, and errors
are unavoidable. Positive errors yield overprovisioning of
xs(t), whereas negative ones have a cost in terms of denied
traffic. The former corresponds to the second and third terms5

5Also in this case, the shared capacity allotted to individual slices xsi (t)
used in (1) has not yet been determined at this stage. The safest option is
hence to assume that the whole residual demands will be correctly assigned by
the short-term orchestrator. This leads to approximating the allocated shared
resources xsi (t) by ρ̃i(t). Under this hypothesis, the second and third terms
in (1) reduce to 0 and f1

(
xs(t)−

∑
i∈S ρ̃i(t)

)
, respectively.
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in (1), while the latter maps to the monetary fee6 for SLA
violations in (2). The loss function jointly capturing these costs
for the extended interval starting at t is

∑
t∈T `

(II)
i (t), where

`(II)
i (t)=

{
κs if xs(t)<

∑
i∈S ρ̃i(t)

f1

(
xs(t)−∑i∈S ρ̃i(t)

)
otherwise.

(6)

The expression in (6) needs to be slightly modified by adding
minimum slopes that make the function differentiable over R.
With this, the loss function has the same desirable properties as
the ones mentioned for (5). Finally, we take advantage of the
dropout layer also in this case: we thus approximate the model
uncertainty, and return the 99th percentile of the distribution
as a safety margin on the correct value of xs(t).

C. Short-timescale orchestration

The short-timescale orchestration consists of block (III)
supported by a helper short-term demand predictor, as outlined
in Figure 3. The predictor uses a DNN architecture that is very
similar to that adopted by block (I); indeed, the two DNNs
operate on the same input, and produce per-slice forecasts.
The main differences between them are in the frequency of
operation and, most notably, in the loss function. The helper
predictor outputs a prediction at every Ts instead of at every
Tl. Furthermore, it uses a traditional Mean Absolute Error
(MAE) instead of the cost-aware loss function in (5): MAE
considers identical contributions by the positive and negative
errors, thus producing an output λ̃i(t) that tries to follow as
closely as possible the upcoming slice traffic demands.

1) Short-term shared capacity allocation: Given the total
shared capacity xs(t), and the estimated residual demands
ρ̃i(t), AZTEC has to decide how to distribute xs(t) across the
requesting slices at every Ts. This is implemented in block (III)
with a numerical optimization method.

The primary objective of the shared resource assignment
performed by block (III) is avoiding SLA violations due to
insufficient available capacity, which would induce a cost
modelled in (2). At the same time, issuing non-essential
resources has a penalty in terms of unnecessary reconfiguration
cost, as captured by the expression in (4). This corresponds to
trade-off C in Section II-B, and can be formulated as

min
xs
i (t)

∑
i∈S

κsP (ρ̃i(t) > xsi (t)) (7)

subject to
∑
i∈S

xsi (t) ≤ xs(t),

The above minimizes the expected value of the expenditure for
non-serviced slice demands in (2). Note that, by squeezing as
many slices as possible within the total capacity, the solu-
tion to (7) implicitly addresses the challenge of minimizing
reconfiguration costs. Also, the formulation in (7) deals with
probabilities: this is consistent with the probabilistic nature of
ρ̃i(t) granted by uncertainty approximation via dropout layers.

6By assuming xsi (t) = ρ̃i(t), unserviced demands are possible only when
xs(t) is insufficient. Then, (2) translates into κs · 1<∑i∈S ρ̃i(t)

(xs(t)).

Algorithm 1: Shared resource assignment algorithm
1 Function TRANSFORM(p1, . . . , p‖S‖):

2 xs
‖S‖ =

p‖S‖x
s(∑‖S‖−1

i=1

∏‖S‖−1
j=i

pj
1−pj

)
+1

3 xs
i =

(∏‖S‖−1
j=i

pj
1−pj

)
xs
‖S‖, i ∈ [1, ‖S‖ − 1]

4 return xs
1, . . . , x

s
‖S‖

5 Function COST(p1, . . . , p‖S‖):
6 xs

1, . . . , x
s
‖S‖ ←TRANSFORM (p1, . . . , p‖S‖)

7 X ←
∑

i κsP (ρ̃i > xs
i )

8 return X
9 Function MAIN(xs, ρ̃i):

10 c← BOBYQA(COST(p1 = 0.5, p2 = 0.5, . . . , p‖S‖−1 = 0.5, p‖S‖))
11 p01, . . . , p

0
‖S‖ ← GOLDEN (c(p‖S‖))

12 p1, . . . , p‖S‖ ← BOBYQA (p01, . . . , p
0
‖S‖)

13 xs
1, . . . , x

s
‖S‖ ←TRANSFORM (p1, . . . , p‖S‖)

14 return xs
1, . . . , x

s
‖S‖

Due to the empirical nature of the probability distribution
ρ̃i(t), (7) has no closed form and thus we cannot employ
classical optimization methods. Furthermore, as we do not
have a differentiable objective function, we cannot apply
approaches that depend on gradients. Hence, we resort to
numerical methods that search for the optimal solution within
the feasible set of [xsi (t)]. The following change of variable

pi(t) =

{
xsi (t)/

(
xsi (t) + xsi+1(t)

)
if i ∈ [1, ‖S‖ − 1]∑

i x
s
i (t)/x

s(t) if i = S
(8)

yields pi(t) ∈ [0, 1], ∀i ∈ S, which simplifies the search
to the N-dimensional variable space with fixed bounds [0, 1]
on all variables. Note that the first ‖S‖ − 1 variables pi(t)
represent the relative amount of shared capacity assigned to
slice i with respect to the slice i + 1, while the last p‖S‖(t)
represents the overall amount of shared capacity assigned
to the services. Therefore, the variable change in (8) serves
the following purposes: first, the constraint on the sum of
the variables is now enforced through a constraint on each
variable; second, we avoid ties between variables, allowing a
safe exploration of the solution space where we can focus one
variable, and changing its pi(t) value within the entire range
without impacting any of the other variables pj(t) for j 6= i.

Algorithm 1 details the numerical solution for shared re-
source assignment adopted by AZTEC. A main function takes
as input the total available shared capacity xs(t) and the
empirical distribution of the capacity needed by each service
in the next time interval ρ̃i(t). Two helper functions, COST and
TRANSFORM, compute the cost expected value for a given as-
signment p1(t), . . . , p‖S‖(t), and transform pi(t) back to xsi (t),
respectively. Thanks to the variable change in (8), we can use
a gradient-free algorithm which works with constrained input
variable for the minimization of (7). In particular, we chose
as numerical optimizer the BOBYQA algorithm [28], which
is a gradient-free optimizer that allows constrained variables.

All all ratios of shared capacity are initialized to 0.5, i.e., all
slice start with the same amount of resources. However, given
the possibly high number of slices that can be included in the
system, there may be different local minima and there exists
the chance of getting stuck in a local minima that does not
deliver a good performance. To reduce the probability that this
happens, we perform a preliminary search for the best starting
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p‖S‖(t), via the Golden Section method [29] and considering
p‖S‖(t) as the only variable for the cost.

IV. EVALUATION RESULTS

We evaluate AZTEC with an extensive dataset of mobile data
traffic collected at 470 eNodeBs of a real-world network serv-
ing a large metropolitan region in Europe. The measurement
data concerns a set of five popular and heterogeneous mobile
services, namely Youtube, Facebook, Instagram, Snapchat, and
iTunes, whose traffic flows were classified by the operator
using proprietary Deep Packet Inspection (DPI) techniques.

We assume that each mobile service is associated to one
dedicated slice in S, and investigate the anticipatory allocation
of resources at a single datacenter that runs virtualized core
network functions over the mobile data traffic generated in the
city under study. To this end, we train the AZTEC framework on
eight weeks of data, use two additional weeks for validation,
and finally run experiments on another two weeks. The three
time periods do not overlap, and all results refer to the test
phase only. Upon extensive appraisal of the system perfor-
mance, we have observed that the DNNs in AZTEC best operate
with data from the previous N = 6 intervals of duration Ts,
hence we employ a [6× 47× 10× 5] 4D tensor input. Unless
stated otherwise, our default settings are κo = κs = κi = 1
and κr = 0.5, so as to account for the typically relatively lower
cost per Mbps of resource reconfiguration; also, we set Ts = 5
minutes and Tl = 30 minutes to align with the capabilities of
current Virtual Infrastructure Managers (VIM) [30]. In all our
tests, AZTEC returned capacity allocations within one second,
which is suitable for real-time operation in practical systems.

A. Harnessing the forecast uncertainty

As presented in Section III, we leverage a recent result on
the approximation of uncertainty in DNN to include a safety
margin in the model forecast. As a preliminary step in our
evaluation of AZTEC, we investigate the impact of including
the knowledge of the estimated uncertainty in the forecast
produced by the different DNNs that are part of the framework.

Figure 4 visually shows the benefit of this design choice,
by juxtaposing the performance of AZTEC with and without
uncertainty; in the second case, dropout layers are deactivated
during test, and all DNNs produce a single-value output. In
each plot, we report the anticipatory allocation of capacities
xdi (t) and xsi (t) to the target slice i, as well as that of the total
shared capacity xs(t); the actual demand is on the background.

The plots illustrate well how the time-varying resource
allocation achieved by AZTEC nicely follows the fluctuations
of the slice traffic. More interestingly, AZTEC (in the top
plot) achieves a more reliable assignment of slice resources
by accounting for the level of uncertainty of the predictions.
The total capacity xdi (t) + xsi (t) is smoother and avoids
situations where the demand cannot be serviced. Conversely,
the framework not accounting for uncertainties (in the bottom
plot) yields a capacity allocation that is noisy and incurs in
substantial SLA violations due to unsatisfied demands.

Overall monetary cost 0.35

xd
i (t) xs

i (t) xs(t) λi(t)

0 AM 4 AM 8 AM 12 PM 4 PM 8 PM 0 AM

Overall monetary cost 0.71

Fig. 4. Time series of sample resource allocations. Top: AZTEC framework.
Bottom: equivalent framework where no uncertainty estimates are used.

In addition, AZTEC achieves such a result while saving on
the amount of allocated resources (note the lower xs(t) curve),
which ultimately results in an overall monetary cost that is half
of that incurred by the framework without uncertainties. While
this is an excerpt from a specific test, we recorded similar gains
for all different settings explored in our analysis.

B. Comparative evaluation

We next assess the performance of AZTEC against two
recent benchmarks: INFOCOM17, a state-of-the-art mobile net-
work traffic predictor [21], and INFOCOM19, a fresh capacity
forecasting model for network resource allocation [19]; both
solutions are based on custom-built DNNs. INFOCOM17 is a
traditional demand predictor, agnostic of all resource manage-
ment costs, whereas INFOCOM19 takes anticipatory decisions
on capacity allocation that aim exclusively at minimizing the
trade-off A of overprovisioning and non-serviced demands.

Figure 5a summarizes the result of the comparative eval-
uation, showing the overall normalized7 monetary cost of
the anticipatory resource management against reconfiguration
prices spanning two orders of magnitude. The gain of AZTEC
over the benchmarks is clear, as even a state-of-the-art capacity
predictor like INFOCOM19 increments the cost for the operator
by a factor that ranges from 1.7 to beyond 10. As expected,
the benchmark solutions inherently suffer more when recon-
figuration costs –which they neglect– grow; however, even in
a situation favorable to reconfiguration-agnostic approaches
where such costs are small (e.g., for κr = 0.05), AZTEC still
yields a lower economic fee.

Finally, not only the relative performance is promising, but
also the absolute (normalized) values show the potential ad-
vantage of a zero-touch network slicing paradigm. Indeed, by
automatically and dynamically allocating capacity in advance,
AZTEC can cut management costs down to 35-41% of those
incurred with an optimal static provisioning of resources.

C. Monetary cost breakdown

The above results prove that AZTEC maintains the combined
costs described in Section II-A under control across a wide

7We normalize all results by the cost of an optimal but completely static
resource allocation that dimensions the dedicated capacity to the traffic peak
of each slice during the test period. This optimal allocation only incurs into
overprovisioning costs, computed as

∑
i∈S
∑
t f1 (maxt{λi(t)} − λi(t)),

which represents the normalization term.
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Fig. 5. Evaluation results. (a) Normalized monetary cost of AZTEC and two benchmarks versus the reconfiguration cost scaling factor κr . Numbers denote the
exact cost for AZTEC, and the added cost factor for the benchmarks. (b) Total dedicated capacity

∑
i∈S x

d
i (t) and shared capacity xs(t) allocated by AZTEC

versus κr . Numbers denote the fraction of re-orchestration opportunities with insufficient allocated resources. (c) Breakdown of the normalized monetary cost
by penalty type. Tags refer to cost definitions in Section II-A, with overprovisioning cost (i) separated into contributions of the dedicated capacity, i.e., the first
term of (1), and of the shared capacity, i.e., the second and third terms of (1). (d) Normalized monetary cost vs the duration of the extended re-orchestration
interval Tl, for different scaling factors κi of the resource instantiation cost. (e) Breakdown of the normalized monetary cost by penalty type, for κi = 10.

range of reconfiguration penalties, by properly adapting the
portion of capacity allocated as dedicated, i.e., xdi (t), and as
shared, i.e., xs(i)t, to each slice i. To gain further insights
on this, Figure 5b illustrates the capacity breakdown for tests
in Figure 5a: a wider fraction of traffic is allocated to the
more flexible shared capacity when the reconfiguration fee is
low; instead, moving traffic to the dedicated capacity becomes
more cost-efficient as κr grows. An important remark is that
in all cases AZTEC incurs into SLA violations due to insuffi-
cient available resources in 0.7-1.21% of the re-orchestration
opportunities: as a term of comparison, INFOCOM19 causes
violations in at least 5.80% of the system observation time.

The ductility of the AZTEC orchestration results in a relative
contribution of each cost source that stays fairly constant for
different values of κr, as shown in Figure 5c. Here, the most
notable trend is in the split of the overprovisioning cost, which
grows for the dedicated capacity and decreases for the shared
capacity. Indeed, and consistently with Figure 5b, provisioning
dedicated resources in excess becomes more convenient than
reconfiguring shared resources as κr becomes larger.

Overall, these results demonstrate the capability of AZTEC
to properly solve the multiple trade-offs among resource man-
agement costs outlined in Section II-B, helping the operator
to drastically reduce operation expenses in an automated way.

D. Controlling resource instantiation costs

Although AZTEC does not take autonomous decisions on
trade-offs involving the instantiation of resources, it still offers
direct control on the associated cost (iii) by means of the
Tl parameter. Indeed, as operators incur into this type of
fee once every extended re-orchestration interval, making Tl
longer allows limiting the penalty. In Figure 5d we investigate
the effectiveness of such a lever to control the instantiation
cost, where Tl varies from 30 minutes to 2 hours.

The results show that Tl has an impact on the total cost when
it is actually needed. In other words, when the scaling factor
κi is small, the influence of the resource instantiation penalty
on the total cost is negligible, and varying Tl has little effect.
However, as κi grows, the duration of the extended interval

becomes a functional handle to control the (now substantial)
resource instantiation fee: increasing Tl from 30 minutes to 2
hours can reduce the overall cost by 40% when κi = 10.

Further detail is provided in Figure 5e, where the con-
tribution of the different management costs are told apart,
for κi = 10. We observe that, as expected, the cost of (i)
overprovisioning and (ii) non-serviced demands grow with
Tl. Indeed, if capacities xdi (t) and xs(t) remain fixed over a
longer interval, this limits the flexibility of the orchestrator
to follow fluctuations in the demand, and forces a more
challenging forecast over a longer time horizon. However, and
more importantly, longer Tl have a clear positive impact on the
instantiation cost, which they can reduce by a factor 4 in this
specific case study. Ultimately, these results demonstrate the
effectiveness of AZTEC in offering the operator with a means
to control resource instantiation costs.

V. CONCLUSIONS

In this paper we designed AZTEC, a practical multi-timescale
orchestration approach for network slicing. AZTEC combines
deep learning tools with classic optimization algorithms to
provide a zero-touch anticipatory capacity forecasting for
individual slices. By separating the long-term assignment of
slice-dedicated resources from the short-term re-orchestration
of shared resources, it manages to (i) minimize resource
instantiation costs, while (ii) ensuring that the service demands
of all slices always are met via a timely reconfiguration of
shared resources. Evaluation results on extensive real-world
data show that AZTEC yield significantly gains over state-
of-the-art solutions, and provides operators with a fine-level,
automated control on the management of slice resources.
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