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Abstract—Today’s Internet lacks the mechanisms necessary for traf-
fic isolation (to divide resources fairly) and differentiation (to allocate re-
sources to users according to their willingness to pay). In this work, we
present a new architecture for relative service differentiation, Scalable
Share Differentiation (SSD), which allocates network resources on a user
basis and properly provides for both elastic and real-time traffic isolation
and meaningful differentiation. SSD does not require the storage of any
per-flow or per-user information at the core nodes and is inherently de-
signed to work without admission control, making it easier to deploy and
manage. In addition, we present how to provide more fine-grained flow
control to users without changing the concepts of SSD, which permits users
to choose different priorities for their packets/flows. This allows the inte-
gration of a novel concept for improving the service quality given to user
flows: user-based admission control. With user-based admission control, the
network is unaware of admission control decisions, and the user himself
can perform the tasks of accepting, rejecting and prioritizing flows.

1. INTRODUCTION

The current Internet is buiit on the best-effort model where
all packets are treated as independent datagrams and are ser-
viced on a FIFO basis. This model suffers fundamentaily from
two problems: the potentially unfair distribution of the network
resources and the lack of differentiation.

The potentially unfair resource distribution problem results
from the fact that the best effort model does not provide any
form of traffic isolation inside the network and relies on the
application’s behaviour to fairly share the network resources
among the users. Therefore the cooperation of the end systems
(such as provided by TCP congestion control mechanisms) is
vital to make the system work. In today’s Internet, however,
such dependence on the end systems’ cooperation for resource
distribution is becoming increasingly unrealistic. Given the
current best-effort model with FIFO queueing inside, it is rel-
atively easy for non-adaptive sources to gain greater shares
of network bandwidth and thereby starve other, well-behaved,
TCP sources. For example, a greedy source may simply con-
tinue to send at the same rate while other TCP sources back
off. Today, even many applications such as web browsers take
advantage of the best-effort model by opening up muitiple con-
nections to web servers in an effort to grab as much bandwidth
as possible.

The lack of differentiation relates to the incapacity of the
best-effort model to provide a better service to those consumers
who are willing to pay more for it. In today’s Internet there is
a growing demand for user differentiation based on their ser-
vices’ needs. For example, there are many companies relying
on the Internet for day-to-day management of their global en-
terprise. These companies are willing to pay a substantially
higher price for the best possible service level from the Inter-
net. At the same time, there are millions of users who want to
pay as little as possible for more elementary services. Since the
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best-effort model treats all packets equally (same-service-to-all
paradigm), it does not allow Internet Service Providers (ISPs)
to differentiate among users as needed.

Over the last ten years, considerable effort has been made
to provide Quality of Service (QoS) in the Internet, leading
to the specification of an Integrated Services architecture for
the Internet (IntServ) [1]. However, research and experience
have shown a number of difficulties in deploying the IntServ
architecture, due to scalability and manageability problems.
The scalability problems arise, because IntServ requires routers
to maintain control and forwarding state for all flows passing
through them. Maintaining and processing per-flow state for
gigabit and terabit links, with millions of simultaneously active
flows, is significantly difficult from an implementation point of
view. The manageability problems come from the lack of sup-
port for accounting, the high administrative overheads and the
complexity of inter-ISP settlement.

The above issues have led to a number of proposals for pro-
viding differentiated services in the Internet. In those propos-
als, scalability is achieved by pushing most of the complex-
ity and state to the network edges (where both the forwarding
speed and the number of flows are smaller). At the edge, in-
coming packets are classified among several classes, and core
routers do not need to store state for each flow, but can instead
process packets using different policies for each traffic class. In
a similar way, manageability is achieved by focusing on traffic
aggregates instead of individual flows, where a traffic aggregate
is a large set of flows with similar service requirements.

Most of the proposed differentiated services architectures
solve the potentially unfair resource distribution problem of the
best-effort model by performing some type of admission con-
trol at the edge of the network (see e.g. [2], [3]). Admission
control ensures that no user sends more traffic than he or she
is permitted. A key point for admission control is to deter-
mine how much traffic a user should be allowed to send, such
that the network does not become congested and, therefore, can
give the service expected. The difficulty lies, however, in esti-
mating at the edge the congestion level to which the acceptance
of a certain amount of traffic would lead’. One possibility is to
use a static over-provisioned configuration. In this case, since
the admitted traffic is always much smaller than the network
resources, the danger of congestion is minimized. A more dy-
namic solution is the use of bandwidth brokers (BB), which
are agents responsible for allocating network resources among
users. In this approach, the knowledge of the network usage is
centralized at the BB and the admission decisions to be taken

1Note that this problem does not arise in the Integrated Services architecture,
since in that architecture, the admission control decision is taken individually
at each router on the path between sender and receiver(s) based on the local
state information.



are transfered from this BB to the edge. The design and imple-
mentation of BB is an ongoing effort [4].

The authors feel that an architecture solving the problems
of the best-effort model while avoiding the complexity of the
admission control schemes proposed for current DiffServ ar-
chitectures would be highly desirable. The goal of this paper is
to propose an architecture meeting these requirements.

The rest of the paper is structured as follows: In Section II,
we study different possibilities for dividing the network re-
sources among the users. We distinguish among two groups
of applications (elastic and real-time) according to the differ-
ent network resources they require, and propose a differenti-
ation model that satisfies the needs of both traffic types. In
Section III, an architecture implementing the proposed differ-
entiation model is presented: the SSD architecture. An exten-
sion to this architecture that allows intra-user discrimination
is proposed in Section IV, and Section V demonstrates how
this intra-user discrimination can be used to perform user-based
admission control instead of network-based admission control.
Section VI validates the SSD architecture through simulations,
and, finally, Section VII gives a summary and concludes the
paper.

II. DIFFERENTIATION APPROACH

Research on DiffServ is proceeding along two different di-
rections: those proposals that use admission control and those
that do not.

In the approach with admission control, it is possible to con-
trol the amount of traffic allowed inside the network. In this
way, traffic that would decrease the network service to a level
lower than a desired limit can be stopped and an admitted user
can be assured of his/her requested performance level. This ap-
proach, which we refer to as Absolute Service Differentiation,
can be considered as trying to meet the same goals as IntServ,
i.e. absolute performance levels, but pushing complexity (ad-
mission control and traffic policing) to the edge and to the BB
and thus avoiding per-flow state in the core routers.

The second approach, which we refer to as Relative Service
Differentiation, cannot prevent flooding of the network using
admission control, and the only option to provide service dif-
ferentiation is to forward packets in the network nodes with a
quality according to their relative priority. Therefore, absolute
performance levels are not guaranteed and only relative ones
can be provided. The advantage of Relative Service Differenti-
ation is that it is easier to deploy and manage.

In the relative differentiated services model, users are as-
signed a relative priority, which determines the network re-
sources they receive. This model must be strongly coupled with
a pricing scheme that makes higher priorities more costly.

A. Resource Allocation Granularity

For relative service differentiation, different granularities of
resource allocation are possible. Current relative differentiated
services proposals can be classified into class-based allocation,
packet-based allocation and user-based allocation.

A.1 Class-based Allocation

With class-based allocation, network resources are assigned
to service classes. Each network flow belongs to a certain class
and, therefore, shares a common set of resources with other
flows in that class.

An example of a class-based relative differentiated services
proposal is the Paris Metro Pricing scheme [5], where all
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classes receive identical treatment inside the network and the
classes’ price itself is the only differentiation parameter. The
idea is that more expensive classes will have less members and
therefore provide a better service. Obviously, this does not al-
ways have to be true and situations can occur, where a more
expensive class is more congested than another less expensive
one. In these situations, useful service differentiation is not
achieved.

Applied to relative service differentiation schemes, the class-
based approach has the drawback that the service quality asso-
ciated with a class is undefined, since it depends on the arriv-
ing load in that class: as the traffic in the Internet is extremely
bursty, the load in each class and consequently its service qual-
ity would fluctuate.

A.2 Packet-based Allocation

With' packet-based allocation, network resources are inde-
pendently assigned to packets according to the class to which
their sender belongs. With this approach, the service quality
experienced by the packets of a user are thus independent of
the user’s sending rate.

The architectures proposed in [6], [7] and [8] are examples of
packet-based allocation. In these architectures the services are
distinguished by their different packet forwarding behaviour
concerning delay and dropping.

The main drawback of the packet-based allocation approach
is the lack of isolation it suffers: a well-behaving user may
be affected by misbehaving users sending at a higher rate than
they should. A misbehaving user increases the global level of
congestion of the network, which harms the performance of all
users, including the well-behaving ones.

A.3 User-based Allocation

With user-based allocation, each user (or organization) is as-
signed an individual abstract share representing its assigned
networking resources. This share is then used inside the core
to give differentiated service quality to each user.

An example of a user-based differentiation scheme for rel-
ative service differentiation is USD [9]. In USD, each user is
assigned a share, which is stored by the core nodes of the net-
work. The core nodes use this share to give the packets of the
corresponding user their fair part of the forwarding capacity?.

Since class-based allocation has the problem of service qual-
ity fluctuations, and packet-based allocation has the problem
of lack of isolation, we believe that user-based relative allo-
cation is preferable. In addition, user-based allocation has the
advantage that the user is commonly the entity to which pric-
ing schemes apply. Each user’s share, for which he/she pays a
certain price, directly corresponds to a certain relative share of
the available resources. Thus, with user-based allocation, each
user could buy a different relative share, which gives him/her
much more flexibility than class-based relative differentiation,
where users are aggregated in classes of identical shares.

For these reasons, in the differentiation model that we
present in Section II-C we assume a user-based resource alloca-
tion granularity, and the architecture we propose in Section III
uses a user-based allocation scheme. The scheme proposed is
scalable, since it does not need to store per-user state informa-
tion at core nodes.

2Note that since USD stores information for each user at core nodes, it has
the problem of poorly scaling with respect to the number of users, and might
result in implementation problems when applied to core routers in large do-
mains.
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Fig. 1. Utility function for elastic applications

B. Differentiation Parameters

Even though there is no wide consensus on the most appro-
priate performance measure for network resource usage, it is
generally agreed that a better network service means a higher
bandwidth, a lower delay and a lower likelihood of packet
losses. The differentiation parameter should provide a useful
service differentiation and proper isolation. With useful ser-
vice differentiation we provide additional value to the users that
pay more. With proper isolation we guarantee that a misbehav-
ing user cannot obtain more resources than he/she has been
assigned.

In the following, we evaluate these three differentiation pa-
rameters (bandwidth, delay and loss rate) with respect to the
utility of the differentiation that they provide to the users.

We will base the study of the utility of the differentiation to
the users on utility functions. Ultility functions map network
parameters (delay, throughput, packet drops, etc.) into the per-
formance of an application: they reflect how the performance
of an application depends on the network parameters. With this
definition, a differentiation parameter will be of utility to a user
when an increase in the user share of this differentiation param-
eter reflects an increase in the utility experienced by the user.
In other words, a differentiation parameter will provide useful
differentiation if and only if the utility function is strictly in-
creasing with this differentiation parameter.

B.1 Bandwidth

In [10], applications are divided into two groups (elastic
applications and real-time applications) and qualitative utility
functions are given for each group. Examples of elastic ap-
plications are file transfer, electronic mail and remote termi-
nal. These applications are tolerant of delays, and experience
a diminishing marginal rate of performance enhancement as
bandwidth is increased, so the function is strictly concave ev-
erywhere. This is illustrated in Figure 1; an elastic application
always benefits from a higher bandwidth, independent of the
level of congestion in the network:

u; = f(congestion),Vt, g > s; = u} > “.Ii )

Therefore, bandwidth always provides useful differentiation
to elastic applications.

Increasing the utility for real-time applications is not as
straight-forward. ~ Since real-time applications are delay-
sensitive, bandwidth is not enough to provide utility. Further
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discussion about real-time applications is postponed until the
next section.

B.2 Delay

The delay has a small impact on elastic applications; there-
fore the queueing delay differentiation parameter does not pro-
vide useful differentiation in this case. On the other hand, real-
time applications need their data to arrive within a given delay
bound; these applications usually tolerate packets that arrive
earlier, but perform badly if packets arrive later than this bound.
Examples of such applications are link emulation, audio and
video. The qualitative utility function for real-time applications
is illustrated in Figure 2.

With this utility function it can be seen that it is not always
beneficial to have a smaller delay: a decrease in delay will only
be beneficial, if it leads to a delay smaller than the bound.

B.3 Loss-rate

The drawback of this differentiation parameter is that it does
not take into account the different behaviours that different
users may have regarding losses: some greedy users may not
back off when they experience losses and, even if they have a
high loss rate, they may experience a high throughput, whereas
other users with small loss rate may even back off, resulting in
a low throughput.

C. Differentiation Model

In this section we present a differentiation model for the two
useful differentiation parameters identified in the previous sec-
tion: bandwidth and delay. As justified in Section II-A, in our
model resources are allocated on a user basis.

Since the two traffic types, i.e., real-time traffic and elastic
traffic, have different utility curves, we believe that they must
receive differentiated treatment. Real-time traffic is sensitive to
delay, whereas for elastic traffic, delay is not as important and
bandwidth is the most relevant metric. For that reason, both
traffic types need to be treated separately.

The model we have chosen for bandwidth differentiation is
the Proportional Differentiation Model. This model states that
bandwidth should be distributed among users proportionally to
the share they have been assigned. So, if b; is the bandwidth
experienced by user i, and s; is the share assigned to user i
by the network operator, then the proportional differentiation
imposes:
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The basic idea is that, even though the actual bandwidth ex-
perienced by each user will depend on the total load of the net-
work, the ratio between bandwidth experienced by the different
users will remain fixed and controllable by the network opera-
tor, independent of the load.

The choice of this differentiation model for bandwidth is
justified by the utility function for elastic traffic (Figure 1):
since both the utility function and the differentiation model are
strictly increasing, an increase in the share contracted by a user
will always reflect an increase in the utility experienced by this
user.

Bandwidth differentiation will be applied to both elastic and
real-time traffic, since the performance of both traffic types
highly depends on the bandwidth received.

For delay differentiation we have chosen a different model:
the Step Differentiation Model. This model states that delay
should be distributed among users in such a way that pack-
ets either suffer a very low delay or an infinite delay (i.e. get
dropped) depending on the share that has been assigned to their
user. So, if d; is the delay experienced by a packet of user i, and
s; is the share assigned to user i by the network operator, then
the step differentiation imposes:

i~

The choice of the step differentiation model for delay is justi-
fied by the utility function for real-time traffic (Figure 2): since
for real-time packets have to arrive within a given delay bound
or otherwise they provide no utility to the user, only the amount
of real-time traffic that can be transmitted by the network with
a delay lower than the delay bound is accepted, and the rest of
the real time traffic is discarded®. For elastic traffic, no differ-
entiation in delay is used, since elastic applications are tolerant
of delays.

@

very low,
0o

s; high enough
, otherwise
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III. SCALABLE SHARE DIFFERENTIATION

In this section, we propose a relative service differentiation
architecture that separates elastic and real-time traffic and for
both traffic types provides bandwidth and delay differentiation
based on shares contracted by users with their ISPs. This archi-
tecture does not need to keep per-user state in the core nodes
and therefore scales well with the number of users. We have
called this architecture SSD (Scalable Share Differentiation).

SSD is inspired by the Two-Bit Architecture [3] in that we
have one bit in the packet header indicating whether it belongs
to a real-time or an elastic application, and for each link we
have two queues: a high priority queue for real-time traffic and
a low priority queue for elastic traffic.

The SSD architecture has been designed to meet the require-
ments of isolation and differentiation identified in Section I and
further developed in Section II. Isolation is provided by the
fact that resources are allocated on a user basis through user
shares. Proportional differentiation for bandwidth is provided
by the algorithm that we present in Section I1I-A, and step dif-
ferentiation for delay in real-time traffic is achieved through the
priority scheduling that we propose in Section III-B.

3Note that with the step differentiation model real-time traffic is only allowed
to use a limited part of the network capacity; however, the remaining network
capacity can still be used by delay insensitive traffic, such as elastic traffic.
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A. Bandwidth Differentiation Algorithm

In the SSD architecture, each user i contracts a share S; with
the network operator. This share is used to determine the treat-
ment of the user’s packets in bottleneck nodes, both for elastic
and real-time traffic types.

The share of the user is divided equally among its packets
in such a way that each packet gets assigned an effective share
W; = S;/r;, where r; is the total rate at which the user is
transmitting. The share assigned to a user can be understood as
some “wealth” that has been given to this user by the network
operator. Following this analogy, when the user assigns effec-
tive shares he/she is distributing the amount of “wealth” as-
signed to him/her among his/her packets. Therefore, the effec-
tive share of a packet represents its associated “wealth”. Obvi-
ously, the proposed scheme must assure that the more “wealth”
is associated to a packet, the better treatment it should receive
from the network.

To assign effective shares to the packets, the transmission
rate of each user r; is measured at the ingress node, and the
corresponding value of W¥; is inserted into the packet accord-
ing to the concept of dynamic packet state (DPS) [11]. The
basic idea of DPS is that each packet header carries some ad-
ditional state information, in this case the effective share W; of
the packets’ originator, which is initialized by the ingress node
of the diffserv network and processed by the core nodes on the
path. Core nodes use this information to update their internal
states and the information in the header, before forwarding the
packet to the next hop.

Within the SSD architecture, the specific DPS mechanism of
inserting W; into the packets is used to provide relative share
differentiation: interior nodes use the packets’ effective share
to determine the dropping policy for that user’s packets in con-
gestion situations. Whenever there is not enough bandwidth for
that traffic type to serve all incoming packets, the packets with
a lower effective share should be dropped with higher probabil-
ity.

That means, when a packet has too low an effective share,
its user distributed its share among too many packets (i.e., the
user sent at a higher rate than allowed according to the user’s
contracted share). In this case, the router drops some of the
packets of that user, thereby reducing his/her packet rate at this
link. Then, the node redistributes the share of the user among
the fewer packets, which leads to a higher value of W; for the
remaining packets of that user.

Therefore, in each node there is a certain value of effec-
tive share, below which packets must be dropped with a cer-
tain probability to dissolve the congestion. We have called
this value the fair effective share W;,;,. The probability of
dropping an incoming packet with an effective share lower than
Wiair will be calculated in the following way: a user’s pack-
ets with a W; lower than W, are dropped with a probability
such that the remaining packets of that user get assigned an
effective share equal to Wi .

Let us define d; to be the probability of dropping a packet
belonging to user ¢ at some node. Then the redistribution of the
user’s share among the packets that are not dropped leads to:

W_old

Wpew _ 1 4
) @)
Taking into account that flows with an effective share lower
than W, should adjust themselves to this value (i.e., their
new effective share should be equal to W;,;r) and flows with



an effective share higher than Wy,;, can pass untouched, we
have that, given the fair effective share Wy, the dropping
probability of the packets of user i can be calculated with the
formula:

Wi > Whair

0,
d; = { 1— M Wi < Wiair, WP = Wygir 5)

Weair?

With this algorithm, the rates r; experienced by the users
contributing to congestion in a bottleneck link are proportional
to their share S;, as stated by the proportional differentiation
model described in Section II-C*:

Si _ S;
=== e = me’r (6)

r; T

where 1, j,... are the users who contribute to the congestion.
Note that the users who do not contribute to the congestion
(i.e. the users with W; > Wi, ) are transmitting at a lower
rate and thus do not suffer dropping.

The key point of the SSD architecture is the estimation of

Wiair, Wfa,‘, , for each congested link. For scalability reasons,

W}air should be estimated without stofing any per-user or per-
flow information at the core nodes.

The problem of estimating W ;. is similar to the one solved
by the CSFQ (Core Stateless Fair Queueing) algorithm in [13].
The difference is that while SSD focuses on the problem of dis-
tributing bandwidth among users, CSFQ focuses on bandwidth
distribution among flows.

Both architectures differ not only in the problem they solve,
but also in the way they solve it; for the estimation of W; .,
SSD applies small variations for every incoming packet, while
CSFQ applies much bigger changes on a periodic basis. In the
following, we present in detail the solution we have adopted
within the SSD architecture. .

In order to determine the fair effective share Wy 4;,, we use
the fact that, in case of congestion, the correct value for Wy
must lead to a dropping behaviour according to Equation 5 that
dissolves the congestion situation, leading to a forwarding rate
on the outgoing link equal to the link’s capacity. The following
equations express this concept.

Let F (Wfa,-,) denote this acceptance rate or offered load
to the outgoing link. Then, the fair effective share will be the

value W;.,,-, that leads to F(Wfa,-,) = C, where C is the avail-
able capacity. According to these considerations, we have

F(Wpaie®) = S i+ S 1y @

Jj€h j€da §air

where J; is the set of users i with W; > Wjqir, and J, is the
set of users 7 with W; < Wy gir.

Given the individual rates r; we could calculate Wy,;, ex-
actly using this formula. Since that would require storing per-

user state information at each node, we do not follow this ap-
proach, but rather apply the following technique: we contin-

uously measure F'{ Wf,,;,) for the current value of W, tair and
4The bandwidth differentiation algorithm presents a novel fairness distri-

bution based on users, in contrast to traditional fairness criteria dealing with
flows. For a thorough analysis see [12].
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use this information to adjust Wy,;, in such a way that it con-
verges to the actual fair effective share W g,

Let us define a new variable @ = 1/Wj,;,. Then, the aggre-
gated acceptance rate as a function of & is:

F@) =Y ri+y r W-a ®)

J€Jy j€Ja

Note that F as a function of & is continuous and increasing.
Thus, an increase in & will lead to an increase in F(Wj,;,),

and a decrease in & to a decrease in F(W/ 44, ).

In our algorithm, for every incoming packet we increase & by
a small amount ¢ in case that F'(Wyair) < C, and we decrease
& by § otherwise. Let &; be the & computed after the arrival of
packet n. Then,

. . <0, F(a,)>C
Qnyl = Qn +5y6{ > 0, F(&n) <C ®
A key parameter in the algorithm is §. If 4 is too small,
@ converges too slowly to the desired value, and if it is too
big & fluctuates too much. There are two considerations that
should be taken into account when determining the proper
value for §. The first is: the bigger the distance from the de-
sired point, the larger steps we should take. That is, the bigger

‘F (Wiair) — C } the larger & should be. Secondly, the queue

length can also be used in the calculation of §. For example, if
the queue is almost full, we may want to be more aggressive in
decreasing a in order to reduce the queue length.

Therefore, § can be expressed as a function of the accepted
rate (F'), link capacity (C), queue length (L) and buffer size

(B):

with f and g satisfying the considerations above. The function
f for both elastic and real-time traffic types that we have used
in the simulation results given in Section VI is:
01- %, L£<090rf>11
f(F,0) = an
0.01- C%F otherwise

Note that with this definition of f, & increases linearly
with IF(W,G;,) - C|. When F is far from C (10%), & in-

creases/decreases 10 times faster.
Since different functions g are used for real-time and elastic
traffic, its discussion is postponed until the next section.

B. Traffic Type Separation

The bandwidth differentiation algorithm described in the
previous section is used for both traffic types to provide iso-
lation and bandwidth differentiation. In the following, we de-
scribe how traffic type separation and delay differentiation are
achieved.

The SSD architecture proposed decouples the two traffic
types by using two queues for each outgoing link, one low pri-
ority queue for elastic traffic and one high priority queue for
real-time traffic. This mechanism is depicted in Figure 3.

The incoming packets are separated according to their type,
i.e., elastic or real-time at the traffic separator. The traffic sep-
arator then inputs the packet to the corresponding packet drop-
per, which is based on the bandwidth differentiation algorithm



high priority queue

Fig. 3. Traffic Type Separation.

presented in the previous section. For both traffic types, a fair
effective share is calculated as described in Section III-A, i.e.
Wy, for elastic traffic and Wy, for real-time traffic.
Elastic packets will either be allocated to the low priority
queue if their effective share W; is high enough (ie., W; >
Wgt;.). Otherwise they will be dropped with the probability

asT
d; = 1 — W;/W§$,, calculated using Equation 5. The same
mechanism applies for real-time packets: they will be allo-
cated to the high priority queue if their effective share W; is
high enough (i.e., W; > VV}';,-,.) and they will be dropped with
probability d; = 1 — W; /W}”;‘., otherwise.

With the queueing mechanism presented, elastic and real-
time traffic are separated in such a way that the capacity of the
link, C, has to be divided among them. A key point in the SSD
architecture is to choose the right proportion of the available ca-
pacity to be assigned to each type of traffic. If too much capac-
ity is assigned to real-time traffic, we run the risk of filling the
real-time queue too much and having real-time packets miss-
ing their delay bound due to queueing delay. Consequently, the
part of the link’s capacity used by real-time traffic needs to be
limited to a maximum value, % - C, to ensure small forwarding

delays. 7‘1- is a constant that has to be chosen by the network
operator as a function of the amount of real-time traffic to be
supported by the network and the desired service quality for
this real-time traffic. In order to limit real-time traffic to % -C,
the following function f,, is used in the bandwidth differentia-
tion algorithm described in the previous section:

1

fro = F(F™, 2 -C) (12)

where f is given in Equation 11 and F* is the acceptance rate
for real-time traffic.
Since keeping the real-time traffic queue as short as possible
is important to ensure short queueing delays, the function g,
we have chosen in the bandwidth differentiation algorithm for
real-time traffic is:
ge(L,B) =1 (13)

With this choice, the dropping aggressiveness is independent
of the queue length. The reason for that is to behave aggres-
sively with respect to the dropping of packets even when the
queue is small, in order to avoid queue growth.

Elastic traffic gets assigned the remaining capacity of the
link, C — Ft. Note that F™* will at maximum equal } - C;
therefore elastic traffic is never starved. Also, elastic traffic will
be allowed to use up to the full capacity of the link when there
is no higher-priority real-time traffic. The function f; used in
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the bandwidth differentiation algorithm

for elastic traffic will
be: :

fa=f(F*,C—F™) (14)

The dropping of packets for elastic traffic does not need to
be as aggressive as for real-time traffic; delay in elastic traffic
is not so critical, and therefore having full buffers will not be as
harmful. The dropping should be aggressive when the queue is
getting full in order to avoid buffer overflow (note that in case
of buffer overflow, dropping cannot be controlled any more and
we cannot provide differentiation). On the other hand, an ag-
gressive dropping when the queue is not full avoids taking ad-
vantage of the buffer capacity in order to support bursts. The
dropping policy regarding queue length that we have chosen to
use for elastic traffic is a policy that increases its aggressivity
as the queue becomes full:

) F>C

L
B-L

B

9(L,B) = (15)

F<C

Delay differentiation in the SSD architecture is provided by
means of the two level simple priority queueing shown in Fig-
ure 3. Whenever there are packets in the high priority queue,
they will be forwarded by the packet scheduler first, and when-
ever there are no high priority packets to be forwarded, packets
are forwarded from the low priority queue for elastic traffic.
By assigning real-time packets to the high priority queue, we
achieve a very low delay for those real-time packets that are not
dropped, as stated by the step differentiation model described
in Section II-C.

Since traffic marked as real-time gets prioritized treatment
compared to elastic traffic, the cost to use the high priority
queue, which is represented by the effective share Wy, be-
low which we start having losses, must always be higher for
real-time traffic than for elastic traffic. However, Wi, and

Wffn-r are computed independently as a function of the offered

load of real-time and elastic traffic, respectively. Therefore, in
the case when there is a much higher density of elastic traffic
than real-time traffic in the network, we have a situation where
Wff"-, > Wi, - ie. elastic traffic would be more expensive
even though it receives a poorer service®. In order to correct
this undesirable situation, we define a new fair efficient share
for real-time traffic,

L
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air = mam(Wf;ir)p . I/V;fzir) (16)
where p is a constant greater than 1, which is used to express
the difference in price between a real-time packet and a packet
marked as elastic traffic: thus, for the same price, a user will be
able to send p times more traffic marked as elastic than traffic
marked as real-time. This is the price that the user has to pay

in order to guarantee a low delay.

IV. INTRA-USER DISCRIMINATION

In this section we present an intra-user discrimination exten-
sion of the SSD architecture. While the differentiation gran-
ularity of SSD operates on a user basis, this extension allows

5Note that in this situation real-time traffic would not starve elastic traffic,
since real-time traffic is restricted to use a maximum capacity of }—g - C, butit
would be eating up bandwidth at a lower cost than elastic traffic.



more fine grained discrimination between a user’s flows using
whatever criterion selected by the user.

The extension of SSD is, like the basic architecture presented
in Section III, based on shares, but with the difference that
now flows originating from the same user can have different
effective shares. This extension gives the user the possibility
to assign arbitrary effective shares to his/her individual flows,
thereby giving relative priorities.

To achieve this, the ingress node has to compute the effective
shares for the packets coming from a user in such a way that
the ratios between the effective shares given by the user are pre-
served and the overall effect in the network is the same as if an
effective share of W; = S; /r; had been assigned to all incom-
ing packets. The first condition is expressed in Equation 17.
The second condition is equivalent to saying that the sum of
the shares that the different flows of the user originally received
should be equal to S;. This is expressed in Equation 18.

rold id
vv;llgw 1 I/‘/j?luw 2 __ W)?low no__ 17
Wnew rnew o Wnew - 'B ( )
flow 1 Jlow 2 flow n
Si = I/‘jlow 1 rjlow 1+ WS low 2 Tflow 2 (18)

.+ W§ jlow n Tflown

where flow 1,..., flow n are the different flows sent by
user i, with rates 7oy 1, ... Tflow n respectively. The user
marks his/her flows with relative shares W5, 1, .., Wiie, n»

and the network ingress remarks these efﬁcient shares to
W/n:w new
flow 1y ¥V flow n

Combining Equations 17 and 18 leads to:

Si= Zrﬂow i B-W

J

old

Jlow j (19)

where f is the value we need to calculate in order to solve the
problem (i.e., to obtain the new effective shares).

B could be obtained from Equation 19, but this would require
keeping per-flow information at the ingress (specifically, the
rates r; of each flow j).

One way of avoiding per-flow state is calculating the average
W of all packets of that user; extending Equation 19, we have:

i ld
Si =Y rnowi B -Wig, ;=B -2;rsiew i Wigy ;
ow id
=p-ri: Z LL /Flawj

(20
where the last term of Equation 20 is precisely the average W
of incoming packets:

w=) Ll

J

Tflow j
r'

Wol d

flow 3 (21)

W can be calculated without the need of keeping per-flow
state by averaging the values of W; carried by the incoming
packets.

Combining Equation 20 and 21, we obtain a way of calcu-
lating 8 without keeping per-flow state:

Si
= 22
B= W (22)
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Therefore, at the ingress, the packets will be marked with the
new effective shares shown in Equation 23.

-5
7‘,'~W

new

old
packet j — W,

packet j (23)

By this means, the intra-user extension of SSD allows the
user to discriminate among his or her packets by assigning dif-
ferent weights to them before they are sent to the network op-
erator. The network operator can then change the weights of
the packets according to the user’s share using Equation 23.

With this approach, a user can discriminate among pack-
ets belonging to different flows (inter-flow discrimination) or
among packets from the same flow (intra-flow discrimina-
tion)®. With inter-flow discrimination, it is for example possi-
ble to choose to assign more bandwidth to certain people inside
an organization (e.g., the CEO)’. With intra-flow discrimina-
tion we can provide a lower loss probability to certain pack-
ets that carry more important information than the other pack-
ets (for example, we may want I frames in an MPEG stream
to have a lower loss probability than P or B frames; in [14],
the benefits of such a discrimination for MPEG are studied).
In {12], the use of intra-flow differentiation to properly inte-
grate TCP end-to-end behaviour in the proportional bandwidth
differentiation approach described in Section III-A is studied.

V. USER-BASED ADMISSION CONTROL

The difficulties of performing network-based admission con-
trol in a DiffServ architecture have been outlined in the intro-
ductory section of this paper. However, the benefits from using
admission control are also high: admission control gives the
ability to accept or reject service requests, and thus to meet
service commitments for the accepted flows.

In this section we propose a new paradigm for admission
control that overcomes the complexity of current admission
contro] proposals for DiffServ. The novelty of the proposed
approach is that it is user-based instead of network-based. The
fact that the network is unaware of the admission control makes
things much simpler. The service commitment provided by our
approach is similar to the Predictive Service proposed in [15].

Like the Predictive Service of [15], the mechanism we pro-
pose relies on measurement-based admission control (see [16]).
W air, which is used at each node in the SSD architecture to
determine the throughput that each user receives, provides a
natural basis for measurement-based admission control: the
throughput of a user’s flow is determined by the most restric-
tive (i.e. highest) Wy,ir on the flow’s path. Note that W,

takes different values for real-time and elastic traffic (7!

fair
and W”fm respectively). The admission control mechanism

explamcd in this section can be applied to both traffic types.
For the measurement-based admission control, we let an-
other piece of information travel with the packets: WMAX.

4% %ﬁx starts with a value of 0 at the sender and is updated on
each network node according to the following equation:

rI\!fAX
|44 fair,.

= mazx(WHMAX (24)

rMAX
fairoras W )

fairnode

SEven though the development presented in this section has focused on
flows, the result obtained (Equation 23) is independent of flows and can be
applied on a packet basis.

7Note that in this case, the abstract entity user is not an end user, but an
organization consisting of several people.



FMAX MAX ;
where Wi27 s the value of Wy 2 carried by the packet
TMAX

before reaching the node, Wiy~ is the value of Wy, atthe

ode
node for packets going in the opposite direction, and W }‘:f:{ “

is the value of WMAX after having passed the node.

awr
Therefore W1AX gives feedback information to a sender on
the return path about the highest W44, on the sender’s path.
Assuming that the packets in the forward direction follow the
same path, a user can use that feedback information together
with the intra-user discrimination technique described in Sec-
tion IV to adaptively assign to the flows the necessary effective

share W to reach their destinations without drops:

Stiow = Tjtow - WiaX (25)

where I/V}:::X

of this flow.
Note that the effective share has to be distributed under the
restriction exposed by Equation 26:

is the information given by the return path value

Su.qer Z Z Sjlow z (26)

Using Equation 26, a user can perform admission control in
such a way that if a share Sy, is requested such that Equa-
tion 26 is violated then the request is rejected.

Note that safety margins can be used both in Equation 25
and 26.

The simplicity of the approach presented here results from
the fact that it is user-based and therefore does not require com-
plex network mechanisms. To the knowledge of the authors,
this proposal is unique in that it can provide a service commit-
ment to flows without the network participating in the signaling
when requesting that service®.

Nevertheless, it is important to note that it has some limita-
tions. Firstly, in this scheme we assume that there exists a re-
turn path from the receiver to the sender. It is out of the scope
of this work to define how return path information is obtained
for usually uni-directional flows. Note also that in this pro-
posal, we assume that the return-path packets follow the same
or a similar route than the forward-path packets, which is not
guaranteed; nevertheless, we believe that since common rout-
ing protocols calculate the routes based on hop-distances and
not on load characteristics, the return path usually coincides
with the forwarding path. A third restriction is that a user-based
admission control scheme cannot control the absolute conges-
tion level of the network. Thus, when the network becomes
congested, a user might need to cancel some ongoing calls in
order to give more quality to other calls. This property may
be undesirable, but in order to avoid such a situation, the ad-
mission control scheme must be network-based and must be

8Note that the user-based admission control approach presented here is
clearly distinct from end-to-end application layer adaptation based on receiver
feedback. The former provides information about the main value on which
packet dropping decisions are based, W}‘Z l.éx , thereby allowing much more
fine-grained control. In addition, the former approach is user-based and per-
mits application-independent admission control; application independency is,
for example, important when the user is an organization, and network admis-
sion control is to be performed for individual entities inside that organization
according to an arbitrary criterion. End-to-end application layer adaptation
mechanisms cannot achieve that.
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Fig. 4. Network topology used for the simulations.

coupled with a resource reservation scheme. Performing ad-
mission control at the network level has a much higher com-
plexity and, in addition, has the drawback that users may be
continously rejected admission to the network, because other
users have made an admission reservation that allows them to
permanently use all network resources’.

With the user-based admission control mechanism, it may
be beneficial for a user to concentrate his/her share among a
few prioritized flows upon congestion in order to allow them to
reach their destination without losses, rather than to distribute
his/her share among too many flows. With the intra-user exten-
sion to SSD, the user has the tool to execute whatever adaptive
prioritization strategy is appropriate in a given situation. How-
ever, it is up to the user how to use the resources that he/she has
been assigned through his/her share in the SSD architecture;
the user can choose to use some policy for admission control to
provide service commitment to some of his/her flows while re-
Jecting service to others, or can just choose to use the resources
in a best-effort way.

VI. SIMULATIONS

To test the architecture presented in this paper, we have sim-
ulated its performance on a network as shown in Figure 4'°,
The flow characteristics used for the simulations are given in
Table I. This network has four 10 Mbps inter-node links, with
a propagation delay of 1ms each. There are twelve users, each
one sending one single flow. The packet size used in the simu-
lations for all flows is 1000 bytes. The flows travel along differ-
ent network paths (user ¢ sends flow 7 from node s; to node d;).
Four flows traverse only one inter-node links, four flows tra-
verse three inter-node links, and the remaining four flows tra-
verse all four inter-node links. All elastic traffic flows together
offer a load of 10 Mbps, whereas all real-time flows together
send at a rate of 1,2 Mbps. The values of k and p used in this
simulation are ¥ = 2 and p = 10, meaning that real-time traffic
is twice as expensive as elastic traffic and that a tenth of the
bandwidth is assigned to real-time traffic.

Table II displays the throughput (in Mbps), average delay (in
ms) and standard deviation (in ms) of the delay experienced by
each of the flows!!

The simulation results demonstrate that the expected be-
haviour is achieved. For real-time traffic, delays are close to the

9Note that in this situation, we have temporal unfairness, because the other
users who hold their resources might have contracted the same shares as the
user who requests a new flow, and only get preferable treatment, because they
requested their admission earlier.

10 Al simulations shown in this paper were performed in ns-2 [17].

! Note that all values shown in the simulation results presented here are
rounded to three decimals.



flow type share [ rate | path Iength
1 real-time I 03 1
2 real-time 1 0.3 3
3 real-time 1 03 4
4 real-time 2 0.3 1
5 real-time 2 03 3
6 real-time 2 03 4
7 elastic 1 2.5 1
8 elastic 1 2.5 3
9 elastic 1 2.5 4
10 elastic 2 2.5 1
11 elastic 2 2.5 3
12 elastic 2 2.5 4
TABLE ]

CHARACTERISTICS OF THE SIMULATED FLOWS.

sum of propagation and transmission delays; queueing delays
and, consequently, jitters, are negligible'2. In contrast, jitter
for elastic traffic is much higher (approximately, one order of
magnitude higher). The throughput experienced by each user
depends on the share; for both traffic types, it can be seen that
those users with a higher share suffer no losses, while those
with lower shares suffer losses as a consequence of network
congestion. Thus the throughputs received are very close to the
ones theoretically expected.

flow theor. throughput | avg. delay std.

throughput delay | deviation
| 02 0.211 2334 0.190
2 0.2 0.211 6.119 0.288
3 0.2 0.173 8.384 0.309
4 0.3 0.295 2.29 0.175
5 0.3 0.288 6.376 0.287
6 03 0.282 8.393 0.32
7 20 1.985 13.499 5.203
8 2.0 2.012 22.085 4.669
9 2.0 1.974 35.562 6.435
10 2.5 2.509 5.299 1.676
11 2.5 2.496 30.481 5.776
12 2.5 2.474 35.668 6.42

TABLE II

EXPERIMENT 1: RESULTING THROUGHPUT, AVERAGE DELAY AND
STANDARD DEVIATION OF THE DELAY.

In a second experiment, we used the same scenario to simu-
late how well it is guaranteed that packets using the real-time
traffic queue must carry a wealth that is at least p times higher
than I/If’fe;ir. For that reason, we increased the shares of the
users sending elastic traffic from 1 and 2 to 10 and 20, re-
spectively, thereby increasing the value of Wi, at which the
congestion for the elastic traffic queue is dissolved. The other
parameters used in the second experiment are identical to the
corresponding ones in the first experiment.

Table III shows the resulting values from the second exper-
iment. It can be seen that both delay and delay deviation ex-

12Note that queueing delay is the only variable component of delay and thus
the only one that has an effect on the jitter.
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pose a very similar behaviour as in the first experiment. The
throughput received by flows 1 through 9 however differs. This
is because the bandwidth allocated to real-time traffic is re-
duced according to the restriction imposed by Equation 16:
since the minimum effective share for elastic traffic, Wffm,

is higher than in the first experiment due to the high shares
of flows 7 to 12, the fair effective share for real-time traffic,

W}f“-r, is also increased according to Equation 16 to ensure
that sending real-time traffic costs at least p times as much than
sending elastic traffic. For that reason, all real-time flows per-
ceive higher dropping according to Equation 5 and therefore
receive a lower throughput. The bandwidth which is freed by
this mechanism is dynamically used up by elastic traffic, as re-

quired'3.

flow theor. throughput | avg. [ delay std.
throughput delay | deviation
I 0.109 0.116 2.299 0.18
2 0.109 0.106 6.045 0.251
3 0.109 0.104 8.231 0.36
4 0.217 0.180 2292 0.181
5 0.217 0.184 6.339 0.336
6 0.217 0.228 8.31 0.385
7 2.174 2.163 14.999 3.218
8 2.174 2.193 18.793 3.256
9 2.174 2.065 33863 | 4.4414
10 25 2.493 4.267 1317
11 2.5 2.493 29.848 4.128
12 2.5 2.492 33.956 4.453
TABLE 11l

EXPERIMENT 2: RESULTING THROUGHPUT, AVERAGE DELAY AND
STANDARD DEVIATION OF THE DELAY.

In a third experiment, we validated that SSD allows user-
based admission control while maintaining the same network
service quality. We simulated the same scenario as in Experi-
ment 2, but with the difference that user 1 applies user-based
admission control and only sends as much traffic as indicated
by the feedback provided by the network. The other users in
this simulation do not apply user-based admission control and
send at their full rates. User 1 adjusts its sending rate according
to the return-path feedback information provided by SSD. For
that reason, we additionally simulated another flow with a rate
of 30 kbps traversing the nodes in the opposite direction; with
every arriving packet of that flow, user 1 adjusts its sending
rate according to the received value of W /2% as discussed in

Section V., Table IV shows the resulting rates and losses of the
flows in this scenario. The resulting delay values of this exper-
iment are not presented since they are very similar to the ones
exposed in Experiment 2. It can be seen that the fact that flow 1
adapts itself to the available bandwidth has a very small impact
on its throughput; the throughput received is very similar to
the one in Experiment 2. The losses experienced by flow 1 are

13 Note that this process is highly dynamic in that by shifting resources from
real-time traffic to elastic traffic, the value of W ¢! . is decreased, which then

fair
again allows more real-time traffic to get through, thereby again decreasing
the elastic traffic share of the total bandwidth, and so on. Nevertheless, we
validated by simulation that this process is converging to a final distribution
(see theoretical throughput values in Table III).



very low!#, which validates that SSD works with the user-based
admission control scheme proposed in Section V.

[ How theor. sending | throughput | losses
throughput rate (%)
1 0.109 0.107 0.100 6.542
2 0.109 03 0.101 66.333
3 0.109 0.3 "0.111 63
4 0.217 03 0.180 40
5 0.217 03 0.177 41
6 0.217 03 0.214 28.667
7 2.174 25 2.176 12.96
8 2.174 2.5 2.204 11.84
9 2.174 2.5 2.082 16.72
10 25 2.5 2.493 0.28
11 2.5 2.5 2492 0.32
12 2.5 2.5 2492 0.32
TABLE IV

EXPERIMENT 3: RESULTING THROUGHPUT, AVERAGE DELAY AND
STANDARD DEVIATION OF THE DELAY.

VII. SUMMARY AND CONCLUSIONS

As discussed in Section I, we believe that the main goals
for an architecture for differentiated services should be to pro-
vide reasonable isolation and differentiation for both elastic
and real-time traffic. The presented Scalable Share Differen-
tiation (SSD) architecture is an approach for relative service
differentiation that fulfils these needs in a scalable and straight-
forward way.

In Section II, we argue that allocating the network resources
at a class- or packet-basis is not appropriate, and we identify
user-based granularity to be the only one providing proper iso-
lation. In addition, we believe that allocating resources on a
user-basis has the advantage that it can be directly mapped to
pricing schemes, especially since the user is the most natural
granularity for pricing.

The network resources assigned to a user are expressed in
terms of differentiation parameters. Choosing differentiation
parameters that provide utility to the users is essential for the
validity of the architecture. We argue that bandwidth and delay
are the most appropriate differentiation parameters for elastic
and real-time traffic respectively.

The SSD architecture, presented in Section III, is based on
user-based effective shares and works without keeping per-flow
or per-user state at the core nodes. By separating the two traffic
types (elastic and real-time) into two queues with different pri-
orities, we achieve low delays for real-time traffic (which we
have called step differentiation model for delay). For both real-
time and elastic traffic, bandwidth is assigned proportionally to
the user’s share (which we have called proportional differenti-
ation model for bandwidth).

The extension to the SSD architecture presented in Sec-
tion IV provides the necessary mechanism for a user to give pri-
ority to some of his/her packets compared to others. Therefore,
this mechanism allows further differentiation at the user-level,
which can be used to discriminate among different flows be-
longing to one user (inter-flow differentiation) or among pack-
ets belonging to the same flow (intra-flow differentiation).

14Note that the losses could be further reduced by applying some safety mar-
gin in the estimation of the available bandwidth.
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In Section V, we demonstrated how the mechanism of intra-
user discrimination can be used together with feedback infor-
mation about the sending path’s congestion, to allow for user-
based admission control. This mechanism allows the user to
assure service commitments to some of his/her flows, while re-
jecting others because of insufficient resources (represented by
the user’s share).

The simulation results presented in Section VI, finally,
demonstrate that the SSD architecture meets the goal of provid-
ing a scalable relative service differentiation architecture that
properly manages both real-time and elastic traffic without the
need of storing any kind of per-user or per-flow information at

the network core.
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