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Abstract—Wireless mesh networks are being deployed all
around the world both to provide ubiquitous connection to the
Internet and to carry data generated by several services (video
surveillance, smart grids, earthquake early warning systems, etc.).
In those cases where fixed power connections are not available,
mesh nodes operate by harvesting ambient energy (e.g., solar or
wind power) and hence they can count on a limited and time-
varying amount of power to accomplish their functions. Since we
consider mesh nodes equipped with multiple radios, power savings
and network performance can be maximized by properly routing
flows, assigning channels to radios and identifying nodes/radios
that can be turned OFF. Thus, the problem we address is a joint
channel assignment and routing problem with additional con-
straints on the node power consumption, which is NP-complete.
In this paper, we propose a heuristic, named minimum power
channel assignment and routing algorithm (MP-CARA), which is
guaranteed to return a local optimum for this problem. Based on
a theoretical analysis that we present in the paper, which gives
an upper bound on the outage probability as a function of the
constraint on power consumption, we can guarantee that the prob-
ability that a node runs out of power with MP-CARA falls below
a desired threshold. The performance of MP-CARA is assessed
by means of an extensive simulation study aiming to compare
the solutions returned by MP-CARA to those found by other
heuristics proposed in the literature.

Index Terms—Multi-radio wireless mesh networks, energy effi-
ciency, channel assignment.

I. INTRODUCTION

W IRELESS Mesh Networks (WMNs) enable to wire-
lessly cover large areas with a low deployment and

maintenance cost. Due to such a feature, WMNs are suited both
to provide ubiquitous connection to the Internet and to carry
data generated by several services (video surveillance, smart
grids, earthquake early warning systems, etc.). In many of these
cases, mesh nodes need to be deployed in areas where fixed
power connections are not available and hence they operate by
harvesting energy from the environment (e.g., solar or wind
power). Mesh nodes are continuously supplied with an amount
of power that is, however, limited, time-varying and dependent
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on how the node is provisioned. For instance, in case of a solar
powered mesh node, the amount of harvested power depends on
the solar panel size and the solar insolation. To account for the
random nature of the harvested power, nodes are equipped with
a battery of fixed capacity. If the harvested power exceeds the
power consumed by the node in a certain time period, the power
in excess is stored in the battery. Otherwise, the battery pro-
vides the supplementary energy required by the node to operate.
However, if the power consumption persistently exceeds the
harvested power, the energy stored in the battery depletes and
the node runs out of power. It is of paramount importance to
avoid power outages, due to the dramatic deterioration of the
network performance they can cause. In order to limit the prob-
ability of power outages, it is necessary to constrain the amount
of power that a node consumes. A first problem that arises is
how to determine the maximum power consumption allowed
to a node that ensures that the probability of a power outage is
below a certain value. One of the key contributions of this paper
is a theoretical analysis that allows to address such a problem.
In particular, by modeling the energy levels of the battery as
the state space of a Markov chain, we derive an upper bound to
the outage probability as a function of the maximum allowed
power consumption, the battery capacity and the probability
distribution of the harvested power.

Once determined the maximum amount of power that each
node can consume in order to guarantee a desired outage prob-
ability, another problem that arises is how to ensure that each
node actually does not consume more than such amount of
power. To this end, a number of techniques can be adopted.
One of these techniques is to properly route traffic flows. For
instance, flows can be routed away from nodes having more
stringent power constraints in order to reduce their load and
hence their power consumption. In the context of multi-radio
WMNs, which are gaining popularity due to the throughput
increase they enable, another means to save power is to put
individual radios in a sleep state (turned off henceforth) if traf-
fic flows can be routed in such a way to avoid using those
radios. Since another primary goal is to optimize the network
performance, which is highly impacted by the way channels
are assigned to radios, we address the problem how to route
traffic flows and how to assign channels to radios in such a
way to maximize the network performance while satisfying the
constraints on the maximum power consumption allowed to
the nodes. In order to be conservative and overcome possible
time periods when the consumed power persistently exceeds
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the harvested power, it is desirable that the whole network
operates as efficiently as possible from an energy consump-
tion standpoint. Hence, among all the network configurations
achieving the optimal network performance while satisfying the
constraints on the node power consumption, we aim to identify
the one minimizing the total power consumption of the whole
network. To the best of our knowledge, such a problem has not
been investigated in the literature before.

The problem we address is a joint channel assignment
and routing problem, which unfortunately is NP-complete [1].
Another key contribution of this paper is MP-CARA (Minimum
Power Channel Assignment and Routing Algorithm), a heuris-
tic to solve the addressed problem. MP-CARA takes as input
the set of traffic demands and the current channel assignment,
and computes how to route the traffic flows, which radios (cur-
rently off) must be turned on (and which channels must be
assigned to them) and which radios (currently on) must be
turned off. MP-CARA consists of two stages. In the first stage,
channels are assigned to radios being turned on in order to
maximize the network performance, while satisfying the node
power constraints. In the second stage, traffic flows are routed
such that the node power constraints are met and the total power
consumption is minimized. We show that the latter problem
can be formulated as the Fixed Charge Network Flow (FCNF)
problem, which is NP-hard. The problem addressed in the sec-
ond stage is thus solved by using a heuristic that finds a local
optimum for the FCNF problem [2], adapting it to take the
additional power constraints into account.

The remainder of this paper is organized as follows. An
overview of the related work is given in Section II. In Section III
we present a model for the node power consumption and
formalize the minimum power channel assignment and rout-
ing problem. In Section IV we illustrate the operations of
MP-CARA. The theoretical analysis developed to derive the
maximum power consumption allowed to a node is presented in
Section V. We present a performance evaluation of our heuristic
in Section VI and conclude the paper in Section VII.

II. RELATED WORK

The minimization of the energy consumed in wireless net-
works has been the subject of a plethora of research work
in the past years, mainly because devices in ad hoc and sen-
sor networks typically operate on battery power, and hence
minimizing the energy consumption is required to prolong
the network lifetime. In this context, several techniques to
minimize the energy consumption have been proposed in dif-
ferent areas: topology control [3], scheduling [4], routing [5].
Other work proposes a joint use of these techniques [6] or a
cross-layer approach [7].

More recently, power saving techniques have been applied to
wireless mesh networks. A few papers focus on solar powered
mesh networks. In [8], the problem of dimensioning solar pan-
els and batteries in order to avoid power outages is addressed,
given historical solar insolation data and the expected traffic
profile. Authors assume that an energy-aware routing proto-
col is used and propose a genetic algorithm to solve this

provisioning problem. In [9], authors address the same provi-
sioning problem, but they account for the efficiency loss due to
sub-optimal positioning and orientation of the solar panels. A
similar provisioning problem is addressed in [10], where the
solution is evaluated in two distinct scenarios (mountainous
regions like the Alps and sub-Saharian countries like Tanzania).
In contrast to these previous works, we do not address a pro-
visioning problem, but rather focus on optimizing channel
assignment and routing.

The minimization of the energy consumption of a wire-
less mesh network is addressed in [11]. The authors assume
a relationship between the transmission rate and the power
consumption and simply minimize the sum of the power con-
sumption over all the links. No attempt is made to switch off
nodes and interference among links is not considered. The
approach proposed in [12] aims at switching off as many nodes
as possible while satisfying the throughput guarantees of the
admitted flows. A routing metric that weighs battery-operated
mesh clients and mesh routers in a different manner is pro-
posed in [13], where the aim is to prolong the lifetime of a
wireless mesh network deployed for emergency response in
disaster-hit areas. All the approaches described so far con-
sider single-radio WMNs and hence do not deal with the
additional complexity introduced by the channel assignment
problem.

A few papers consider multi-radio wireless mesh networks
and take energy considerations into account. A distributed
scheme to save power in multi-radio WMNs is presented
in [14]. Each node attempts to select the lowest transmission
rate that satisfies its throughput needs in order to save power.
However, authors do not deal with the routing problem and
no attempt is made to switch off nodes or radios. Another
distributed scheme is presented in [15], which employs an
identical channel assignment, i.e., all the nodes are assigned
the same set of channels. Normally, only one radio is active,
while the others are only activated when the IEEE 802.11e
video queue occupancy is above a certain threshold. However,
the routing problem is not addressed and it is known that the
identical channel assignment is not the best choice. In [16],
authors formulate two linear programming models to find the
link scheduling, channel assignment and routing that maxi-
mize the network throughput with the minimum consumption
of energy. However, authors assume a time-slot based chan-
nel access and require that links operate on different channels
in distinct time slots. In [17], the same authors investigate the
features of the solutions obtained while varying the number of
available channels and radios.

The closest work to this paper is our previous approach pro-
posed in [18]. Such work lacks a model for the node power
consumption and hence the minimization of the energy con-
sumption of a WMN is pursued by simply trying to turn off as
many radios as possible. The model presented here is substan-
tially more complete, as it accounts for the power consumed
by a radio in the different states, and therefore leads to better
performing configurations. Also, [18] focuses on WMNs where
mesh nodes have a fixed power connection and therefore does
not handle constraints on the power consumption.
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III. PROBLEM FORMULATION

Network topology and collision domains: We model the
WMN as a directed graph G I = (V, EI ), where V is a set
of nodes each representing a mesh router. Given two nodes
u, v ∈ V , a directed edge u → v belongs to EI iff v is able
to successfully receive frames sent by u. Each mesh router u
is equipped with a set R(u) of radio interfaces and there are
|C| orthogonal channels. Given that a radio may serve mul-
tiple links and the ability of commodity hardware to set the
transmission rate on a per-packet basis, a rate is assumed to be
assigned to each link rather than to the radio. The transmission
rate used on link u → v denotes its capacity c(u → v). G I is
referred to as the potential communication graph since an edge
u → v ∈ EI indicates that u can transmit to v provided that
they are assigned a common channel. Finally, v is a potential
neighbor of u (v ∈ N(u)) if {u → v, v → u} ⊆ EI .

A channel assignment A assigns a channel C(r) ∈ C to each
radio r of every node u ∈ V . We denote by A(u) the set of chan-
nels assigned to radios of u. With this assignment, A induces a
new graph model G = (V, E) where two nodes u and v are
connected if u → v ∈ EI and they share at least one com-
mon channel. In case u and v share multiple channels, the
set E may include as many links between the two nodes as
the number of common channels. To indicate that a link has
been assigned channel c, we use the notation u

c→ v. Given a

radio r ∈ R(u), we also denote by Li (r) = {v C(r)→ u ∈ E} and

Lo(r) = {u C(r)→ v ∈ E} the set of incoming and outgoing links
of radio r , respectively, and by L(r) = Li (r) ∪ Lo(r).

A link x
c→ y ∈ E interferes with u

c→ v ∈ E if a transmis-
sion on x

c→ y prevents a simultaneous transmission on u
c→ v.

We define the set of all the links that interfere with u
c→ v as its

collision domain and denote it by D(u
c→ v). In other words,

none of the links in D(u
c→ v) can be active at the same time as

u
c→ v. Finally, we define the total utilization of the collision

domain of link e as Utot (e) = ∑
e0∈D(e)

f (e0)
c(e0)

, where f (e0)

denotes the amount of flow routed on link e0. The total utiliza-
tion of a collision domain is an estimate of the fraction of time
during which the wireless channel is busy due to transmissions
on the links of the collision domain.

Power consumption and energy harvesting model: The
average power consumed by a node u in the sleep state is
denoted by PS(u), while in the active state it is given by a
baseline power consumption PB(u) plus the average power
consumed by each radio interface. The latter is given by the
sum of the power consumed in each of the possible radio states
(transmitting, receiving, idle), each weighted by the probabil-
ity of being (or, equivalently, the fraction of time spent) in that
state, if the radio is active, and by the power consumption in
the sleep state, otherwise [19]. Thus, the power consumed by
an active node u can be expressed as:

P(u) = PB(u) + |{r ∈ R(u) |C(r) = ∅}| · ρsleep

+
∑

r∈R(u) |C(r) �=∅
[τT X (r)ρT X + τR X (r)ρR X + τidle(r)ρidle]

(1)

where C(r) = ∅ denotes that radio r is in sleep mode, ρT X ,
ρR X , ρidle and ρsleep represent the power consumption of a
radio in the transmitting, receiving, idle and sleep mode, respec-
tively, and τT X (r), τR X (r) and τidle(r) are the fraction of time
spent by radio r in the transmitting, receiving and idle mode,
respectively. We remark that the radio power consumption val-
ues (ρT X , ρR X , ρidle and ρsleep) may vary from radio to radio,
depending on the radio characteristics and on the transmission
rate and power used. It is only for the sake of simplicity that
such a dependence is not made explicit in the notations used.
Finally, the fraction of time spent by a radio in the transmitting
(receiving) mode can be estimated as the sum of the flow to
capacity ratios over all the links that leave (enter) that radio:

τT X (r) =
∑

l∈Lo(r)

f (l)

c(l)
, τR X (r) =

∑
l∈Li (r)

f (l)

c(l)
,

τidle(r) = 1 − τT X (r) − τR X (r) (2)

Each node is powered by an energy harvester. As in [20],
the harvested power in every time interval is modelled as
a sequence of i.i.d. random variables. Each node u is also
equipped with a battery which stores, up to its capacity B(u),
the energy supplied by the energy harvester exceeding the
amount required by the node to operate.

Minimum power channel assignment and routing problem:
We are given a set D of traffic demands, each represented by
a pair of nodes (a, b). The amount of flow associated with a
demand (a, b) is denoted by Fab and the total traffic load is
denoted by F = ∑

(a,b)∈D Fab. The amount of flow of a given
demand (a, b) routed on link e is indicated by f ab(e), while the
total amount of flow on link e is denoted by f (e). We are also
given a set {�(u)}u∈V specifying the constraints on the power
consumption of the nodes.

The goal is to route the given set of traffic demands and
assign channels to radios in such a way to deliver as much
flow as possible to the destination, while minimizing the total
power consumption of the whole network and satisfying the
power constraint on every node. In [21], it has been shown that
a necessary condition for every link e of a collision domain to
achieve a transmitted data rate f (e) is that the total utilization
of the collision domain is below a certain threshold λ0, which
depends on the overhead of the channel access function. Thus,
to allow for the whole total traffic load to be delivered to the
destination, the total utilization of every collision domain in the
network needs to be below the threshold λ0. In [21], it has been
indeed verified through extensive simulations that: (i) as long as
the maximum total utilization among all the collision domains
is less than λ0, there is a high probability (∼85%) that a high
percentage (>95%) of the traffic load is delivered to the des-
tination; and (i i) if the maximum total utilization exceeds that
threshold, the percentage of the traffic load that is delivered to
the destination is a decreasing function of the maximum total
utilization.

Such results suggest that, to maximize the portion of the total
traffic load that is delivered (i.e., the throughput), we should
strive to keep the maximum total utilization among all the col-
lision domains below a given threshold λ0 or, if this is not
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feasible, we should minimize the maximum total utilization.
Based on these results, we formulate the following:

Minimum Power Channel Assignment and Routing
Problem: Given the potential communication graph
G I (V, EI ) of a WMN, a set of traffic demands

{
Fab

}
(a,b)∈D

and a set of node power constraints {�(u)}u∈V , determine how
to assign channels to radios and route the traffic demands in
such a way that

∑
u∈V P(u) is minimized, subject to:

1) max
e∈E

Utot (e)
de f= max

e∈E

∑
e0∈D(e)

f (e0)

c(e0)
≤ max(U opt

tot , λ0)

2) P(u) ≤ �(u) ∀u ∈ V
where 2) imposes that the average power consumed by a node

u does not exceed a certain threshold �(u). Given the battery
capacity and the probability distribution of the harvested power,
such a threshold can be chosen to ensure that the outage prob-
ability is below a given value, as shown through the theoretical
analysis presented in Section V. U opt

tot is the minimum achiev-
able value for the maximum total utilization, i.e., the objective
value of the optimal solution to the following problem:

Channel assignment and routing problem: Given the
potential communication graph G I (V, EI ) of a WMN, a
set of traffic demands

{
Fab

}
(a,b)∈D and a set of node

power constraints {�(u)}u∈V , determine how to assign chan-
nels to radios and route the traffic demands to minimize
maxe∈E

∑
e0∈D(e)

f (e0)
c(e0)

, subject to P(u) ≤ �(u) ∀u ∈ V .
The minimum power channel assignment and routing prob-

lem is NP-complete, since it has been shown in [1] that
determining whether a channel assignment exists such that the
maximum total utilization among all the collision domains is
less than a given threshold is NP-complete. Hence, in the next
section we propose a heuristic to solve this problem.

IV. A MINIMUM POWER CHANNEL ASSIGNMENT AND

ROUTING ALGORITHM

A. Assumptions

MP-CARA, the heuristic we propose for the minimum power
channel assignment and routing problem defined above, is a
centralized algorithm and requires full knowledge of the cur-
rent network status. In this subsection, we discuss ways for the
central management station in charge of running the algorithm
to collect the required information.

Network topology. To disseminate the information on the
network topology (link set, transmission rates used on all the
links), simple messages flooded throughout the network (like
the TC messages provided by Optimized Link State Routing
(OLSR)) can be employed. Alternatively, if the planar coordi-
nates of the mesh nodes are known, a wireless link between
two nodes can be assumed to exist if there is a transmission rate
R such that the Signal-to-Interference and Noise Ratio (SINR)
at the receiver (in the absence of transmissions on other links)
exceeds the minimum SINR γR required to correctly decode a
signal modulated at that rate. Thus, a link u → v ∈ EI iff there
exists a rate R such that Guv P(u→v)

n ≥ γR , where P(u → v) is
the power emitted by u to transmit to v, Guv is the gain of the
radio channel between u and v, and n is a constant representing
the thermal noise. The capacity of the link c(u → v) is assumed

to be the highest rate R for which such inequality holds. In this
case, the transmission power and the antenna gain, if not fixed
and known, can be disseminated through proper messages.

Power consumption profile. The power consumption values
for each node (PS(u) and PB(u)) and for each radio (ρT X , ρR X ,
ρidle, ρsleep) can be derived from the products datasheets or
measured experimentally. These values are fixed and hence do
not need to be updated.

Power constraints. The set of constraints on the node power
consumption are derived through the analysis presented in
Section V, which requires the knowledge of the battery capac-
ity, the maximum acceptable outage probability and the prob-
ability distribution of the harvested power. If a model of the
latter is not available, it can be empirically determined from the
statistics collected by the energy harvester.

Interfering links. The set of interfering links can be estimated
through measurement techniques such as that proposed in [22].
Alternatively, the two-hop interference model [23], according
to which two-hop neighboring links are not allowed to transmit
at the same time, can be employed to estimate the set of inter-
fering links. If the planar coordinates of the nodes are known,
instead, a link x

c→ y can be assumed to interfere with u
c→ v

if a transmission on x
c→ y makes the SINR at v too low to

correctly decode the signal from u (this requires that transmis-
sion powers and antenna gains, if not fixed and known, are
disseminated through the network).

Traffic demands. The set of traffic demands can be measured
through techniques such as that proposed in [24].

Channel assignment. The channel assignment is computed
by the central management station by running the proposed
algorithm. Channels can be communicated to the mesh nodes
by means of a simple protocol (e.g., the one employed in [25]).

B. Design Guidelines

Maximizing the network performance while minimizing the
total power consumption requires to adapt the network configu-
ration to the offered traffic load. Indeed, more devices might be
turned off if the traffic load decreases, while there might be the
need to turn on some devices when the traffic load increases.
Hence, MP-CARA has been designed to be run periodically
(or every time the traffic load changes significantly). One of
the design criteria followed in the definition of MP-CARA is
to avoid changing channels on the radios that remain on after
executing the algorithm. The reason is that, as shown in [25]
through extensive experiments, switching channels on a number
of radios causes a non-negligible interruption (in the order of 10
seconds) in the connectivity among neighbor nodes and a more
prolonged period during which routing loops and route insta-
bility occur. Thus, to avoid disrupting the network operation,
MP-CARA takes the current channel assignment into account
and abstains from switching channels on radios.

MP-CARA aims to minimize the power consumption of the
whole network, while ensuring that the constraint on the power
consumption is met for every node and the maximum total uti-
lization over all the collision domains is either below the given
threshold λ0 or is the minimum achievable one. MP-CARA
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Fig. 1. MP-CARA pseudo-code.

consists of two stages, which are described next by means of
a pseudo-code (Fig. 1).

C. First Stage

In the first stage, traffic demands are routed and radios are
turned on and assigned a channel in order to lower the max-
imum total utilization below the threshold λ0, while ensuring
that the power constraints are met for all nodes. The rationale
is that turning a radio on allows to establish new links, which
can carry some flow away from collision domains with a high
total utilization (thus helping to decrease the maximum total
utilization) or from nodes with stringent power constraints (thus
helping to meet the power constraints on such nodes). Note that
no radio is turned off in this stage.

Fig. 2. MINMAXUTOT-LP program.

The first stage begins by putting into sleep mode all the nodes
whose power constraints are so stringent to prevent them from
being active (lines 1–3). We use the variable maxU cur

tot to keep
the value of the maximum total utilization for the current solu-
tion. Initially, as no solution is available, such variable is set
to infinity. In the attempt to find an initial solution, a linear
program, denoted as MINMAXUTOT-LP and described next,
is solved (line 5). MINMAXUTOT-LP searches for a solution
that minimizes the maximum total utilization among those that
meet the power constraints for all the nodes, given the current
channel assignment and the current set of nodes/radios turned
on. If the model is feasible, the returned solution is stored as
the current solution found by MP-CARA and its maximum
total utilization is assigned to maxU cur

tot . Otherwise (line 7), we
solve MINMAXUTOT-LP∗, i.e., MINMAXUTOT-LP without the
power consumption constraints (constraints 2) and 3) in Fig. 2).
Clearly, the returned solution cannot be used as the current solu-
tion found by MP-CARA, neither can the returned maximum
total utilization be assigned to maxU cur

tot (which remains infi-
nite). However, the returned solution provides a starting point
to look for a feasible solution. Indeed, from that solution we
can identify the nodes that do not meet the power constraints
and take actions to reduce their traffic load.

If maxU cur
tot is above the threshold λ0 (which includes the

case when maxU cur
tot is still infinite, i.e., a solution that meets

the power constraints for all the nodes has not been found), we
turn some radios on in the attempt to find a solution with a better
maximum total utilization or a solution that meets the power
constraints for all the nodes. To this end, all the nodes having
radios currently switched off are inserted into a priority queue
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Q. The priority of a node depends on whether a solution that
meets the power constraints for all the nodes has been found. If
not, the priority of a node u is given by:

∑
u→v∈E

f (u→v) ·
⎡
⎣max

(
P(v)

�(v)
, 1

)
·
∏

r∈R(v)

max(τT X (r)+τR X (r), 1)

⎤
⎦

where the term in square brackets measures the extent to which
the power constraint on a neighbor v is exceeded, multiplied
by the sum of the fractions of time spent by each radio of v
in transmitting and receiving modes (if greater than 1). Thus,
higher priority is given to nodes that send large amount of traffic
to nodes where the power constraints are farther from being met
(according to the flow distribution returned by MINMAXUTOT-
LP∗). The rationale is that, by turning on a radio of the extracted
node, traffic can be diverted to the newly established links, thus
alleviating the load on nodes where the power constraints are
not met.

If a solution that meets the power constraints for all the nodes
has been found, higher priority is given to nodes whose incident
links contribute more (in terms of their flow to capacity ratio)
to the total utilization of collision domains with Utot > λ0.
Indeed, turning on a radio of a node leads to establishing new
links which can carry some of the flow routed on preexistent
links incident on that node (thus reducing the flow to capac-
ity ratio of the latter). Since it is desirable to reduce the flow on
those links that allow as many collision domains with Utot > λ0
as possible to benefit from such operation, each link l incident
on a given node is weighed by its flow to capacity ratio times
the number of links whose collision domain includes l and has a
total utilization above λ0. Following this, the priority of a node
u is given by the sum of the weights of all its incident links:

∑
e=x→y∈E |
x=u∨y=u

f (e)

c(e)
· |{e0 ∈ E | e ∈ D(e0) ∧ Utot (e0) > λ0}|

Nodes are extracted one-by-one from Q in decreasing order
of priority until Q is empty or the current maximum total uti-
lization is below λ0. For each extracted node u, the channel to
assign to the radio being turned on must be determined. For
each channel c that is not already assigned to any radio of u, we
compute the set Su(c) of the new links that may be established.
Su(c) consists of all the links u

c→ v and v
c→ u such that v is a

potential neighbor of u that either already has a radio on chan-
nel c or has an available radio. For each candidate channel c,
we solve a linear program (MAXFC(c)):

max
∑

l=x→y∈E |
x=u∨y=u

xl

c(l)
−

∑
l∈Su(c)

xl

c(l)

s.t.∑
u→v∈E

xl =
∑

u→v∈Su(c)

xl

∑
v→u∈E

xl =
∑

v→u∈Su(c)

xl

where xl is the flow moved from an existing (to a new) link
l. The rationale is as follows. In case a feasible solution has
not been found yet, we want to maximize the decrease in
the amount of time spent by the radios of the neighbors in
transmitting (receiving) data over the links to (from) u, while
minimizing the amount of time spent transmitting or receiving
by the radio of the extracted node which is being turned on.
Otherwise, we want to maximize the decrease in the total uti-
lization of the collision domains including the existing links of
u while minimizing the impact on the total utilization of the new
links. After evaluating all candidates, we select the channel c∗
with the highest optimal objective value. A radio on u and on
its neighbors (where needed) is turned on and assigned channel
c∗ (line 13). All the links in Su(c∗), but those whose collision
domain has a total utilization greater than maxU cur

tot even when
they carry no flow, are then added to the network topology
(line 14). MINMAXUTOT-LP is solved to check whether the
addition of the new links enables to find a better solution than
the current one (if any). If a feasible solution has already been
found, MINMAXUTOT-LP is guaranteed to be feasible and to
return a solution (which is stored as the new current solution)
with a maximum total utilization not greater than maxU cur

tot . If
MINMAXUTOT-LP is still infeasible after the addition of the
new links, MINMAXUTOT-LP∗ is solved in order to obtain a
new configuration that can hopefully lead to a feasible solution
(line 17). Before extracting a new node, the queue Q is updated
as follows: (i) if node u has other radios that can be turned on, it
is inserted into the queue Q again, and (i i) all the neighbors of
u that no longer have available radios are removed from Q. The
first stage ends when the maximum total utilization is below the
threshold or there are no more radios to turn on.

MINMAXUTOT-LP: Given the network topology, the chan-
nel assignment, the set of traffic demands and the node power
constraints, we formulate a linear program (MINMAXUTOT-
LP, fig. 2) to route the traffic demands in such a way to
minimize the maximum total utilization among all the collision
domains while satisfying the power constraints. We introduce
variable M , which is constrained to be greater than the total uti-
lization of every collision domain (constraint 1). The goal of
minimizing the maximum total utilization is thus achieved by
minimizing M . Constraint 2 imposes that the fraction of time
spent by each radio in the transmitting or receiving modes must
not exceed 1. Constraint 3 represents the power constraints for
all the active nodes. Constraint 4 represents the usual flow con-
servation constraint, while constraint 5 prevents the flow of a
traffic demand from entering the source node or leaving the
destination node.

The returned solution, if any (constraints 2 and 3 might make
the problem infeasible), meets the power constraints and has the
minimum value for the maximum total utilization achievable
with the given channel assignment.

D. Second Stage

The second stage addresses the problem of routing the traffic
demands and turning radios and nodes off in order to minimize
the power consumption of the whole network, while ensur-
ing not to increase the maximum total utilization beyond the
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Fig. 3. Graph transformation made in the second stage.

maximum between the threshold λ0 and the maximum total
utilization achieved after the first stage. We first show that
this problem is analogous to the well-known Fixed Charge
Network Flow (FCNF) problem, and hence NP-hard [26], and
then present a heuristic to find an approximate solution.

The FCNF problem is a minimum cost capacitated multi-
commodity flow problem where the cost of an edge ei carrying
fi units of flow is 0 if fi = 0 or ci fi + si otherwise (ci , si ≥ 0).
Thus, the cost function has a discontinuity at the origin. The
problem addressed in the second stage can be reformulated
as the FCNF problem by means of the following graph trans-
formation (Figs. 3a and 3b). Let G = (V, E) be the directed
graph representing the WMN as returned by the first stage and
GT = (VT , AT ) be the transformed graph. VT includes, for
each node u ∈ V turned on, a vertex u, a vertex u∗, and a vertex
ru,c for each radio turned on (c is the channel assigned to the
radio). AT consists of a set AN of arcs of type node, a set AR

of arcs of type radio and a set AL of arcs of type link. Two arcs
of type node are added between every pair of vertices u and u∗,
while two arcs of type radio are added between every pair of
vertices u∗ and ru,c. The capacity of all these arcs is F . An arc
of type link from ru,c to rv,c exists iff u

c→ v ∈ E and it has
the same capacity as the corresponding link. For ease of nota-
tion, we denote by ā the inverse arc of an arc a ∈ AN ∪ AR . We
define the cost function γa of each arc a as follows:

γa(z) = (ρT X + ρR X − 2ρidle)
z

c(a)
, ∀a ∈ AL

γa(x) + γā(y) = γa,ā(x + y), ∀a ∈ AN ∪ AR

γa,ā(z) =
{

ρon
a,ā if z �= 0

ρ
of f
a,ā if z = 0

where, if a = u → u∗ ∈ AN ∨ a = u∗ → u ∈ AN :

ρon
a,ā = PB(u) + ρsleep · |{r ∈ R(u) |C(r) = ∅}|

ρ
of f
a,ā = PS(u) − ρsleep · |{r ∈ R(u) |C(r) �= ∅}| (3)

and, if a ∈ AR :

ρon
a,ā = ρidle, ρ

of f
a,ā = ρsleep (4)

Given that the average power consumed by an active radio r
can be expressed as:

Fig. 4. MINPOWER problem.

τT X (r)ρT X + τR X (r)ρR X + (1 − τT X (r) − τR X (r))ρidle

= τT X (r) · (ρT X − ρidle) + τR X (r) · (ρR X − ρidle) + ρidle

it turns out that

l�(u)
de f= γu→u∗( f (u → u∗)) + γu∗→u( f (u∗ → u))

+
∑

c∈A(u)

[
γu∗→ru,c ( f (u∗ → ru,c))

+ γru,c→u∗( f (ru,c → u∗))

+
∑

a=ru,c→rv,c,
a∈AL

(ρT X − ρidle)
f (a)

c(a)

+
∑

a=rv,c→ru,c,
a∈AL

(ρR X − ρidle)
f (a)

c(a)

⎤
⎥⎥⎦ (5)

equals the power consumption P(u) of a node u, and∑
a∈AT

γa( f (a)) equals the power consumption of the whole
network. Hence, the problem of minimizing the total power
consumption given the current channel assignment can be for-
mulated as the MINPOWER problem of Fig. 4. Constraint 1
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Fig. 5. Cost functions of the arcs of type node and radio.

ensures that the maximum total utilization does not exceed the
maximum between the maximum total utilization of the cur-
rent solution and the threshold λ0. Constraint 2 imposes that
the fraction of time spent by each radio in the transmitting or
receiving modes must not exceed 1. Constraint 3 represents the
power constraints for all the active nodes. Constraints 4 to 8
represent the flow conservation constraints for each demand. In
particular, constraints 4 and 5 impose that the sum of the flow
on all the arcs of type link entering (leaving) a node ru,c equals
the flow on the arc ru,c → u∗ (u∗ → ru,c). Constraints 6 and
7 impose that the sum of the flow on all the arcs of type radio
entering (leaving) a node u∗ equals the flow on the arc u∗ → u
(u → u∗). Constraint 8 imposes the flow conservation.

Given the definition of the cost functions γa (Fig. 5a shows
that the cost functions of arcs of type node or radio are discon-
tinuos at the origin), it turns out that the MINPOWER problem
is analogous to the FCNF problem, with additional constraints
on the maximum total utilization and on the node power con-
sumption, and hence NP-hard. Therefore, to find a solution to
the MINPOWER problem, we employ an adapted version (to
take the additional constraints into account) of one of the best
heuristics known for the FCNF problem [2]. The main idea
behind such heuristic is to approximate the cost function shown
in Fig. 5a by a concave piecewise linear function, according to
a parameter ε (Fig. 5b):

φεa,ā (z) =

⎧⎪⎨
⎪⎩

φ
εa,ā
0 (z)

de f= ρon
a,ā − ρ

of f
a,ā

εa,ā
z + ρ

of f
a,ā if z ≤ εa,ā

φ
εa,ā
1 (z)

de f= ρon
a,ā if z ≥ εa,ā

(6)

Such approximation leads to the MINPOWER-ε problem,
whose formulation is derived from the MINPOWER problem by
replacing the cost functions γa,ā for arcs of type node and radio
with φεa,ā both in the objective function and in the left hand side
of constraint 3 (which we will denote by 
ε(u) to avoid confu-
sion with �(u)). In [2], the MINPOWER-ε problem is shown to
be equivalent to the MINPOWER problem for sufficiently small
values of εa,ā . Unfortunately, the MINPOWER-ε problem has a
concave cost function and hence it is NP-hard as well. However,
it can be formulated as a bilinear program and a simple heuristic
proposed in [2] can be used to find a local minimum of the prob-
lem. In particular, equation (6) can be enforced by adding, for
each pair of arcs (a, ā) of type node or radio, a binary variable
ya,ā that takes 0 if f (a) + f (ā) < εa,ā and 1 otherwise:

φεa,ā (z) = (1 − ya,ā) · φ
εa,ā
0 (z) + ya,ā · φ

εa,ā
1 (z)

The heuristic of [2] consists of solving the problems
MINPOWER-ε(�y) and MINPOWER-ε( �fa) iteratively, using the
solution of one problem as a parameter for the other (lines 26
to 30 in Fig. 1). MINPOWER-ε(�y) has the variables ya,ā fixed
to the values of the vector �y and is therefore a linear program.
That means that the cost function of the pairs of arcs (a, ā) for
which ya,ā = 0 (ya,ā = 1) is φ

εa,ā
0 (z) (φ

εa,ā
1 (z)). MINPOWER-

ε( �fa) has the variables fa fixed to the values of the vector �fa

and can be solved trivially (ya,ā takes 0 if fa + fā < εa,ā and
1 otherwise). The algorithm stops when the same vector �y is
obtained at the end of two consecutive iterations.

The above provides a solution to MINPOWER-ε. To obtain
a solution for MINPOWER, we use an iterative algorithm pro-
posed in [2] that finds an istance of MINPOWER-ε that is
equivalent to MINPOWER. The algorithm solves MINPOWER-ε
and checks whether there exist pairs of arcs (a, ā) of type node
or radio carrying an amount of flow between 0 and εa,ā . If not,
the algorithm stops, otherwise the values of εa,ā for those pairs
of arcs are scaled by a factor α (0 < α < 1) and a new instance
of MINPOWER-ε is solved (lines 31 to 34).

It is shown in [2] that a solution for FCNF is found after a
finite number of iterations. Here, however, the additional power
constraints may make the instances of MINPOWER-ε(�y) infea-
sible. To address this, we impose that ya,ā is initially set to 1
for every pair of arcs (a, ā) of type node or radio (line 24) and
prove the following:

Theorem 1: If the first stage of MP-CARA ends with a feasi-
ble solution, all the instances of the MINPOWER-ε(�y) problem
that occur in the second stage admit a feasible solution. Also,
the solution to the last solved instance of MINPOWER-ε(�y) is a
feasible solution for the MINPOWER problem.

Proof: We first show that, for any set of εa,ā values (and
hence for any instance of the MINPOWER-ε problem), the
first instance of MINPOWER-ε(�y) admits a feasible solution.
Starting from the solution returned by the first stage of MP-
CARA, which provides the set of flows { f (e)}e∈E routed on all
the links, we build a solution { f (a)}a∈AT

such that the flows
on the arcs of type link equal the flows on the correspond-
ing links and the flows on the arcs of type node and radio are
determined by the flow conservation constraints (from 4 to 8
in Fig. 4). Such a solution is feasible for MINPOWER-ε(�y(0)).
Indeed: (i) the constraints on the maximum total utilization
are satisfied by considering the current value of maxU cur

tot at
the end of the first stage; (i i) the constraints on the fraction
of time spent by each radio in the transmitting and receiving
modes and the flow conservation constraints hold by construc-
tion; (i i i) since y(0)

a,ā is 1 for every pair of arcs (a, ā) of

type node or radio (line 24 in Fig. 1), φεa,ā (z) = φ
εa,ā
1 (z) =

ρon
a,ā ∀(a, ā) ∈ AN ∪ AR . Given (3), (4) and the fact that the

transformed graph is built by only considering nodes and radios
turned on at the end of the first stage, it turns out that, for
each node u, 
ε(u) equals the power consumption of node u
in the solution returned at the end of the first stage and hence

ε(u) ≤ �(u) since such solution is feasible. We note that, if
we chose to set y(0)

a,ā = 0 for some (a, ā) and f (a)+ f (ā) >

εa,ā , then φεa,ā ( f (a)+ f (ā)) = φ
εa,ā
0 ( f (a)+ f (ā)) > ρon

a,ā and
hence 
ε(u) could exceed the power consumed by u, for some
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node u, thus making it not guaranteed that 
ε(u) ≤ �(u) and
that the solution returned at the end of the first stage is feasible
for MINPOWER-ε(�y(0)).

Now we show that, if the (m − 1)-th instance of MINPOWER-
ε(�y) is feasible, then also the m-th instance is feasible. Indeed,
we show that a solution { f (a)}a∈AT

to the (m − 1)-th instance
is also feasible for the m-th instance. We recall that a solution
to the (m − 1)-th instance determines the values of �y(m) which
are used as input for the next instance. Given that two instances
of MINPOWER-ε(�y) differ in some ya,ā values and hence in
the expression of some cost functions φεa,ā (z), we only need
to check that a solution to the (m − 1)-th instance satisfies the
power constraints of the m-th instance. For each pair (a, ā) ∈
AN ∪ AR such that y(m)

a,ā �= y(m−1)
a,ā , two cases can occur:

• y(m−1)
a,ā = 1 and f (a)+ f (ā) < εa,ā ⇒ y(m)

a,ā = 0 :

φ
εa,ā
0 ( f (a)+ f (ā)) ≤ φ

εa,ā
1 ( f (a)+ f (ā))

• y(m−1)
a,ā = 0 and f (a)+ f (ā) ≥ εa,ā ⇒ y(m)

a,ā = 1 :

φ
εa,ā
1 ( f (a)+ f (ā)) ≤ φ

εa,ā
0 ( f (a)+ f (ā))

Thus, φεa,ā ( f (a)+ f (ā))(m) ≤ φεa,ā ( f (a)+ f (ā))(m−1)

∀(a, ā) ∈ AN ∪ AR in both cases and hence 
ε(u)(m) ≤

ε(u)(m−1) ≤ �(u). Thus, the m-th instance of MINPOWER-
ε(�y) is feasible as well. By induction, it follows that all the
instances of MINPOWER-ε(�y) are feasible.

When the algorithm ends, the solution to the last solved
instance of MINPOWER-ε(�y) is such that f (a) + f (ā) ∈ {0} ∪
[εa,ā,+∞) for every pair of arcs (a, ā) of type node or radio.
Given that φεa,ā (z) = γa,ā(z) ∀z ∈ {0} ∪ [εa,ā,+∞), it turns
out that 
ε(u) = �(u) ∀u ∈ V and hence the solution to the
last solved instance of MINPOWER-ε(�y) is also a solution to
MINPOWER. �

The above theorem allows to conclude that, if the first stage
returns a feasible solution, the second stage also returns a
feasible solution. Such a solution is obtained from the last
solved instance of MINPOWER-ε(�y) by turning off a node u
if f (u → u∗)+ f (u∗ → u) = 0 and the radio on node u that
was set to channel c at the end of the first stage if f (u∗ →
ru,c)+ f (ru,c → u∗) = 0 (lines 36–37 in Fig. 1).

V. A THEORETICAL ANALYSIS OF THE OUTAGE

PROBABILITY

MP-CARA requires as input the set of constraints on the
node power consumption. As shown in this section, such con-
straints can be computed in such a way to ensure that the outage
probability is below a certain value. Indeed, we next present a
theoretical analysis that relates the battery capacity B, the prob-
ability distribution of the harvested power and the constraint �

on the power consumption of a node to the outage probability
of that node. We denote by H the random variable represent-
ing the harvested power in a time interval of duration �. As
in, e.g., [20], we consider a discrete battery with N + 1 energy
levels {0, ε, 2ε, . . . Nε}, where ε is the minimum energy unit
and B = Nε is the capacity of the battery. The energy level of
the battery at the end of a time interval depends on the energy
level at the beginning of the time interval and the difference
between the harvested power and the consumed power. MP-
CARA ensures that the latter is upper bounded by �. Thus,

Fig. 6. Probability density function of H − �.

in order to conduct a worst case analysis, we assume that the
power consumed in every time interval equals �. Given the
independence of the random variables representing the har-
vested power in distinct time intervals, the energy levels can be
considered as the states of a time-homogeneous Markov chain
with transition matrix:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0∑
i=−∞

pi p1 p2 . . . pN−1
∞∑

i=N
pi

−1∑
i=−∞

pi p0 p1 . . . pN−2
∞∑

i=N−1
pi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−N∑

i=−∞
pi p−N+1 p−N+2 . . . p−1

∞∑
i=0

pi

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where pi = Pr [(H − �)� = iε], i ∈ Z, is the probability that
the difference between the harvested energy and the consumed
energy in a time interval equals i energy units. Given that H
is a continuous random variable, we consider the following
approximation (see Fig. 6):

pi = Pr

[(
i − 1

2

)
ε

�
≤ H − � ≤

(
i + 1

2

)
ε

�

]

= FH

(
� +

(
i + 1

2

)
ε

�

)
− FH

(
� +

(
i − 1

2

)
ε

�

)
(7)

where FH(·) is the cumulative distribution function of H.
In order to simplify calculations, we choose the interval dura-

tion � such that the energy consumed in a time interval is at
most one energy unit, so that the energy level cannot decrease of
more than one unit in a time interval (i.e., pi = 0 for i < −1).
Using the approximation of (7), this condition leads to the
following setting for �:

�� = 3

2
ε = 3

2
· B

N
⇒ � = 3

2
· B

N�
(8)

With the above setting of �, the transition matrix of the Markov
chain becomes:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p−1 + p0 p1 p2 . . . pN−1
∞∑

i=N
pi

p−1 p0 p1 . . . pN−2
∞∑

i=N−1
pi

0 p−1 p0 . . . pN−3
∞∑

i=N−2
pi

0 0 p−1 . . . pN−4
∞∑

i=N−3
pi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . p−1
∞∑

i=0
pi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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This Markov chain is irreducible, since (if p−1 > 0) any state
can be reached from any other state with non-zero probability.
Also, state 0 is aperiodic because of the self-transition having
non null probability p−1 + p0 > 0. This is sufficient to prove
that the Markov chain is ergodic and hence admits a unique
steady-state probability distribution, which the chain converges
to regardless of the initial state. Such limiting distribution π =
(π0 π1 . . . πN ) can be found by solving the system of equations
π = π P with the normalization constraint

∑N
i=0 πi = 1:⎛

⎜⎜⎜⎝
1−p0−p−1 −p−1 0 . . . 0 0

−p1 1 − p0 −p−1 . . . 0 0
−p2 −p1 1 − p0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−pN−1 −pN−2 −pN−3 . . . 1−p0 −p−1
1 1 1 . . . 1 1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

π0
π1
π2
. . .

πN−1
πN

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

0
0
0
.

0
1

⎞
⎟⎟⎟⎠

If we denote by A and b, respectively, the matrix of coefficients
and the vector of constant terms of the above system of equa-
tions, it turns out that π = A−1b. Thus, the outage probability
π0 can be computed as:

π0=(A−1)1,N+1= CN+1,1

det[A]
= (−1)N+2(−1)N (p−1)

N

det[A]
= (p−1)

N

det[A]

where Ci, j is the (i, j) cofactor. This result follows from
observing that removing the first column and the last row
from A yields a triangular matrix whose determinant (i.e., the
(N + 1, 1) minor) is the product of the diagonal entries. We use
the Doolittle method to find an LU decomposition of A, which
allows us to easily compute the determinant of A:

A=

⎛
⎜⎜⎝

1
l1,1 1
l2,1 l2,2 1
. . . . . . . . . . . . . . .

lN ,1 lN ,2 lN ,3 . . . 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

u0 −p−1 0 . . . 0
u1 −p−1 . . . 0

u2 . . . 0
. . . . . . . . . . . . . . . . .

uN

⎞
⎟⎟⎠

where:

ui =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − p0 − p−1 if i = 0,

1 − p0 −∑i
j=1

(p−1)
j∏i−1

k=i− j uk
p j if 1 ≤ i < N ,

1 +∑N
j=1

(p−1)
j∏N−1

k=N− j uk
if i = N .

Hence:

det[A] =
N∏

i=0

ui = (p−1)
N +

N−1∑
i=0

(p−1)
N−1−i

i∏
j=0

u j

as can be seen by multiplying uN by
∏N−1

i=0 ui . Finally, let xi =∏i
j=0 u j , it turns out that:

π0 =
(

1 +
N−1∑
i=0

xi

(p−1)i+1

)−1

(9)

and {xi }N−1
i=0 is defined by the following recurrence relation:

xi =

⎧⎪⎨
⎪⎩

1 if i = −1,

1 − p0 − p−1 if i = 0,

(1 − p0)xi−1 −∑i
j=1(p−1)

j p j xi− j−1 if i ≥ 1.

(10)

Equations (7), (8), (9) and (10) enable to compute (in O(N 2)

time) the outage probability given B, � and the probability
distribution of H. By imposing the desired power outage prob-
ability, we can thus derive the power constraint � that yields
this probability. It should be noted, however, that too stringent
power constraints might make the minimum power channel
assignment and routing problem infeasible. Hence, running
MP-CARA is required to ensure that a feasible solution exists
given the selected power constraints for all the nodes. If a feasi-
ble solution exists, it guarantees that the outage probability for
each node does not exceed the value derived from the analysis
presented in this section.

VI. PERFORMANCE EVALUATION

We conduct a number of simulation studies to compare MP-
CARA to E2CARA-TD [18] (an algorithm aiming to turn off
as many radios and nodes as possible) and FCRA [1] (an algo-
rithm aiming to minimize the maximum total utilization) in
terms of maximum total utilization, total power consumption
(according to the model of Section III), network throughput
and energy consumption (measured from simulations). In a
first series of simulations, we assume that all the nodes are
supplied with enough power, in order to make a fair compar-
ison with E2CARA-TD and FCRA, which do not account for
node power constraints. In the second series of simulations,
we consider more stringent node power constraints to show
that a power constraints-aware algorithm such as MP-CARA
achieves much better results than power constraints-unaware
algorithms coupled with a routing protocol that finds alternative
paths whenever a node fails due to a power outage.

In both cases, the threshold λ0 has been set to 0.50. We
use WiMesh [27], a software tool we developed1 to compute
the network configuration returned by a channel assignment
and routing algorithm and to automatically setup and run
packet level simulations via the network simulator ns-3. In all
experiments, we compute the network configuration (channel
assignment and flow allocation) returned by each of the algo-
rithms under test and evaluate the maximum total utilization
and the node power consumption (eq. (1)). The throughput and
the energy consumption achieved with each such network con-
figuration are instead measured by running ns-3 simulations
lasting 120 seconds. Two different routing protocols for the ns-3
simulations are considered in this paper: the default path selec-
tion protocol defined by the IEEE 802.11s amendment (HWMP
– Hybrid Wireless Mesh Protocol) and the MPLS splitting for-
warding paradigm presented in [28], according to which the
incoming traffic (of a given demand) at an intermediate node
is split among multiple next hops in proportion to predefined
coefficients. Such coefficients are determined such that the traf-
fic demands are routed according to the flow allocation returned
by the channel assignment and routing algorithm. The energy
model implemented by ns-3 provides that the power consumed
by a radio is given by the product of the supply voltage (which
is fixed to 3.0V) and the current intensity, which depends on
the state in which the radio is. The current intensities values we

1WiMesh is freely available at http://wpage.unina.it/stavallo/WiMesh/
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TABLE I
VALUES FOR THE POWER MODEL (WATTS)

use for the different states lead to the power consumption val-
ues reported in [29] and shown in Table I. The physical layer is
IEEE 802.11a.

A. Comparison to Other Heuristics (Loose Constraints)

The aim of this set of simulations is to show that, in case
all the mesh nodes are supplied with enough power, MP-
CARA outperforms both an algorithm designed to turn off as
many radios and nodes as possible (E2CARA-TD) and an algo-
rithm designed to maximize the network throughput (FCRA).
We consider 128 distinct configurations determined by all the
combinations of the following parameters:

• three connected topologies (50-, 75- and 100-nodes)
where each node has two radios and a 75-nodes topology
where nodes have either two or three radios

• the availability of 3 or 11 orthogonal channels
• two interference models (SINR-based and two-hop)
• two different sets of source-destination node pairs
• four different sets of traffic demands

For each configuration, the channel assignment computed by
FCRA is passed as the initial configuration to the other two
algorithms. Then, we consider three consecutive variations in
the set of traffic demands. For each such variation, MP-CARA
and E2CARA-TD take as input the current channel assignment
and the new set of traffic demands, while FCRA only consid-
ers the new set of traffic demands. Each variation consists in
swapping the amounts of traffic among the demands (i.e., the
demand with the highest amount of traffic gets the minimum
amount of traffic, the demand with the second highest amount
of traffic gets the second minimum amount of traffic, and so on)
and scaling each amount of traffic by a distinct factor derived
from a random variable (uniformly distributed between 0.7 and
0.9 for the first and second variations and uniformly distributed
between 1.1 and 1.3 for the third variation). Thus, each of the
first two variations leads on average to a 20% decrease in the
total traffic load, while the third variation leads on average to
a 20% increase in the total traffic load. Since the initial set of
traffic demands is dimensioned such that the traffic load can be
considered as high, the traffic load after the three variations can
be considered, respectively, as medium, low and medium. In the
ns-3 simulations of this study, the selected routing protocol is
the MPLS splitting technique, because it attempts to route the
traffic demands according to the flow allocation computed by
the algorithms under test.

The results achieved in the 128 configurations are summa-
rized in Fig. 7. In particular, a colored box spans from the first
quartile to the third quartile, circles represent outliers, i.e., val-
ues greater (less) than the third (first) quartile plus (minus) 1.5
times the inner quartile range, a vertical line spans from the
minimum to the maximum values (excluding outliers) and a
horizontal segment indicates the median.

Fig. 7. Comparison among heuristics (loose power constraints).

Maximum total utilization (Fig. 7a): As expected, the
maximum total utilization decreases (increases) when the traffic
load decreases (increases). MP-CARA achieves lower values
than E2CARA-TD and FCRA in all the scenarios. As for the
median values, MP-CARA enables a maximum total utiliza-
tion reduction from 4% to 8% with respect to E2CARA-TD and
from 12% to 19% with respect to FCRA. This shows that MP-
CARA substantially outperforms E2CARA-TD and FCRA in
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terms of maximum total utilization, while achieving substantial
power savings (see below).

Number of nodes and radios turned off (Figs. 7c–7d):
The figures show that MP-CARA turns off the highest num-
ber of nodes and radios both initially and after every variation
in the traffic demands. MP-CARA is much more effective than
E2CARA-TD in turning off nodes (from 20% to 60% more
nodes turned off in the four scenarios). FCRA, instead, indepen-
dently of the traffic load, never turns off a node, and on average
it turns off just a couple of radios.

Power consumption (Fig. 7b): The figure shows the
power consumption, computed according to the model of
Section III, achieved by MP-CARA and E2CARA-TD normal-
ized to that achieved by FCRA. Substantial power savings are
enabled by MP-CARA (from 19% to 27% less power consumed
on average) and by E2CARA-TD (from 16% to 21% less power
consumed on average) with respect to FCRA. Also, MP-CARA
consumes less power than E2CARA-TD in every considered
scenario.

Throughput (Figs. 7e,7f): The figures show the achieved
throughput normalized to the sum of the traffic demands. As
expected, the lower the traffic load, the higher the ratio of the
traffic load that is delivered by the considered algorithms. We
note that the performance of MP-CARA in terms of throughput
is not affected by the high number of nodes and radios turned
off. Indeed, the ratio of the traffic load that is delivered to the
destinations by MP-CARA on average is higher than FCRA
(6% to 16% for UDP, 5% to 10% for TCP) and E2CARA-TD
(10% to 16% for UDP, 6% to 10% for TCP).

Energy consumption per Mbit (Figs. 7g,7h): The figures
show the energy consumed by each algorithm normalized to the
amount of data (Mbits) it delivers to the destination, which can
be seen as a measure of the energy efficiency of the algorithm.
Delivering a megabit of data when using MP-CARA requires
much less energy with respect to both FCRA (23% to 36% for
UDP, 24% to 31% for TCP) and E2CARA-TD (11% to 22% for
UDP, 10% to 16% for TCP).

The results of this simulation study show that MP-CARA
clearly outperforms the other algorithms, since, for different
traffic load conditions, it is the most efficient algorithm (in
terms of energy consumed per Mbit) while achieving the high-
est throughput. Also, the running times of MP-CARA are
comparable to those of FCRA (from tenths to few seconds on
an Intel Core i7-3770 processor with 8GB RAM) and are one
order of magnitude shorter than those of E2CARA-TD.

B. Comparison to Other Heuristics (Stringent Constraints)

We now consider the case in which not all the mesh nodes
are supplied with enough power, in order to: (i) verify that
MP-CARA enables to limit power outages; (i i) show that
MP-CARA outperforms the other algorithms that do not con-
sider the node power constraints, both when a reactive routing
protocol (HWMP) is employed and when the MPLS splitting
forwarding paradigm is employed.

We start from the same initial set of 128 configurations as
in the previous simulation study and consider two consecutive
traffic variations (as described in the previous subsection), each

decreasing the traffic load of 40% on average. The mean value
of the i.i.d. random variables representing the harvested power
in every time interval is determined as follows. For one fifth
of the mesh nodes, the mean harvested power varies uniformly
between 40% and 60% of the maximum required power (given
by eq. (1) assuming that all the radios are always in the transmit-
ting mode), while for the remaining nodes the mean harvested
power varies uniformly between 80% and 100% of the max-
imum required power. Two distinct sets of mean harvested
power values are derived in such a way. For each set and each
configuration, two distinct ns-3 simulations are conducted, dif-
fering in the probability distribution (uniform or exponential) of
the random variables providing the amount of power harvested
in every time interval. For each node, the constraint on the
power consumption required by MP-CARA is set to the mean
value of the random variable representing the power harvested
by the associated energy harvester. Each node is equipped with
a battery having a capacity of 10 Joules, which is fully charged
initially and is periodically (once a second) recharged by the
attached energy harvester. With such settings, the theoretical
analysis of Section V yields a worst case outage probability of
0.05 in the case of uniform distribution and 0.16 in the case of
exponential distribution. The results of this simulation study are
summarized in Fig. 8.

Power outages (Figs. 8a,8b): The figures show the
amount of time (seconds) spent altogether by the nodes in the
sleep state due to power outages (the nodes turned off by the
algorithms are not considered). It turns out that MP-CARA, in
conjunction with both the MPLS splitting forwarding paradigm
and HWMP, causes minimal power outages (within the bounds
derived from the theoretical analysis of Section V). Instead,
FCRA and E2CARA-TD cause a certain percentage of the
nodes (respectively, 20% and 10% on average) to be put in
sleep mode for a period of time varying from a couple of sec-
onds to 70 seconds (i.e., the 60% of the simulation time) due to
depletion of energy.

Throughput (Figs. 8c,8d): The figures show the achieved
throughput normalized to the sum of the traffic demands. As
expected, the power outages experienced by nodes when the
network is configured by FCRA or E2CARA-TD negatively
affect the performance in terms of throughput. Indeed, in both
traffic scenarios, the highest throughput is achieved by MP-
CARA in conjunction with the MPLS splitting forwarding
paradigm, which routes the demands according to the flow
allocation returned by MP-CARA. With regards to the median
values, MP-CARA with MPLS splitting allows a throughput
increase of 80% to 140% for UDP (90% to 130% for TCP)
with respect to the other algorithms with MPLS splitting, and a
throughput increase of 110% to 220% for UDP (190% to 270%
for TCP) with respect to the other algorithms with HWMP. We
note that the MPLS splitting forwarding paradigm performs
better than HWMP. This is because MPLS splitting employs
multiple paths between a source-destination pair and routes the
traffic demands according to the flow allocation returned by
the algorithms (which minimizes the maximum total utiliza-
tion given the selected channel assignment). On the contrary,
HWMP is a single path routing protocol and disregards the flow
allocation returned by the algorithms.
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Fig. 8. Comparison among heuristics (stringent power constraints).

Energy consumption per Mbit (Figs. 8e,8f): The figures
show the energy consumed by each algorithm normalized to
the amount of data (Mbits) it delivers to the destination. It
turns out that, in both traffic scenarios, MP-CARA in conjunc-
tion with the MPLS splitting forwarding paradigm is the most
efficient combination. With regard to the median values, MP-
CARA with MPLS splitting provides an energy consumed per
Mbit improvement of 40% to 60% for UDP (40% to 65% for
TCP) with respect to the other algorithms with MPLS splitting,
and an improvement of 40% to 80% for UDP (55% to 80% for
TCP) with respect to the other algorithms with HWMP.

VII. CONCLUSIONS

In this paper we addressed the minimum power channel
assignment and routing problem. The goal is to minimize the
power consumption of multi-radio wireless mesh networks
where nodes have constraints on their power consumption,
while guaranteeing the optimal network performance. Given
the NP-hardness of this problem, we formulated a heuristic

that routes the given traffic demands, turns off some radios
and turns on some other radios (by assigning them a channel)
in the attempt to find the best solution possible. Simulation
studies showed that the proposed algorithm outperforms our
previous proposal and a non-power-aware channel assignment
algorithm. Furthermore, we presented a theoretical analysis to
derive the outage probability of a node as a function of the max-
imum allowed power consumption, the battery capacity and the
probability distribution of the harvested power.
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