
0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2959245, IEEE Journal
on Selected Areas in Communications

1

DeepCog: Optimizing Resource Provisioning

in Network Slicing with AI-based Capacity

Forecasting
Dario Bega, Marco Gramaglia, Marco Fiore, Senior Member, IEEE, Albert Banchs Senior Member, IEEE, and

Xavier Costa-Perez Senior Member, IEEE,

Abstract—The dynamic management of network resources is
both a critical and challenging task in upcoming multi-tenant
mobile networks, which requires allocating capacity to individ-
ual network slices so as to accommodate future time-varying
service demands. Such an anticipatory resource configuration
process must be driven by suitable predictors that take into
account the monetary cost associated to overprovisioning or
underprovisioning of networking capacity, computational power,
memory, or storage. Legacy models that aim at forecasting
traffic demands fail to capture these key economic aspects of
network operation. To close this gap, we present DeepCog,
a deep neural network architecture inspired by advances in
image processing and trained via a dedicated loss function.
Unlike traditional traffic volume predictors, DeepCog returns
a cost-aware capacity forecast, which can be directly used by
operators to take short- and long-term reallocation decisions that
maximize their revenues. Extensive performance evaluations with
real-world measurement data collected in a metropolitan-scale
operational mobile network demonstrate the effectiveness of our
proposed solution, which can reduce resource management costs
by over 50% in practical case studies.

Index Terms—Mobile networks, Network Slicing, 5G networks,
Artificial Intelligence, Deep Learning.

I. INTRODUCTION

Network slicing is an emerging paradigm that is expected

to characterize 5G and beyond-5G mobile systems. Network

slicing allows operators to tailor Virtual Network Functions

(VNFs) to the precise requirements of individual mobile

services [1], and will be key in enabling the unprecedented

heterogeneity of future mobile applications [2]. Managing

sliced networks will represent a major challenge for operators,

since this new paradigm represents a shift from the rather

limited reconfiguration possibilities offered by current Opera-

tions and Business Support System (OSS/BSS) to a complex,

software-defined control layer that must dynamically organize

thousands of slices belonging to hundreds of tenants on the

same infrastructure [3].

D. Bega and A. Banchs are with the IMDEA Networks Institute,
28918 Leganés, Spain, and also with the Telematic Engineering De-
partment, University Carlos III of Madrid, 28911 Leganés, Spain (e-
mail:dario.bega@imdea.org; banchs@it.uc3m.es).

M. Gramaglia is with the Telematic Engineering Department, University
Carlos III of Madrid, 28911 Leganés, Spain(e-mail: mgramagl@it.uc3m.es).

M. Fiore is with CNR, 10129 Torino, Italy. (e-mail:marco.fiore@ieiit.cnr.it)
X. Costa-Pérez are with NEC Laboratories Europe, 69115 Heidelberg,

Germany (e-mail: xavier.costa@neclab.eu).
Manuscript received June 22, 2019; revised September 3, 2019; accepted

November 6, 2019. Date of publication xxxx xx, xxxx; date of current version
xxxx xx, xxxx.(Corresponding author: Dario Bega.)

A. Network management and capacity forecast.

To rise to the challenge, network operators must introduce

substantial automation in the presently human-driven manage-

ment and orchestration (MANO) processes, ultimately realiz-

ing the 5G principle of cognitive network management [4].

Achieving this objective requires advances in two comple-

mentary technologies: (i) technical solutions that enable end-

to-end Network Function Virtualization (NFV), providing the

flexibility necessary for resource reallocation; and, (ii) a net-

work intelligence that automatically identifies and anticipates

demand patterns from streaming network measurement data,

and then takes decisions on how to configure VNFs and

allocate resources so as to maximize the system efficiency.

From a technical standpoint, solutions that implement NFV

at different network levels are well established, and start to be

tested and deployed. Examples include current MANO plat-

forms architectures like ETSI NFV [5], and implementations

of MANO controllers such as OSM [6] or ONAP [7] that sup-

port reconfiguring resources to VNFs on the fly. By contrast,

the integration of intelligence in cognitive mobile networks is

still at an early stage. Nowadays, resource assignment to VNFs

is a reactive process, mostly based on hysteresis thresholding

and aimed at self-healing or fault tolerance. There is a need for

proactive, data-driven, automated solutions that enable cost-

efficient network resource utilization, by anticipating future

needs for capacity and timely reallocating resources just where

and when they are required.

The aim of our work is precisely to contribute to the

definition of a network intelligence that is adapted to a network

slicing environment. More specifically, the focus of this paper

is on the design of data analytics that enable the anticipatory

allocation of resources in cognitive mobile networks. To this

end, we investigate a machine learning solution that runs

on traffic measurement data and provides operators with

information about the capacity needed to accommodate future

demands at each network slice – a critical knowledge for data-

driven resource orchestration. We take a pragmatic approach,

and duly account for the economic costs associated to the

operation above.

Indeed, resource orchestration decisions have a direct mon-

etary impact for the network operator in terms of operating

expenses, which can be divided into two macroscopic cate-

gories of cost.

• Overprovisioning – when providing excess capacity with

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2959245, IEEE Journal
on Selected Areas in Communications

2

respect to the actual resource demand, the operator incurs

a cost due to the fact that it is reserving more resources

than those needed to a network entity (e.g., a network

slice, a network function, or a virtual machine). As

resources are typically isolated across slices, this seizes

the excess resources from other network entities that

may have possibly used them. At a global system level,

continued overprovisioning implies that the operator will

have to deploy more resources than those required to

accommodate the user demand, limiting the advantage of

a virtualized infrastructure and of cognitive networking

solutions in general.

• SLA violation – if insufficient resources are allocated

to a network entity, users will suffer low Quality of

Service (QoS), or even discontinued service. This has

an indirect price for the operator, in terms of customer

dissatisfaction and increased churning rates, which is not

simple to quantify. However, in emerging contexts such

as those promoted by network slicing, underprovisioning

also entails a different, more direct and quantifiable

economic penalty for the operator. Under slicing, oper-

ators will sign Service Level Agreements (SLAs) with

the mobile service providers, which need to be strictly

enforced. Underprovisioning means violating such SLAs,

which results in substantial monetary fees for the network

operator.

Clearly, the cost is not the same in the two cases, and it may

also vary depending on the specific settings, including the

nature of the concerned resources, the technologies deployed

in the network infrastructure, or the market strategies of the

operator. In all cases, we posit that, once suitably modeled,

such costs shall be at the core of the orchestrating decisions.

Legacy techniques for the prediction of mobile network

traffic, such as the one reviewed in Section II, fall short in this

respect. Such models aim at perfectly matching the temporal

behavior of traffic, independently of whether the anticipated

demand is above or below the target, and are thus agnostic

of the aforementioned costs. As a result, they return forecasts

as that depicted in Fig. 1a, which refers to a real-world case

study of YouTube video streaming traffic at a core network

datacenter. Note that no distinction is made between positive

and negative errors, which leads to substantial SLA violations

covering roughly half of the observation time. The operator

may then attempt to apply overprovisioning to the output

provided by such a traffic predictor. Unfortunately, legacy

forecast models do not offer any insight on how large the

excess resource allocated on top of the forecast demand should

be. As we will demonstrate later in the paper, this makes such

a strategy highly inefficient.

B. Paper contributions and data-driven setup

In this paper, we present DeepCog, a new mobile traffic data

analytics tool that is explicitly tailored to solve the capacity

forecast problem exposed above. The design of DeepCog

yields multiple novelties, summarized as follows:

• It hinges on a deep learning architecture inspired by

recent advances in image and video processing, which

0

0.5

1

N
o
rm

a
liz

e
d

tr
a
ffi

c Service demand Traffic prediction

Mon Tue Wed Thu Fri Sat Sun
-0.25

0

0.25

E
rr

o
r

(a) Legacy traffic prediction

0

.5

1
Service demand Capacity forecast

Mon Tue Wed Thu Fri Sat Sun
5

0

5

(b) DeepCog capacity forecast

Fig. 1. Top: actual and predicted weekly demands for YouTube at a datacenter
controlling 470 4G eNodeBs. Bottom: levels of overprovisioning (blue) and
capacity violations (red) over time. (a) Output of a recent deep learning
predictor of mobile traffic [8]. (b) Output of DeepCog, tailored to anticipatory
network resource allocation. The best view of this figure is in colors.

exploits space- and time-independent correlations typical

of mobile traffic and computes outputs at a datacenter

level;

• It leverages a customized loss function that targets ca-

pacity forecast rather than plain mobile traffic prediction,

letting the operator tune the balance between overprovi-

sioning and demand violations;

• It provides long-term forecasts over configurable pre-

diction horizons, operating on a per-service basis in

accordance with network slicing requirements.

Overall, these design principles jointly solve the problem of

capacity forecast in network slicing. This is illustrated by

Fig.1b, which shows an example of the required capacity

forecast by DeepCog in a real-world case study. We remark

that DeepCog is one of the very first examples of rigorous

integration of machine learning into a cognitive network man-

agement process, and marks a difference from the common

practice of embedding vanilla deep learning structures into

network operation [9].

Extensive performance evaluations with substantial mea-

surement data collected in an operational metropolitan-scale

mobile network demonstrate the superiority of our approach

over a wide range of benchmarks based on traditional and

state-of-the-art mobile traffic predictors. Even though our

performance evaluation focuses on cellular network environ-

ments, it is worth noting that the data-driven approach adopted

is highly flexible and can be applied to forecast capacity

in different scenarios, including, e.g., other types of access

networks.

The document is organized as follows. We first provide

a review of related works, and highlight the novelty of our

proposed method, in Section II. We then outline the overall

framework of DeepCog in Section III, and detail the design

of its most critical component, i.e., the loss function, in

Section IV. The quality of the solution is then assessed in

realistic scenarios in Section V. Finally, we draw conclusions

in Section VI.

II. RELATED WORK

Applications to networking problems of machine learning

in general, and of deep learning in particular, are starting to

become popular. Artificial intelligence can indeed be applied

to solve many different problems that emerge in computer

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2959245, IEEE Journal
on Selected Areas in Communications

3

(a) (b)

Fig. 2. The overall DeepCog architecture. (a) Outline and interaction of the DeepCog components. (b) DeepCog neural network encoder-decoder structure.

networks, as highlighted in recent comprehensive surveys on

the topic [9], [10].

In the context of network management, emerging paradigms

like slicing increase substantially the complexity of orches-

trating network functions and resources, at all levels. For

instance, intelligence is needed for the admission control

of new slices: as resources are limited and slicing entails

their strong isolation, this is critical to ensure that the sys-

tem operates efficiently. With potentially hundreds of slices

allocated simultaneously, and a need to anticipate highly

profitable future requests, the decision space for admission

control becomes so large that traditional approaches become

impractical. Solutions based on deep learning architectures

represent here a viable approach [11]. Similar considerations

apply to other aspects of sliced network management, e.g.,

the allocation of computational resources to slices at the radio

access, based on transmission (e.g., modulation and coding

scheme, channel load) and environmental (e.g., signal quality,

hardware technology) conditions [12], or the anticipatory

reservation of Physical Resource Blocks (PRBs) to user traffic

to be served in target network slices [13].

Our specific problem relates to the orchestration of generic

resources (e.g., CPU time, memory, storage, spectrum) to

slices at different network entities, which is tightly linked to

mobile traffic prediction. The literature on forecasting network

traffic is in fact vast [9], [14]. Solutions to anticipate future

offered loads in mobile networks have employed a variety

of tools, from autoregressive models [15]–[17] to information

theoretical tools [18], passing by Markovian models [19] and

deep learning [8], [11], [13], [20], [21].

However, we identify the following major limitations of

current predictors when it comes to supporting resource or-

chestration in mobile networks.

First, predictors of mobile traffic invariably focus on pro-

viding forecasts of the future demands that minimize some

absolute error [9], [14]. This approach leads to predicted

time series that deviate as little as possible from the actual

traffic time series, as exemplified in Fig. 1a for a real-world

case study. While reasonable for many applications, such an

output is not appropriate for network resource orchestration.

As explained in Section I, the operator aims at provisioning

sufficient capacity to accommodate the offered load at all

times, since failing to do so implies high costs in terms of

high subscribers’ churn rates, as well as significant fees for

violating SLAs signed with tenants. Yet, if an operator decided

to allocate resources based on a legacy prediction like that in

Fig. 1a, it would incur into capacity violations most of the time

(as illustrated in the bottom subplot).

Second, with the adoption of network slicing, forecasts must

occur at the slice level, i.e., for specific mobile services in

isolation. However, most traffic predictors, including recent

ones, are evaluated with demands aggregated over all ser-

vices [8], [20], [21]. This is an easier problem, since aggregate

traffic yields smoother and more regular dynamics, hence

previous solutions may not handle well the bursty, diversified

traffic exhibited by each service. The only attempts at an-

ticipating the demands generated by specific mobile services

have been made by using multiple-input single-output (MISO)

autoregressive models [22], and hybrid prediction methods

that incorporate α-stable models and sparsity with dictionary

learning [18].

Third, existing machine learning predictors for mobile traf-

fic typically operate at base station level [8], [21]. How-

ever, NFV operations mainly occur at datacenters controlling

tens (e.g., at the mobile edge) to thousands (e.g., in the

network core) of base stations. Here, prediction should be

more efficient when performed on the aggregate traffic at each

datacenter, where orchestration decisions are taken, rather than

combining independent forecasts from each base station.

Our proposed solution, DeepCog, addresses all of the open

problems above, by implementing a first-of-its-kind predictor

that anticipates the minimum provisioned capacity needed to

cut down SLA violations. This closes the present gap between

traffic prediction and practical orchestration, as it provides

the operator with an explicit capacity forecast that mitigates

underprovisioning in Fig. 1b while minimizing unnecessary

resource reservation. We remark that early versions of the

DeepCog framework were presented in [23] and [24]. Those

preliminary variants of our solution could achieve short-term

capacity forecasting over the next time step, whereas the

complete version presented in this paper supports long-term

capacity prediction over a configurable number of future time

steps.

III. A DEEP LEARNING FRAMEWORK FOR RESOURCE

ORCHESTRATION

The design of DeepCog is outlined in Fig. 2a. Its organiza-

tion is that typical of deep learning systems, and it stems from

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2959245, IEEE Journal
on Selected Areas in Communications

4

(i) properly formatted input data used to build the forecast,

which, in our case, represents the current and past traffic

associated to a specific network slice as a tensor. Such input is

fed to (ii) a deep neural network architecture that extrapolates

and processes input features to provide (iii) an output value:

the capacity forecast. During the training phase, the output is

used to evaluate (iv) a loss function that quantifies the error

with respect to the ground truth, and, in DeepCog, accounts for

the costs associated to resource overprovisioning and service

request denial.

In our network model, we consider that time is divided in

slots, which we denote by t. Let δis(t) be the traffic associated

with slice s that is observed at base station i ∈ N and time t.

A snapshot of the demand of slice s ∈ S at time t is given by

a set δs(t) = {δ1s(t), . . . , δ
N
s (t)}, and provides a global view

of the traffic for that slice at time t across the whole network.

We let N denote the set of N base stations in the network,

and M the set of M < N datacenters. For each slice s ∈
S , base stations are associated to datacenters via a surjective

mapping fs : N → M, such that a datacenter j ∈ M serves

the aggregated load of slice s for all of the associated bases

stations1. With this mapping, the traffic for slice s processed

by datacenter j at time t is given by djs(t) =
∑

i|fs(i)=j δ
i
s(t).

Then, the set of demands across all datacenters is given by

ds(t) = {d1s(t), . . . , d
M
s (t)}.

Let us denote the allocated capacity for slice s at data-

center j and time t as cjs(t), and the set of capacities at all

j ∈ M as cs(t) = {c1s(t), . . . , c
M
s (t)}. Then, the capacity

forecast problem is that of computing a constant capacity

c̄s(t, Th) = {c̄1s(t, Th), . . . , c̄
M
s (t, Th)} that is allocated in

the network datacenters over a time horizon Th, i.e., through

an interval between the present time t and a future time

t + Th. In practice, this models the typical situation where

the resource reconfiguration frequency is limited (e.g., by the

NFV technology), and the operator must decide in advance

the amount of resources that will stay assigned to a slice until

the next reallocation takes place. The time horizon Th thus

corresponds to the reconfiguration period, and the allocated

capacity is such that cjs(t) = c̄js(t, Th) ∀j ∈ M, t ∈ [t, t+Th].

The forecast builds on knowledge of the previous Tp traffic

snapshots δs(t−1), . . . , δs(t−Tp). The quality of the capacity

forecast c̄s(t, Th) is measured by means of a suitable loss func-

tion ℓ (c̄s(t, Th),ds(t), . . . ,ds(t+ Th)). This function ℓ(·)
determines the compound cost of overprovisioning and un-

derprovisioning network resources at the target datacenters, as

produced by allocating a constant capacity c̄s(t, Th) when the

actual time-varying demand is in fact ds(t), . . . ,ds(t+ Th).

Below, we present each of the components of the frame-

work, and discuss its mapping to the elements of a 5G network

architecture running cognitive resource management.

1We remark that DeepCog works for any arbitrary mapping, including, e.g.,
flows from a slice in the same base station being split across datacenters, or
associations among base stations and datacenters varying over time. As a
matter of fact, DeepCog’s learning process is based exclusively on the traffic
load at each individual datacenter and is thus independent of the actual sources
generating such traffic.

A. The Neural Network

DeepCog leverages a deep neural network structure com-

posed of suitably designed encoding and decoding phases,

performing a capacity forecasting prediction over a given

time horizon. The structure is general enough that it can be

trained to solve the capacity forecast problem for (i) network

slices dedicated to different services with significantly diverse

demand patterns, (ii) any datacenter configuration, and (iii)

any time horizon Th. The hyperparameters of the neural

network have been tuned through extensive simulation and

testing.

The design of the neural network structure in DeepCog is

inspired by recent breakthroughs [25] in deep learning for

image and video processing. As summarized in Fig. 2b, the

network is composed of an encoder that receives an input

representing the mobile traffic data δs(t− 1), . . . , δs(t− Tp)
and maps important spatial and temporal patterns in such

data onto a low-dimensional representation. Intuitively, the

encoder extracts the relevant features from the input traffic

tensors δs(t − 1), . . . , δs(t − Tp) and the decoder leverages

such features to generate a capacity forecast that is tailored

to a given combination of slice, prediction time horizon, and

datacenter class; e.g., datacenters deployed close to the radio

access will show different features from those co-located with

the Internet gateways.

The result of the encoder undergoes a flattening process

that converts the 3D (space and time) tensor data into a

unidimensional vector format. This is the input format required

by the fully connected layers that form the decoder, which then

generates the final capacity forecast c̄s(t, Th) at the target set

of datacenters M. Below, we detail the encoder and decoder

implementations, and discuss the training procedure.

1) The Encoder: The encoder is composed by a stack of

three three-dimensional Convolutional Neural Network (3D-

CNN) layers [26]. Generic Convolutional Neural Networks

(CNNs) are a specialized kind of deep learning structure that

can infer local patterns in the feature space of a matrix input.

In particular, two-dimensional CNNs (2D-CNNs) have been

extensively utilized in image processing, where they can com-

plete complex tasks on pixel matrices such as face recognition

or image quality assessment [27]. 3D-CNNs extend 2D-CNNs

to the case where the features to be learned are spatiotemporal

in nature, which adds the time dimension to the problem and

transforms the input into a 3D-tensor. Since mobile network

traffic exhibits correlated patterns in both space and time, our

encoder employs 3D-CNN layers2.

Formally, the 3D-CNN layers receive a tensor input

T (δs(t− 1)) , . . . , T (δs(t− Tp)), where T (·) is a transfor-

mation of the argument snapshot into a matrix. This input is

processed by three subsequent 3D-CNN layers. Each neuron

of these layers runs a filter H (
∑

τ I(τ) ∗K(τ) + b) where

I(τ) is the input matrix passed to the neuron (e.g., I(τ) =

2We have employed CNNs instead of Recurrent Neural Networks (RNNs)
(typically used for forecasting application) because the mobile load at a time
instant t mainly depends on previous Tp instants and not on all the past values
(as confirmed by our analysis). For this reason, CNNs provide us enough
temporal memory while being cheaper to train in terms of computational cost
compared with RNNs.

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2959245, IEEE Journal
on Selected Areas in Communications

5

T (δs(τ)) at the very first layer, for slice s and generic time

τ), ∗ denotes the 3D convolution operator, K(t) is the kernel

of filters, H(·) is a non-linear activation function, and b

is a bias vector. We use two different kernel configurations

K(τ), as shown in Fig. 2b: a 3 × 3 × 3 kernel for the first

3D-CNN layer, and a 6 × 6 × 6 kernel for the second and

third layers. These settings allow limiting the receptive field,

i.e., the portion of input analyzed by each neuron, to small

regions: in presence of strong local correlation of the input

data, this approach is known to yield good performance with

fairly limited training, in particular compared to Recurrent

Neural Networks. As for the choice of the activation function,

many different options have been proposed in the literature,

spanning from linear functions to tanh, sigmoid or Rectified

Linear Unit (ReLU). Among these, we select ReLU, and set

H(x) = max (0,x), which provides advantages in terms of

discriminating performance and faster learning [28]. Finally,

b is randomly set at the beginning of each training phase.

The second and third 3D-CNN layers are interleaved with

Dropout layers: such layers regularize the neural network and

reduce overfitting [28] by randomly setting to zero a number

of output features from the preceding layer during the training

phase. The dropout rate defines the probability with which

output features undergo this effect. During training, we employ

two Dropout layers with dropout rate equal to 0.3.

2) The decoder: The decoder uses Multi-Layer Perceptrons

(MLPs) [29], a kind of fully-connected neural layers, where

every neuron of one layer is connected to every neuron of the

next layer. This provides the ability to solve complex function

approximation problems. In particular, MLPs are able to learn

global patterns in their input feature space [30], allowing the

neural network structure to forecast the targeted load value

leveraging the local features extracted by the encoder. In our

structure, each layer performs an operation H′(x · W + b),
where x is the MLP layer input vector, W a weight matrix

related to the neurons of each layer, and b the bias vector.

W plays a similar role to K(t) in the encoder part: its values

drive the prediction through the layers of the decoding part.

As for the activation functions H, we employ ReLU for all

MLP layers except for the last one, where a linear activation

function is used since the desired output takes real values.

The last linear layer can be configured to produce multiple

predictions in parallel, each matching the aggregate capacity

required by a subset of base stations, thus allowing to forecast

the needed capacity for different datacenters comprising a

subset of base stations. Ultimately, this organization makes

the DeepCog neural network capable of predicting per-slice

capacity requirements at datacenter level, in a way that can

adapt to any configuration of M and to any time horizon Th.

3) The training procedure: We leverage the popular Adam

optimizer, which is a Stochastic Gradient Descent (SGD)

method that provides faster convergence compared to other

techniques [31]. SGD trains the neural network model, eval-

uating at each iteration the loss function ℓ(·) between the

forecast and the ground truth, and tuning the model parameters

in order to minimize ℓ(·). For the configuration of the Adam

optimizer, we use the default configuration with a learning rate

of 5× 10−4.

An important element that concerns the training of the

DeepCog architecture is that the encoder and the decoder

described in Section III-A1 and Section III-A2 have inde-

pendent roles. Therefore, while the decoder heavily depends

on the forecast specifications, the encoder does not, and is

agnostic to the final usage of the extracted features. This fact

allows adopting a transfer learning approach during training:

instead of treating the two blocks as a whole (and performing

the training over the full system for all the possible slices,

datacenter classes and horizons), we can train them separately.

Specifically, an horizon-independent encoder can be trained

on past traffic tensors at maximum time granularity, and then

reused in combination with dedicated decoders tailored to

each Th value. Beside reducing the training time, this strategy

reduces the need for neural-network-wide training to different

settings of slice and datacenter only.

B. Arrangement of input data

The input is composed by measurement data generated in

a specific network slice, and recorded by dedicated probes

deployed within the network infrastructure. Depending on the

type and location of the probe, the nature of the measurement

data may vary, describing the demands in terms of, e.g.,

signal quality, occupied resource blocks, bytes of traffic, or

computational load on VNFs. DeepCog leverages a set of

transformations to map any type of slice traffic measurements

into a tensor format that can be processed by the learning

algorithm.

The 3D-CNN layer adopted as the first stage of the decoder

requires a multidimensional tensor input. We thus need to

define the transformation T (·) of each traffic snapshot into

a matrix. Note that 3D-CNN layers best perform in presence

of a tensor input that features a high level of local correlation,

so that neurons operate on similar values. In image processing,

where close-by pixels typically have high correlation, this is

easily solved by treating the pixel grid as a matrix. In line

with this strategy, the current common practice in mobile

network traffic prediction is to leverage the geographical

locations of the base stations, and assign them to the matrix

elements so that their spatial proximity is preserved as much

as possible [8], [9]. However, this approach does not consider

that correlations in mobile service demands at a base station

level do not depend on space, rather on land use [32]: base

stations exhibiting strongly correlated network slice traffic may

be far apart, e.g., covering the different train stations within

a same large city. Thus, we aim at creating a tensor input

whose neighboring elements correspond to base stations with

strongly correlated mobile service demands. To this end, we

construct the mapping of base stations into a matrix structure

as follows.

• For each base station i, we define its historical time

series of total traffic as τ i = {δi(1), . . . , δi(t − 1)},

where δi(t) =
∑

s δ
i
s(t). Then, for each pair i and j,

we determine the similarity of their recorded demands

by computing SBD
ij = fSBD(τ

i, τ j), where fSBD(·) is the

shape-based distance, a state-of-the-art similarity measure

for time series [33]. All pairwise distances are then stored

in a distance matrix D = (SBD
ij) ∈ R

M×M .

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2959245, IEEE Journal
on Selected Areas in Communications

6

x∗

Capacity Forecast

C
o

s
t

γj

βs

(a)

x∗ + ǫαsj x∗ + 1 x∗ + (1 + ǫ)αsj

Capacity Forecast

1
−
ǫα

sj
α
sj

C
o

s
t

(b)

Fig. 3. Graphical representations of the α-OMC loss function. (a) Ideal model. (b) Actual implementation in (1).

• We compute virtual bidimensional coordinates pi for

each base station i so that the values in the distance

matrix D are respected as much as possible. Formally,

this maps to an optimization problem whose objective is

minx1,...,xM

∑

i<j(‖pi−pj‖−SBD
ij)2, efficiently solved

via Multi-Dimensional Scaling (MDS) [34].

• We match each point pi to an element e of the input

matrix I, again minimizing the total displacement. To this

end, we: (i) quantize the virtual surface encompassing all

points pi so that it results into a regular grid of N cells;

(ii) assume that each cell is an element of the input ma-

trix; (iii) compute the cost kie of assigning a point pi to

element e as the Euclidean distance between the point and

the cell corresponding to e. We then formalize an assign-

ment problem with objective mina
∑

i∈N

∑

e∈I
kiexie,

where xie ∈ [0, 1] is a decision variable that takes value

1 if point pi is assigned to element e, and must fulfill
∑

i∈N xie = 1 and
∑

e∈I
xie = 1. The problem is solved

in polynomial time by the Hungarian algorithm [35].

The solution of the assignment problem is the transformation

T (·) of the original base stations into elements of the matrix

I. The mapping function T (·) allows translating a traffic

snapshot δs(t) into matricial form. Applying this to snapshots

at different times, δs(t− 1), . . . , δs(t−T), we can thus build

the tensor required by the entry encoder layer in Fig. 2b.

C. The Output function

DeepCog is designed for flexibility, and can be used for

different orchestration scenarios. This is achieved thanks to

an adaptable last layer of the deep neural network, and a

configurable loss function. In general, the learning algorithm

returns a forecast of the capacity required to accommodate the

future demands for services associated to a specific network

slice. This generic definition of output can then be applied to

different orchestration use cases that may differ in the traffic

aggregation level at which the resource configuration takes

place, and/or in the frequency at which resource reallocation

can be realized.

For instance, the anticipatory assignment of baseband pro-

cessing units to network slices in a Cloud Radio Access Net-

work (C-RAN) datacenter requires a prediction of the capacity

needed to accommodate the traffic of a few tens of base

stations; instead, reserving memory resources for a specific

network slice at a core network datacenter implies forecasting

capacity for the data sessions of subscribers associated to

hundreds of base stations. The output format of DeepCog can

accommodate any datacenter layout, by tailoring the last linear

layer of the neural networks to the specific requirements of the

layout (as discussed in Section III-A2).

Also, as discussed previously, the time horizon over which

the forecast is performed is another relevant system parameter,

which depends on NFV technology limitations and current

trends in commoditization of softwarized mobile network.

When the technology limitations do not allow frequent recon-

figuration opportunities, resources need to be allocated over

long periods, e.g., of tens of minutes or even hours. In this

case, forecasting over long-term horizons provides the operator

with information on the constant capacity to be allocated

during long intervals. To realize this, DeepCog operates on

configurable time horizons, thanks to the flexible loss function

that we will discuss next.

IV. α-OMC

One of the key components of the system proposed in

the previous section is the loss function, denoted by ℓ(·).
This function determines the penalty incurred when making a

prediction error. In this paper, we propose a novel loss function

that is tailored to the specific requirements of the capacity

forecast problem. Our design of ℓ(·) accounts for the costs

resulting from (i) forecasting a lower value than the actual

offered load, which leads to an SLA violation due to the provi-

sioning of insufficient resources, (ii) predicting a higher value

than the actual one, which leads to overprovisioning, allocating

more resources than those needed to meet the demand. In order

to ensure that we drive the system towards an optimal trade-off

between overprovisioning and SLA violations, over a generic

time horizon Th, ℓ(·) must account for the penalty inflicted

in each case. In what follows, we describe the design of α-

OMC (Operator Monetary Cost), a loss functions that provides

DeepCog with the capability of optimizing the overall running

costs of the system.

A. Loss function design

In DeepCog, the loss function steers the behavior of the

neural network by adjusting the weights of the neurons ac-

cording to the error between the estimated value and the real

one. To achieve the objective of minimizing the overall cost,

a custom loss function for the capacity forecasting problem

is composed by a term f(x, x∗) that deals with the resource

overprovisioning penalty, and a term g(x, x∗) that models

the cost of resource violations. The variable x represents the

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2959245, IEEE Journal
on Selected Areas in Communications

7

allocated resources at a given time interval, while x∗ is the

real demanded load for the same period. So the overall cost is

due by the discrepancy between x and x∗ in any time horizon.

The shape of overall cost function f(x, x∗) + g(x, x∗) is

depicted in Fig. 3a. A perfect algorithm (i.e., an oracle) always

keeps the system in the optimal operation point x = x∗ where

no penalty is introduced, i.e., f(x∗, x∗) = g(x∗, x∗) = 0. Of

course, errors are inherent to predictions, and it is very unlikely

that the forecast perfectly matches the real demand: hence, a

penalty value is back-propagated depending on whether x is

above or below the target operation point x∗.

1) g(x, x∗), a reactive approach to SLA violations: When

the orchestrated resources are less than those needed in re-

ality (i.e., x < x∗) the network operator pays a monetary

compensation to the tenant. We assume an SLA that enforces

a proportional compensation depending on the number of time

intervals in which an operator fails to meet the requirements

set by a tenant due to insufficient capacity allocated to the

slice. Thus, SLA violations determine a fixed cost for the

operator at every time interval where the tenant demand is

not satisfied. Accordingly, we let the system learn that the

operation point x∗ is actually higher than the estimated one

by applying a penalty βs as soon as the estimation falls below

the real value. The parameter βs can be customized to the

needs of the slice s ∈ S: higher values may be used for cases

where reliability is paramount like, e.g., in URLLC network

slices; instead, lower values can be applied for slices where

KPI commitments are provided over longer time intervals.

Note that higher βs values are likely to bring the system

toward x > x∗, incurring hence in higher deployment costs,

as discussed next.

2) f(x, x∗), a monotonically increasing cost for resource

overprovisioning: While SLA violations depend on the agree-

ments between the tenants and the operator, the overprovision-

ing cost solely depends on the network operator, and more

specifically on the deployment costs associated with excess

allocated capacity. We assume that such a cost grows with

the amount of unused capacity at each time interval, and

model it as a positive monotonic function that is only applied

when x > x∗: the higher the resource provisioning error, the

more (unnecessarily) expensive is the deployment. The exact

expression of f(x, x∗) may vary, and one could consider, e.g.,

linear, super-linear, or exponential shapes. For DeepCog, we

design α-OMC to use a linear function, as shown in Fig. 3a.

The linear scaling factor γj is configurable by the operator, and

represents the monetary cost of the excess resource allocation.

The cost depends on the specific datacenter j ∈ M at which

the capacity forecasting takes place: for instance, spectrum

resources at the edge are typically scarcer and more expensive

to deploy than computational resources in a network core

datacenter. In case of expensive resources (characterized by

a large γj), a positive forecasting error will have a higher

impact, favoring a capacity forecast with a lower level of

overprovisioning.

3) Balancing the two cost contributions.: Overall, the

amount of resources that a network operator is willing to

allocate depends on the cost that it has to pay when failing

to meet the demands for a given slice (given by βs) and the

cost associated with adding extra resources at a specific data-

center (given by γj). These two parameters, βs and γj , push

the capacity allocations towards opposite directions, namely

overdimensioning and underdimensioning, respectively. Rather

than their absolute values, what really matter for the resulting

allocation is the ratio between the two parameters, which

determines the trade-off between overdimensioning and under-

dimensioning. Accordingly, in the following we express the

custom loss as a function of a single parameter αsj
.
= βs

γj
.

We remark that αsj indicates the monetary costs of SLA

violations with respect to the overprovisioning: failing to

meet the slice requirements once costs as much as allocating

αsj units of excess capacity. Thus, a higher αsj implies

higher SLA violation costs relative to the deployment (i.e.,

overprovisioning) cost. A mobile network operator can easily

set this parameter based on its deployment costs, SLA fees,

and market strategies.

Another important remark is that the SGD method used to

train the neural network does not work with constant or step

functions, and requires that the loss function be differentiable

in all its domain. We solve this problem by introducing

minimum slopes of very small intensity ǫ for x < x∗ and

at x = x∗. We name the resulting loss function Operator

Monetary Cost, which has a single configurable parameter αsj .

The final expression of α-OMC is

α-OMC(x, x∗) =











αsj − ǫ (x− x∗) if x ≤ x∗

αsj −
1
ǫ
(x− x∗) if x∗ < x ≤ x∗ + ǫαsj

x− x∗ − ǫαsj if x > x∗ + ǫαsj .
(1)

Fig. 3b provides a sample illustration of (1) above.

The final loss function ℓ(·) then measures the quality of the

forecast over the time horizon Th, by applying the α-OMC

expression over multiple time intervals as follows:

ℓ (c̄s(t, Th),ds(t), . . . ,ds(t+ Th)) =

∑

j∈M

Th
∑

τ=0

α-OMC
(

c̄js(t, Th), d
j
s(t+ τ)

)

.
(2)

For the sake of readability and without loss of generality,

in the remainder of the paper we will employ a constant

βs = β across slices and a constant γj = γ across datacenter

deployment, leading to αsj = α for all s ∈ S, j ∈ M.

B. Correctness and convergence

We now analyze the proposed loss function in terms of (i)

correctness, i.e., its capability of achieving a performance that

is close to the optimal, and (ii) convergence, i.e., the time it

requires to learn such a correct strategy.

In Fig. 4, we run DeepCog in the representative network

resource management case studies that are later detailed in

Section V, where a slice is dedicated to one particular mobile

service and runs in a specific class of network datacenter. For

each case study, DeepCog forecasts a given level of capacity

to be allocated which leads to an associated monetary cost. In

order to investigate the correctness of the solution, we vary

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2959245, IEEE Journal
on Selected Areas in Communications

8

the provisioned capacity by adding to or subtracting a fixed

offset from the capacity indicated by DeepCog.

The curves of Fig. 4 illustrate the variation of the monetary

cost (in the y axis) as the offset is shifted (in the x axis),

where increasingly positive (respectively, negative) values on

the x axis correspond to a higher (respectively, lower) level

of capacity provisioning with respect that suggested by our

solution. The results prove that DeepCog always identifies the

capacity allocation that minimizes the monetary cost for the

operator under the inherently inaccurate prediction, as both a

higher and a lower level of overprovisioning leads to a greater

cost. This holds under any combination3 of target mobile

service, datacenter class, and system settings α or Th, which

demonstrates the high consistency of our solution in balancing

costs caused by SLA violations and overprovisioning.

We next assess the convergence properties of the loss

function that drives DeepCog, by observing its behavior over

time. Specifically, we measure the normalized cost of the

solution identified by our learning algorithm, and compare it

against that returned by the same neural network trained with

legacy loss functions.

Fig. 5 shows how the average normalized cost of network

operation varies during the training phase for different α, ser-

vices and datacenter classes. While the α-OMC loss function

minimizes the monetary cost of the operator in less than 20
epochs, both MAE and MSE converge to a fixed fee that grows

as α increases. This confirms that classical loss functions are

not effective when dealing with capacity forecasting, resulting

in high penalties for operators. The results are consistent

across all of the different configuration scenarios we tested.

V. PERFORMANCE EVALUATION

In order to evaluate the performance of DeepCog in realistic

settings, we consider the mobile network infrastructure of a

major operator in a large metropolitan region. The area under

study covers around 100 km2 with a resident population of

more than 2 millions, and is surrounded by a conurbation

of 11 millions inhabitants who often commute to it. We run

DeepCog on real-world measurement data of an operator with

a market share of 35% in the target region that captures

the traffic generated by millions of users. The data were

collected by monitoring the GPRS Tunneling Protocol (GTP)

via dedicated probes deployed at the network gateway and the

classification of IP flows into services was performed via Deep

Packet Inspection (DPI) with proprietary models developed

by the network operator. The traffic demands, expressed in

bytes, refer to individual mobile services; they are aggregated

at the antenna sector level and over intervals of 5 minutes.

The demands capture the highly heterogeneous and time-

varying loads that characterize real-world mobile network

deployments, with differences in the offered traffic volume

of up to two orders of magnitude between antenna sectors.

We consider services that belong to different categories,

including video streaming, messaging and social networks.

3Fig. 4 shows results for α in the range [0.5, 3], and two exemplary Th

values, 5 and 30 minutes. Similar curves characterize all α values and
prediction horizons (up to 8 hours) we tested.

These services impose a broad range of requirements into the

network. For instance, video streaming services are consumed

ubiquitously, they have significant bandwidth requirements

(e.g., up to 6 Mbps for a 1080p video in YouTube [36]) as

well as latency constraints to avoid interruptions while playing

the video [37], and they also require significant data center

resources from the server side [36]. Messaging services, in-

stead, have a large component of uplink traffic; overall, it has a

rather relaxed requirements in terms of bandwidth and latency,

as it does not involve any interactive communications. Social

networks need considerable bandwidth and with some latency

requirements; according to [38], a bandwidth of 8 Mbps and

an access delay not exceeding 100 ms are required to achieve

a high service quality. Beyond the specific requirements of

each service, what really matters in the context of this paper

is the fact that these are services of a very different nature with

highly diverse requirements, and therefore they are likely to

be served by different slices in a mobile network supporting

network slicing.

We employ the measurement data to design three case stud-

ies combining several popular mobile services and different

classes of network datacenters4. Each class is defined by the

network location and number of served eNodeBs, ranging from

centralized datacenters located in the core and serving many

eNodeBs to more distributed ones located in the edge and

serving a smaller number of eNodeBs. By selecting a diverse

set of case studies, we can assess the DeepCog flexibility

serving heterogeneous NFV scenarios, comprising different

services and datacenter classes (C-RAN, MEC and core). In

a first case study, we consider that a slice is instantiated for

the incumbent video streaming service, i.e., YouTube, at C-

RAN datacenters in the target metropolitan area, each located

in proximity of the radio access and performing baseband

processing and scheduling for around ten eNodeBs. In the sec-

ond case study, we look into Mobile Edge Computing (MEC)

datacenters that handle the traffic of around 70 eNodeBs each,

where a dedicated slice accommodates the traffic generated

by Snapchat, a favored messaging app. The third case study

focuses on a network slice dedicated to social network services

provided by Facebook that are run at a core network datacenter

controlling all 470 4G eNodeBs in the target metropolitan area.

The three case studies cover applications with diverse re-

quirements in terms of bandwidth and latency; also, they entail

very different spatiotemporal dynamics of the mobile traffic,

as the considered services feature different loads and activity

peaks [40]. In addition, the datacenter classes we consider

have dissimilar geographical coverage and aggregated traffic

volumes, as they serve the demands associated to a variable

number of antennas, from ten to several hundreds. Overall, the

three case studies considered for the DeepCog’s performance

evaluation are very useful to understand the effect of network

slicing on the network operation costs. In fact, our results

illustrate for the first time the impact of the slice isolation

requirements –critical to future softwarized networks– on

services that have a dominant role in todays traffic and are

4The internal organization of the mobile network – hence the demand
recorded at each datacenter – is inferred by adopting the methodology
proposed in [39].

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2959245, IEEE Journal
on Selected Areas in Communications

9

-0.2 -0.1 0 0.1 0.2
Offset

0

1

2

3

4

5

6
N

o
rm

a
liz

e
d

m
o

n
e

ta
ry

c
o

s
t

α = 0.5

α = 2

α = 3

103x

(a) Facebook, core datacenter

-0.2 -0.1 0 0.1 0.2
Offset

0

1

2

3

4

5

6

N
o

rm
a

liz
e

d
m

o
n

e
ta

ry
c
o

s
t

α = 0.5

α = 2

α = 3

103x

(b) Snapchat, MEC datacenter

-0.2 -0.1 0 0.1 0.2
Offset

0

1

2

3

4

5

6

N
o

rm
a

liz
e

d
m

o
n

e
ta

ry
c
o

s
t

α = 0.5

α = 2

α = 3

103x

(c) YouTube, C-RAN datacenter

-0.2 -0.1 0 0.1 0.2
Offset

0

2

4

6

8

10

12

N
o

rm
a

liz
e

d
m

o
n

e
ta

ry
c
o

s
t

103x

(d) Facebook, core datacenter

-0.2 -0.1 0 0.1 0.2
Offset

0

2

4

6

8

10

12

N
o

rm
a

liz
e

d
m

o
n

e
ta

ry
c
o

s
t

103x

(e) Snapchat, MEC datacenter

-0.2 -0.1 0 0.1 0.2
Offset

0

2

4

6

8

10

12

N
o

rm
a

liz
e

d
m

o
n

e
ta

ry
c
o

s
t

103x

(f) YouTube, C-RAN datacenter

Fig. 4. Monetary cost (aggregated over time and normalized by the cost of one capacity unit) incurred when the overprovisioning level is shifted from that
selected by DeepCog (at the abscissa origin). Each plot refers to one case study, i.e., a combination of (i) mobile service associated to a dedicated slice and
(ii) datacenter type. Top row: Th = 5 minutes, bottom row: Th = 30 minutes.

1 20 40 60 80 100

Training Epochs

0

0.1

0.2

0.3

0.4

N
o
rm

a
liz

e
d

C
o
s
t α-OMC MAE MSE

(a) Facebook, Core, α = 0.5

1 20 40 60 80 100

Training Epochs

0

0.5

1

1.5

N
o
rm

a
liz

e
d

C
o
s
t α-OMC MAE MSE

(b) Snapchat, MEC, α = 2

1 20 40 60 80 100

Training Epochs

0

0.5

1

1.5

2

N
o
rm

a
liz

e
d

C
o
s
t α-OMC MAE MSE

(c) YouTube, C-RAN, α = 3

Fig. 5. Average cost versus the learning epochs, when the DeepCog neural network architecture is trained with α-OMC, MSE and MAE loss functions.

expected to keep playing a very relevant role in future mobile

networks. In our tests, we do not parametrize different excess

resource costs for each datacenter nor different SLA violation

penalties for diverse services, leading to homogeneous α

settings (i.e., αsj = α for all s ∈ S, j ∈ M). However,

since DeepCog provisions resources for each slice and each

datacenter independently, by evaluating different α values our

results provide insights on the behavior of heterogeneous α

settings as well.

As discussed in Section III, DeepCog outputs a capacity

forecast within a variable time-horizon Th. We measure this

time in the number of steps it comprises, where each step

corresponds to the 5 mins granularity of our measurement

data. In our evaluation Th ranges from 5 minutes (which maps

to a next-step prediction) to 8 hours (which corresponds to a

forecast with a 96 time steps look-ahead). These are reasonable

values in our context, since resource reallocation updates

in the order of minutes are typical for computational and

memory resources in architectures implementing NFV [41],

and are in line with those supported by any state-of-the-art

Virtual Infrastructure Manager (VIM) [42]. Conversely, larger

intervals are more suitable for operations involving manual

intervention, e.g., spectrum leasing.

In all cases, we use the previous 30 minutes of traffic (i.e.,

Tp = 6) as the DeepCog input, arranged in a 47× 10 matrix

as an input. This configuration proved to yield the best results

when confronted to a number of other design strategies for

the input that we explored, including longer, shorter, or non-

continuous historical data time intervals. Capacity is predicted

in terms of bytes of traffic, which is a reasonable metric to

capture for resource utilization in actual virtual network func-

tions [43], and is independent of the exact type of resources

relevant for the mobile operator in each case study. We employ

two months of mobile traffic data for training, two weeks of

data for validation and another two for the actual experiments.

This setting is also used for all benchmark approaches. All

results are derived with a high level of confidence and low

standard deviation.

A. Gain over state-of-the-art traffic predictors

We first focus on the particular case of next-step prediction,

i.e., Th = 5 minutes, as this benchmark lets us compare

our framework against state-of-the-art solutions that can only

perform a forecast for the following time interval. We compare

DeepCog against four benchmarks: (i) a naive technique that

forecasts the future offered load by replicating the demand

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2959245, IEEE Journal
on Selected Areas in Communications

10

Youtube/C-RAN Snapchat/MEC Facebook/Core
0

0.8

1.6

2.4

3.2

4
N

o
rm

a
liz

e
d

M
o

n
e

ta
ry

C
o

s
t

103x

Youtube/C-RAN Snapchat/MEC Facebook/Core
0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
M

o
n

e
ta

ry
C

o
s
t

103x

Naive Infocom17 Mobihoc18 MAE DeepCog

Overprovisioning SLA violations

Fig. 6. Comparative evaluation of DeepCog with four benchmarks in three representative case studies. The monetary cost (normalized by the cost of one
capacity unit) incurred by the operator is split into costs due to overprovisioning (dark) and SLA violations (light). Left: α = 2. Right: α = 0.5.

recorded at the same time during the previous week; (ii) the

first approach proposed to predict mobile traffic based on a

deep learning structure, referred to as Infocom17 [8]; (iii)

a recent solution for mobile network demand prediction that

leverages a more complex deep neural network, referred to as

MobiHoc18 [21]; (iv) a reduced version of DeepCog, which

replaces α-OMC with a legacy Mean Absolute Error (MAE)

loss function5.

The results achieved in our three reference case studies

by DeepCog and by the four benchmarks above are shown

in Fig. 6. The plots report the normalized monetary cost for

the operator, broken down into the expenses for unneces-

sary resource allocation (i.e., overprovisioning) and fees for

unserviced demands (i.e., SLA violations). We observe that

DeepCog yields substantially lower costs than all other solu-

tions. Indeed, the cost incurred by DeepCog for α = 2 ranges

between 15% (Facebook/Core) and 27% (Youtube/C-RAN) of

the cost provided by the best competitor, depending on the case

study. Infocom17, as all other benchmarks, targets mobile

network traffic prediction, whereas DeepCog aims at forecast-

ing capacity. As a result, DeepCog balances overprovisioning

and SLA violations so as to minimize operation expenses,

while Infocom17 is oblivious to such practical resource

management considerations. In other words, legacy predictors

follow as closely as possible the general trend of the time

series and allocate resources based on their prediction, which

leads to systematic SLA violations that are not acceptable

from a market viewpoint and determine huge fees for the

operator. Instead, DeepCog selects the appropriate level of

overprovisioning that, by suitably overestimating the offered

load, minimizes monetary penalties (see Fig. 4). Indeed, even

when choosing a low value such as α = 0.5, which inflicts

a small penalty for a SLA violation, the cost incurred by

DeepCog is 64% of that incurred by the best performing

benchmark.

B. Comparison with overprovisioned traffic prediction

In the light of the above results, a more reasonable approach

to resource allocation could be to consider a traditional mobile

traffic prediction as a basis, and adding some overprovisioning

offset on top of it. In order to explore the effectiveness of such

an approach, we design and implement several variants to MAE,

as follows.

5We also experimented with other popular loss functions, e.g., Mean
Squared Error (MSE), with comparable results, omitted for space reasons.

A first variant adds an a-posteriori constant overprovision-

ing offset to the MAE output. This strategy, referred to as

MAE-post, requires selecting a value of the static offset,

which is then added to the predicted traffic. We dimension

the offset as a certain percentage of the peak traffic activity

observed in the whole historical data, and set it at 5%,

which we deem a reasonable value in presence of a decently

accurate prediction. Alternatively, we also consider a best-

case version of this solution, named MAE-post-best, where

an a-posteriori overprovisioning is chosen by performing an

exhaustive search over all possible offset values and selecting

the one that minimizes the loss function ℓ(·).

A second variant accounts for some level of overprovision-

ing in a preemptive fashion, by introducing the offset during

the deep neural network training. To this end, the MAE-pre

solution replaces the MAE loss function with a new loss

function O+ 1
M

∑

j∈M |cjs(t)−djs(t)|, where O denotes the a-

priori overprovisioning offset. Also in this case, we set O equal

to 5% of the peak traffic in the historical data. To compare

against the best possible operation of this scheme, we also

consider a MAE-pre-best variant where O is set equal to the

average overprovisioning level provided by DeepCog for the

test period.

We remark that the MAE-post-best and MAE-pre-best

approaches are oracles and not feasible in practice, since

they require knowledge of the future to determine the best a-

posteriori values for the offset and the value of O, respectively.

Yet, they provide a benchmark for comparing the performance

of DeepCog against optimal solutions that rely on traditional

mobile network traffic prediction.

Fig. 7 shows the relative performance of the four variants

above with respect to that attained by DeepCog, for Th = 5 min

(left) and Th = 45 min (right). The figure shows the ovepro-

visioned capacity, unserviced traffic, and total economic cost

incurred by the operator relative to the performance offered by

DeepCog (in percentage). For Th = 5 min, the results highlight

how using a static overprovisioning in combination with a

traditional traffic prediction is largely suboptimal, both when

the additional offset is considered preemptively or a-posteriori.

Indeed, the two practical solutions considered, i.e., MAE-post

and MAE-pre, cause SLA violations that are two- to three-

fold more frequent than that incurred into by DeepCog,

resulting in an economic cost that is 140% to 400% higher.

Interestingly, even when parametrized with the best possible

offsets, the approaches based on legacy traffic prediction

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2959245, IEEE Journal
on Selected Areas in Communications

11

Youtube/C-RAN Snapchat/MEC Facebook/Core

-100

0

100

200

300

R
e
l.

O
ve

rp
ro

v
is

io
n
in

g
(%

)

Th = 5 mins

-1000

-500

0

500

1000

1500

2000

R
e
l.

V
io

la
ti
o
n
s

(%
)

Youtube/C-RAN Snapchat/MEC Facebook/Core

-100

0

100

200

300

R
e
l.

O
ve

rp
ro

v
is

io
n
in

g
(%

)

Th = 45 mins

-1000

-500

0

500

1000

1500

2000

R
e
l.

V
io

la
ti
o
n
s

(%
)

Youtube/C-RAN Snapchat/MEC Facebook/Core
-100

0

100

200

300

400

500

R
e
l.

N
o
rm

.
M

o
n
e
ta

ry
C

o
s
t
(%

)

179.6165.7

0.4 2.0

145.6139.5

21.1 29.1

443.3

331.1

11.6
62.9

(a) α = 2, Th = 5 minutes

Youtube/C-RAN Snapchat/MEC Facebook/Core
-100

0

100

200

300

400

500

R
e
l.

N
o
rm

.
M

o
n
e
ta

ry
C

o
s
t
(%

)

188.4179.6

4.8 9.2

188.4
158.0

24.9 51.6

236.0228.6

-30.8 -19.6

(b) α = 2, Th = 45 minutes

MAE-post MAE-pre MAE-post-best MAE-pre-best
Overprovisioning Violations

Fig. 7. Relative performance of overprovisioned traffic predictors, expressed as a percent of the cost attained by DeepCog. Top: relative overprovisioning and
SLA violations. Bottom: relative monetary cost. Results refer to α = 2 and prediction horizons of 5 (left) and 45 (right) minutes.

cannot match the performance of DeepCog: MAE-post-best

and MAE-pre-best dramatically reduce the penalties of their

viable counterparts, yet lead to monetary costs that are up to

60% higher than those of DeepCog.

The results for Th = 45 min6, show that the above considera-

tions hold across different values of the prediction horizon.The

advantage over feasible overprovisioned traffic predictors such

as MAE-pre or MAE-post is aligned with that observed under

a next-step prediction, as such solutions increase the overall

cost by 188% to 236%. When considering a long horizon of

45 minutes, oracle methods based on overprovisioning like

(i.e., MAE-pre-best and MAE-post-best) can outperform

DeepCog, further reducing the operator cost by 19% to 30%.

This is due to the fact that, when prediction must be performed

with significant time advance, the accuracy of DeepCog cannot

be as high as an oracle that knows future demand and has

hence a significant advantage. However, even under such

conditions DeepCog performs almost as good as the oracles

or better.

We conclude that traffic predictors – no matter how they

are enhanced – are not appropriate for the capacity forecast

problem, for the simple reason that they are designed for a

different purpose. Indeed, they ignore the economic penalties

incurred by SLA violations, and this limits drastically their

ability to address this problem. Strategies that rely on inte-

grating such costs into the solution after the traffic prediction

is performed are largely suboptimal.

6Note that, in order to perform a fair comparison, we had to extended the
MAE policy to compute the average absolute error on each time slot in the
[t, . . . , t+ Th] interval.

C. Controlling resource allocation trade-offs with the α pa-

rameter of DeepCog

As discussed in Section IV, DeepCog addresses a fundamen-

tal trade-off between overprovisioning and SLA violations,

aiming to find the best possible compromise between the two.

An operator is given the flexibility of choosing the desired

operation point within this trade-off, by suitably setting the α

parameter. In the following, we carry out an extensive analysis

of the trade-off between overprovisioning of resources and

failing to meet service demands. This study is conducted for a

large number of practical scenarios that extend the original

three case studies considered in the comparative analysis.

Specifically, we select five different network slices, dedicated

to the same number of popular mobile services: the three we

already studied, i.e., YouTube, Facebook, and Snapchat, plus

iTunes and Instagram. We then investigate the performance of

DeepCog when such slices are deployed at the three classes of

datacenters introduced before, i.e., at the C-RAN, MEC, and

network core. Overall, this leads to 15 distinct scenarios.

Fig. 8a shows results in all of the above settings under dif-

ferent economic strategies that are reflected by the α parameter

of the loss function ℓ(·). Configurations range from policies

that prioritize minimizing overprovisioning over avoiding SLA

violations (α = 0.5) to others that strictly enforce the SLAs

at the price of allocating additional resources (α = 5). The

plots tell apart the contribution of the two components that

contribute to the total monetary cost: overprovisioning is

expressed as a percentage of the actual demand, and SLA

violations are measured as a percentage of the time slots in the

test period. As expected, higher α values reduce the number

SLA violations, as they become increasingly expensive; this

occurs at the cost of provisioning additional capacity, which

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2959245, IEEE Journal
on Selected Areas in Communications

12

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

3
6
9

12
15
18
21

a) Youtube, Core datacenter b) iTunes, Core datacenter c) Facebook, Core datacenter d) Instagram, Core datacenter e) Snapchat, Core datacenter

3
6
9

12
15
18
21

f) Youtube, MEC datacenter g) iTunes, MEC datacenter h) Facebook, MEC datacenter i) Instagram, MEC datacenter j) Snapchat, MEC datacenter

0.5 1 1.5 2 3 5
3
6
9

12
15
18
21

k) Youtube, C-RAN datacenter

0.5 1 1.5 2 3 5

l) iTunes, C-RAN datacenter

0.5 1 1.5 2 3 5

m) Facebook, C-RAN datacenter

0.5 1 1.5 2 3 5

n) Instagram, C-RAN datacenter

0.5 1 1.5 2 3 5

o) Snapchat, C-RAN datacenter

α

S
L

A
v
io

la
ti
o

n
s

[%
]

O
ve

rp
ro

v
is

io
n

in
g

[%
]

Overprovisioning SLA violations

(a) Th = 5 minutes

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

3
6
9

12
15
18
21

a) Youtube, Core datacenter b) iTunes, Core datacenter c) Facebook, Core datacenter d) Instagram, Core datacenter e) Snapchat, Core datacenter

3
6
9

12
15
18
21

f) Youtube, MEC datacenter g) iTunes, MEC datacenter h) Facebook, MEC datacenter i) Instagram, MEC datacenter j) Snapchat, MEC datacenter

0.5 1 1.5 2 3 5
3
6
9

12
15
18
21

k) Youtube, C-RAN datacenter

0.5 1 1.5 2 3 5

l) iTunes, C-RAN datacenter

0.5 1 1.5 2 3 5

m) Facebook, C-RAN datacenter

0.5 1 1.5 2 3 5

n) Instagram, C-RAN datacenter

0.5 1 1.5 2 3 5

o) Snapchat, C-RAN datacenter

O
ve

rp
ro

v
is

io
n

in
g

[%
]

S
L

A
v
io

la
ti
o

n
s

[%
]

α Overprovisioning SLA violations

(b) Th = 120 minutes

Fig. 8. Tradeoff between resource overprovisioning (expressed as a percentage of the actual demand) and SLA violation (expressed as a percentage of time
slots), as a function of the α parameter. Results refer to 15 different scenarios, and two values of the prediction horizon Th, i.e., 5 minutes (a) and 120
minutes (b).

becomes instead cheaper in proportion7. The trend is consis-

tent across all scenarios, confirming that α effectively drives

resource orchestration towards the desired operation point.

Our analysis also reveals that the level of overprovisioning

grows in most cases as one moves from datacenters in the

network core outwards. This trend applies across slices, and

is due to the fact that more centralized datacenters serve an

increasingly aggregate traffic that is generally less noisy and

easier to predict. Under such conditions, DeepCog needs a

reduced additional capacity to limit unserviced demands: as a

result, SLA violations are often lower at core datacenters.

Fig. 8a refers to a short-term prediction for Th = 5 minutes,

however the same trends discussed above are confirmed for

larger prediction horizons. For instance, Fig. 8b reports the

same results for Th = 120 minutes. The only remarkable

difference is that overprovisioning and SLA violations are

higher than in the case of a 5-minute prediction, as forecasting

on larger time horizons is obviously harder. Yet, the impact

of α is equivalent to that observed for Th = 5 minutes. We

analyze in more detail DeepCog’s performance as a function

of Th in the next section.

Overall, the results presented above show that DeepCog

finds good trade-offs between resource overprovisioning and

7Sporadic disruptions in the monotonicity of the cost curves are due to the
inherent randomness of the measurement data; indeed, the data correspond
to a specific time period and it may show some biases that would not be
observed over different (or longer) time periods.

SLA violations in very different cost settings across slices and

datacenter types. Since each DeepCog instance for a slice at a

datacenter runs independently, this shows that DeepCog will

grant good performance also in scenarios where resource costs

may differ across datacenters, e.g., due to diverse operation

and management costs in urban and rural facilities.

D. Long-term capacity prediction with DeepCog

DeepCog aims at forecasting the (constant) capacity that

should be allocated over a long-term horizon, so as to mini-

mize the monetary cost incurred by the operator. As discussed

in Section III, this is particularly useful in practical settings

where the NFV technology imposes limits on the frequency

upon which resources can be reallocated. In this section, we

thoroughly study how the performance of DeepCog varies with

the prediction horizon.

Fig. 9 summarizes the overall trend of the monetary cost

incurred by DeepCog, as the periodicity of the reconfiguration

opportunities ranges from 5 minutes to 8 hours. The plots

outline a diversity of scenarios, combining different datacenter

classes (C-RAN, MEC, and core) and relative expenses of

overprovisioning and SLA violations (α equal to 0.5, 2, and 5).

The results correspond to the case where one slice is dedicated

to the traffic generated by YouTube, but equivalent behaviors

were observed for the other services. In all settings, the cost

grows with the prediction horizon, which, as already men-

tioned, is largely expected. What is less expected, however, is

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2959245, IEEE Journal
on Selected Areas in Communications

13

0

0.5

1

1.5

2
a) Youtube, Core datacenter Alpha = 0.5 b) Youtube, Core datacenter Alpha = 2 c) Youtube, Core datacenter Alpha = 5

0

0.5

1

1.5

2
d) Youtube, MEC datacenter Alpha = 0.5 e) Youtube, MEC datacenter Alpha = 2 f) Youtube, MEC datacenter Alpha = 5

5 30 60 12
0

24
0

48
0

0

0.5

1

1.5

2
g) Youtube, C-RAN datacenter Alpha = 0.5

5 30 60 12
0

24
0

48
0

h) Youtube, C-RAN datacenter Alpha = 2

5 30 60 12
0

24
0

48
0

i) Youtube, C-RAN datacenter Alpha = 5

N
o

rm
a

liz
e

d
M

o
n

e
ta

ry
C

o
s
t
[x
10

3]

Th [mins] Overprovisioning SLA violations

Fig. 9. Monetary cost (normalized by the cost of one capacity unit) incurred by the operator, versus the prediction time horizon Th. The plots refer to
different combinations of datacenter class and economic strategies modeled by α, for a slice dedicated to the YouTube mobile service.

the quasi-linear relationship between the cost and Th. This is a

very important result, as it shows that even if we increase the

intervals for resource reallocation (i.e., the time horizon), the

economic expenses of the operator remain bounded and do not

skyrocket (as they would if the growth was, e.g., exponential).

The result thus demonstrates the efficiency of DeepCog in

limiting the unavoidable increased penalty associated to fore-

casting long-term capacity: as an indicative figure, the cost

is roughly increased by two when moving from a 5-minute

prediction to one that spans the following 8 hours which is a

very reasonable factor.

The impact of the other system parameters is in line with

our previous analysis: higher monetary fees for SLA violations

(i.e., higher α values) lead to increased costs, whereas the

performance is comparable across resource allocations over

different classes of datacenter (C-RAN, MEC and core), each

corresponding to different traffic volumes. It is nonetheless

interesting to note that the property of a linear growth of

the cost over Th is preserved under any combination of such

parameters.

Fig. 9 also offers a breakdown of the overall monetary

costs into the two contributions (overprovisioning and SLA

violations). Violations of SLAs yield substantially higher

absolute costs and dominate the increase of total cost with

Th; the effect is clearly stronger for higher values of α. A

more detailed view that highlights the exact evolution of the

two cost components as a function of Th is provided in Fig. 10,

showing that both contribute to increasing costs over longer-

term forecasts. However, and interestingly, the dynamics of

the two components with Th are diverse depending on the

system settings such as the datacenter class and the value of

α. The common trend here is that the penalty associated with

both overprovisioning and SLA violations is fairly stable when

the horizon is increased from 5 minutes up to two hours. For

forecasts beyond two hours, however, these fees (one of the

two or both) tend to increase substantially with Th.

We ascribe these behaviors to (i) the relationship between

Th and the timescale of temporal fluctuations in the input

demand, and (ii) the way DeepCog reacts to the problem

of devising a capacity forecast, which becomes harder for

larger Th values. The first point relates to the characteristics

of the input data (see Fig. 11 for illustrative examples of

the temporal oscillation of the service demand). For very

large Th (above 120 minutes) the prediction task performed

by DeepCog resorts to an “envelope” of the demand that

accommodates the peak over the Th period. This means that

for those times where demand is below the peak, we incur a

high level of overprovisioning that increases the resulting cost.

In contrast, smaller Th allow to adapt the capacity forecasting

to the actual demand at each point in time, providing an

advantage in terms of cost. The second point relates to the

behavior and performance of DeepCog under large Th values.

DeepCog aims at providing a similar level of overprovisioning

over time, as exemplified by the top three plots of Fig. 11. For

large Th values this yields increased SLA violations, since the

oscillations make it more likely that the constant capacity falls

below the demand curve at some point during Th. Additionally,

larger Th values make the prediction task inherently harder,

which further contributes to increasing the SLA violations

costs.

VI. CONCLUSIONS

In this paper we presented and evaluated DeepCog, an

original data analytics tool for the cognitive management of

resources in sliced 5G networks. DeepCog tackles the novel

problem of capacity forecasting, whose solution is key to the

sustainable operation of future multi-tenant mobile networks.

Inspired by recent advances in deep learning for image and

video processing, DeepCog hinges upon a deep neural network

structure, which analyzes antenna-level demand snapshots for

different services in order to provide a prediction of the

resources that the operator has to allocate to accommodate the

future load. The operation is performed for individual mobile

services separately, and over a configurable time horizon. At

the core of DeepCog there is α-OMC, a new and customized

loss function that drives the deep neural network training so

as to minimize the monetary cost contributed by two main de-

ployment fees, i.e., overprovisioning and SLA violation. Ours

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2959245, IEEE Journal
on Selected Areas in Communications

14

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

3
6
9

12
15
18
21

a) Youtube, Core datacenter Alpha = 0.5 b) Youtube, Core datacenter Alpha = 2 c) Youtube, Core datacenter Alpha = 5

3
6
9

12
15
18
21

d) Youtube, MEC datacenter Alpha = 0.5 e) Youtube, MEC datacenter Alpha = 2 f) Youtube, MEC datacenter Alpha = 5

5 10 15 30 45 60 90 120 240 480
3
6
9

12
15
18
21

g) Youtube, C-RAN datacenter Alpha = 0.5

5 10 15 30 45 60 90 120 240 480

h) Youtube, C-RAN datacenter Alpha = 2

5 10 15 30 45 60 90 120 240 480

i) Youtube, C-RAN datacenter Alpha = 5

O
ve

rp
ro

v
is

io
n

in
g

[%
]

S
L

A
v
io

la
ti
o

n
s

[%
]

Th [slots]
Overprovisioning SLA violations

Fig. 10. Breakdown of monetary costs into two contributions: (i) overprovisioning (expressed as a percentage of the actual demand) and (ii) SLA violations
(expressed as a percentage of time slots), in the scenarios of Fig. 9.

00:30 05:30 10:30 15:30 20:30 01:30
0

0.5

1

N
o

rm
a

li
z
e

d
tr

a
ffi

c

Service demand Th = 5

(a) α = 0.5

00:30 05:30 10:30 15:30 20:30 01:30
0

0.5

1

N
o

rm
a

li
z
e

d
tr

a
ffi

c

Service demand Th = 30

(b) α = 2

00:30 05:30 10:30 15:30 20:30 01:30
0

0.5

1

N
o

rm
a

li
z
e

d
tr

a
ffi

c

Service demand Th = 60

(c) α = 5

00:30 05:30 10:30 15:30 20:30 01:30
0

0.5

1

N
o

rm
a

li
z
e

d
tr

a
ffi

c

Service demand Th = 120

(d) α = 0.5

00:30 05:30 10:30 15:30 20:30 01:30
0

0.5

1

N
o

rm
a

li
z
e

d
tr

a
ffi

c

Service demand Th = 240

(e) α = 2

00:30 05:30 10:30 15:30 20:30 01:30
0

0.5

1

N
o

rm
a

li
z
e

d
tr

a
ffi

c

Service demand Th = 480

(f) α = 5

Fig. 11. Illustrative examples of the capacity forecast returned by DeepCog behavior under different prediction time horizons. The scenario refers to a network
slice dedicated to the YouTube mobile service that is deployed at a core datacenter, under α = 2.

is, to the best of our knowledge, the only work to date where a

deep learning architecture is explicitly tailored to the problem

of anticipatory resource orchestration in mobile networks.

The solution presented in this paper thus represents a first

attempt to integrate data analytics based on machine learning

into an overall cognitive management framework. Thorough

empirical evaluations with real-world metropolitan-scale data

show the substantial advantages granted by DeepCog over

state-of-the-art predictors and other automated orchestration

strategies, providing a first analysis of the practical costs of

heterogeneous network slice management across a variety of

case studies.

ACKNOWLEDGMENTS

The work of University Carlos III of Madrid was sup-

ported by H2020 5G-TOURS project (grant agreement no.

856950). The work of NEC Laboratories Europe was sup-

ported by H2020 5G-TRANSFORMER project (grant agree-

ment no. 761536) and 5GROWTH project (grant agreement

no. 856709). The work of CNR-IEIIT was partially supported

by the ANR CANCAN project (ANR-18-CE25-0011).

REFERENCES

[1] P. Rost et al., “Network Slicing to Enable Scalability and Flexibility in
5g Mobile Networks,” IEEE Communications Magazine, vol. 55, no. 5,
pp. 72–79, May 2017.

[2] X. Foukas et al., “Network Slicing in 5G: Survey and Challenges,” IEEE

Communications Magazine, vol. 55, no. 5, pp. 94–100, May 2017.

[3] A. de la Oliva et al., “5G-TRANSFORMER: Slicing and Orchestrat-
ing Transport Networks for Industry Verticals,” IEEE Communications

Magazine, vol. 56, no. 8, pp. 78–84, Aug. 2018.

[4] 5G-PPP, “The 5G Infrastructure Association. Pre-structuring Model,
version 2.0,” Nov. 2017.

[5] ETSI, NFVGS, “Network Function Virtualization (NFV) Management
and Orchestration,” NFV-MAN, vol. 1, Dec. 2014.

[6] ETSI, “Open Source MANO (OSM) Project.” [Online]. Available:
https://osm.etsi.org/

[7] The Linux Foundation, “ONAP, Open Network Automation
Framework.” [Online]. Available: https://www.onap.org

[8] J. Wang et al., “Spatiotemporal modeling and prediction in cellular
networks: A big data enabled deep learning approach,” in Proc. of IEEE

INFOCOM, Atlanta, GA, USA, May 2017, pp. 1–9.

[9] C. Zhang et al., “Deep Learning in Mobile and Wireless Networking:
A Survey,” arXiv:1803.04311 [cs.NI], Mar. 2018.

[10] M. Wang et al., “Machine Learning for Networking: Workflow, Ad-
vances and Opportunities,” IEEE Network, vol. 32, no. 2, pp. 92–99,
Mar. 2018.

[11] J. X. Salvat et al., “Overbooking Network Slices Through Yield-
driven End-to-end Orchestration,” in Proc. of ACM CoNEXT, Heraklion,
Greece, Dec. 2018, pp. 353–365.

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2959245, IEEE Journal
on Selected Areas in Communications

15

[12] J. J. Ayala et al., “vrAIn: A Deep Learning Approach Tailoring Com-
puting and Radio Resources in Virtualized RANs,” in Proc. of ACM

MobiCom, Los Cabos, Mexico, Nov. 2019, pp. 1–16.

[13] C. Gutterman et al., “RAN resource usage prediction for a 5G slice
broker,” in Proc. of ACM Mobihoc, Catania, Italy, Jul. 2019.

[14] M. Joshi and T. H. Hadi, “A Review of Network Traffic Analysis and
Prediction Techniques,” arXiv:1507.05722 [cs.NI], Jul. 2015.

[15] F. Xu et al., “Big Data Driven Mobile Traffic Understanding and
Forecasting: A Time Series Approach,” IEEE Transactions on Services

Computing, vol. 9, no. 5, pp. 796–805, Sep. 2016.

[16] M. Zhang et al., “Understanding Urban Dynamics From Massive Mobile
Traffic Data,” IEEE Transactions on Big Data, vol. 5, no. 2, pp. 266–
278, Nov. 2017.

[17] S. T. Au et al., “Automatic forecasting of double seasonal time series
with applications on mobility network traffic prediction,” JSM Proceed-

ings, Business and Economic Statistics Section, Jul. 2011.

[18] R. Li et al., “The prediction analysis of cellular radio access network
traffic: From entropy theory to networking practice,” IEEE Communi-

cations Magazine, vol. 52, no. 6, pp. 234–240, Jun. 2014.

[19] M. Z. Shafiq et al., “Characterizing and modeling internet traffic
dynamics of cellular devices,” in Proc. of ACM SIGMETRICS, San Jose,
CA, USA, Jun. 2011, pp. 265–276.

[20] A. Y. Nikravesh et al., “An Experimental Investigation of Mobile
Network Traffic Prediction Accuracy,” Services Transactions on Big

Data, vol. 3, no. 1, pp. 1–16, Jan. 2016.

[21] C. Zhang et al., “Long-Term Mobile Traffic Forecasting Using Deep
Spatio-Temporal Neural Networks,” in Proc. of ACM MobiHoc, Los
Angeles, CA, USA, Jun. 2018, pp. 231–240.

[22] S. Ntalampiras et al., “Forecasting mobile service demands for antici-
patory MEC,” in Proc. of IEEE WoWMoM, Chania, Greece, Jun. 2018,
pp. 14–19.

[23] D. Bega et al., “DeepCog: Cognitive Network Management in Sliced
5G Networks with Deep Learning,” in Proc. of IEEE INFOCOM, Paris,
France, May 2019, pp. 1–9.

[24] ——, “Alfa-OMC: cost-aware deep learning for mobile network re-
source orchestration,” in Proc. of IEEE INFOCOM NI Workshop, Paris,
France, May 2019, pp. 1–9.

[25] K. Simonyan et al., “Very deep convolutional networks for large-scale
image recognition,” arXiv:1409.1556, Sep. 2014.

[26] Y. LeCun, “Generalization and network design strategies,” Connection-

ism in perspective, vol. 19, pp. 143–155, Jun. 1989.

[27] C. Szegedy et al., “Going deeper with convolutions,” in Proc. of IEEE

CVPR, Boston, MA, USA, Jun. 2015, pp. 1–9.

[28] G. E. Dahl et al., “Improving deep neural networks for LVCSR using
rectified linear units and dropout,” in Proc. of IEEE ICASSP, Vancouver,
Canada, May 2013, pp. 8609–8613.

[29] M. W. Gardner et al., “Artificial neural networks (the multilayer
perceptron) - A review of applications in the atmospheric sciences,”
Atmospheric environment, vol. 32, no. 14-15, pp. 2627–2636, Aug. 1998.

[30] F. Chollet, Deep learning with Python. Manning Publications Co, 2018.

[31] D. P. Kingma et al., “Adam: A method for stochastic optimization,”
arXiv:1412.6980, Dec. 2014.

[32] A. Furno et al., “A Tale of Ten Cities: Characterizing Signatures
of Mobile Traffic in Urban Areas,” IEEE Transactions on Mobile

Computing, vol. 16, no. 10, pp. 2682–2696, Oct. 2017.

[33] J. Paparrizos et al., “k-Shape: Efficient and Accurate Clustering of Time
Series,” in Proc. of ACM SIGMOD, Melbourne, Victoria, Australia, Jun.
2015, pp. 1855–1870.

[34] I. Borg et al., “Modern Multidimensional Scaling: Theory and Applica-
tions,” Journal of Educational Measurement, vol. 40, no. 3, pp. 277–280,
Sep. 2003.

[35] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, Mar.
1955.

[36] D. K. Krishnappa et al., “DASHing YouTube: An analysis of using
DASH in YouTube video service,” in Proc. of IEEE LCN, Sydney, NSW,
Australia, 2013, pp. 407–415.

[37] G. Dimopoulos et al., “Measuring video QoE from encrypted traffic,” in
Proc. of ACM IMC, Santa Monica, CA, USA, Nov. 2016, pp. 513–526.

[38] P. Casas et al., “Qomosn-on the analysis of traffic and quality of
experience in mobile online social networks,” in Proc. of IEEE EuCNC,
Paris, France, 2015, pp. 471–475.

[39] C. Marquez et al., “How Should I Slice My Network?: A Multi-Service
Empirical Evaluation of Resource Sharing Efficiency,” in Proc. of ACM

MobiCom, New Delhi, India, Nov. 2018, pp. 191–206.

[40] ——, “Not All Apps Are Created Equal: Analysis of Spatiotemporal
Heterogeneity in Nationwide Mobile Service Usage,” in Proc. of ACM

CoNEXT, Nov. 2017, pp. 180–186.
[41] V. Sciancalepore et al., “Mobile traffic forecasting for maximizing 5G

network slicing resource utilization,” in Proc. of IEEE INFOCOM,
Atlanta, GA, USA, May 2017, pp. 1–9.

[42] J. Gil Herrera et al., “Resource Allocation in NFV: A Comprehensive
Survey,” IEEE Transactions on Network and Service Management,
vol. 13, no. 3, pp. 518–532, Sep. 2016.

[43] J.-J. Kuo et al., “Service chain embedding with maximum flow in
software defined network and application to the next-generation cellular
network architecture,” in Proc. of IEEE INFOCOM, Atlanta, GA, USA,
May 2017, pp. 1–9.

Dario Bega is a research assistant with IMDEA
Networks Institute in Madrid and a Ph.D. student
in Telematic Engineering at University Carlos III
of Madrid (UC3M). He received his B.Sc (2010)
and M.Sc (2013) degrees in Telecommunication
Engineering from the University of Pisa, Italy. His
research work focuses on wireless networks, multi-
tenancy and machine learning approaches for 5G.

Marco Gramaglia is a post-doc researcher at Uni-
versity Carlos III of Madrid (UC3M), where he
received M.Sc (2009) and Ph.D (2012) degrees in
Telematics Engineering. He held post-doctoral re-
search positions at ISMB (Italy), the CNR-IEIIT
(Italy) and IMDEA Networks (Spain). He was in-
volved in EU projects and authored more than 40
papers appeared in international conference and jour-
nals.

Marco Fiore (S’05, M’09, SM’17) is a researcher at
CNR-IEIIT (Italy) a Royal Society visiting research
fellow, and a Marie Curie fellow. He received a
PhD degree from Politecnico di Torino (Italy) and
a HDR degree from Univeristé de Lyon (France).
He was associate professor at INSA Lyon, (France),
associate researcher at Inria (France), visiting re-
searcher at Rice University (USA) and UPC, (Spain),
and visiting research fellow at UCL (UK). His
current research interests are in the fields of mobile
networks, network traffic analytics and privacy.

Albert Banchs (M04-SM12) received his M.Sc. and
Ph.D. degrees from the Polytechnic University of
Catalonia (UPC-BarcelonaTech) in 1997 and 2002,
respectively. He worked at ICSI (Berkeley, Califor-
nia) in 1997, Telefonica I+D (Madrid, Spain) in 1998
and NEC Laboratories (Heidelberg, Germany) from
1998 to 2003. Since 2003 he is with the University
Carlos III of Madrid, Spain, where he is currently
Full Professor and has a double affiliation as Deputy
Director of the IMDEA Networks institute. Prof.
Banchs has served in many conference TPCs and

journal editorial boards, and is currently Editor for IEEE/ACM Transactions
on Networking.

Xavier Costa-Pérez (M’06-SM’18) is Head of 5G
Networks R&D and Deputy General Manager of
the Security and Networking Research Division at
NEC Laboratories Europe. His team contributes to
products roadmap evolution as well as to European
Commission projects and received several awards
for successful technology transfers. Dr. Costa is a
5GPPP Technology Board member, has served on
the Program Committees of several conferences (in-
cluding IEEE Greencom, WCNC, and INFOCOM),
published at top research venues and holds several

patents. He received both his M.Sc. and Ph.D. degrees in Telecommunications
from the Polytechnic University of Catalonia (UPC) in Barcelona and was the
recipient of a national award for his Ph.D. thesis.

