
Multicasting Multimedia Streams with Active Networks �

Albert Banchs
Telefonica I+D

Emilio Vargas, 6
E – 28043 Madrid, Spain

banchs@tid.es

Wolfgang Effelsberg
University of Mannheim
Praktische Informatik IV

D – 68131 Mannheim, Germany
effelsberg@pi4.informatik.uni-mannheim.de

Christian Tschudin
University of Zurich

Computer Science Department
Winterthurerstrasse 190

CH – 8057 Zürich, Switzerland
tschudin@ifi.unizh.ch

Volker Turau
FH Wiesbaden

Fachbereich Informatik
Kurt-Schumacher-Ring 18

D – 65197 Wiesbaden, Germany
turau@informatik.fh-wiesbaden.de

Abstract

Active networks allow code to be loaded dynamically
into network nodes at run-time. This code can perform tasks
specific to a stream of packets or even a single packet. In
this paper we compare two active network architectures:
the Active Node Transfer System (ANTS) and the Messen-
ger System (M0). We have implemented a robust audio mul-
ticast protocol and a layered video multicast protocol with
both active network systems. We discuss the differences of
the two systems, evaluate architectural strengths and weak-
nesses, compare the runtime performance, and report prac-
tical experience and lessons learned.
Keywords: Active networks, ANTS, M0, robust audio, scal-
able video, layered video.

1 Introduction

Active networks allow protocol processing code to be
loaded into network nodes at run-time. Based on an identi-
fier in each packet header, a specific piece of code is invoked
as the packet travels through the node. The main advantage
of active networks is the flexibility compared to traditional
networks: It is very easy to implement a new protocol, to re-
move errors in network software, or even to provide specific
processing just for the duration of one session.

The next generation of computer networks will have to
handle a large variety of application traffic: audio, video,
workflows, and many more. Many of them inherently re-
quire multicast. In order to support large numbers of re-
ceivers worldwide the multicast function will have to be

�This research was done when the authors were at theInternational
Computer Science Institute, 1947 Center Street, Berkeley, CA 94704,
USA, http://www.icsi.berkeley.edu

provided in all network nodes. Such a node is already
much more complex than a traditional router: it must handle
packet duplication, group address management, dynamic
joining and leaving of group members, and perhaps also
QoS-based multicast routing. The amount of processing re-
quired for each incoming packet is increased considerably,
and so is network management overhead. New architec-
tures and protocols are being designed and implemented at
a much faster rate than ever. Thus an active network archi-
tecture allowing the fast deployment of new services in in-
ternal network nodes (stream-specific processing, network
management) seems very desirable.

Packets in current networks are passive entities carrying
data. From a router’s point of view the payload has no se-
mantics, it is just a sequence of bits. An interpretation of the
data is only performed by the applications at the end nodes.
The lack of knowledge prevents a network from perform-
ing content–related actions, such as dropping B-frames, but
not I-frames of an MPEG video in the case of network con-
gestion. One central idea of active networks is to transform
packets into objects that include the operations to be per-
formed on them. In doing so, packets are converted from
passive chunks of data to objects with specific semantics.
We claim that network performance can be improved in
many ways if the semantics of the data is made available
to the network’s internal nodes.

But active networks also have inherent drawbacks. Since
a node loads and executes foreign code at runtime there is a
serious security exposure (the Trojan Horse problem). Also,
since the run-time code must be portable, it will typically
be less efficient than code written and compiled specifically
for the hardware of a node. And the resource management
problem within the nodes becomes much harder: It is possi-
ble that the code loaded for one application stream competes
with the code for another simultaneous application stream

1

for buffer space, CPU cycles, etc. We will discuss these
issues in detail when we present the ANTS and M0 active
network architectures.

The main goal of our work is to gain practical experi-
ence with two major active network systems, the ANTS
system developed at MIT [21] and the M0 system devel-
oped in Switzerland [18]. We have installed both systems
on a network of Sun workstations, and we have imple-
mented two experimentalmulticast protocolson each sys-
tem. Both protocols inherently require processing within
the internal nodes of a network and are thus good exam-
ples for our purpose. The first protocol is a robust audio
protocol, adding a link-specific degree of redundancy to an
audio packet stream, depending on the observed transmis-
sion quality. The second protocol transmits a layered, rate-
adaptive multicast video stream. Here the idea is to opti-
mize link load in the multicast tree. Receivers announce
their requirements to their upstream node. Each active node
requests the maximum of the requested rates to its upstream
node and only forwards as much of the video bit rate as a
subtree needs.

The remainder of this paper is structured as follows. In
Section 2 we present the ANTS and M0 architectures in de-
tail. Section 3 introduces the two protocol examples and
their implementation. In Section 4 we discuss architectural
insights, compare the performance of the two protocols on
both systems, and report the lessons we learned. Section 5
presents related work, and Section 6 concludes the paper.

2 ANTS and M0: Two Architectures for Ac-
tive Networks

ANTS (Active Node Transfer System) is a toolkit for
prototyping active network applications. It was developed
by the TNS group at MIT [21]. The description of the ar-
chitecture and the code used in our project are based on the
release of September 1997. ANTS is a distributed system
running in user space on top of UDP. It is programmed in
Java.

M0 (M-zero) was designed and implemented by
C. Tschudin [18]. Its purpose is to provide a testbed for mo-
bile code, with applications in networking and distributed
systems. The M0 prototype also runs in user space. It is
programmed in the M0 language, which has a flavor similar
to Postscript.

In principle active network architectures can be classified
into those where each packet carries its own code, to be
executed as it passes an active node, and those where code
is cached in a node and only loaded on demand. M0 falls
into the first class, ANTS into the second.

2.1 The ANTS Architecture

The main purpose of ANTS is to enable an easy devel-
opment and deployment of network protocols. The nodes
in ANTS are called active nodes. Instead of passive packets
ANTS hascapsuleswhich trigger specific processing when

passing an active node. The piece of code to be executed
is identified by a reference to the forwarding routine in the
header field.

In ANTS code is loaded on demand by a sequence of
capsules called a “code group”, a collection of related cap-
sule types whose forwarding routines are transferred as a
unit by the code distribution system. A “protocol” is a col-
lection of related code groups that are treated as a single
unit of protection by the active nodes. All protocol code is
written in Java using the ANTS API.

2.1.1 Node Structure

An active node in ANTS has two caches, a code cache stor-
ing Java byte code, and a “node cache” storing data. In
addition it has a classical routing table that indicates the
next hop to be taken to reach a destination node. When a
capsule arrives at a node the channel thread picks it up and
processes it until completion. Capsules have the right to
spawn their own threads. The evaluate method of the class
of which the capsule object is an instance is executed. Usu-
ally it performs some processing on the capsule’s content
and forwards it to another node or delivers it to an applica-
tion. New capsules of the same protocol can also be gen-
erated and injected into the network. The structure of an
active node is shown in Figure 1.

routing
table

code
cache thread

channel
thread
node

x
y

obj-x
obj-y

applications

...

spawned threads node cache

ANTS capsules

Figure 1. The structure of an ANTS node.

An instance of the Node class represents the local run-
time for an active node. This class offers services that can be
used during the processing of a capsule: access to the rout-
ing table, a cache for soft-states and registration of ANTS
protocols.

2.1.2 Packet Structure

The structure of a capsule is very simple: It carries an iden-
tifier for its protocol and particular capsule type within that
protocol, source and destination address, the remaining re-
source credits, the address of the previous active node, and
application-specific data. Hence there is little overhead.

The ANTS Java API provides the abstract class Capsule
for this representation. User-defined capsule types must
be subclasses of this class and implement the “evaluate”
method as well as serialization and deserialization methods.

That is, the bit stream representation of the capsule’s data
structure must be defined by the programmer.

2.1.3 Dynamic Code Management

The code representation in ANTS is the Java byte code for-
mat. If the code required by a capsule is found in the code
cache, it is executed. If not, the active node generates a re-
quest capsule, sends it to the upstream neighbor and waits
for the code group to be downloaded into the code cache.
Once the code is there, it wakes up sleeping capsule threads,
and they that execute the code. The rationale behind this
concept is that at least the originator of a capsule should
have the code required for its processing. Thus new code
is injected into the network by the application that created
the capsule. The loading is performed with a specialized
network classloader. Code is removed from the cache ac-
cording to the LRU principle.

2.1.4 Resource Management

Controlling the resources of an active node is the basis for
guaranteeing quality of service. In ANTS each capsule car-
ries a Time-To-Live (TTL) field initialized at creation time.
The value is decreased every time a node puts data into the
cache, generates a new capsule, or upon transfer to another
node. Capsules with a negative TTL value are discarded.
A capsule cannot access its own TTL field; this is an ex-
ample where security is based on an implicit feature of the
programming language. If a capsule spawns a child capsule
the remaining TTL is distributed over the two. There is no
constraint on the size of the data put into the cache by a cap-
sule. Furthermore, there is no restriction on the processing
time for each capsule.

2.1.5 Security

Security is a very critical issue in active networks since for-
eign and unknown code is executed in the nodes. One of the
foundations for the security in ANTS lies in the Java sys-
tem itself. Using a high-level programming language with
well defined access rules has many advantages: Capsules
can only be manipulated through the public interface pro-
vided, the services of an active node are also clearly defined
and cannot be changed by a capsule, essential methods can
be declared final such that subclasses cannot re-implement
them, the Java virtual machine performs byte code verifi-
cation to check whether the code comes from a compiler
conforming to the language specification, the concept of the
security manager of Java can be used to tailor the access of
the capsules to the services of a node.

But active networks introduce other security risks which
cannot be handled in a such a straight-forward manner. An
example is protocol spoofing. To prevent this the ANTS
system implements a clever security check: each capsule
carries an identifier of its protocol that is based on a crypto-
graphic fingerprint of the protocol code. Thus the probabil-
ity of a capsule invoking the wrong piece of code is negli-

gible. Some aspects such as name conflicts still have to be
solved in the ANTS system.

2.2 The M0 Architecture

What is a capsule in the ANTS architectures is called
a messenger in the M0 system: it is a program exchanged
between M0 nodes. Messenger exchange was proposed as
a replacement of the classical message exchange paradigm
used in networks today; it favors an entirely instruction-
based way of communication [17]. The M0 execution envi-
ronment is an implementation of this approach.

2.2.1 Node Structure

There are four major elements inside an M0 node: con-
current messenger threads, a shared memory area, a simple
synchronization mechanism (thread queues), and channels
towards neighboring M0 nodes (see Figure 2).

~y ’abc’
~x 123

...
thread
queues

threads shared memory

messengers

routing table

channels

Figure 2. The structure of an M0 node.

On arrival, each messenger is executed by an indepen-
dent and anonymous thread of control. These threads have
their own private memory space and are fully protected
from each other - they have no identifier under which they
could be addressed. Messenger threads can coordinate their
activities through the shared memory area where they can
deposit arbitrary data structures under self-chosen names
so that other threads can access them. Thread queues are
a way to serialize the execution of threads in order to avoid
race conditions. Channels enable messenger threads to send
new messenger packets to neighboring nodes. The current
M0 implementation maps messenger transmission to UDP,
ANON [19], Ethernet or serial line communications. For
the multicast applications described in this paper we have
added support for an ANTS-like network with routing ta-
bles at the messenger level.

2.2.2 Packet Structure

M0 packets have a very simple format: a header, a code field
and an optional data payload. The code field contains the
program that the M0 platform has to execute. Messenger
code is written in the compact M0 language. It is a high-
level language that inherits from PostScript the main con-
cepts of operand, dictionary and execution stack as well as

the main data manipulation and flow control operators, but
lacks everything related to rendering fonts and images. The
M0 language also departs from PostScript with respect to
the messenger–specific operators and a few new data types
as well as the syntax. The M0 interpreter itself is written in
C.

2.2.3 Dynamic Code Management

M0 deliberately has no explicit code caching or code load-
ing functionality: it is argued that it is impossible to devise
a dynamic code management scheme that suits all needs
(prefetching or on–demand, best–effort or reliable, policy
how long code should remain in the cache etc.). The basic
execution model simply assumes that code is shipped with
every messenger. This works quite well for small proto-
cols where the compact code is only a few hundred bytes
long. For more important code sizes the programmers have
to implement their own caching method by storing the code
in the shared memory area of a node under a self–chosen
name (usually some random key): subsequent messengers
carry this reference inside a minimal instruction sequence
that looks up the stored code and executes it.

2.2.4 Resource Management

Each M0 node manages its internal resources independently
of other nodes. M0 relies on an economy-based model of
resource allocation [16]: all resources have price tags which
depend on the node’s actual load for a given resource, but
also on the demand and offer from the running threads.
Messenger threads are charged for their activities. When
they run out of money they are silently removed from the
system. On arrival, each messenger thread obtains an ac-
count with some start money. The amount is sufficient to do
some exploration inside the node and eventually send out
another messenger.

Accounts are also used for controlling the number of
entries inside the shared memory area. Each entry must
be “sponsored” by an account. Periodically, the system
charges the sponsoring accounts depending on the amount
of shared data space they sponsor. If for an entry there is
insufficient money left on its sponsoring accounts, the entry
is removed. This sponsoring model implements a user con-
trollable ‘memory decay’ mechanism because messengers
can add and/or refill sponsoring accounts.

2.2.5 Security

M0 puts emphasis on building security with messengers in-
stead of providing rich services at the system level [20, 11].
There is no authentication between M0 nodes, nor has
a messenger some identity attached to it that would al-
low authentication. Safety-related questions on resource
consumption have to be handled by controlling the flow
of money. Messengers can effectively protect themselves
against other messengers by having full control on which

Table 1. Summary of main features of ANTS
and M0.

ANTS M0
Runtime
Environment

Java Virtual
Machine

M0 interpreter

RequirementsJDK 1.0 or higher UNIX, ANSI-C
Programming
Language

Java M0

Link Layer UDP UDP, ANON, ether-
net, serial line

Code
Distribution

system-supported,
separated from nor-
mal capsules, code
is cached

each messenger car-
ries its code, cache
can be implemented
by messenger

Lifetime of
capsule/msgr

user-defined TTL potentially
unlimited

Procreation
limits

decrementing TTL
for creating new
capsule

none. new start
money on arrival

Cache
usage

decrementing TTL
for entering data

load-dependent
prices

Cache
removal
policy

user-
specified TTL, LRU
replacement policy

sponsoring of en-
tries determines
lifetime

CPU cycles no control limited by available
money

Host
protection

based on Java secu-
rity mechanisms

based on M0
interpreter

Preventing
code
spoofing

via finger-
print, hashed over
the code

no system support

information they pass on to others in which way. M0 pro-
vides basic cryptographic operators that can be invoked by
a messenger. Currently these are DES and the MD5 hash
function.

2.3 Summary of Features of ANTS and M0

We summarize the most important features of ANTS and
M0 in Table 1.

3 Two Protocol Examples

In this section we introduce two protocols for multime-
dia streams that we will use to demonstrate the usefulness of
active networks. We have implemented both of them with
ANTS and M0. The first protocol, Robust Multicast Audio,
is an example of how the performance and efficiency of an
existing protocol can be improved by adding application-
specific compute power to internal nodes. The second, Lay-
ered Multicast Video, is an example of how active networks
technology enables the quick development and deployment
of a new protocol that optimizes network-internal band-
width usage in multicast trees. Both applications involve

continuous media, and both use the same multicast algo-
rithm that we introduce in the following section.

3.1 An Active Multicast Protocol

Our multicast tree management is based on the algorithm
provided with [21]. It uses two types of active packets (from
now on we will use the term active packet as a common way
to refer to capsules or messengers):subscribeactive pack-
ets andmulticastactive packets. The subscribe active pack-
ets are sent periodically by the receivers towards the sender
of the group they wish to join. Unlike [21] we accumulate
subscribe packets in intermediate nodes to avoid a subscribe
implosion problem at the sender. These active packets in-
stall forwarding pointers in the nodes they traverse. These
pointers are removed if they are not refreshed on time. The
multicast active packets carry the real multicast data. They
are routed along the distribution tree built by the subscribe
active packets. The multicast implementation is thus based
on the softstate concept. The paths of these active packets
are shown in Figure 3.

S

Active packet types:

Subscribe

Multicast

R

R

Figure 3. Multicast packet forwarding in an
active node

3.2 Robust Multicast Audio

The first protocol we have implemented is Robust Mul-
ticast Audio (RMA). It is a protocol for improved–quality
multicast audio transmission over best-effort networks,
based on an encoder/decoder developed by M. Isenburg and
H. Chordura at ICSI [5]. The encoding is based on wavelets,
and the system is called WAR (Wavelet Audio Radio). We
used ANTS and M0 to actively multicast a Berkeley radio
station’s music program.

In our protocol, the link between the audio server and
each audio client is subdivided into several point-to-point
links internal to the active network. On each internal link,
the audio stream only carries the amount of redundancy op-
timal for the loss currently observed on that link. On an
incoming link the active node reconstructs the original data,
on the outgoing links it adds the appropriate amount of re-
dundancy. Figure 4 illustrates the link-dependent redun-
dancy in the RMA protocol.

The implementation of the RMA protocol uses three
types of active packets: theaudioactive packets that carry
the audio data, theredundancy requestactive packets that
inform the active nodes about the losses on the internal
point-to-point links, and thesubscribeactive packets that

N + R - L11

Request (L)1

L 2

Request (L)2

Redundancy

N + R2

Audio

ENCODE

L 3

N + R3

Audio

Request (L)3

Redundancymax
2 3(L , L)

ENCODER
E

D
U

N
D

A
N

C
Y

G
E

N
E

R
A

T
O

R

D
E

C
O

D
E

L 11

Audio

Redundancy

audio

N

Figure 4. Link-dependent redundancy in the
RMA protocol.

are used for multicast group subscription. The audio ac-
tive packets are grouped in sequences, each consisting of
N + Ri active packets, whereN is the number of origi-
nal audio packets andRi the number of redundancy packets
added for internal linki. An active node waits until all the
active packets belonging to a particular sequence have ar-
rived. If L losses occurred it reconstructs as many of the
N original packets as possible. Before sending the packets
on each of the outgoing links the node adds the appropriate
amount of redundancy for that particular link. Each active
node is instructed to monitor the losses in the incoming data
stream and transmits this monitored value to the upstream
node, using a redundancy request active packet. This packet
will adjust the amount of redundancy added on that link in
the future (see Figure 4).

In order to avoid modifying the original WAR applica-
tion programs we integrated them into the active network
through gateways. Theclient side gatewaysare applications
attached to an active node that provide a server interface for
their communication with the receivers’ WAR client soft-
ware. Theserver side gatewayis the root of the multicast
tree: it plays the role of a WAR client in its interface with
the WAR server. The main task of the gateways is to turn
traditional packets into active packets and vice versa.

3.2.1 Discussion

Compared to the classical end-to-end solution one of the
advantages of the RMA protocol is that it provides better
performance since the losses on each internal link are re-
covered independently and thus do not add up. Another ad-
vantage is that redundancy is only added on those internal
links where it is actually required, leading to a more effi-
cient global use of the network resources than end-to-end
redundancy.

A major advantage of multicasting aradio program is
that delay is not a critical factor: a signal that arrives with
a few seconds delay can still be said to be real-time since
there is not immediate feedback from the receiver to the
sender. In the original WAR system the redundancy is added
at the end node; in our protocol it is added at the intermedi-
ate active nodes.

It would be very easy to replace the FEC scheme by an

ARQ retransmission scheme and experiment with a vari-
ety of algorithms, measuring delays, throughputs etc. [7].
Since the nodes are active we can even switch algorithms at
runtime, a major advantage over passive networks. For ex-
ample we could use ARQ when the link delay is very short,
and FEC otherwise.

3.3 Layered Multicast Video

In a typical multicast session some users might have
high-speed end systems and high-speed access to the net-
work while others might have low–end PCs and ISDN or
modem connections. Considerable bandwidth is wasted on
links to low-speed receivers if the transmission rate of an
upstream multicast node does not match the limited down-
stream capacity. Therefore it is desirable to set up a multi-
cast tree with the optimal data rates for all receivers. This is
illustrated in Figure 5.

Receiver

Receiver

Receiver

Receiver

Source

500 kbit/s

128 kbit/s

64 kbit/s

64 kbit/s

64 kbit/s

500 kbit/s
500

kbit/s

Figure 5. Distribution tree for layered multi-
cast.

The second protocol we have implemented on top of the
two active network systems is a layered, rate-adaptive mul-
ticast video protocol. The video is encoded in multiple lay-
ers such that layer 0 provides a minimum quality stream and
each layeri + 1 adds more quality to layeri. Each active
node participating in the multicast session understands the
requirements of its subtrees and forwards only the corre-
sponding video layers downstream. The nodes inform their
upstream neighbors with active signaling packets about the
layers they wish to receive (this is the maximum required by
their subtrees and the local application). The active nodes
filter out layer packets at runtime according to these re-
quests.

We have used the Scalable Video Codec developed by
W. Tan and A. Zakhor [13] in order to test this adaptive
multicast protocol. The codec is based on subband cod-
ing, a non-standard but very efficient video coding tech-
nology [14]. Each packet in the encoded stream carries a
layer identifier; the data in each packet belongs to one layer
only. Thus the filtering in our active nodes is very simple:
we can throw away entire packets if their data is not needed
downstream. As a consequence our active filter code is very
efficient.

The integration of this tool with the active network has
been done in the same way as for the robust multicast audio
protocol, i.e., using gateways for the interface between the
tool and the active network. We use the same multicast tree
mechanism: subscribe active packets to inform upstream

neighbors about the layers needed, and video multicast ac-
tive packets to carry the video data downstream.

In the video application the flexibility of active networks
would also allow us to add enhancements to the protocol.
For example, in a lossy network environment we could add
redundancy to protect the data, giving a higher priority to
the most important pieces of data by adding more redun-
dancy to the lower layer packets. This would be similar to
ICSI’s Priority Encoding Transmission (PET) approach [1]
but adapted for layered video and implemented hop-by-hop
rather than end-to-end.

In [2] we illustrate the code the programmer has to write
for each of the two active network systems: As an example
we present the routine that filters the video multicast active
packets at runtime.

4 Experimental Results and Lessons Learned

The implementation of the two multicast protocols with
the two active network systems was a very interesting expe-
rience. It provided us with concrete insights into the practi-
cal consequences of architectural decisions and enabled us
to evaluate the performance.

4.1 Architectural Comparison

ANTS and M0 are similar in their basic approach to ac-
tive networking. However, they differ in several major ar-
chitectural aspects such as programming language, applica-
tion programmer interface and execution model which we
will discuss in the following.

4.1.1 Language

The programming language used in ANTS is Java. Al-
though capsules are processed in the same address space, an
application programmer does not need to worry about un-
controlled manipulation of capsules: capsules in a node are
objects that can only be manipulated by the public methods
defined in the class. Developing an ANTS application is rel-
atively easy because a user only has to write subclasses for
given classes. Since development tools for Java are abun-
dant, local testing and debugging is well supported. The
Java skill base is increasing very quickly which allows pro-
tocol developers to concentrate on the protocol logic rather
than new language concepts.

M0 on the other hand predates Java. PostScript had
proven to be a successful portability technology. It is there-
fore quite logical to extend the approach of communicating
with a printer or a screen to communication protocols in
general. M0, like Java, is based on an interpreter which also
supports multithreading. Compared to Java the code writ-
ten in M0 is harder to understand, and the PostScript skill
base is much smaller. M0 also has the disadvantage of not
being object-oriented; in recent years object orientation has
proven to be a powerful software engineering paradigm. On
the other hand the programmer has more flexibility in M0;

for example dynamic code creation for compression or en-
cryption purposes is easier.

4.1.2 Application Programmer Interface

A considerable advantage of ANTS is that applications can
be written in Java and then execute in the same environ-
ment with the active network functionality: The application
becomes an ANTS node. The M0 platform looks more like
a router. The fact that the application code and the code
for the active network nodes can be written in the same
programming language avoids an ‘impedance mismatch’ at
the programming level; it also avoids time-consuming and
error-prone data representation transformations. For the
video multicast application, the M0 implementation used
three different languages: M0 for the multicast protocol, C
to implement the gateway between the existing video soft-
ware and Tcl/Tk to add a graphical user interface.

4.1.3 Execution Model

Both systems follow the same model in that upon arrival
of an active packet the corresponding code is executed.
M0 creates an independent thread for each incoming active
packet to perform this processing, thereby providing differ-
ent address spaces. In ANTS there is (by default) a single
thread called ChannelThread which is used by all capsules.
This has a disadvantage: if the processing of a capsule takes
a long time (or even worse, an infinite loop occurs) the
node is blocked, and incoming capsules may be lost due
to buffer overflow. It is up to the capsule programmer to
spawn his/her own threads should the expected processing
time be long. For our video application the processing load
was very low, so no new thread was created. In the audio
application a thread was not created for every capsule, but
only for calculating the redundancy. This flexibility proved
to be very useful in the ANTS applications.

4.2 Packet Structure

ANTS and M0 rely on user-defined serialization, and in
both cases it is easy to get things wrong. M0 provides a pro-
cedure for turning simple data types into an M0 code string
that is able to recreate the encoded value. Serializing a se-
quence of simple values typically consists of concatenating
the code strings. The ANTS API provides methods to seri-
alize and deserialize simple types. Users must provide cor-
responding methods for their capsule classes. This can be
difficult for complex classes. Using the Java 1.1 serializa-
tion package would ease this work and make applications
more robust.

It is an open question whether fragmentation of large ac-
tive packets should be under the control of the programmer.
In our experiments we did not have the problem of limits
in the size of an active packet: all ANTS capsules and M0
messengers fitted into a single UDP packet, which was the
transport mechanism we used.

4.3 Dynamic Code Management

A major difference between ANTS and M0 is their re-
spective approach to code distribution and caching. ANTS
provides a code-on-demand mechanism and implements a
code follows the path of the capsule policy. This has the
advantage that the programmer does not have to program
the code distribution for each new protocol. M0 has no sys-
tem support for this. Messengers can carry their own code
caching mechanism if desired.

M0’s flexibility proved useful for the two multicast ap-
plications that we implemented. Theupstreamsubscribe
messengers that create the multicast tree are also responsi-
ble for code distribution; they install the code for the client-
specific delivery of multicast messengers. Thedownstream
multicast messengers consist of a very small lookup rou-
tine (12 bytes) for invoking this preinstalled code. In our
opinion it is an open question whether code distribution by
the sender or code distribution by the receiver is better for a
receiver-oriented multicast scheme.

This is an example of how the code distribution mech-
anism provided by ANTS and M0 influenced our protocol
implementations. Because M0 does not come with a stan-
dard code distribution protocol, it was possible to program
the application such that the frequent multicast messen-
gers become as small as possible. Because ANTS provides
a convenient default code distribution mechanism, no at-
tempts were made to implement code installation for down-
stream flows by upstream capsules. The difference in the
code distribution philosophy is also visible at another level:
because ANTS imposes that code executable by a capsule
belongs to the same protocol it is not possible to have leaves
push their proprietary delivery method into an already exist-
ing multicast tree. All possible ‘methods’ have to be known
at protocol registration time.

4.4 Resource Management

In both architectures resource management is a subject
for further study. In ANTS almost all critical resources are
not covered yet. CPU time, for example, can not be bound,
thread spawning is not monitored, bandwidth is not taken
into account, nor is the amount of memory grabbed by a
capsule. The handling of resource credits is simple; oper-
ations like storing data in the node cache always cost one
unit, regardless of the current memory and cache utiliza-
tion. In M0 the resources CPU time, bandwidth, thread cre-
ation and memory usage (local to a thread as well as shared
memory) are all monitored, resource usage costs a price de-
pending on the actual load for that resource.

ANTS’ fixed-price model has the advantages of pre-
dictable cost and lower overhead whereas M0’s variable-
price model has the advantages of signaling the load and
enabling money-based priorities. In both models it remains
unclear how the initial amounts of money are assigned to
the applications creating the active packets.

Table 2. Measurements for video/audio active
packets

Throughput [pkts/s] ANTS M0
Video (1324 bytes/pkt) 133 195
Audio (1090 bytes/pkt) 100 155

4.5 Security

ANTS and M0 do not thoroughly handle security issues.
We highlight some possible concerns.

Separate execution space for each active packet:Both
systems provide separate execution spaces for each active
packet. The only security exposure is the cache or shared
memory in a node. Packets would have to guess the keys
generated by other packets in order to intrude.
Access control:ANTS provides its own security manager
based on the Java security model to restrict allowable op-
erations. It is not necessary to restrict operations explicitly
in M0 because the language only provides allowable opera-
tions (no file I/O, etc.).
Secure code shipping:This concern is not addressed in
ANTS; in its current version it ships the code over the net-
work in plain format. In M0 it is up to the programmer to
encrypt the code.
Code integrity:ANTS uses fingerprints computed over the
byte code to prevent code spoofing. In M0 there is no such
protection.
Code authentication:Each ANTS capsule has a source ad-
dress that cannot be changed from within the ANTS system.
In M0 there is deliberately no source address field in mes-
sengers.

4.6 Runtime Efficiency

We evaluated the performance of our protocols in terms
of throughput and overhead. Because ANTS and M0 are
active network nodes running at the application level, their
performance cannot be compared with the performance of
an active or passive network running at the network layer.
The purpose of our performance tests was to gain insight
into the impact of the processing required by our protocols.
We compared the relative performance of the two active net-
work systems, and our measurements gave us hints how an
active node reacts to changing processing requirements.

We ran most of our experiments on a single 10 Mbps Eth-
ernet segment using Sun SPARC5 workstations under So-
laris 2.5. In those cases where the Ethernet became the bot-
tleneck we used a 155 Mbps ATM network. The Java ver-
sion was JDK 1.1 without a JIT compiler. The first exper-
imental setup consisted of a workstation generating pack-
ets, an intermediate workstation routing these packets, and
a third workstation receiving them and making the measure-
ments. We wanted to measure the maximum throughput
the intermediate active node could route. In this scenario

Table 3. Measurements for packet forwarding

Throughput Payload Payload
(pkts/s) 1324 bytes 1090 bytes

C (ATM) 1000 1100
C (ethernet) 400 500

Java (ethernet) 200 200
ANTS (ethernet) 166 166

M0 (ethernet) 360 360

we tested both of our multicast protocols: we measured the
maximum throughput that an active node could route with
less than 0.1% losses. The results are shown in Table 2. The
generation of packets at the source was done with bursts of
packets with intervals of 20 ms between them. In the audio
protocol we enforced the active node to always add 50%
XOR redundancy in order to evaluate the impact of the re-
dundancy computation (the throughput given in Table 2 in-
cludes these redundancy packets).

In order to better understand the decrease in through-
put due to active network technology we also implemented
small application programs that forwarded UDP packets
with the same payload through the network. We did that
in C and in Java. We also wrote versions of a protocol for
ANTS and M0 that only forwarded packets without any fur-
ther processing. The measurement results are shown in Ta-
ble 3. We see that M0 provides a better throughput than
ANTS. This is mainly due to the programming language
used to implement the interpreter: C in the case of M0, Java
in the case of ANTS. However, M0 pays a higher price for
performing computations on the active packets in the node.
This can be observed from the fact that its throughput de-
creases considerably in the full video and audio protocols
(Table 2). It should be noted that the M0 node ran with
resource management enabled while the ANTS node had
virtually none.

Active networking introduces two types of overhead:
code shipping and additional header fields. For our pro-
tocols the size of the code to be shipped was 800 bytes in
M0 and between 1600 and 4000 bytes in ANTS. However,
since the code is shipped infrequently (in ANTS it is loaded
at the beginning of the session, in M0 it is sent with every
subscribe capsule), this is not much of a burden to the net-
work.

The overhead carried with each active multicast packet
was 68 bytes in ANTS (all of them in the header) and 32
bytes in M0 (20 bytes in the header and 12 bytes of code).
Considering that the data payload is 1090 bytes in the audio
and 1324 bytes in the video this overhead is minimal.

4.7 Code Size and Reusability

The size of the code we had to write was relatively small.
Table 4 gives an overview for the ANTS and M0 implemen-
tations. In designing our two applications we found that

they have a lot in common, therefore code could be shared.
Since both protocols are multicast protocols, the multicas-
ting algorithm could be separated and the corresponding
code reused.

The use of Java in ANTS made reuse of the multicast
code very easy: A general multicast capsule class was im-
plemented and refined for both applications. This would
even allow us to experiment with different multicast proto-
cols by just plugging in the new classes. It would also be
possible to reuse a multicast class developed by a third party
in our applications, as long as this class adhered to a fixed
interface. We expect to see special APIs for protocol devel-
opment in active networks in the future. These will make it
even easier to develop and exchange new applications.

5 Related Work

The term active network is relatively young, but quite
a few groups are already working on the topic. Good
overviews of active network projects can be found in [15]
and [9].

There are many similarities between active networks and
mobile agent systems. A good overview of mobile agent
projects can be found in [10]. The main difference is that
active networks use the concepts for network layer process-
ing whereas mobile agent systems run as application pro-
grams. Both have dynamic code deployment, caching, re-
source control and many other components in common.

In the area of multimedia communications the idea of
media scaling and media filtering has found some attention
in recent years although the algorithms and protocols pro-
posed for it have never made their way into network prod-
ucts. For example a media scaling mechanism for MPEG
video could be the dynamic adjustment of the quantization
parameter at the encoding site as a function of the QoS pa-
rameters of a link. An example for media scaling can be
found in [6], and filtering mechanisms are described in [23].

The RSVP protocol is designed to carry resource reser-
vation packets in the Internet. The protocol itself does not
specify what resources it deals with. The designers explic-
itly mention the inclusion of packet filters into the data path
of an IP stream at each network node; all packets passing
through a particular filter share a particular resource [24, 4].
In principle RSVP could be used to pipe an incoming packet
stream through a video layer filter very similar to ours.
However, the difference to our system would be that with
RSVP, the code for the filters has to be installed in all routers
beforehand. RSVP can only turn it on or off for a particu-
lar IP packet stream; there is no way to dynamically load
filter code. Thus the overall design is much less flexible
than ours. In a recent paper R. Wittmann and M. Zitterbart
propose an active network extension to RSVP [22].

In his dissertation S. McCanne of UC Berkeley explic-
itly addresses the composition and transmission of video
stream for multicast networks [8]. He also uses a layered
video encoding scheme [13, 14], but assigns these layers
to individual IP multicast groups: the more groups a user

Table 4. Code sizes (in lines of code)

Audio Video
Multicast Multicast

Capsule code (total) in
Java

500 260

Gateway code (client and
server) in Java

280 150

User interface in Java 450 280
Messenger code (total) in
M0

170 170

Gateway code (client and
server) in C

460 600

User interface in Tcl/Tk n.a. 70

joins, the better his video quality will be. An advantage of
this approach is that the internal network nodes can be nor-
mal multicast IP routers, forwarding the packets according
to their group addresses. An inconvenience is that the ses-
sion directory sdr will contain several entries for the same
transmission, one for each layer of video, and the receivers
have to deal with that. A more severe limitation is that too
little semantics are known to the internal nodes. For exam-
ple, with the subband coding of [13], if the packets for layer
n are lost on a link, all packets of higher layers can be dis-
carded downstream as useless, but the multi–group scheme
is unable to handle such an optimization.

Some researchers oppose to the use of active network
technology in the main data path; they claim that dynam-
ically loadable code can never be efficient enough. In [3]
B. Braden describes a signaling protocol based on active
network technology; for signaling the code efficiency is not
as critical as for the data path. Using active packets for
network diagnostics, monitoring and auto-configuration is
proposed in [12].

6 Conclusions

We have successfully implemented a robust audio multi-
cast protocol and a layered video multicast protocol with the
two active network systems ANTS and M0. It was surpris-
ingly easy to get the code to work; all four implementations
were done within four weeks by a team of three people.

Runtime efficiency was much better than expected: per-
formance was sufficient to carry multimedia data streams.
From our measurements we conclude that active network
technology can be used not only for signaling protocols or
network management but also in the data path of novel and
experimental application protocols as long as the operations
to be performed on each active packet remain simple. Mul-
ticast protocols are good candidates for active network tech-
nology. Compared to point-to-point protocols they inher-
ently require more processing in internal nodes.

The comparison between ANTS and M0 revealed a

tradeoff between performance and other aspects such as se-
curity and resource management. The M0 architecture pays
more attention than ANTS to the latter aspects but also re-
ceives a higher penalty for processing at the nodes. Another
issue is the programming language: ANTS obtains portabil-
ity and security facilities from Java but also pays a higher
price in performance due to Java.

With the Java language in the ANTS system, the net-
work is programmed in the same way as the application;
this will allow to implement future network applications in
an integrated manner, with part of the code running in inter-
nal nodes and other parts in the end systems. We consider
this to be a powerful new programming paradigm for net-
worked applications. The code deployment mechanism in
M0 is more flexible than the “code follows the path of the
capsule” mechanism of ANTS. For the implementation of
receiver-specific filters in the multicast tree this proved to
be an advantage.

We do not expect active network technology to com-
pletely replace existing high-performance implementations
of protocols such as classical IP or multicast IP. But we
can imagine hybrid router architectures offering standard
handling of packet streams as well as secure “sandboxes”
for user provided code to process application-specific pro-
tocols.

Acknowledgments

Martin Isenburg and Hartmut Chodura gave us their
WAR code for robust audio encoding/decoding which we
gratefully acknowledge. We would also like to thank
Avideh Zakhor and Wai Tian Tan of UC Berkeley for let-
ting us use their layering video encoder/decoder. Without
their spontaneous help the experiments described in Sec-
tion 3 would not have been possible.

References

[1] A. Albanese and M. Luby. PET - priority encoding trans-
mission. InHigh-Speed Networking for Multimedia Appli-
cations. Kluwer Academic Publishers, Mar. 1996.

[2] A. Banchs, W. Effelsberg, C. Tschudin, and V. Tu-
rau. Multicasting multimedia streams with active net-
works. Technical report, International Computer Sci-
ence Institute, Berkeley, Nov. 1997. TR 97-050,
ftp://www.icsi.berkeley.edu/pub/techreports/1997/tr-97-
050.ps.gz.

[3] B. Braden. Active signaling protocol. ftp://ftp.isi.edu/
rsvp/activesignaling/ASPoverview.ps, June 1997.

[4] B. Braden, L. Zhang, D. Estrin, S. Herzog, and S. Jamin.
Resource reservation protocol (RSVP), version 1 functional
specification. Internet Draft, IETF, Aug. 1996.

[5] H. Chodura and M. Isenburg. WAR: Wavelet audio radio.
http://www.icsi.berkeley.edu/˜isenburg/papers/war.ps.gz,
Aug. 1997.

[6] T. Käppner and L. Wolf. Media scaling in distributed mul-
timedia object services. In R. Steinmetz, editor,Multimedia
Advanced Teleservices and High-Speed Communication Ar-
chitectures, pages 34–43. Springer, 1995.

[7] B. Lamparter, O. B¨ohrer, W. Effelsberg, and V. Tu-
rau. Adaptable forward error correction for multime-
dia data streams. Technical report, Dept. of Computer
Science, University of Mannheim, Dec. 1993. TR 93-
009, ftp://pi4.informatik.uni-mannheim.de/pub/techreports/
1993/TR-93-009.ps.gz.

[8] S. R. McCanne. Scalable Compression and Transmission
of Internet Multicast Video. PhD thesis, Computer Sci-
ence Division, UC Berkeley, 1996. No. UCB/CSD-96-928,
http://http.cs.berkeley.edu/˜mccanne/phd-work/.

[9] S. Munir. Active networks - a survey. http://www.cis.ohio-
state.edu/˜jain/cis788-97/activenets, Aug. 1997.

[10] K. Rothermel and R. Popescu-Zeletin, editors.Mobile
Agents. Proc. 1st International Workshop on Mobile Agents,
Berlin, LNCS 1219. Springer, Apr. 1997.

[11] T. Sander and C. Tschudin. Towards mobile cryptograph. In
IEEE Symposium on Security and Privacy, May 1998.

[12] B. Schwartz, W. Zhou, A. Jackson, T. Strayer, D. Rock-
well, and C. Partridge. Smart packets for active networks.
http://www.net-tech.bbn.com/smtpkts/ smtpkts.ps.gz, Feb.
1998.

[13] W. Tan, E. Chang, and A. Zakhor. Realtime software im-
plementation of scalable video codec. InIEEE Int. Conf.
on Image Processing, Lausanne, Switzerland, volume 1,
pages 985–988, Sept. 1996. http://www-video.eecs.berke-
ley.edu/˜dtan/icip96.ps.gz.

[14] D. Taubman and A. Zakhor. Multirate 3-d subband coding of
video. IEEE Trans. Image Processing, 3(5):572–588, 1994.

[15] D. Tennenhouse, J. Smith, D. Sincoskie, D. Wetherall, and
G. Minden. A survey of active networks research.IEEE
Communications Magazine, 35:80–86, Jan. 1997.

[16] C. Tschudin. Open resource allocation for mobile code. In
[10] , pages 186–197.

[17] C. Tschudin.On the Structuring of Computer Communica-
tions. PhD thesis, University of Geneva, Switzerland, Sept.
1993. No. 2632, ftp://cui.unige.ch/pub/tschudin.

[18] C. Tschudin. The messenger environment M0 – a condensed
description. In J. Vitek and C. Tschudin, editors,Mobile Ob-
ject Systems - Towards the Programmable Internet, LNCS
1222, pages 149–156. Springer, Apr. 1997.

[19] C. Tschudin. ANON: A minimal overlay network for active
networks experiments. Technical report, CS Department,
University of Zurich, Aug. 1998.

[20] C. Tschudin, G. Di Marzo, M. M., and J. Harms. Welche
Sicherheit für mobilen Code? InFachtagung Sicherheit
in Informationssystemen (SIS’96), Vienna, pages 291–307.
vdf-Verlag, Mar. 1996.

[21] D. Wetherall, J. Guttag, and D. Tennenhouse. ANTS: A
toolkit for building and dynamically deploying network pro-
tocols. In IEEE OpenArch 98, San Francisco, Apr. 1998.
http://www.tns.lcs.mit.edu/publications/openarch98.html.

[22] R. Wittmann and M. Zitterbart. AMnet: Active multicast
network. In A. Danthien and C. Diot, editors,“From Mul-
timedia Services to Network Services”, 4th COST237 Work-
shop, Lisboa, LNCS 1356, pages 154–164. Springer, Dec.
1997.

[23] N. Yeadon, A. Mauthe, D. Hutchison, and F. Garcia. QoS
filters: Addressing the heterogeneity gap. In B. Butscher,
M. E., and H. Pusch, editors,Interactive Distributed Mul-
timedia Systems, Berlin, LCNS 1045, pages 227–244.
Springer, 1996.

[24] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala.
RSVP: A New ReSerVation Protocol.IEEE Network, Sept.
1993.

