
Core Stateless Fair Bandwidth Allocation for Unicast and Multicast Flows1

Albert Banchsab, Frederic Raspallb, David Angueraab and Sebastià Sallenta

a Departament d’Enginyeria Telemàtica, Universitat Politècnica de Catalunya, Barcelona, Spain
b Network Laboratories, NEC Europe Ltd., Heidelberg, Germany

Abstract— In this paper we aim at developing a solution to
fairly allocating bandwidth among unicast and multicast flows.
For this purpose, we propose the anycast max-min fairness cri-
terion, which is based on the well known max-min fairness cri-
terion for unicast. We then present an efficient implementation
of the proposed criterion: the Multicast Fair Bandwidth Alloca-
tion (MFBA) architecture. The MFBA architecture has two key
aspects: 1) maintaining per-flow state at core routers is avoided,
and 2) layered multicast is supported without the need for sig-
naling. The proposed architecture has been implemented in
a Linux PC platform. We report experimental results on the
bandwidth allocation and the quality of layered video.

Index Terms— Multicast, Bandwidth Allocation, Fairness,
Core Stateless Queuing, MFBA, Layered Multicast, Layered
Video

I. INTRODUCTION

Multicast protocols target applications involving a large
number of receivers with heterogeneous data reception ca-
pabilities. Depending on the type of application, this hetero-
geneity can be handled in one of two ways. In a single-rate
session, the source adjusts its sending rate depending on the
feedback it receives from the network and/or the receivers. In
a typical single-rate protocol (e.g. [1]), the rate is picked up to
match the bandwidth available on the most limiting data-path
to a receiver.

In a multi-rate session, the sender can transmit at different
rates to different receivers. Multi-rate sessions are typically
supported through layered multicast [2]. With layered multi-
cast, data is distributed among several layers, and the subset
of layers that reaches each receiver can be independently de-
termined. Layered multicast has the appealing property that
the transmission rate to each receiver is constrained only by
the bandwidth availability on the receiver’s own data-path,
and is not limited by other receivers’ rate limitations in the
same session. The benefits of layered multicast from a fair-
ness viewpoint have been thoroughly studied in [3].

In this paper we develop and examine an architecture that
fairly allocates bandwidth among unicast and multicast flows:
the Multicast Fair Bandwidth Allocation (MFBA) architec-
ture. The proposed architecture is based on previous work
on core stateless fair queuing [4] in the context of unicast.
With core stateless fair queuing, well-behaved flows are pro-
tected from other more aggressive or ill-behaved flows, while
maintaining per-flow state at core routers is avoided.

The most notable architectural contribution of this paper
is the scheme proposed to support layered multicast within
the MFBA architecture. The main novelty of this approach
as compared to existing work [2], [5] is that receivers are not

1This work has been partially funded by DFN with the ANETTE project
and CICYT with the project TIC98-0495-C02.

required to signal the number of layers to be received. We
believe that the absence of signaling strongly contributes to
the simplicity of our solution. In addition, the scheme we
propose avoids the slow response to network congestion and
the instability problems of [2], [5] (see [6] for a detailed ex-
planation of these problems).

Layered multicast is very often used for the transmission
of video traffic, due to the high bandwidth requirements of
this type of traffic. Our previous work in [7] showed that the
performance of layered video in terms of perceptual quality
does not only depend on the number of layers received but
also on its evolution over time. As a consequence, it is very
difficult to assess the benefits of a layered multicast scheme
without analizing the resulting video signal. In order to eval-
uate the performance of the layered multicast support in the
MFBA architecture, we have implemented the architecture
in a Linux PC platform, and we have analyzed its behavior
under real layered video traffic. The implementation experi-
ences and experimental results reported are another important
contribution of this paper.

The rest of the paper is structured as follows. Section II de-
scribes the anycast max-min fairness criterion for bandwidth
allocation among unicast and multicast flows. In Section III
we describe the MFBA architecture, which allocates band-
width according to the anycast max-min criterion. In Sec-
tion IV we propose an extension to the MFBA architecture for
the support of layered multicast. Then, the Linux implemen-
tation of the MFBA architecture is described in Section V,
and the experimental results obtained with the implementa-
tion are presented in Section VI. Finally, the paper closes
with the conclusions in Section VII.

II. BANDWIDTH ALLOCATION

A widely accepted fairness criterion for unicast flows is
the well known max-min fairness criterion. In a max-min fair
allocation, a flow cannot increase its allocated rate without
causing a decrease in the rate to a more constrained flow.

Max-min fairness is achieved by equally sharing the band-
width of a congested link among the flows contributing to
congestion in the link:

ri = rj (1)

where i and j are (unicast) flows.
The fairness criterion we have adopted in this paper for

bandwidth allocation among unicast and multicast flows is
the result from extending the above criterion to multicast.
With our criterion, which we have called anycast max-min
fairness, a multicast flow (single or multi-rate) and a unicast
flow are entitled to the same amount of bandwidth in a con-
gested link:

ri = rj (2)

where i and j are (multicast or unicast) flows contributing to
congestion in the link.

Note that, with the above criterion, the rate to which a mul-
ticast receiver is entitled is equal to the rate that this receiver
would obtain if unconstrained by the other receivers in the
group, assuming max-min fairness.

Rubenstein et al. [3] had already defined the above notion
of anycast max-min fairness for the case of multi-rate multi-
cast, under the term multi-rate max-min fairness. They define
an allocation to be multi-rate max-min fair if (1) it is feasi-
ble (i.e. no link is overloaded), (2) the multicast session is
a multi-rate session, and (3) no receiver can increase its al-
located rate without causing a decrease in the rate to a more
constrained receiver.

The main difference between our work and [3] is in the ar-
chitecture proposed to implement this fairness criterion. The
solution proposed in [3] relies on the friendly behavior of the
end-systems, which apply some kind of congestion control
scheme. In contrast, our approach is unfriendliness proof,
i.e. a flow cannot possibly gain a greater share of bandwidth
by misbehaving.

III. THE MFBA ARCHITECTURE

The max-min fairness criterion described in the previous
section for unicast flows is implemented by the well known
fair queuing discipline. Most of the implementations of fair
queuing [8], [9], [10], [11], [12], [13] maintain state for each
flow in all nodes. However, maintaining per-flow state has
a cost and raises scalability issues in high speed networks
that can jeopardize the deployment of these techniques. Re-
cently, several approaches have been proposed to approxi-
mate fair queuing while limiting per-flow state at the slower
edge nodes of the network and removing it from core nodes
(see CSFQ [4], RFQ [14], TUF [15] and SCALE [16]).

In this section, we propose a network architecture, Multi-
cast Fair Bandwidth Allocation (MFBA), that implements the
anycast max-min fairness criterion proposed in the previous
section for multicast and unicast flows. MFBA is the result
of extending previous work on core stateless fair queuing ar-
chitectures to multicast.

A. Flow Labeling

To avoid maintaining per-flow state at each router, MFBA
uses a distributed algorithm in which only edge routers main-
tain per-flow state, while core routers do not maintain per-
flow state but instead utilize the information carried via a la-
bel in the header of every packet. The edge router based on
per-flow information assigns this label and the labels are ex-
amined at each router along the path.

Following the above explanation, at the ingress router of
the network each packet of a flow i is assigned a label L i

equal to:
Li = rsend

i · unif(0, 1) (3)

where rsend
i is the estimated sending rate of flow i and

unif(0, 1) is a random variable uniformly distributed be-
tween 0 and 1. This random labeling, combined with the core
dropping of Section III-B, leads to the desired allocation, as
shown at the end of Section III-B.

For the estimation of the sending rate of flow i, rsend
i , we

use the same exponential averaging formula as in [4]. The
reason for using that estimation is that it allows to bound the
excess service1 received by a flow (see Theorem 1 of [4]).

Specifically, let tk
i and lki be the arrival time and length of

the kth packet of flow i. The estimated sending rate of flow
i, rsend

i , is updated for every new packet in flow i as:

(rsend
i)new = (1 − e−(T k

i /K))
lki
T k

i

+ e−(T k
i /K) · (rsend

i)old

(4)
where T k

i = tki − tk−1
i and K is a constant. Following the

rationale discussed in [4], in this paper we set K equal to 100
ms.

B. Core Dropping

In case of congestion, packets at core routers are dropped
depending on their label Li according to the following algo-
rithm:

if Li > Lfair then
drop(packet)

else
enque(packet)

end if
One key aspect of the above algorithm is the estimation of

Lfair (the fair label) for each link. Lfair should be such that,
in case of congestion, the rate of enqued packets, F , equaled
the link’s capacity C. For scalability reasons, Lfair should
be estimated without storing per-flow information at the core
nodes. Different solutions to the problem of estimating L fair

without per-flow state have been proposed in [4], [14], [16],
[17]. The algorithm that we use in this paper is the one pro-
posed in [4].

To compute Lfair, [4] keeps two aggregate variables:
A, the estimated aggregated arrival rate, and F , the es-
timated rate of the accepted traffic. Then, Lfair is up-
dated every K time units according to the following algo-
rithm:

if A ≥ C then {link congested}
(Lfair)new = (Lfair)old · C/F

else {link uncongested}
(Lfair)new = largest Li observed

end if
We now investigate the bandwidth distribution resulting

from the flow labeling and core dropping explained above.
At the ingress of the network, the packets of a flow i

are labeled according to a random variable uniformly dis-
tributed between 0 and the flow’s estimated sending rate. The
throughput experienced by this flow i at the first congested
link it crosses is equal to:

ri = rsend
i · prob(Li < Lfair) = Lfair (5)

where Lfair is the link’s fair label. The label of the non-
dropped packets of flow i at that link is uniformly distributed
between 0 and Lfair, where Lfair is equal to the flow’s out-
going rate from the link.

1According to the desired bandwidth allocation, during a given time inter-
val a flow is entitled to receive a specified amount of service data. We define
any amount above this, the excess service.

L1

r1 r2

L2

r3

L3

...
rA

LA

0
rate

label

Fig. 1. Labeling for Layered Multicast.

Applying the above rationale recursively, it can be shown
that the throughput obtained by any flow i contributing to
congestion at a link l equals the link’s fair label. As a conse-
quence, two flows contributing to congestion at a link expe-
rience the same throughput in that link, which, according to
Equation 2, leads to anycast max-min fairness.

IV. LAYERED MULTICAST SUPPORT

In MFBA, the bandwidth experienced by a receiver de-
pends on the level of congestion of the links in the path from
the sender to the receiver. In the case of multicast, this results
in an heterogeneity on the amount of bandwidth experienced
by the different receivers of the same flow. To cope with this
heterogeneity, in this section we propose an alternative la-
beling scheme to the one proposed in Section III-A for the
support of layered multicast within MFBA.

With layered multicast, we have that a multicast stream is
divided in different layers such that layer 1 provides a mini-
mum quality stream and each layer a+1 adds more quality to
layer a. This feature allows to gracefully adapt the multicast
flow’s quality to the bandwidth available for each individ-
ual receiver, by dropping the higher layers until the resulting
stream can be accomodated into the bandwidth available for
the receiver.

In MFBA, in order to have the higher layers dropped first
when the bandwidth to which a layered flow is entitled in a
link is smaller than the flow’s arrival rate, we assign higher
labels to the higher layers, according to the following algo-
rithm (see Figure 1 for an illustration). A packet of layer a is
assigned a label La equal to:

La =
{

rsend
a · unif(0, 1), a = 1

rsend
a a > 1 (6)

where rsend
a is the aggregated sending rate of the layers lower

or equal to a. Since at a link l packets with labels larger than
the link’s Lfair are dropped, the aggregate rate of the non-
dropped layers at that link will be such that

rsend
a ≤ Lfair (7)

where Lfair is precisely the throughput to which the flow is
entitled at link l. Thus, the idea behind the labeling scheme
proposed is to forward in a link as many layers as possible
with the flow’s fair share of bandwidth in that link, starting
from the lowest layer.

Note that in the labeling scheme of Equation 6, labels for
layers higher than 1 take deterministic values, instead of ran-
dom values as in Section III-A. This is to force having all
the packets of a layer either forwarded or dropped, instead
of having them forwarded with a certain probability. As we
learnt in [7], a layer partially delivered causes a fluctuation in

the number of received layers that can lead to an undesirable
”flickering” effect in the resulting video.

In contrast to the above, in Equation 6 packets of layer 1
are labeled with random values. This is because it is prefer-
able to partially receive layer 1 than to receive no data at all 2.

For the estimation of the aggregated rates rsend
a we pro-

pose the following formula. Let tk
a be the arrival time of

the kth packet of layer a, and l̂ka the sum of the lengths of
the packets of layer lower or equal to a transmitted between
packets k − 1 (excluded) and k (included) of layer a. Then,
rsend
a is updated for every new packet of layer a according

to3

(rsend
a)new = (1 − e−(T k

a /K))
l̂ka
T k

a

+ e−(T k
a /K) · (rsend

a)old

(8)
where T k

a = tka − tk−1
a .

A natural concern of the labeling scheme proposed for lay-
ered flows is whether a flow can take advantage of the free-
dom to assign different layers to its packets to get more than
its fair share of bandwidth. Actually, if the aggregated rates
rsend
a were computed as the sum of the individual rates of

each layer, it can be shown that there are some pathological
cases in which a flow could exploit the freedom to assign lay-
ers to obtain more than the fair share.

Theorem 1 (at the appendix) answers the above concern
when the value of Lfair is held fixed in all links. This
theorem gives a bound on the excess service received by a
flow during any time interval when using the layered labeling
scheme proposed in this section. This bound is independent
of the packet arrival process, the layers assigned to the pack-
ets and the length of the time interval. It does depend on the
maximal rate at which the packets of the flow can arrive at a
router (limited for example by the speed of the flow’s access
links) and on the number of layers allowed.

By bounding the excess service, Theorem 1 shows that the
asymptotic throughput received by a flow cannot exceed its
fair share of bandwidth. Thus, flows can only exploit the
system over short time scales, and they are limited to their fair
share of bandwidth over long time scales. This result is very
important, since it constitutes the basis for the unfriendliness
proof feature of the proposed architecture.

The resulting algorithm from the flow labeling, layered la-
beling and core dropping explained in sections III and IV is
illustrated in Figure 2.

V. IMPLEMENTATION

In this section we present an implementation of the MFBA
architecture for a PC-based router running under the Linux

2If all layers are sent at a constant rate, the proposed labeling scheme com-
pletely eliminates the flickering effect, since the number of layers received
is constant. If the sending rate of each layer is variable, the flickering ef-
fect cannot be completely eliminated, however it is reduced as compared
to using random labels. In a series of unreported experiments, we verified
that, with the variable rate codec of Section VI, the use of deterministic
labels (La = rsend

a for a > 1) significantly contributed to reduce the flick-
ering effect perceived, as compared to using the equivalent random labels
(La = rsend

a−1 + (rsend
a − rsend

a−1) · unif(0, 1)).
3Note that with the rate estimations of Equation 8, the computational com-

plexity of the labeling scheme proposed in this section and the one of Sec-
tion III-A are similar: both schemes require to perform one exponential com-
putation for every new packet.

edge?incoming
packet

Li>Lfair?
Enque
packet

outgoing
packet

Drop
packet

Yes

No No

Yes

congested?
Yes

No

layered

multicast ?

No

Yes

layered
label L i
Eq. 6

label L i
Eq. 3

Fig. 2. Forwarding algorithm in MFBA

Network Interface Card

netif_rx()

NET_BH

ip_rcv()

ip_local_deliver()

ip_forward()

Routing

Network Interface Card

hard_start_xmit()

dev_queue_xmit

ip_queue_xmit()

ip_send()

Higher
Layers

Layer 3

Layer 2

Layer 1

Backlog
Queue

Output
Queue

Fig. 3. The course of a packet through the system.

operating system. We describe the design and implementa-
tion issues of the different components of the architecture.
This implementation was done with the 2.2.18 version of the
Linux kernel.

The Linux operating system is a good basis for implement-
ing a router with the MFBA functionality. It runs on standard
PC hardware and source code of the kernel is widely avail-
able. In addition, it supports a variety of queuing disciplines
for output queues of network devices, and all functions for
routing are already provided.

To get a deeper insight into our concrete realization of the
MFBA architecture, understanding how Linux handles basic
network functions is important. Hence, a short overview of
the standard Linux implementation is given next. Afterwards,
the implementation of the MFBA architecture is presented.

A. Linux network implementation

To give a short overview of the Linux IP network imple-
mentation, the course of an IP-packet through the system is
described first (see Figure 3).

After a packet is received by a network interface card, a
hardware interrupt is triggered. As a consequence, an in-
terrupt handling routine (named ei_interrupt()) is in-
voked and determines the type of interrupt. For interrupts
caused by incoming packets a further handling routine is
called (ei_receive()) which simply copies the packet
from the network card into an internal socket buffer struc-
ture [18] and calls a procedure named netif_rx(). The
latter queues the packet (represented by a socket buffer struc-
ture) into a central queue (backlog queue) consisting of all
packets that arrived on any network adapter of the system.
The first time-critical part of the interrupt routine, called ’top-
half’ is finished at this time.

The necessary second part, called ’bottom-half’, is han-
dled by the network bottom-half routine (NET_BH) which
is regularly invoked by the kernel scheduler. At first, this
procedure checks whether there are any packets waiting for
transmission in any output queue of any network adapter. If
there are any packets waiting they are processed for a lim-
ited period. Subsequently, NET_BH proceeds with the next
packet of the backlog queue and determines the appropri-
ate protocol to handle the packet which is in our case the
Internet Protocol IP. ip_rcv() checks for correctness of
the IP header and then processes any existing options. It
also reassembles the original IP packet from fragments if
necessary and if the packet has reached its final destina-
tion. In the latter case, the packet is delivered locally, oth-
erwise it is routed and forwarded towards its destination.
ip_forward() tries to find the right network adapter this
packet is forwarded to next by use of a routing table. If there
is a valid entry in the routing table ip_queue_xmit()
is subsequently invoked, performing some final operations
such as decrementing time-to-live values and recalculating
IP header checksums. dev_queue_xmit() queues the
packet into the output queue of the corresponding network
device. At this point a special queueing discipline can be in-
voked. Thus, each queueing discipline constitutes one output
queue for a device that is not necessarily served in a FIFO
with Drop-Tail basis. Within a queueing discipline, trans-
fer of a packet onto network media is initiated by calling
hard_start_xmit(), which instructs the network de-
vice to send the packet.

The Linux kernel already contains various queueing disci-
plines apart from the standard FIFO, like Class Based Queue-
ing, Weighted Fair Queueing or Random Early Detection to
implement different network features like traffic control or
differentiated services (see e.g. [19], [20]).

B. MFBA implementation

In our implementation of the MFBA architecture, we in-
serted the algorithm of Figure 2 in the queuing discipline of
the output queue. This algorithm decides whether an incom-
ing packet to the output queue is enqueued or dropped. This
is illustrated in Figure 4.

The MFBA queueing discipline was implemented in a ker-
nel module. Kernel modules need not to be present all the
time in the kernel, so the kernel can run without them if they
are not actually used. Particularly, instead of recompiling the

output queue

Link

Lfair

 NIC

backlog queue

MFBA

LINUX PC
ROUTER

IP
FORWARDING

Traffic Control

Link
 NIC

Link
 NIC

unicast / multicast

ROUTING

Fig. 4. MFBA implementation in Linux.

whole kernel and restarting the system every time a part of
the module’s code was changed, one can simply reload the
newly coded module. This shortens development time dras-
tically.

During the implementation of the MFBA queueing disci-
pline, a number of issues had to be solved. In the following
we provide a detailed description of the various implementa-
tion issues we faced.

1) Router performance: I/O performance and CPU router
performance are crucial for successful operation, because if
the PC is too slow, the protocol processing for a packet is not
finished before a new packet arrives. As a consequence, the
implemented MFBA algorithm for packet dropping is never
used because packets are dropped already earlier in the back-
log queue. Nevertheless, we checked that a PC with a AMD-
K6 CPU running at 350 MHz (the machine we used as a
router) is sufficient to route incoming traffic of 20 Mbps at
least.

2) Router configuration: One of the parameters of the
MFBA algorithm that needs to be configured is the capac-
ity of the link C. In order to set this parameter, we measured
the net capacity obtained in the 10 Mbps Ethernet link with a
FIFO queue. The packet lengths considered to compute this
capacity included the 42 bytes of overhead of the UDP, IP and
Ethernet headers and the 4 bytes of the Ethernet checksum,
in addition to the packet payload. Considering this overhead,
the net capacity measured was of 9.8 Mbps; this is the value
we used for C in the MFBA algorithm.

3) Label location in packet header: An important issue
of the implementation is how to insert the label value Lk into
the packet header. Two possibilities are: (1) introduce a new
IP option, or (2) introduce a new header between layer 2 and
layer 3, similar to the way labels are transported in Multi-
Protocol Label Switching (MPLS). While both of these solu-
tions are quite general and can potentially provide large space
for encoding the label, for the purpose of our implementation
we considered a third option: store the state in the IP header.
By doing this, we avoid the penalty imposed by most IPv4
routers in processing the IP options, or the need of devising
different solutions for different technologies as it would have
been required by introducing a new header between layer 2
and layer 3.

The biggest problem of using the IP header is to find
enough space to insert the label. The main challenge is to
remain compatible with current standards and protocols. In
particular, we want to be transparent to end-to-end protocols.
One possibility to achieve this goal is to use the type of ser-
vice (TOS) byte. However, as we discuss in the following

subsection, the 8 bits obtained with this option are not suffi-
cient to encode the label with the desired level of accuracy.
Another option is to use IP identifier field, which has 16 bits.
This field is unused for non-fragmented packets (fragmented
packets are identified by the pair more fragment and frag-
ment offset). As pointed out in [21], very few packets are
actually fragmented in the Internet (0.22%). Therefore, we
have chosen this latter option for the labeling in the MFBA
architecture. Fragmented packets are ignored and forwarded
as usual.

4) Label mapping: The next issue to solve was how to
map the label values (which theoretically can be any real
value) into the 16 bits of the IP identifier field. To repre-
sent a wide range of rates in the Internet while maximizing
the accuracy, we used a logarithmic scale to map the labels
between Lmin and Lmax to discrete integer values between
0 and 216 − 1. Let L be the original label (real value) and V
its integer representation in the 16 bit field. Then,

V =
⌊
(216 − 1)

log2(L) − log2(Lmin)
log2(Lmax) − log2(Lmin)

⌋
(9)

The above mapping had already been proposed in [15] but
with log10 instead of log2. The reason to use log2 is because
working in base 2 allows to perform operations more effi-
ciently. Specifically, the computation of 2x, which is required
at core nodes to unmap label values, can be very easily per-
formed by shifting x positions the bit representation of 1.

With Equation 9, we can map labels between 1 (Lmin) and
232 (Lmax) with an error bounded by 0.04%. Note that, us-
ing the 8 bits of the TOS field instead of the 16 bits of the IP
identifier field, this error bound is of 9.09%, which is unac-
ceptably high.

5) Detection of layered flows at ingress nodes: As ex-
plained in previous sections, the MFBA architecture uses two
different labeling schemes: one for multicast layered flows
(Eq. 6) and one for any other type of flow (Eq. 3). Therefore,
at the ingress node, one of the two labeling schemes has to be
selected for every incoming packet.

In our implementation we have used multicast layered
transmissions running RTP on top of UDP/IP. In order to se-
lect the appropriate labeling scheme we detect packets be-
longing to multicast layered flows by examining the payload
type field within the RTP header of every packet.

Further, for packets belonging to layered flows, the layer
within a flow that a packet belongs to must be determined in
order to use the labeling scheme of Eq. 6. In our implemen-
tation, every packet carries its layer information in an RTP
header extension, which we already defined in [7]. There,
the layer information is encoded in a 6-bit field, which limits
the maximum number of layers allowed to 64.

6) Rate estimation at core nodes: The last issue we had
to solve for the implementation was the rate estimation. For
the estimation of A and F at core nodes we decided to use the
Time Sliding Window (TSW) algorithm [22] (Equation 10) in-
stead of the exponential averaging of Equation 4. The reason
why we chose the TSW algorithm was to avoid expensive
exponential computations at core nodes. The experimental
results show that this change does not affect the accuracy of

A

B

Senders

Ethernet
10 Mbps

Ethernet
100 Mbps

MFBA router
(core dropping)

Receiver
(congested link)MFBA routers

(flow labeling)

and

 - target flow or
 - layered video flow

 - competing flows (background traffic)

Fig. 5. Configuration of the test network.

the estimation of Lfair.

rnew =
lk

Tk + K
+

K

Tk + K
· rold (10)

VI. EXPERIMENTAL RESULTS

To evaluate the performance of the MFBA architecture, we
performed some tests with the implementation explained in
the previous section.

We first performed some tests on the bandwidth allocation
for constant and variable traffic (Sections VI-A and VI-B).
The goal of this first set of tests was to validate the imple-
mentation of the architecture and understand its bandwidth
sharing behavior.

The second set of tests focused on layered multicast (Sec-
tions VI-C and VI-D). The goal was to analyze the perfor-
mance in terms of allocated bandwidth and resulting stream
quality of the layered multicast extension proposed. For this
purpose, we used a layered video flow.

For all tests, we used the following configuration that is
shown in Figure 5. The testbed comprised a PC as MFBA
router (AMD-K6 CPU at 350 MHz), two PCs as sender/edge
(Pentium CPU at 200 MHz) and one PC as receiver (AMD-
K6 CPU at 300 MHz). The network was build of separate
Ethernet segments (two 100 Mbps and one 10 Mbps). The
latter segment, that connected the router with the receiver,
was the bottleneck link.

We used the following parameters for the tests. Packets
corresponding to constant and variable traffic had a constant
UDP payload length of 1000 bytes. In addition to this pay-
load, the packet length value used to compute rates (Equa-
tion 4) also included the 42 bytes of overhead of the UDP,
IP and Ethernet headers. All tests were executed for a fixed
duration of 120 s.

A. Constant traffic

With the anycast max-min fairness criterion, the band-
width allocated to a (unicast or multicast) flow i, ri, can be
expressed as

ri = min(rsend
i , Lfair) (11)

In order to validate that the above bandwidth allocation
was complied, we performed the following test. We con-
gested the bottleneck link of the testbed with 9 background
flows from sender A, each flow sending at a constant rate.
The aggregated sending rate of the 9 background flows was
equal to the link’s capacity.

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500

al
lo

ca
te

d
ba

nd
w

id
th

 (
kb

ps
)

target sending rate (kbps)

experimental
theoretical

Fig. 6. Bandwidth Allocation with constant traffic.

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500

al
lo

ca
te

d
ba

nd
w

id
th

 (
kb

ps
)

target sending rate (kbps)

experimental
theoretical

Fig. 7. Bandwidth Allocation with variable traffic.

Sender B sent an additional flow, the target flow, also at a
constant rate. The sending rate of this flow ranged from 0 to
2.5 Mbps.

Figure 6 shows the results obtained for the above test
(throughput obtained by the target flow). It can be observed
that the results obtained are surprisingly accurate: the ac-
tual allocated rate matches exactly the theoretical rate (Equa-
tion 11).

We conclude that the MFBA architecture provides the de-
sired bandwidth allocation for constant traffic.

B. Variable traffic

Bandwidth allocation is much easier when dealing with
constant traffic than when dealing with variable traffic. To
study the behavior of the MFBA architecture in the latter
case, we repeated the previous experiment but with the tar-
get flow sending at a variable rate instead of at a constant
rate.

Specifically, the variable flow consisted of the aggregation
of 10 ON/OFF sources, with idle times exponentially dis-
tributed (average 500 ms) and active times Pareto distributed
(average 500 ms and shape equal to 1.3). The average send-
ing rate of the variable flow ranged from 0 to approximately
2.5 Mbps.

Figure 7 shows the results corresponding to the above test.
From these results it can be observed that for an average
sending rate around the fair share (0.98 Mbps), the variable
flow receives a lower throughput than its fair share. When
the sending rate increases, then the flow’s throughput tends
asymptotically to the fair bandwidth share.

The explanation for the above behavior can be found in the
time plots given in Figures 8 and 9. These time plots cor-

0

1000

2000

3000

4000

5000

0 5 10 15 20 25 30 35 40

ra
te

 (
kb

ps
)

time (secs)

forwarded rate
sending rate

fair rate

Fig. 8. Instantaneous Bandwidth Allocation with variable traffic.

0

1000

2000

3000

4000

5000

0 5 10 15 20 25 30 35 40

ra
te

 (
kb

ps
)

time (secs)

forwarded rate
sending rate

fair rate

Fig. 9. Instantaneous Bandwidth Allocation with variable traffic.

respond to average sending rates of 1 Mbps and 2 Mbps re-
spectively. For an average sending rate of 1 Mbps, the instan-
taneous sending rate of the variable flow fluctuates between
values below and above the fair share. When the instanta-
neous rate is below the fair share, the forwarded rate equals
to the sending rate. When it is above, then the forwarded rate
equals the fair share. As a result, the throughput obtained by
the variable flow is below the fair share.

In contrast to the above, when the flow’s average sending
rate is 2 Mbps, most of the time the flow is sending at a rate
above the fair share, which results in a forwarded rate equal
to the flow’s fair share. As a consequence, the throughput
obtained by the flow in this case is much closer to the flow’s
fair share of bandwidth.

C. Layered Video with constant background traffic

In Section IV we have proposed a labeling scheme for the
transmission of layered multicast flows that adapts the quality
of the delivered stream to the bandwidth available for each re-
ceiver. The design goal was to find a labeling scheme that led
to a graceful degradation of the flow’s quality as the available
bandwidth decreased while preserving the original anycast
max-min bandwidth allocation.

In order to evaluate the performance of the proposed ap-
proach we ran some experiments with layered video. We
transmitted a layered video flow and compared the video
quality at the receiver when using layered labeling (Equa-
tion 6) and uniform labeling (Equation 3) for different band-
width allocations. Experiments were done using the DCT-
based layered video codec described in [7]. The original
video was coded using 10 layers. To quantify the level of
corruption of the received videos due to packet losses, we

0

100

200

300

400

500

600

700

800

10 15 20 25 30 35 40 45 50

ra
te

 (
kb

it/
s)

N

layered labeling
uniform labeling

theoretical

Fig. 10. Bandwidth Allocation of the layered video flow.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200

label

layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7
layer 8
layer 9

layer 10

Fig. 11. Per-layer label histogram of the layered video flow.

used the QMeasure metric described in [23]. This measure
tries to quantify the distortion perceived by the human visual
system and is known to be more meaningful than objective
measures like the PSNR or the MSE.

In the first test we performed, Sender B transmitted the
layered video flow, while Sender A sent a background traffic
composed of N − 1 flows, each sending at a constant rate.
The background traffic congested the bottleneck link with a
load corresponding to 120% of the link’s capacity.

Figure 10 shows the resulting bandwidth allocation with
uniform and layered labeling. This result validates the la-
beling scheme we proposed in Equation 6. With uniform la-
beling, the flow’s bandwidth is approximately the flow’s fair
share of bandwidth. With layered labeling it is slightly lower,
due to the fact that the last layer is totally discarded. Note
that, for N ≥ 30, the only layer remaining is the first one.

Figure 12 shows how the bandwidth of the video flow
is distributed among the different layers with both labeling
schemes when N = 20. It can be observed that the lay-
ered labeling scheme achieves a good level of discrimination
among layers, as desired. However, this discrimination is not
perfect, due to the fact that the sending rate of each layer is
variable (this variability is illustrated in the per-layer label
histogram of Figure 11). Note that with uniform labeling,
there is no discrimination since the labeling does not distin-
guish among layers.

Figure 13 shows the benefit obtained with layered labeling
as compared to uniform labeling. In this figure, video qual-
ity is measured with the QMeasure metric mentioned above.
This metric is such that the lower the QMeasure, the higher
the video quality. We can observe that, with layered labeling,
the perceived quality is degraded gracefully (i.e. the QMea-

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

%
 o

f d
el

iv
er

ed
 p

ac
ke

ts

Layer

layered labeling
uniform labeling

Fig. 12. Percentage of delivered packets of every layer of the video flow.

0

1

2

3

4

5

6

7

10 15 20 25 30 35 40 45 50

Q
M

ea
su

re

N

layered labeling
uniform labeling

Fig. 13. Perceived video quality with constant background traffic.

sure keeps lower) as the number of competing flows (N) in-
creases. In contrast, with uniform labeling the quality suffers
a sharp degradation when the bandwidth allocated to the mul-
ticast layered flow becomes smaller than the flow’s sending
rate.

The results reported by the QMeasure match our subjective
perception of the videos. With the uniform labeling, when re-
ducing the allocated bandwidth, we observed a jerky display
where the movement of objects was corrupted (because of
the loss of entire frames), overlapping of images and frequent
changes of definition within the same frame. In contrast, with
the layered labeling, we only observed a smooth decrease in
the definition. These effects are shown in the snapshots of
Figure 14.

D. Layered Video with variable background traffic

In order to analyze the performance of the proposed ap-
proach for layered multicast when the background traffic is
variable, we repeated the previous experiment with variable
background traffic instead of constant. Specifically, the N−1
background flows were variable flows of the type described
in Section VI-B.

Figure 15 shows the resulting bandwidth allocation in the
above test. It can be observed that, with a variable back-
ground traffic, the video stream receives a larger throghput
than with a constant background traffic. The reason is that,
as we have seen in Section VI-B, a variable flow consumes
a throughput lower than its fair share. Similarly, a variable
background traffic consumes less bandwidth than a constant
one, and, as a result, there is more bandwidth left for the
video flow.

0

100

200

300

400

500

600

700

800

10 15 20 25 30 35 40 45 50

ra
te

 (
kb

it/
s)

N

layered labeling
uniform labeling

theoretical

Fig. 15. Bandwidth Allocation of the layered video flow.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

%
 o

f d
el

iv
er

ed
 p

ac
ke

ts

Layer

layered labeling
uniform labeling

Fig. 16. Percentage of delivered packets of every layer of the video flow.

Figure 16 shows how the bandwidth of the video flow is
distributed among the different layers when N = 20. It can
be observed that level of discrimination achieved is almost
identical to the one we had with a constant background traf-
fic. That is, with the level of burstiness of the variable back-
ground traffic considered in this section, the resulting fluctu-
ation over time of the fair bandwidth share has a negligible
impact into the layer discrimination obtained.

Finally, Figure 17 shows the resulting video quality. The
behavior is similar than with a constant background traf-
fic: With layered labeling, the perceived quality is degraded
gracefully as the number of competing flows (N) increases,
while with uniform labeling the quality suffers a sharp degra-
dation when the bandwidth allocated to the multicast layered
flow becomes smaller than the flow’s sending rate.

We conclude that the results obtained in Sections VI-C
and VI-D validate the approach proposed in this paper for

0

1

2

3

4

5

6

7

10 15 20 25 30 35 40 45 50

Q
M

ea
su

re

N

layered labeling
uniform labeling

Fig. 17. Perceived video quality with variable background traffic.

Fig. 14. Snapshots of the video experiments. The leftmost image corresponds to a frame of the original video. The image in the center shows how the same
frame was received with uniform labeling and the rightmost when using layered labeling.

layered multicast: both for constant and for variable back-
ground traffic, our scheme achieves the goal of having a
smooth quality degradation as the bandwidth available for a
given receiver decreases.

VII. SUMMARY AND CONCLUSIONS

The anycast max-min fairness criterion results from ex-
tending to multicast the well known max-min fairness cri-
terion for unicast.

In this paper we have proposed an architecture to effi-
ciently implement the anycast max-min fairness criterion: the
MFBA architecture. MFBA is inspired on previous work to
avoid maintaining per-flow state at core nodes. As a result,
MFBA scales well with the number of flows.

MFBA has been designed to allow a multicast layered flow
to accommodate its quality to the available bandwidth of each
receiver. The main features of the layered multicast support
in MFBA are that it requires neither signaling nor the inter-
action of the receiver, it reacts immediately upon changing
network conditions and it is unfriendliness proof.

The proposed approach for layered multicast has been
studied both analytically and experimentally.

Via analytical studies we have shown that a user cannot
possibly gain a greater share of bandwidth than the flow’s fair
share by maliciously assigning the flow’s packets to different
layers (that is the basis of the unfriendliness proof feature).

The benefit of using layered multicast in terms of the qual-
ity experienced by a receiver has been studied by using our
Linux implementation of the MFBA architecture and a lay-
ered video codec. Experimental results have shown that, with
the proposed layered multicast scheme, the resulting video
quality is gracefully degraded as the bandwidth allocated for
a receiver decreases, both for constant and for variable back-
ground traffics.

REFERENCES

[1] J. Bolot, T. Turletti, and I. Wakeman, “Scalable Feedback Control for
Multicast Video Distribution in the Internet,” in Proceedings of ACM
SIGCOMM ’94, London, UK, August 1994, pp. 58–67.

[2] S. McCanne and V. Jacobson, “Receiver-driven layered multicast,” in
Proceedings of ACM SIGCOMM ’96, Stanford, CA, August 1996.

[3] D. Rubenstein, J. Kurose, and D. Towsley, “The Impact of Multicast
Layering on Network Fairness,” in Proceedings of ACM SIGCOMM
’99, Boston, MA, September 1999.

[4] I. Stoica, S. Shenker, and H. Zhang, “Core-Stateless Fair Queue-
ing: Achieving Approximately Fair Bandwidth Allocations in High
Speed Networks,” in Proceedings of ACM SIGCOMM ’98, Vancouver,
Canada, August 1998, pp. 118–130.

[5] T. Kim, R. Sivakumar, K.-W. Lee, and V. Bharghavan, “Multicast
Service Differentiation in Core-Stateless Networks,” in Proceedings
of International Workshop on Networked Group Communication, Pisa,
Italy, November 1999.

[6] A. Flores and M. Ghanbari, “Prioritised delivery of layered coded
video over IP networks,” ACM Transactions on Multimedia, 2001.

[7] F. Raspall, C. Kuhmuench, A. Banchs, F. Pelizza, and S. Sallent,
“Study of packet dropping policies on layered video,” in Proceedings
of Packet Video Workhsop, Korea, April 2001.

[8] J. C. R. Bennet and H. Zhang, “Wf2q: Worst-case Fair Weighted Fair
Queuing,” in Proceedings of IEEE INFOCOM ’96, San Francisco, CA,
March 1996.

[9] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of
a Fair Queuing Algorithm,” in Proceedings of ACM SIGCOMM ’95,
Cambridge, MA, September 1995.

[10] P. Goyal, H. M. Vin, and H. Cheng, “Start-time Fair Queuing: a
Sscheduling Algorithm for Integrated Serivces Switched Networks,”
IEEE/ACM Transactions on Networking, vol. 5, pp. 690–704, October
1997.

[11] S. Keshav, “On the Efficient Implementation of Fair Queuing,” Jour-
nal of internetworking: Research and Experience, vol. 2, pp. 57–73,
September 1991.

[12] A. K. Parekh and R. G. Gallager, “A Generalized Processor Shar-
ing Approach to Flow Control in Integrated Services Networks: the
Single-node Case,” IEEE/ACM Transactions on Networking, vol. 1,
June 1993.

[13] M. Shreedhar and G. Varghese, “Efficient Fair Queuing using Deficit
Round Robin,” in Proceedings of ACM SIGCOMM ’95, Cambridge,
MA, September 1995.

[14] Z. Cao, Z. Wang, and E. Zegura, “Rainbow Fair Queueing: Fair Ban-
wdith Sharing Without Per-Flow State,” in Proceedings of IEEE IN-
FOCOM 2000, Tel-Aviv, Israel, March 2000.

[15] A. Clerget and W. Dabbous, “TUF: Tag-based Unified Fairness,”
in Proceedings of IEEE INFOCOM 2001, Anchorage, Alaska, April
2001.

[16] H. Zhu, A. Sang, and S. Li, “Weighted Fair Bandwidth Sharing Us-
ing SCALE Technique,” Computer Communications Journal, Special
Issue in QoS, vol. 24, no. 1, January 2001.

[17] M. Nabeshima, T. Shimizu, and I. Yamasaki, “Fair Queuing with
In/Out Bit in Core Stateless Networks,” in Proceedings of the Eight
IEEE/IFIP International Workshop on Quality of Service (IWQoS
2000), Pittsburg, PA, June 2000.

[18] A. Cox, “Network buffers and memory management,” Linux journal,
September 1996.

[19] W. Almesberger, “Traffic Control implementation overview,”
ftp://lrcftp.epfl.ch/pub/people/almesber/
tcio-current.ps.gz.

[20] K. Wehrle R. Bless, “Evaluation of differentiated services using an
implementation under linux,” in Proceedings of the Seventh IEEE/IFIP
International Workshop on Quality of Service (IWQoS’99), London,
England, May 1999.

[21] I. Stoica and H. Zhang, “Providing Guaranteed Services Without Per
Flow Management,” in Proceedings of ACM SIGCOMM ’99, Boston,
MA, September 1999, pp. 81–94.

[22] D. D. Clark and W. Fang, “Explicit Allocation of Best Effort Packet
Delivery Services,” IEEE/ACM Transactions on Networking, vol. 6,
no. 4, pp. 362–373, August 1998.

[23] C. Kumuench, G. Kuehne, C. Shremmer, and T. Haenselmann,
“A video-scaling algorithm based on human perception for spatio-
temporal stimuli,” in Proceedings of SPIE, Multimedia Computing
and Networking, 2001.

APPENDIX

Theorem 1: Consider a link with a constant fair label
Lfair and a layered flow crossing this link. Then, the excess
service received by this flow, that sends at a rate no larger
than C (the capacity of the access link) is bounded above by

(A + 1)lmax + Lfair · K(A + 1 + 2ln
C

Lfair
) (12)

where A is the maximum number of layers allowed and lmax

represents the maximum length of the packet.
Proof: Without loss of generality let us assume that ex-

actly n packets are sent during the target interval I . Since,
according to the dropping algorithm of Section III-B pack-
ets with labels above Lfair are dropped, the total service re-
ceived by the flow in the interval I is

F =
n∑

i=1

li · 1Li≤Lfair
(13)

where li is the length of the ith packet of interval I and Li is
its label.

Thus, the problem can be reformulated as to maximize F
subject to the labeling of Equation 6. We first study which
labels for packets of layer A maximize F .

It can be easily seen that the service received by a flow is
maximized when: a) all the packets of the layer A are ac-
cepted, or b) there exists a time after which all packets of
layer A are dropped. The reason is because having a packet
with a label above Lfair provides no service at present, since
the packet is dropped, and reduces the amount of service that
can be obtained in the future for layer A, since it makes larger
the current estimated aggregated rate of the layer. In the fol-
lowing we only consider the packets of layer A accepted.

Let IA1 be the subinterval of I before the arrival of the first
packet of layer A, IA2 the subinterval comprised between the
first and the last packet of layer A and IA3 the subinterval
after the last packet of layer A. Let tk

A be the arrival time of
the kth packet of layer A, and l̂kA the sum of the lengths of
the packets of layer lower or equal to A transmitted between
packets k−1 (excluded) and k (included) of layer A. Let An

be the number of packets of layer A in the interval and A 1

the first packet of layer A. Then, F can be expressed as

F =
∑

i∈IA1

li + lA1 +
An∑
k=2

l̂kA +
∑

i∈IA3

li (14)

From Equation 8 it can be derived

l̂kA =
rk
A − rk−1

A e−(T k
A/K)

1 − e−(T k
A

/K)
T k

A (15)

where T k
A = tkA − tk−1

A .
Substituting the above into Equation 14, we can express F

as a function of rk
A (1 ≤ k ≤ An). Then,

∂F

∂rk
A

=
T k

A

1 − e−(T k
A

/K)
− T k+1

A e−(T k+1
A

/K)

1 − e−(T k+1
A

/K)
, 2 ≤ k < An

(16)

and
∂F

∂rAn

A

=
T An

A

1 − e−(T An
A

/K)
(17)

Since x/(1 − e−x) ≥ 1 and xe−x/(1 − e−x) ≤ 1 for any
x ≥ 0, we have

∂F

∂rk
A

≥ 0, 2 ≤ k ≤ An (18)

Consequently, F is maximized when rk
A achieves its max-

imum value for 2 ≤ k ≤ An. Considering that Lk
A = rk

A and
Lk

A ≤ Lfair, this value is rk
A = Lfair. Substituting this into

Equation 15 leads to

l̂kA =
Lfair − Lfaire

−(T k
A/K)

1 − e−(T k
A

/K)
T k

A = LfairT
k
A, 2 < k ≤ An

(19)
and, assuming T k

A � K ,

l̂kA ≤ Lfair

1 − e−(T k
A

/K)
T k

A ≈ LfairK, k = 2 (20)

Bounding lA1 by lmax and substituting the above results
into Equation 13 leads to the following expression for F :

F =
∑

i∈IA1

li + lmax + KLfair + Lfair

An∑
k=3

T k
A +

∑
i∈IA3

li (21)

<
∑

i∈IA1

li + lmax + KLfair + LfairTA2 +
∑

i∈IA3

li

where TA2 is the length of the time interval IA2.
Using an identical argument as the one used above for layer

A for layers A − 1, A − 2, . . . , 2 it can be easily shown that
the maximum service received by the flow is bounded above
by

F <
∑
i∈I1

li+(A−1)lmax+(A−1)KLfair+LfairT2+
∑
i∈I3

li

(22)
where I1 is the subinterval of I before the arrival of the first
packet with layer higher than 1, I2 the subinterval comprised
between the first and the last packet with layers higher than 1
and I3 the subinterval after the last packet with layer higher
than 1.

The service that the flow can obtain sending only layer 1
during a time interval Tl1 is bounded above by Theorem 1
of [4]:

Fl1 < lmax + KLfair + KLfairln
C

Lfair
+ LfairTl1 (23)

Applying the above bound to intervals I1 and I3 and com-
bining this with Equation 22 leads to

F < (A+1)lmax +Lfair ·K(A+1+2ln
C

Lfair
)+Lfair ·T

(24)
where T is the length of interval I .

Since Lfair · T is the service to which the flow is entitled
during interval I , the proof follows.

