
Study of packet dropping policies on la y eredvideo

F rederic Raspallab, Christoph Kuhm�unchc, Albert Banchsab, Federico Pelizzab and Sebasti�a Sallenta

a Universitat Polit�ecnica de Catalunya, Barcelona, Spain
b C&C Research Laboratories, NEC Europe Ltd., Heidelberg, Germany
c Lehrstuhl Praktische Informatik IV, University Mannheim, Germany

raspall@ccrle.nec.de, cjk@pi4.informatik.uni-mannheim.de, banchs@ccrle.nec.de

peliz@bigfoot.com, sallent@mat.upc.es

Abstract

Packet-dropping policies are widely used in router

queues in order to prioritize some packets with respect

to others. Since in layered video packets are labeled

with di�erent layers according to their level of impor-

tance, the use of packet-dropping policies giving higher

priority to packets belonging to the most important lay-

ers seems to be a good approach to maintain video qual-

ity when congestion occurs. In this paper, we investi-

gate the impact of using di�erent packet-dropping poli-

cies for layered video. F or this purpose, we have imple-

mented such packet-dropping policies in a Linux test-

bed, and w ehave used our own layering video codec.

With respect to qualit y,the results obtained sho w a

strong dependency on the speci�c packet-dropping pol-

icy used and the type of video source; in some cases,

the qualit y obtained with the packet-dropping policies

is even poorer than if plain FIFO queuing with random

packet dropping is used. We conclude that, even though

the concept of using packet-dropping policies for layered

video can provide signi�cant adv an tages, the choice of

the packet-dropping policy and the video codec to use

needs to be done carefully in order to achiev e the desired

results.

Keywords: packet dropping policies, layer edvide o,

multicast.

1 Introduction

Video transmission is an increasingly important ap-

plication of the In ternet. With the development of

the MBone, multi-point transmission of media streams

became possible. T ypical scenarios are, for example,

multi-point video conferencing, video on demand ser-

vices or tele-teac hing. Unfortunately, the capacity of

Submitted to Workshop on Packet Video 2001, Korea.

the In ternet is still v ery heterogeneous because it con-

nects high bandwidth backbone networks as well as lo w

bandwidth dial-in lines. Common video encoding and

compression techniques fail in such heterogeneous mul-

ticast scenarios because they cannot adapt the data

rate of the video stream individually for eac h partici-

pant. As a solution to this problem layered video encod-

ing schemes like the layered DCT approach described

in [AMV96] ha vebeen dev eloped. The idea of these

schemes is to encode video signals not only into one but

in to sev eral output streams.The quality of the decoded

video depends on the number of streams received.

F rom the transport layer's point of view the ques-

tion arises how the number of streams can be individu-

ally adapted according to the network resources of each

participant. A w ell-known approach is receiver-driven

layered multicast (RLM) [MJ96]. This scheme updates

the number of streams periodically according to the net-

w ork behavior (loss rate) experienced by eac h receiver.

Unfortunately this scheme has several drawbacks. The

most important problem is the slow response to netw ork

congestion [MG01].

In this article we follow an approach that places the

adaptation task into the network layer. Instead of an

end{to{end adaptation we propose a media-aware �lter

mechanism that drops packets in case of a netw ork con-

gestion. We study the feasibility of making this adap-

tation at the queues of the net w orknodes, in suc h a

w ay that in case of congestion thenet w ork nodes �rst

drop the packets belonging to the highest layers. The

adv antage of this approach is that it responds much

faster to netw ork congestion than RLM. This is of spe-

cial relev ance in the case of quickly changing netw ork

congestion due to bursty traÆc, since receiver based ap-

proaches would not be able to adapt to these changing

conditions. Note also that, in contrast to RLM, our

approach does not require any kind of signaling.

We present three di�erent pac ket discarding policies

that �lter incoming packets at a net w orknode. The

three policies have been in tegrated in to the multicast

forwarding module of the Linux kernel in order to eval-

1

Proceedings of The 11th International Packet Video Workshop, 30 April – 1 May 2001 • Kyungju, Korea

Junoo Lee
48

uate their impact on the quality of a transmitted video

signal. Our goal was to test the e�ectiveness of the three

policies within di�erent situations, e.g. with constant

bit rate background traÆc as well as with highly bursty

background traÆc. More speci�cally we were interested

to �nd out which policy leads to the best video quality

at the given network conditions.

We used a video codec that can separate the video

stream into up to 20 layers. The codec is based on ITU-

recommendation H.261. It scales the spatial quality of

each video picture.

The rest of the paper is structured as follows. In

Section 2 related work is discussed. In Section 3 we

describe our layered video encoding. Section 4 discusses

the packet-dropping policies and Section 5 details our

test-bed. The focus of the article is Section 6 which

presents the evaluation results gained with the layered

video codec. The paper closes with some conclusive

remarks and hints to further research.

2 Related Work

One of the most prominent adaptation mechanisms for

layered media streams is receiver-driven layered mul-

ticast (RLM) described in [MJ96]. McCanne and Ja-

cobson propose an end{to{end mechanism that trans-

ports layered video on di�erent multicast addresses. Re-

ceivers can add layers by joining multicast groups and

drop layers by leaving multicast groups. RLM works

�ne if the available bandwidth for each layer stays more

or less constant for each receiver. Unfortunately the

approach su�ers from a very slow reaction time which

makes it not useful to react to bursty cross traÆc.

In [DRR99] DuÆeld et. al. propose a rate adapta-

tion algorithm for video called SAVE. The algorithm

adapts the bandwidth of a video signal to the current

network load. In contrast to our approach SAVE is an

end{to-end protocol, i. e., the sender reduces/increases

the bandwidth of the video signal. Mosri and Ghanbari

[MG01] discuss prioritized delivery algorithms for lay-

ered video over IP networks. They compare an RSVP

based approach with a prioritized delivery mechanism

PD which gives higher priority to packets containing

video base layer information. In contrast to our ap-

proach PD monitors RTCP packets in order to decide if

packets must be discarded. Nakauchi et. al. [NMA00]

present a rate control scheme called network supported

layered multicast NLM. NLM implements a packet-

dropping policy which is based on the average input

queue length as well as on the average interval length

between two packet arrivals. They provide exten-

sive evaluation results gained with a network simulator

but do not study the impact of the proposed packet-

dropping policy in a real test-bed with video streams.

Iatrou and Stavrakakis [IS00] provide a performance

analysis of a dynamic regulation scheme for real-time

traÆc management. The goal of their regulation scheme

is to control delay-jitter due to changing work load of

routing nodes. Thus the paper has a di�erent goal than

our approach.

3 Hierarchical encoding and layered video

Common video encoding and compression techniques

already allow the adaptation of the compression rate

and thereby of the quality of the video to the available

bandwidth. These techniques fail if a video is trans-

mitted simultaneously to several receivers with di�er-

ent network capacities. In order to solve this prob-

lem, hierarchical or layered encoding schemes have been

developed. The idea of these schemes is to encode

video signals not only into one but into several output

streams. Each stream Si depends on all lower streams

S0; :::; Si�1, in other words it can only be decoded to-

gether with these lower streams. Each stream adds to

the quality of the transmitted video.

3.1 Encoding scheme

In order to evaluate our �ltering policies we developed a

simple hierarchical video encoding scheme. Our scheme

scales the quality of each picture. We integrated the

scheme into a codec implementing ITU-T recommen-

dation H.261 but it can be adapted to all mayor video

coding standards that operate in the frequency domain.

H.261 has the advantage that its syntax is quite simple,

it consists of a few syntactical elements only. Similar to

JPEG, H.261 transforms each picture to the frequency

domain by applying the DCT to 8� 8 pixel blocks. Af-

ter quantization, the coeÆcients are encoded into runs.

A run is a tuple (z; n) that stands for a sequence of

z coeÆcients which have a value of zero followed by a

single coeÆcient with a non-zero value n. The runs are

produced by processing each 8�8 pixel block in zig{zag

order. Each run is encoded by using a static Hu�man

table.

Our layered scheme called lH.261 comes into ac-

tion after run length and Hu�man encoding. Instead

of transmitting the runs in a single bit-stream the runs

are distributed over several layers. Since a block con-

tains 64 coeÆcients a maximum number of 64 runs can

be produced (this happens if all coeÆcients are non-

zero). Thus the maximum number of layers is 64. Due

to quantization it is very likely that the maximum num-

ber of runs is lower than 20.

The runs can be distributed over the layers in sev-

eral ways. A straight forward approach is to equally

distribute the runs among the layers. In order to gain a

very �ne granularity we have applied a di�erent policy:

Except for the last layer only a single run is placed into

2

Junoo Lee
49

each layer. The last layer then contains all remaining

runs. This approach gives us a very �ne granularity. All

layers but the last will produce more or less the same

data rate except for the last one.

3.2 Transport

For transport over the network we designed an RTP

payload for our encoding. Figure 1 shows the RTP

header extension. The �rst six bits (layer) contain

the layer number. For base layer packets this �eld has

to be set to zero. The next �eld (no-runs) contains the

number of runs transported on this layer. The follow-

ing four bits (unused) are reserved for later speci�cation

and should be set to zero. The next 16 bits (sequence

number) contain a packet counter which is incremented

separately for each layer. The remaining 32 bits are

used according to the payload for H.261 as de�ned in

RFC 2032.

0
0 1 2 3 4 5 6 7 8 9

1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

layer sequence numberno-runs unused

sbit ebit I M gobn mbap quant hmvd vmvd

Figure 1: RTP header extension for Layered H.261

(lH.261).

4 Packet-dropping policies

Packet losses in networks occur when routers run out of

space in their queues. In our approach, packet dropping

policies are used to discriminate among layers when

router queues are �lled up. These packet-dropping poli-

cies aim at dropping the higher layers in case of conges-

tion, in such a way that the information contained in

the lower layers is always preserved. In this section we

describe three di�erent packet-dropping policies. Each

of the proposed policies is an adaptation of an exist-

ing concept for packet discarding to the requirements

of layered video.

4.1 Static levels policy

The idea behind the static levels policy is to avoid

queues growing too much, i. e., it is a \preventive" pol-

icy. The queue size is controlled by means of packet

drops in such a way that packets are dropped in order

of importance as the size of the queue grows; the likeli-

hood of queue over
ow (random losses) is thus reduced.

In the static levels policy, the packet dropping as a

function of the queue size is done in a static way: a

packet that belongs to layer i is only kept in the queue

if the size of the queue does not exceed a static value

thresholdi. In the following, the pseudo-code for this

policy is given:

layer := read layer value of the packet;

if queue:size < thresholdlayer

then enqueue packet;

else drop packet;

�

Algorithm 1: Packet enqueue procedure.

Note that this policy is based on the same concept

as W-RED [FJ93], which is the basis of the Di�eren-

tiated Services architecture [Bea98]. In W-RED, there

is a static threshold beyond which packets of the corre-

sponding service class are no longer enqueued.

The static levels policy achieves an optimum perfor-

mance in the case of constant traÆc: in this case, the

queue grows up to a size such that the higher layers that

cannot be forwarded are dropped, and the lower layers

are transmitted. In the case of bursty traÆc however,

this policy may drop packets unnecessarily, if the burst

size is smaller than the queue length.

4.2 Adaptive threshold policy

The adaptive threshold policy follows the same philos-

ophy as the static levels policy : queue growth is pre-

vented by means of packet drops. With this policy,

however, the packet dropping as a function of the queue

size is done in a dynamic way.

In the adaptive threshold policy there is a layer

threshold, lthreshold, such that a packet that belongs

to layer i is only enqueued if i is below the threshold.

lthreshold is computed dynamically every Ne incoming

packets. AfterNe new packets have arrived, the evo-

lution of the queue length is analyzed. If the queue

size has increased, this means that too many packets

are being accepted, and therefore lthreshold is to be

decreased to reduce the aggregate incoming rate. Oth-

erwise lthreshold is increased. In the following, the

pseudo-code for the adaptive threshold policy is given:

/* called every Ne packets */

Aq := compute queue growth after Ne packets;

if Aq > 0

then lthreshold = max(0; lthreshold� 1);

else lthreshold = min(lthreshold+ 1;max layer)

�

Algorithm 2: Threshold update procedure.

layer := read the layer-label of the packet;

if layer < lthreshold

then enqueue packet;

else drop packet;

�

Algorithm 3: Packet enqueue procedure.

This policy is based on the same concept as CSFQ

[SSZ98]: in CSFQ there is also a dynamic threshold

below which packets are dropped.

The fact that this policy is dynamic leads to frequent

changes of the number of layers received. Note that even

in the case of constant traÆc the value of lthreshold

3

Junoo Lee
50

oscillates between two consecutive integers. Also, if the

traÆc conditions change drastically, this policy can be

slow in adaptation because increase and decrease are in

steps of 1.

4.3 Layer swapping policy

The layer swapping policy is based on a di�erent con-

cept than the two previous policies. In this policy, all

incoming packets are enqueued as long as the queue is

not full. However, if a packet arrives and the queue is

full, the least important packet in the queue is searched

and compared to the arriving one: if the arriving packet

is more important, the one in the queue is removed to

make room for the arriving packet; otherwise, the arriv-

ing packet is dropped. In the following, the pseudo-code

for the layer swapping policy is given:

if queue not full

then enqueue incoming packet;

else
layer := read the layer-label of the packet;

oldpacket := �nd the packet with highest layer;

if layer < highestlayer

then drop oldpacket;

enqueue incoming packet;

else drop incoming packet;

�
�

Algorithm 4: Packet enqueue procedure.

This policy is based on the packet swapping concept,

which reacts to the situation of �nding the queue full

rather that preventing it, in contrast to the two previ-

ous policies . In contrast to the two policies mentioned

previously, the layer swapping policy reacts to the situ-

ation of having the queue full, instead of preventing it

by means of early dropping.The layer swapping policy,

therefore, never drops packets unnecessarily, and, as a

consequence, can potentially provide a higher through-

put than the two other policies. However, the layer

swapping policy also implies a higher processing over-

head for every incoming packet, which may harm the

throughput. The total throughput achieved by this pol-

icy is a combination of these two factors, and is platform

dependent.

5 Test-bed

In order to analyze the impact of the packet-dropping

policies explained in the previous section, we imple-

mented them into the multicast forwarding of the

MoPVC architecture [BGD+98], which was used to for-

ward layered video encoded with our lH.261 scheme.

Note that even though the tests described in this pa-

per were performed with the MoPVC architecture and

lH.261, the concepts can also be applied to any other

multicast architecture and any other video encoder that

provides a multi-layer output stream.

5.1 MoPVC architecture

The Multicast over PVC (MoPVC) architecture has

been developed by NEC in order to provide IP Multi-

cast to ADSL networks, and is currently being used at

the ADSL �eld-trial in Aachen, Germany, in the frame-

work of the ANETTE project1. The packet-dropping

functionality for layered video studied in this paper will

also be included in the �eld-trial.

The MoPVC architecture is based on

MARS/MCS [Arm96]: for address resolution a

MARS server is used, while the delivery of multicast

packets is done by an MCS server: when a client has a

multicast packet to transmit, it sends it to the MCS

which is responsible for delivering it to the members of

the corresponding group.

This architecture has been implemented on a Linux

platform. The most relevant part of the implementation

for this paper is the MCS forwarding since in this part

the packet-dropping policies were included. In the fol-

lowing, an explanation of the MCS forwarding is given

(see Figure 2).

Network interface card

backlog
queue

policy

Network interface card

output
queue

Higher
Layers

 Layer 3
(IP)

 Layer 2

 Layer 1

user
space

kernel
space

clip_start_xmit()

dev_queue_xmit()

ip_queue_xmit()

ip_send()

ip_mcs_forward()

Routing()

ip_rcv()

ip_local_deliver()

interrupt / netif_rx()

NET_BH

(REPLICATION)

Figure 2: The course of multicast packets in the MCS

forwarding.

When a packet is received by a network device,

a hardware interrupt is triggered and the procedure

netif rx() is called. This procedure queues the packet

into the backlog queue. The �rst time critical part of

the interrupt routine, called \top-half", is �nished at

this time.

The second part of the routine, called \bottom-half"

(NET-BH), is invoked by the kernel scheduler. NET-BH

proceeds with the next packet of the backlog queue

and determines the appropriate protocol to handle it

(in our case IP). The routine ip rcv() checks the cor-

rectness of the packet, and ip mcs forward() performs

the MCS forwarding at the same level as the standard

IP forwarding. From this point on, packets are han-

dled in exactly the same way as if they were gener-

ated by the local host, invoking ip queue xmit and
1Url:http://www.informatik/uni-mannheim.de/informatik/

pi4/projects/anette/

4

Junoo Lee
51

dev queue xmit, which queues the packet into the out-

put queue corresponding to the network device. From

this queue, the transmission of a packet is performed by

clip start xmit(), which is also responsible for repli-

cating the multicast packets to the di�erent receivers.

5.2 Packet-dropping Policies implementation

In the above description of multicast forwarding in

Linux, there are two queues where the packet-dropping

queues can be inserted: the backlog queue and the out-

put queue. Our experiments determined that the bot-

tleneck queue { i. e., the one where packets were lost {

was the backlog queue. Therefore, the packet-dropping

policies were implemented in the backlog queue. This

queue has a capacity of 300 packets.

The static levels policy was con�gured with 10 lev-

els, in such a way that the threshold for level i was

thresholdi = 300� 30i for level i = 0; : : : ; 9. Note that

with this con�guration, if more than 10 layers are used,

packets belonging to a layer beyond 9 are lost in the

�rst level, i. e. thresholdi = threshold9 for i > 9.

The adaptive threshold policy was con�gured with a

constant packet window of Ne = 50 packets, i. e., the

layer threshold was adapted after every 50 packets.

5.3 Test-bed Setup

For testing the packet-dropping policies in the MoPVC

architecture, we built a test-bed consisting of four Linux

machines: a sender, a receiver, the multicast forwarder

(MCS) and an address resolution server (MARS). The

sender sent multicast video packets mixed with dif-

ferent types of cross traÆcs (CBR, bursty and video

traÆc) to the MCS (where the policies were installed)

through an ATM network, and the MCS forwarded the

multicast packets to one real client and 29 \virtual"

clients through ADSL. The client recorded the resulting

video stream for further analysis, while the 29 "virtual"

clients were nonexistent clients that were con�gured at

the MCS in order to experience a signi�cant number of

losses. Thus, every incoming packet at the MCS was

replicated and forwarded 30 times. This con�guration

lead to a high load at the MCS: even for a relatively

low incoming rate (4 Mbps), the number of experienced

losses was large. The test-bed con�guration is depicted

in Fig 3.

6 Performance analysis and evaluation

In order to analyze the performance of the proposed

packet-dropping policies, we ran a number of experi-

ments in the test-bed. The goals of the performed ex-

periments were: a) to evaluate the bene�ts of packet

dropping at network queues for layered video in terms

of loss statistics, and b) to analyze the impact of the

sender MCS

policy

receiver

ADSL network

lH.261
video

layered cross
traffic

PVC

evaluation of the
video quality

faked PVC’s

original video
(full quality)

received video
(degraded quality)

Figure 3: MoPVC test-bed for layered transmissions.

di�erent concepts for packet dropping to the resulting

video quality with our encoding technique. In order to

ful�ll these two goals we provide two series of evalua-

tion results. The �rst evaluation, presented in Section

6.1, provides statistical measures obtained with arti�-

cial traÆc that show the performance of the policies

in terms of layer discrimination with respect to loses.

The second evaluation, in Section 6.2 studies the per-

ceived video quality, with objective measurements and

subjective qualitative considerations, when a real video

stream is transmitted.

6.1 Tests with arti�cial traÆc

The three policies were designed to drop only the high-

est layers in case of congestion. In order to evaluate how

well this criterion was met we ran tests with arti�cially

generated traÆc for each policy and studied its behav-

ior. Tests were run for both CBR and bursty traÆc,

and the behavior of the policies was analyzed according

to the measured layer response.

6.1.1 Layer response

Since the objective of our packet-dropping policies is

to discriminate among layers in case of congestion, a

natural way of measuring the performance is to analyze

the percentage of successfully delivered packets in each

layer. We call this measure the layer response.

Note that if the conventional queuing policy is ap-

plied (i. e., FIFO queuing with packet dropping at the

tail), packet drops are independent of layers, and, as a

consequence, we have a uniform layer response. On the

other hand, the measured layer response with an ideal

policy would be a step function, such that 100% of the

packets belonging to the lower layers are delivered and

the remaining are all dropped. The more similar is the

5

Junoo Lee
52

layer response of a given policy to the step function, the

better this policy meets its design criterion.

The performance of a policy also depends on the

total throughput,i. e., the total amount of packets de-

livered in a time unit. The computational cost of a

policy impacts the total throughput of a forwarding en-

tity; in general, the more complex the policy, the lower

the throughput.

Note that the resulting video quality is also in
u-

enced by other aspects besides the layer response and

the total throughput, such as the dynamics of the pol-

icy. For example, the e�ect of losing packets belonging

to the same frame is di�erent than losing packets be-

longing to di�erent frames.

6.1.2 CBR traÆc

In order to evaluate how well each policy met its design

criterion, we measured the layer response of the three

policies with Constant Bit Rate (CBR) traÆc and the

setup. The packets had a size of 500 bytes, and four dif-

ferent incoming rates (2, 4, 6 and 8 Mb/s) were tested.

The tests were also performed for a di�erent number of

layers (5, 10 and 15).

In Figure 4 the layer response of the three policies

under study is depicted and compared to the obtained

layer response when the conventional policy is used, for

the case of an incoming rate of 4 Mb/s and 10 layers. In

this Figure it can be observed that under CBR traÆc,

both the static levels and the layer swapping policies

have a very sharp layer response, like an ideal policy.

In contrast, the layer response of the adaptive thresh-

old policy is not so sharp, due to oscillations of the

layerthreshold. Note that the observed behavior when

the conventional policy is used is the expected, i. e.,

at layer response.

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9
Layer

%
 o

f
d

el
iv

er
ed

 p
ac

ke
ts

Conventional

Static levels

Adaptive threshold

Packet swapping

Figure 4: Layer response achieved with di�erent policies

for a 4 Mb/s 10-layer CBR traÆc. The graphs show the

percentage of successfully transmitted packets of each

layer (e.g. about 80% of the packets belonging to layer

7 have been successfully transmitted by using the static

levels policy)

The results of the tests performed with di�erent in-

coming rates and di�erent numbers of layers are not

shown in this paper for space reasons. The conclusion

of these additional tests is the same as the commented

above, except for the case when more than 10 are used

with the static levels policy. In this case, losses are uni-

formly distributed among the layers higher than 9, since

all these layers share the same threshold.

The total throughput for each policy was also mea-

sured, obtaining similar values for all policies. An in-

teresting conclusion from this result is the observation

that the higher computational cost of the layer swap-

ping policy has no impact on the achieved forwarding

throughput by this policy on a Linux platform. Note

that this result is platform speci�c.

6.1.3 Bursty traÆc

Under static conditions (CBR traÆc), the policies show

a stable behavior, and their performance is almost opti-

mal. In a dynamic situation (bursty traÆc), it is more

diÆcult to achieve the desired performance. In order

to evaluate the capability of the three proposed poli-

cies to adapt to changing conditions, we ran the same

experiments as the ones described for CBR traÆc with

a bursty kind of traÆc. This traÆc consisted of an

ON/OFF process sending bursts of layered packets with

a uniform distribution of layers.

In Figure 5 the layer response of the three policies is

depicted for an incoming bursty traÆc of rate 4 Mb/s

with 10 layers. It can be observed that, as expected,

the layer response under bursty traÆc is less sharp than

under CBR traÆc, i. e., policies perform worse than in

the former case. This is actually unavoidable unless the

queue has an in�nite length. As can be seen in the

�gure, the layer response gained with the three poli-

cies still performs much better than the layer response

induced with plain FIFO queuing with random packet

dropping. Therefore, even in the case of bursty traÆc

the policies are bene�cial in terms of layer discrimina-

tion.

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9
Layer

%
 o

f
d

el
iv

er
ed

 p
ac

ke
ts

Conventional

Static levels

Adaptive threshold

Packet swapping

Figure 5: Layer response achieved with di�erent policies

for a 4 Mb/s 10-layer bursty traÆc.

6

Junoo Lee
53

From the results shown in Figure 5, it can be seen

that the policy that performs worst is the adaptive

threshold policy. This policy proved to react too slowly

to changing conditions, since its layerthreshold changes

at most one unit every Ne packets. The losses observed

in the lower layers occurred when the queue was �lled

up due to this slow adaptation.

The layer response of the static levels policy shows

a better shape than the adaptive threshold, but still

achieves a lower total throughput than the layer swap-

ping policy. This loss of throughput is inherent to any

preventive policy in the presence of bursty traÆc: a

burst of packets smaller than the queue size with a pre-

ventive policy causes some unnecessary packet drops of

the highest layers. In contrast, this situation does not

cause any packet drop in a reactive policy such as the

layer swapping.

Our conclusion concerning the tests performed with

CBR and bursty traÆc is that all policies behave ac-

cording to their design criterion, since for all three, the

probability of losing a high layer packet is much bigger

than the probability of losing a low layer one. From the

three policies, the one that performed best is the packet

swapping policy ; it is the one that achieved the highest

total throughput and also the sharpest layer response.

The static levels policy performed similarly to the packet

swapping policy but with a lower throughput and the

adaptive threshold policy had the worst layer response.

6.2 Tests with video traÆc

In order to evaluate the bene�ts of using packet discard-

ing policies in the queues for layered video, it is not suf-

�cient to analyze the layer response, since the quality

of the video traÆc may depend on many other aspects.

A proper evaluation requires measuring the quality of

the received stream. We measured the quality of the re-

ceived video using the QM parameter described below.

6.2.1 Objective Video Quality Measurement

In order to �nd out if layered video combined with �lter-

ing policies leads to an improved quality of the received

video signal, we need a metric to measure the video dis-

tortion as perceived by the human observer as precisely

as possible.

One measure widely used in the context of video

quality is the signal-to-noise ratio (SNR). It describes

the energy of an undistorted signal in relation to the

noise introduced by processing the signal (e.g. com-

pression and decompression of the signal). High SNR

values do not always correspond to signals with high

perceptual quality [BK97].

A number of measures exist, which try to estimate

the distortion perceived by the human visual system. In

order to measure the success of our packet �ltering poli-

cies we chose the QMeasure algorithm (QM). QM has

a temporal component which tries to measure tempo-

ral distortions such as the ones introduced by dropped

frames, and a spatial component which tries to esti-

mate the distortion of each picture. For the dynamic

measure the motion energy between two succeeding im-

ages is used while the spatial component distinguishes

between distortions of edges and texture. Because edges

provide more important information to the human vi-

sual system the QMeasure puts a higher weight on edge

distortions than on texture distortions. QM takes two

sequences of frames as input parameter and returns the

estimated di�erence perceived by the human visual sys-

tem. A high di�erence between the two sequences re-

sults in a high QM value. If the two sequences are equal

the QM value is zero. A more detailed description can

be found in [KKSH01].

6.2.2 Tests

The goal of the test with video traÆc was to analyze the

impact of the proposed policies on the resulting video

quality. For this purpose we used the lH.261 video cod-

ing described in Section 3. As the performance of a

policy highly varied with test conditions, we ran tests

under the following conditions:

Background traÆc: One of the conclusions drawn

from the tests described in Section 5 is that the perfor-

mance of a packet-dropping policy highly depends on

the statistics of the background traÆc. Therefore, the

quality of a video stream after a queue with a packet-

dropping policy is very likely to be highly dependent

on the statistics of the rest of the traÆc going through

this queue. We ran tests with three di�erent types of

background traÆc: CBR, bursty and video traÆc. The

two former ones have been described in the previous

section, while the latter consists of a number of lH.261

video streams. Video source: We used two di�er-

ent types of video sources: an action movie (star wars)

and a self recorded video-conference. Since in the for-

mer there are many drastic changes of background and

brusque movements, while in the latter the background

is static, packet loses may have a very di�erent impact

in each case. Number of layers: The number of layers

used in the coding determines the granularity of the en-

coded video. Also, the static levels policy is con�gured

with a static number of levels, and, as a consequence, its

performance depends on the number of incoming layers.

We ran tests with 5, 10 and 15 layers.

In all tests, the total incoming rate at the MCS was 4

Mb/s. In the cases of CBR and bursty cross-traÆc, the

packet sizes of the cross-traÆc had the same statistics

as the video traÆc.

7

Junoo Lee
54

6.2.3 Results

The Tables 1 and 2 show the obtained evaluation re-

sults. Each column shows the average QM value gained

with the di�erent policies. Again policy 0 stands for the

conventional policy, policy 1 for the static levels policy,

policy 2 for the adaptive threshold policy and policy 3

for the layer swapping policy. In general, these results

con�rm that the use of packet-dropping policies leads to

an improvement in the video quality obtained. The fact

of having a better quality when a policy is used is not

surprising in itself, since it can be expected that a pol-

icy that drops high layers performs better than random

dropping.

Comparing the di�erent policies, it can be seen that

in general similar results are obtained for all of them.

Unfortunately, in the case of the adaptive threshold pol-

icy the quality measure QM is misleading, since it suf-

fers from
ickering, which is an aspect that is not cap-

tured in the QM parameter. The fact that the number

of layers delivered by the adaptive threshold policy os-

cillates causes the resolution of the delivered video to

change continuously and uniformly in the whole screen.

This e�ect of
ickering is annoying for the viewer and

harms considerably the resulting quality. Therefore, the

quality delivered by the adaptive threshold policy is con-

siderably lower than the delivered by the other two poli-

cies2.

cross- Policy 0 Policy 1 Policy 2 Policy 3

traÆc QM QM QM QM

10 Layers

cbr 1542.4 874.8 888.6 899.7

bursty 969.0 876.2 942.8 877.2

video 1281.4 941.0 950.3 952.0

15 Layers

video 1666.8 989.9 994.9 1004.9

5 Layers

video 1200 977.6 968 996.1

Table 1: Results of the star wars test sequence using

10, 15 and 5 layers.

The screen shots of the star wars test sequence dis-

played in Figure 6 depict the signi�cant quality im-

provement gained by using �ltering policies. Also, Fig-

ure 7, which plots the evolution of the video quality in

the test with Star-wars with CBR cross traÆc and 10

layers, shows how the policies in
ict higher quality dur-

ing the complete test video. However, a more thorough
2Note that this conclusion has been derived through subjective

qualitative considerations, due to the limitation of the objective mea-

surements to emulate the human perception of a video signal. In our
test-bed this was the only situation in which the objective measures

did not match the quality perceived subjectively

cross- Policy 0 Policy 1 Policy 2 Policy 3

traÆc QM QM QM QM

cbr 1400.7 1447.8 1444.8 1445.3

bursty 1444.1 1439.9 1495.2 1442.0

video 1399.9 1454.1 1453.8 1434.6

Table 2: Results of the video conferencing test sequence

with 10 layers.

analysis comparing the results leads to less obvious con-

clusions.

400

600

800

1000

1200

1400

1600

1800

2000

100 200 300 400 500 600 700 800

Q
M

frame number

policy 0
policy 1

Figure 7: Development of QM with and without poli-

cies. Policy 0 stands for the \conventional policy". It

can be seen that with policy 1 (static levels policy) a

better QM is experienced in all instants as compared to

using the conventional policy.

Comparing the results of Tables 1 and 2, it can be

seen that the bene�ts of packet-dropping policies change

drastically with the type of video source: while the qual-

ity with policies improves very much for an action movie

video, this does not occur with a video-conference. This

result is very relevant for our goal, since it implies that

the use of packet-dropping policies does not always lead

to an improvement in quality. The reasons for this re-

sult are explained in the following.

In an action movie, there are fast movements and fre-

quent changes in background. Using the conventional

policy leads to a degradation in the integrity of move-

ment and errors in the background refresh as shown in

Figure 8. These e�ects are both very harmful and cause

the video quality to be extremely bad. In contrast, if

more sophisticated policies are used, these e�ects are

minimized. Even though with these policies the resolu-

tion is lower, since high layers are dropped, the resulting

quality is much better.

In contrast to an action movie, in a video conference

movements are slow and the background is static. In

this scenario, using the conventional policy leads to a

8

Junoo Lee
55

Figure 6: Decoded pictures of the star wars test sequence. Left: without packet loss, center: with the conventional

policy, right: with static levels policy.

Figure 8: Missing background refresh. Left: without packet loss, center: with the conventional policy, right: with

static levels policy.

high resolution image with random spots of low resolu-

tion. Since these random spots are quite tolerable for

the human observer and can often be concealed by the

decoder by using information from the previous frame

the perceived quality is relatively good. In contrast, us-

ing policies leads to a lower resolution, since losses are

concentrated on the higher layers. Also, when policies

are used, the number of delivered layers oscillates due

to changing traÆc conditions. This e�ect, which was

unnoticeable with an action movie, is quite annoying

with a static background.

If we study the impact of background traÆc in Ta-

bles 1 and 2, it can be seen that policies improve the

experienced quality in all cases. It is also an interesting

observation that when policies are used, the obtained

quality is almost independent of the type of background

traÆc, in comparison with the case where the conven-

tional policy is used. Thus, the use of policies contribute

to make the video quality more uniform.

Finally, Table 1 shows the impact of using di�erent

number of layers. Results show di�erent qualities for

di�erent number of layers, but do not show a signi�-

cant impact in the comparison of the di�erent policies.

It is important to note that the static levels policy is not

negatively a�ected by using di�erent number of layers,

even though this policy was statically con�gured assum-

ing a number layers equal to 10.

7 Conclusions and outlook

In this paper we have investigated the combination of

layered video transmission with packet-dropping poli-

cies implemented in the network queues. Layered video

has traditionally been used in the context of receiver-

driven decisions. The advantage of making the decisions

at the network queues is that it enables quicker reaction

to changing traÆc conditions since no signaling mecha-

nisms are needed.

The performed experiments have shown a signi�cant

improvement in the quality of action movie-like videos

when our packet-dropping policies are used. In con-

trast, when the transmitted type of video from a video-

conference-like, packet-dropping policies do not improve

the quality substantially.

The explanation for the observed behavior relates to

the used error concealment scheme: If base layer in-

formation of a block is lost then the complete block

is discarded and replaced by the block from the pre-

vious frame. In case of our packet discarding policies

this happens almost never. Instead information from

higher layers is discarded which results in a block with

lower quality. In low motion videos many blocks do

9

Junoo Lee
56

not change over long periods of time. Thus it is bet-

ter to conceal the lost information by simply repeating

blocks from previous pictures. In contrast, in high mo-

tion videos it is better to use low quality versions. It

can be assumed that better error concealment strategies

will overcome this problem.

As a result of our experiments, we have detected

some problems in the use of packet-dropping policies for

layered video. However, in our opinion, these results

do not invalidate the concept for layered video. We

believe that the potential advantages of �ltering layers

at the network queues are worth further investigation.

For example, a new layered video coding adapted to a

uctuating number of layers may solve the problems we

have detected. The scope of our work, however, has

been limited to the packet-dropping policies.

In our investigations, we used three di�erent packet-

dropping policies: the static levels policy, the adaptive

threshold policy and the packet swapping policy.

The adaptive threshold policy provides in all cases a

worse performance than the other two. With this pol-

icy, the number of layers delivered inherently
uctuates.

The e�ect produced by this
uctuation proved to be

very harmful for the resulting quality. As a conclusion,

any policy that adaptive tries to �nd the right number

of layers to forward is probably not a good option.

The packet swapping and the static levels policies

provided both good performance. The packet swapping

policy has the advantage that it does not modify the

queuing behavior as long as there is no congestion, but

this comes at the cost of a higher complexity. How-

ever, this higher complexity proved not to harm the

performance of the policy on a Linux platform. For the

ANETTE project, which is based ion Linux machines,

we have chosen to use the packet swapping policy.

One possible use of the static levels policy could be

the Assured Forwarding service (AF) of Di�serv (Dif-

ferentiated Services). The packet-dropping policy used

by this service, W-RED, is very similar to the static

levels policy proposed in this paper. Therefore isf the

di�erent video layers were mapped into di�erent AF

code points, the resulting quality would be similar to

the quality obtained in this paper for the static levels

policy. Note also that in this scenario, the amount of

traÆc that each user is allowed to send in each layer

is determined by the Service Level Agreement (SLA)

between the user and the ISP.

References

[AMV96] Elan Amir, Steven McCanne, and Martin

Vetterli. A layered dct coder for inter-

net video. In Proc. of IEEE International

Conference on Image Processing, Lousanne

Switzerland, pages 13{16. IEEE, 1996.

[Arm96] G. Armitage. Support for multicast over uni

3.0/3.1 based atm networks. IETF, RFC-

2022, 1996.

[Bea98] S. Blake and D. Black et al. An architecture

for di�erentiated services. IETF, RFC-2475,

1998.

[BGD+98] A. Banchs, M. Gabrysch, T. Dietz,

B. Lange, and H. J. Stuettgen. Supporting

multicast in adsl networks. In IEEE ATM

Workshop, Kochi, Japan, 1998.

[BK97] Vasudev Bhaskaran and Konstantinos Kon-

stantinides. Image and Video Compression

Standards. Kluwer Academic Publishers,

Norwell, MA, 1997.

[DRR99] N. DuÆeld, Ramakrishnan, and Amy Reib-

man. Issues of quality and multiplexing

when smoothing rate adaptive video. In

IEEE Transactions on Multimedia, 1999.

[FJ93] Sally Floyd and Van Jacobson. Ran-

dom early detection gateways for conges-

tion avoidance. IEEE/ACM Transactions

on Networking, 1993.

[IS00] Steve Iatrou and Ioannis Stavrakakis. A dy-

namic regulation and scheduling scheme for

real-time traÆc management. IEEE/ACM

Transactions on Networking, 8(1), 2000.

[KKSH01] C. Kuhm�unch, G. K�uhne, C. Schremmer,

and T. Haenselmann. A video-scaling algo-

rithm based on human perception for spatio-

temporal stimuli. In Proc. SPIE, MMCN,

2001.

[MG01] Alejandra Flores Mosri and M. Ghanbari.

Prioritised delivery of layered coded video

over ip networks. ACM Transactions on

Multimedia, to be published, 2001.

[MJ96] Steven McCanne and Van Jacobson.

Receiver-driven layered multicast. In

Proceedings of the ACM SIGCOMM'96,

Stanford, CA, August 1996. ACM. Multi-

cast.

[NMA00] Kiyohide Nakauchi, Hiroyuki Morikawa, and

Tomonori Aoyama. Network support for

multicasting streaming media in heteroge-

nous networks. In Proc. Network Group

Communication NGC, 2000.

[SSZ98] Ion Stoica, Scott Shenker, and Hui Zhang.

Core-stateless fair queueing: Achieveing ap-

proximately fair bandwidth allocations in

high speed networks. In ACM SIGCOMM.

Vancouver, Canada, 1998.

10

Junoo Lee
57

	0:

