
The Olympic Service Model: Issues and

Architecture

Albert Banchs12, Olga Leon12, Sebastia Sallent2

1 C&C Research Laboratories, NEC Europe Ltd., Heidelberg, Germany
2 Departament de Telematica, Universitat Politecnica de Catalunya, Spain

Abstract. The Olympic Service Model is a proposal for providing ser-
vice di�erentiation in the Internet. With this model, those users who pay
more receive a higher amount of network resources, based on a three class
granularity (bronze, silver, gold). However, the amount of resources re-
ceived by a user is not speci�ed, and depends on the level of congestion at
a given time. In this paper we analyze the validity and limitations of the
Olympic Service Model. We then propose an architecture, the SSD archi-
tecture, which provides service di�erentiation according to this model,
both for the intra-domain and the inter-domain cases. Finally, we com-
pare via simulation our approach with other existing architectures of the
Olympic Service Model.

1 Introduction

The current Internet is built on the Best E�ort model where all packets are
treated as independent datagrams and are serviced on a FIFO basis. This model
su�ers fundamentally from two problems: the potentially unfair distribution of
the network resources and the lack of di�erentiation.

The potentially unfair resource distribution problem results from the fact
that the Best E�ort model does not provide any form of traÆc isolation inside
the network and relies on the application's behavior to fairly share the network
resources among the users. Therefore the cooperation of the end systems (such
as provided by TCP congestion control mechanisms) is vital to make the sys-
tem work. In today's Internet, however, such dependence on the end systems'
cooperation for resource distribution is increasingly becoming unrealistic. Given
the current Best E�ort model with FIFO queuing inside, it is relatively easy for
non-adaptive sources to gain greater shares of network bandwidth and thereby
starve other, well-behaved, TCP sources. For example, a greedy source may sim-
ply continue to send at the same rate while other TCP sources back o�. Today,
even many applications such as web browsers take advantage of the Best E�ort
model by opening up multiple connections to web servers in an e�ort to grab as
much bandwidth as possible.

The lack of di�erentiation relates to the incapacity of the Best E�ort model
to provide a better service to those consumers who are willing to pay more
for it. In today's Internet there is a growing demand for user di�erentiation

based on their services' needs. For example, there are many companies relying
on the Internet for day-to-day management of their global enterprise. These
companies are willing to pay a substantially higher price for the best possible
service level from the Internet. At the same time, there are millions of users
who want to pay as little as possible for more elementary services. Since the
Best E�ort model treats all packets equally (same-service-to-all paradigm), it
does not allow Internet Service Providers (ISPs) to di�erentiate among users as
needed.

Over the last ten years, considerable e�ort has been made to provide Quality
of Service (QoS) in the Internet, leading to the speci�cation of an Integrated Ser-
vices architecture for the Internet (IntServ) [1]. However, research and experience
have shown a number of diÆculties in deploying the IntServ architecture, due to
scalability and manageability problems. The scalability problems arise because
IntServ requires routers to maintain control and forwarding state for all
ows
passing through them. Maintaining and processing per-
ow state for gigabit and
terabit links, with millions of simultaneously active
ows, is signi�cantly diÆcult
from an implementation point of view. The manageability problems come from
the lack of support for accounting, the high administrative overheads and the
complexity of inter-ISP settlement.

The above issues have led to a number of proposals for providing di�er-
entiated services in the Internet. In those proposals, scalability is achieved by
pushing most of the complexity and state to the network edges (where both the
forwarding speed and the number of
ows are smaller); at the edge, incoming
packets are classi�ed among several classes, and core routers do not need to
store state for each
ow, but can instead process packets using di�erent policies
for each traÆc class. In a similar way, manageability is achieved by focusing on
traÆc aggregates instead of individual
ows, where a traÆc aggregate is a large
set of
ows with similar service requirements.

IETF's Di�erentiated Services (Di�Serv) architecture [2{4] solves the po-
tentially unfair resource distribution problem of the Best E�ort model by per-
forming some type of admission control at the edge of the network. Admission
control ensures that no user sends more traÆc than he/she is allowed to. A key
point for admission control is to determine how much traÆc a user should be al-
lowed to send, such that the network does not become congested and, therefore,
can give the service expected. The diÆculty lies, however, in estimating at the
edge the congestion level to which the acceptance of a certain amount of traÆc
would lead1. One possibility is to use a static over-provisioned con�guration. In
this case, since the admitted traÆc is always much smaller than the network
resources, the danger of congestion is minimized. A more dynamic solution is
the use of bandwidth brokers (BB), which are agents responsible for allocating
network resources among users. In this approach, the knowledge of the network
usage is centralized at the BB and the admission decisions to be taken are trans-

1 Note that this problem does not arise in the Integrated Services architecture, since in
that architecture, the admission control decision is taken individually at each router
on the path between sender and receiver(s) based on the local state information.

ferred from this BB to the edge. The design and implementation of BB is an
ongoing e�ort [5].

The Olympic Service Model has been designed to solve the problems of the
Best E�ort model while avoiding the complexity of the admission control schemes
proposed for IETF's Di�Serv architecture. In this paper we propose an archi-
tecture based on the Olympic Service Model and we compare it with existing
architectures based on the same model.

The rest of the paper is structured as follows: In Section 2, we present the
Olympic Service Model and discuss its validity and limitations. In Section 3, an
architecture based on this model is proposed: the Scalable Share Di�erentiation
(SSD) architecture. Section 4 validates the SSD architecture through simula-
tions, comparing it with the other existing approaches for the Olympic Service
Model. Finally, Section 5 gives a summary and concludes the paper.

2 The Olympic Service Model

Research on Di�Serv is proceeding along two di�erent directions: those proposals
that use admission control and those that do not.

In the approach with admission control, it is possible to control the amount
of traÆc allowed inside the network. In this way, traÆc that would decrease
the network service to a level lower than a desired limit can be stopped and an
admitted user can be assured of his/her requested performance level. This ap-
proach, which we refer to as Absolute Service Di�erentiation, can be considered
as trying to meet the same goals as IntServ, i.e. absolute performance levels, but
pushing complexity admission control and traÆc policing to the edge and to the
BB and thus avoiding per-
ow state in the core routers.

The second approach, which we refer to as Relative Service Di�erentiation,
cannot prevent
ooding of the network using admission control, and the only
option to provide service di�erentiation is to forward packets in the network
nodes with a quality according to their relative priority. Therefore, absolute
performance levels are not guaranteed and only relative ones can be provided.
The advantage of Relative Service Di�erentiation is that it is easier to deploy
and manage.

One of the models proposed for the Relative Service Di�erentiation is the
Olympic Service Model [3]. This model consists of three service classes: in order of
increasing priority, bronze, silver, and gold. Packets are assigned to these classes
according to the service contracted by their sender. Then, packets assigned to
the gold class experience a better treatment than packets assigned to the silver
class, and the same type of relationship exists between the silver and bronze
classes. The Olympic Service Model must be strongly coupled with a pricing
scheme that makes the gold class more costly than the silver class and the silver
class more costly than the bronze class.

2.1 Olympic Service Model for Elastic and Real-time TraÆc

In the following, we justify the validity of the Olympic Service Model for Elastic
TraÆc. We will base the study on utility functions. Utility functions map net-
work parameters into the performance of an application: they re
ect how the
performance of an application depends on the network parameters. With this
de�nition, the Olympic Service model will be of utility to a user when an in-
crease in the priority of the class contracted by a user re
ects an increase in the
utility experienced by this user.

In [6], applications are divided into two groups (elastic applications and real-
time applications) and qualitative utility functions are given for each group.
Examples of elastic applications are �le transfer, electronic mail and remote
terminal. These applications experience a diminishing marginal rate of perfor-
mance enhancement as network resources are increased, so the function is strictly
concave everywhere. This is illustrated in Figure 1. We can observe from this
�gure that even though elastic applications bene�t from an increasing amount
of resources, they can still work with a low amount of network resources.

Network Resources

Utility

us
1

ug
1

us
2

ug
2

us
1 - utility silver time 1

ug
1 - utility gold time 1

us
2 - utility silver time 2

ug
2 - utility gold time 2

Fig. 1. Utility function for elastic applications

In the Olympic Service Model the amount of network resources received by
each user is not de�ned but depends on the level of congestion in the network.
This uncertainty about the amount of network resources associated to a class is
not particularly harmful in the case of elastic applications since, as said above,
this kind of applications can still work with a low amount of network resources.
Also, with the Olympic Service Model, the higher the priority of the class con-
tracted by a user, the more network resources this user will receive. As a con-
sequence, a higher priority class will always lead to a higher utility for elastic
traÆc, independent of the level of congestion in the network:

ui = f(congestion);8t; pi > pj) ui > uj (1)

where pi is the class priority (i.e. bronze, silver or gold) and ui is the utility
experienced.

Since with the Olympic Service Model, elastic applications always experience
a positive performance, and this performance increases with the class priority,
we conclude that this model provides a valid service for elastic traÆc. Note that,
with this approach, admission control can be avoided while still providing a good
service for this type of traÆc.

Real-time applications, in contrast to the elastic ones, need a minimum
amount of network resources to perform well, and perform badly with an amount
of resources lower than this threshold. Examples of such applications are link
emulation, audio and video. The qualitative utility function for real-time appli-
cations is illustrated in Figure 2.

Network
Resources

Utility

threshold

Fig. 2. Utility function for real-time applications

The uncertainty about the amount of network resources associated to a class
in the Olympic Service Model may lead to a high priority class receiving a lower
amount of resources than the minimum required and, consequently, experiencing
a null performance. Also, with this model, an increase in the class priority will
not always be bene�cial: it will only be bene�cial if it leads to an amount of
network resources higher than the minimum required.

We conclude that the Olympic Service Model is not appropriate for real-time
applications. This kind of applications would be better handled with admission
control: without admission control, the level of congestion of the network cannot
be controlled, and, as a consequence, utility cannot be guaranteed to applica-
tions that need a certain amount of resources to work properly. The Expedited
Forwarding of IETF's Di�Serv architecture [4] handles real-time traÆc in this
way. In [7] we provide a real-time traÆc extension for the SSD architecture pre-
sented here. This extension relies on a user-based admission control scheme to
guarantee that a real-time application receives the required amount of resources.

2.2 Sender-based approach

The fact that the Olympic Service Model is sender-based imposes some limita-
tions to its functionality. With a sender-based approach, a user can in
uence the

treatment experienced by the packets he/she is sending, but not the treatment
experienced by the packets he/she is receiving.

The services that �t best the nature of a sender-based approach such as the
Olympic Service Model are the one-to-one and one-to-any services for sending.
An example of the one-to-one case could be a VPN service that connects two
networks of a company; if the gold service class is contracted for both networks,
the VPN service will experience a good quality. An example of the one-to-any
case could be a company that does its business on the web and is willing to pay
an additional price to provide its users with a fast feel of its web site. If this
company contracts the gold service class, its users will experience a good service
quality.

While the one-to-one service for sending can be relatively easily provided by
IETF's Di�Serv architecture, the one-to-any service for sending is much more
complex and it is still an ongoing e�ort [8].

A one-to-one service for receiving does not match the nature of the Olympic
Service Model, which is sender-based, but it still could be indirectly provided.
An example of such a service could be a user that frequently accesses a speci�c
video server to download movies [9]. With the Olympic Service Model, this user
could contract a high quality service with the video server, which would in turn
contract the gold service class with the network for the delivery of movies to this
speci�c user. This would result in a good service quality experienced by the user
when using this service. Note that in this case the money transaction consists of
two steps: a �rst step from the user to the video server and a second step from
the video server to the network operator.

Finally, the any-to-one service for receiving cannot be supported by the
Olympic Service Model. An example of such a service could be a user will-
ing to pay an extra price for high speed Internet access. Due to the usefulness of
this service, the lack of support for it is an important limitation. The problem
with any-to-one services is that they necessarily require some kind of signaling
between the user and the ingress point of the packets received by him/her. Since
the lack of signaling strongly contributes to the simplicity of an architecture, we
conclude that the Olympic Service Model trades o� functionality with simplic-
ity. Note that within the IETF's Di�Serv architecture, the support of any-to-one
services has not been addressed yet.

3 Scalable Share Di�erentiation

In this section, we propose an architecture that implements the Olympic Service
Model. In our architecture, each class of the Olympic Service Model (bronze,
silver and gold) is mapped to a share, in such a way that the bandwidth expe-
rienced by a user is proportional to the share that he/she has contracted. The
share associated with each class is chosen by the network operator and depends
on the desired level of di�erentiation between classes; however, the gold class
should be mapped to a higher share than the silver, and the silver to a higher
than the bronze. This is expressed by the following equation:

rg
Sg

=
rs
Ss

=
rb
Sb

(2)

where rg is the bandwidth that a user would experience if he/she contracted
the gold service class, rs the bandwidth that he/she would experience with the
silver class and rb with the bronze, and Sg, Ss and Sb are the shares associated
with each class (Sg > Ss > Sb).

The architecture proposed does not need to keep per-user state in the core
nodes and therefore scales well with the number of users. We have called this
architecture SSD (Scalable Share Di�erentiation). The SSD architecture consists
of two parts: intra-domain and inter-domain.

3.1 Intra-domain

In the SSD architecture, each user i contracts a service class with the network
operator, and this service class is mapped to a share Si (where Si = Sg , Ss or
Sb). Si is used to determine the treatment of the users' packets in bottleneck
nodes.

The share of a user is divided equally among his/her packets in such a way
that each packet gets assigned a weight Wi = Si=ri, where ri is the total rate at
which the user is transmitting. The share assigned to a user can be understood
as some "wealth" that has been given to this user by the network operator.
Following this analogy, when the user assigns weights he/she is distributing the
amount of "wealth" assigned to him/her among his/her packets. Therefore, the
weight of a packet represents its associated "wealth". Obviously, the proposed
scheme has to assure that the more "wealth" is associated to a packet, the better
treatment it should receive from the network.

To assign weights to the packets, the transmission rate of each user ri is
measured at the ingress node, and the corresponding value of Wi is inserted into
the packet according to the concept of dynamic packet state (DPS) [10]. The
basic idea of DPS is that each packet header carries some additional state infor-
mation, in this case the weight Wi of the packets' originator, which is initialized
by the ingress node of the di�serv network and processed by the core nodes on
the path. Interior nodes use this information to possibly update their internal
states and to update the information in the header before forwarding the packet
to the next hop.

Within the SSD architecture, the speci�c DPS mechanism of inserting Wi

into the packets is used to provide relative share di�erentiation: interior nodes
use the packets' weight to determine the dropping policy for that user's packets
in congestion situations. Whenever there is not enough bandwidth for that traÆc
type to serve all incoming packets, the packets with a lower weight should be
dropped with higher probability.

That means, when a packet has too low a weight, its user distributed its
share among too many packets (i.e., the user sent at a higher rate than allowed
according to the user's contracted bandwidth share). In this case, the router
drops some of the packets of that user, thereby reducing his/her packet rate at

this link. Then, the node redistributes the share of the user among the fewer
packets, which leads to a higher value of Wi for the remaining packets of that
user.

Therefore, there is a certain value of weight, below which packets must be
dropped with a certain probability to dissolve the congestion. We have called this
value the fair weight Wfair . The probability of dropping an incoming packet with
a weight lower than Wfair will be calculated in such a manner that the packets
that are not dropped get assigned a weight that equals Wfair .

Let us de�ne di to be the probability of dropping a packet belonging to user
i at some node. Then the redistribution of the user's share among the packets
that are not dropped leads to:

Wnew
i =

W old
i

1� di
(3)

Taking into account that packets with a weight lower than Wfair should
adjust themselves to this value (i.e., their new weight should be equal to Wfair)
and packets with a weight higher than Wfair can pass untouched, we have that,
given the fair weight Wfair , the dropping probability of the packets of user i
can be calculated with the formula:

di =

�
0 Wi > Wfair

1� Wi

Wfair
Wi < Wfair;W

new
i = Wfair

(4)

The algorithm used to forward packets in a SSD node, resulting from the
equations above, is illustrated in Figure 3.

edge?incoming
packet

label
W i = r i/S i

read
W i

update
W fair

W i>W fair?
unif(0,1)>
W i /W fair?

Forward
packet

outgoing
packet

new label
W i = W fair

Drop
packet

ri,Si

Yes

No

Yes

No No

Yes

congested?
Yes

No

Fig. 3. Forwarding algorithm in SSD

With this algorithm, the rate experienced by
ow j of user i is equal to:

routij = rinij (1� dij) = rinij
Wi

W j
fair

=
rinij

rini �W j
fair

Si (5)

where routij is the rate experience by
ow j of user i, rinij is the
ow's sending

rate, rini is the total sending rate of user i and W j
fair is the value of Wfair in

the bottleneck link of
ow j.

From Equation 5, the total rate experienced by user i, routi , can be derived:

routi =
X
j

routij =

0
@X

j

rinij

rini �W j
fair

1
ASi (6)

From the above equation, it can be seen that the rate received by a user
i will depend on the level of congestion of the links traversed by his/her
ows,
expressed byW j

fair, but this rate will increase linearly with Si. We conclude that
the bandwidth experienced by a user is proportional to the share of the class
contracted by this user (Sg , Ss or Sb), which is the objective that we stated for
the SSD architecture in Equation 2.

A key point of the SSD architecture is the estimation of Wfair for each con-
gested link. For scalability reasons, Wfair should be estimated without storing
any per-user or per-
ow information at the core nodes.

The problem of estimating Wfair is similar to the one solved by the CSFQ
(Core-Stateless Fair Queuing) algorithm in [11]. In contrast to the SSD archi-
tecture, which focuses on the problem of distributing bandwidth among users,
CSFQ focuses on bandwidth distribution among
ows.

Both architectures di�er not only in the problem they solve, but also in the
way they solve it; for the estimation of Wfair , SSD applies small variations for
every incoming packet, while CSFQ applies much bigger changes on a periodic
basis. The advantage of the approach taken in SSD is that it adapts more quickly
to network changing conditions (simulation results in [12] show that CSFQ tends
to produce large errors under sudden changes from uncongested to congested).
The solution adopted within the SSD architecture for the estimation of Wfair is
presented in detail in [7].

3.2 Inter-domain

Since the Internet consists of di�erent domains, in order to provide end-to-end
QoS, domains are required to cooperate. Thus, the QoS behavior when crossing
domains (inter-domain part) is an essential aspect of any Di�Serv architecture.
In the SSD architecture, the inter-domain part is, as the intra-domain, based
on shares; but in this case it is not a user who contracts a share to his or her
domain (where the share contracted by a user is a function of his/her service
class, i.e. bronze, silver or gold), but it is a domain that contracts a share with a
neighboring domain. This share that one domain contracts with another will be
divided among all the users sending from the �rst domain to the second. So, for
example, if a domain has 100 users sending to another domain, and wants them
to experience the same quality as one user of the other domain with a share of
1 contracted within that domain, then the �rst domain will have to contract a
share of 100 to the second domain.

When crossing domains, for scalability reasons users have to be somehow ag-
gregated. As it has been explained in the intra-domain part of the architecture,
per-user state needs to be maintained at the edges in order to measure each

user's rate. If users are not aggregated, boundary routers also need to keep state
for every user crossing the router. The number of users crossing edge routers
will always be relatively small, but this does not have to hold true for bound-
ary routers between domains. Therefore, if users are not aggregated, boundary
routers may need to keep a very large state and will then become bottlenecks
concerning scalability.

One possible way of aggregating users in our architecture would be to see all
the users sending packets from one domain to another in the second domain as
one user with a share of Sd1 (where Sd1 is the share that the �rst domain has
contracted to the second). In this case all packets coming from the �rst domain
would get assigned in the second domain a weight Wd1 = Sd1=rd1, where rd1 is
the total sending rate from the �rst domain to the second. This solution, how-
ever, would not provide proper isolation; if there was a bottleneck in the second
domain, all the packets coming from the �rst domain would be treated in the
same way, independently of the share of their originator, and, as a consequence,
the bandwidth assigned to each user would be independent of the service class
contracted by him/her, violating thus one of the main goals of the Olympic
Service Model. In order to provide proper isolation, when crossing domains the
packets in the new domain should preserve the ratios between the weights they
had in the old domain.

For that reason, the inter-domain architecture has to compute the weights for
the packets coming from another domain in such a way that the ratios between
the weights of the original domain are preserved and the overall e�ect in the
new domain is the same as if a weight of Wd1 = Sd1=rd1 had been assigned to
all incoming packets. The �rst condition is expressed in Equation 7. The second
condition is equivalent to saying that the addition of the shares that the users
from the �rst domain receive in the second domain should be equal to Sd1. This
is expressed in Equation 8.

Wnew
1

W old
1

=
Wnew

2

W old
2

= : : : =
Wnew

n

W old
n

= � (7)

Sd1 = Wnew
1

� r1 +Wnew
2

� r2 + : : :+Wnew
n � rn (8)

where Wi is the weight of the packets of user i and ri the rate at which he/she
is sending.

Combining Equations 7 and 8 leads to:

Sd1 =
X
i

ri � � �W
old
i (9)

where � is the value we need to calculate in order to solve the problem (i.e., to
obtain the new weights).

� could be obtained from Equation 9, but this would require keeping per-user
information (speci�cally, the rate ri at which each user i is sending). We already
indicated that this solution is undesirable for scalability reasons.

One way of avoiding per-user state is calculating the average weight �W of all
packets going from the old domain to the new one. Extending Equation 9, we
have:

Sd1 =
P

i ri � � �W
old
i = � �

P
i ri �W

old
i

= � � rd1 �
P

i
ri
rd1

�W old
i = � � rd1 � �W

(10)

where the last term of Equation 10, the average weight �W of incoming packets,
can be calculated without the need of keeping per-user state.

Combining Equation 10 with Sd1=rd1 = Wd1, we obtain a way of calculating
� without keeping per-user state:

� =
Wd1

�W
(11)

Therefore, when crossing domains, the packets will be marked with the fol-
lowing new weights :

Wnew
i =

Sd1
rd1 � �W

�W old
i (12)

With this mechanism, the level of di�erentiation in the second domain is
preserved without need of storing per-user state in the boundary routers, and
the users coming from the �rst domain receive in total an amount of network
resources equal to Sd1.

4 Comparison with existing approaches

In this section, we compare via simulation our architecture with the existing
approaches also based on the Olympic Service Model. The purpose of these sim-
ulations is, rather than validating the applicability of the SSD architecture in the
current Internet, to show the validity of its conceptual approach for isolation and
di�erentiation as compared to the other Olympic Service Model architectures.

For this purpose, we simulated a simple scenario with three users sending
through one bottleneck link of 10 Mbps: user 1 with a share of 3 (gold class),
user 2 with a share of 2 (silver class) and user 3 with a share of 1 (bronze class).
This scenario re
ects the level of isolation and di�erentiation achieved by users
belonging to di�erent service classes.

We also simulated another scenario with a variable number of users for each
service class: three users for the gold class, two for the silver class and one for
the bronze class. This second scenario re
ects the level of isolation between the
di�erent users of the same class, and the impact of the load in a class.

Finally, we simulated a scenario with a two-domain network topology with a
bottleneck link of 10 Mbps in the second domain, in order to study the level of
isolation and di�erentiation provided by the di�erent architectures when crossing
domains.

For the above scenarios we used both UDP CBR sources sending at 5 Mbps
and endless TCP sources, hereafter referred as UDP and TCP respectively.

4.1 SSD

Tables 1 and 2 show the level of isolation and di�erentiation provided by the SSD
architecture for both the one-user-per-class and several-users-per-class cases.
Simulation results show that, when all
ows are UDP, SSD provides the desired
level of di�erentiation independent of the number of users per class.

However, when the packet drops of the SSD architecture interact with the
congestion control of TCP, results deviate from the desired ones, specially for the
case when TCP and UDP
ows compete with each other for bandwidth (tests
2 and 5). We conclude from these results that SSD does not provide perfect
isolation between UDP and TCP. However, it still provides a fairly good level
of isolation, taking into account the di�erent level of aggressiveness of TCP and
UDP sources.

The FBA-TCP architecture [13] proposes a modi�cation of the TCP window
computation based on the most limiting Wfair in the forward path. This archi-
tecture, originally designed to be used with CSFQ, could also be used in SSD to
improve the performance of TCP.

Table 1. SSD: One user per class

TEST 1 TEST 2 TEST 3

user share source Kbps source Kbps source Kbps

1 3 TCP 4625 UDP 4979 UDP 4920
2 2 TCP 3744 TCP 3083 UDP 3385
3 1 TCP 1542 UDP 1825 UDP 1687

Table 2. SSD: Several users per class

TEST 4 TEST 5 TEST 6

user share source Kbps source Kbps source Kbps

1 3 TCP 2052 UDP 2540 UDP 2131
2 3 TCP 2098 UDP 2544 UDP 2120
3 3 TCP 1995 TCP 1276 UDP 2087
4 2 TCP 1502 UDP 1670 UDP 1435
5 2 TCP 1493 TCP 767 UDP 1423
6 1 TCP 758 UDP 843 UDP 699

To test the inter-domain part of the SSD architecture we simulated a scenario
in which the users of Table 2 are sending their
ows to a second domain with
which the �rst domain has contracted a share of 5, and in this second domain
they are competing with a user that has contracted a share of 1 with the second
domain. In the simulation results of Table 3 we can see that the di�erentiation

between the users of the �rst domain is preserved in the second domain, and in
total these users get approximately the share that their domain has contracted
with the second domain. These were the objectives of the inter-domain architec-
ture explained in Section 3.2.

Table 3. SSD: Inter-domain

TEST 7 TEST 8 TEST 9

user share source Kbps source Kbps source Kbps

1-d1 3 TCP 1536 UDP 2122 UDP 1726
2-d1 3 TCP 1632 UDP 2086 UDP 1738
3-d1 3 TCP 1635 TCP 831 UDP 1747
4-d1 2 TCP 1050 UDP 1429 UDP 1162
5-d1 2 TCP 1106 TCP 576 UDP 1154
6-d1 1 TCP 546 UDP 677 UDP 594
d1 5 TCP 7507 TCP-UDP 7721 UDP 8121
7-d2 1 TCP 2253 UDP 1860 UDP 1660

4.2 User Share Di�erentiation (USD)

The User Share Di�erentiation (USD) architecture [14] also maps each service
class into a share. The share corresponding to each user is stored by the core
nodes of the network. The core nodes use this share to give the packets of the
corresponding user their fair part of the forwarding capacity. Note that since
USD stores information for each user at core nodes, it has the problem of poorly
scaling with respect to the number of users, and might result in implementation
problems when applied to core routers in large domains.

The results for the intra-domain simulations (Tables 4 and 5) show that
USD provides the required isolation and ensures the necessary di�erentiation
according to the service classes. This perfect isolation can be achieved because
in USD, in contrast to SSD, per-user state is stored at core routers.

Table 4. USD: One user per class

TEST 1 TEST 2 TEST 3

user share source Kbps source Kbps source Kbps

1 3 TCP 4999 UDP 4994 UDP 4996
2 2 TCP 3333 TCP 3336 UDP 3336
3 1 TCP 1666 UDP 1668 UDP 1667

For the inter-domain simulations of the USD architecture, we implemented
user aggregation as suggested in [14], i.e., in the second domain, the users from

Table 5. USD: Several users per class

TEST 4 TEST 5 TEST 6

user share source Kbps source Kbps source Kbps

1 3 TCP 2142 UDP 2142 UDP 2142
2 3 TCP 2142 UDP 2142 UDP 2142
3 3 TCP 2142 TCP 2142 UDP 2142
4 2 TCP 1428 UDP 1428 UDP 1428
5 2 TCP 1428 TCP 1428 UDP 1428
6 1 TCP 714 UDP 714 UDP 714

the �rst domain are aggregated in classes with identical shares. In this case,
users 1, 2 and 3 (gold class) are aggregated in a class in domain 2 with share
3, users 4 and 5 (silver class) in a class with share 2 and user 6 (bronze class)
in a class with share 1. Note that since in USD users are statically assigned to
a class, such a situation in which one class is more crowded than another can
easily occur. The simulation results of Table 6 show that USD fails to guarantee
proper di�erentiation due to user aggregation when crossing domains: all users
receive the same treatment, independent of their service class. In addition, the
inter-domain part of USD also fails to provide proper isolation, again due to
aggregation e�ects: in test 8 we can see that TCP
ows starve when sharing a
class with UDP
ows in the second domain.

Table 6. USD: Inter-domain

TEST 7 TEST 8 TEST 9

user share source Kbps source Kbps source Kbps

1 3 TCP 1672 UDP 2485 UDP 1667
2 3 TCP 1672 UDP 2504 UDP 1669
3 3 TCP 1655 TCP 3 UDP 1662
4 2 TCP 1665 UDP 3248 UDP 1666
5 2 TCP 1667 TCP 48 UDP 1666
6 1 TCP 1666 UDP 1666 UDP 1666

4.3 SIMA

The Simple Integrated Media Access (SIMA) architecture [15, 16] de�nes dif-
ferent levels of service based on the Nominal Bit Rate contracted by the user.
SIMA provides two types of services, one for real-time traÆc and the other for
non-real-time. Since the focus of this paper is on elastic traÆc, we will only
consider the latter.

In SIMA, the sending rate of user i, ri, is estimated at the ingress of the
domain, and, based on this estimation, packets are labeled according to the
following formula2:

Li =

8<
:
6 ifx � 6
int(x) if0 < x < 6
0 ifx � 0

(13)

where x is

x = 4:5�
ln(ri=NBR)

ln(2)
(14)

and int(x) is the integer part of x.
Then, in core nodes, packets are dropped depending on their label Li accord-

ing to the Weighted Random Early Detection (WRED) active queue manage-
ment algorithm with six separate thresholds, one for each label value.

In the simulations of SIMA, we assigned a NBR of 3 Mbps to the users of the
gold service class, 2 Mbps to the users of the silver service class and 1 Mbps to
the bronze. Simulation results for the intra-domain case are shown in Tables 7
and 8. These results show that SIMA provides a good level of di�erentiation in
the case of responsive TCP sources (tests 1 and 4), even though the throughputs
obtained are not proportional to the NBRs. When dealing with non-responsive
UDP sources, however, this feature is lost. In tests 2, 3, 5 and 6, we can see that
the bronze service class starves when competing with the gold and silver service
classes. This is due to the fact that packet drops in SIMA are not probabilistic
but based on thresholds: a user sending too much, thus, will see all his/her
packets dropped. Also in tests 2, 3, 5, and 6, the UDP silver sources receive the
same treatment as the gold ones. This is due to the coarse granularity of SIMA,
which comes from the small number of label values used: a user sending at 5
Mbps receives the same label both for a NBR of 2 and 3 Mbps, since

int

�
4:5�

ln(5=2)

ln(2)

�
= int

�
4:5�

ln(5=3)

ln(2)

�
= 3 (15)

Finally, in test 5 it can be observed that the level of isolation provided by
SIMA between UDP and TCP is not perfect but reasonable.

For the inter-domain simulations, we simulated a scenario in which the users
of Table 8 are sending their
ows to a second domain with which the �rst domain
has contracted a NBR of 5 Mbps, and in this second domain they are competing
with a user that has a NBR of 1 Mbps. In the simulation results of Table 9
we can see that SIMA does not provide proper di�erentiation when crossing
domains: in tests 7 and 9 all users receive the same treatment, independent of
their NBR in the �rst domain. In test 8 it can be seen that the inter-domain part
of SIMA does not provide proper isolation either, since the TCP
ows starve.

2 Note that since Li can only take 6 di�erent values, three bits are enough to store its
value.

Table 7. SIMA: One user per class

TEST 1 TEST 2 TEST 3

user NBR source Kbps source Kbps source Kbps

1 3 Mbps TCP 5325 UDP 4977 UDP 4944
2 2 Mbps TCP 3063 TCP 4721 UDP 4922
3 1 Mbps TCP 1572 UDP 287 UDP 132

Table 8. SIMA: Several users per class

TEST 4 TEST 5 TEST 6

user NBR source Kbps source Kbps source Kbps

1 3 Mbps TCP 2330 UDP 2579 UDP 1991
2 3 Mbps TCP 2331 UDP 2561 UDP 1978
3 3 Mbps TCP 2357 TCP 1206 UDP 1985
4 2 Mbps TCP 1140 UDP 2567 UDP 2015
5 2 Mbps TCP 1128 TCP 1076 UDP 1995
6 1 Mbps TCP 693 UDP 0 UDP 34

This inter-domain behavior of SIMA is caused by the fact that the users from
the �rst domain are treated like an aggregate in the second domain.

Table 9. SIMA: Inter-domain

TEST 7 TEST 8 TEST 9

user NBR source Kbps source Kbps source Kbps

1-d1 3 Mbps TCP 1420 UDP 1991 UDP 821
2-d1 3 Mbps TCP 1596 UDP 2014 UDP 848
3-d1 3 Mbps TCP 2023 TCP 1 UDP 819
4-d1 2 Mbps TCP 818 UDP 1995 UDP 837
5-d1 2 Mbps TCP 1622 TCP 0 UDP 826
6-d1 1 Mbps TCP 1238 UDP 2006 UDP 834
d1 5 Mbps TCP 8717 TCP-UDP 8007 UDP 4985
7-d2 1 Mbps TCP 1210 UDP 1991 UDP 5011

4.4 Delay Di�erentiation (DD)

In [17{19] di�erent schedulers for proportional di�erentiation in delay are pro-
posed. These schedulers basically schedule packets in such a way that the waiting
time in the queue is inversely proportional to the share assigned to the corre-
sponding service class.

In order to better understand the performance of this type of schedulers
we ran the simulations corresponding to Tables 10 and 11 using the scheduler

implementation of [20]. We can observe from the simulation results that delay
di�erentiation provides a good level of di�erentiation for TCP traÆc alone (tests
1 and 4), since the throughput obtained by a TCP
ow is inversely proportional
to its round-trip delay. For UDP traÆc alone (tests 3 and 6), no di�erentiation
in throughput is obtained; however, for this kind of traÆc the delay alone may
suÆce to provide meaningful di�erentiation. The main drawback of the delay
di�erentiation approach, however, is expressed by the results of tests 2 and 5.
We can observe in these tests that TCP sources almost starve when competing
with UDP, which shows that the queuing delay as di�erentiation parameter
cannot provide proper isolation.

We conclude that, even though delay can be an important di�erentiation pa-
rameter for delay sensitive applications, it needs to be combined with bandwidth
di�erentiation in order to provide proper isolation. This is the approach we have
taken in the real-time extension of the SSD architecture that we have proposed
in [7].

Table 10. DD: One user per class

TEST 1 TEST 2 TEST 3

user share source Kbps source Kbps source Kbps

1 3 TCP 4884 UDP 4784 UDP 3266
2 2 TCP 3370 TCP 398 UDP 3360
3 1 TCP 1745 UDP 4842 UDP 3376

Table 11. DD: Several users per class

TEST 4 TEST 5 TEST 6

user share source Kbps source Kbps source Kbps

1 3 TCP 2125 UDP 2481 UDP 1708
2 3 TCP 2132 UDP 2489 UDP 1643
3 3 TCP 2130 TCP 84 UDP 1676
4 2 TCP 1444 UDP 2455 UDP 1679
5 2 TCP 1444 TCP 20 UDP 1652
6 1 TCP 733 UDP 2469 UDP 1640

Inter-domain simulation results for this approach have not been provided
since they do not di�er from the intra-domain ones.

4.5 Class-Based Allocation (CBA)

A Class-based allocation approach, such as the one in [3], assigns a speci�c
capacity to each service class. Each network
ow that belongs to a certain class,

therefore, shares a common set of resources with other
ows in that class. This
approach has the drawback that the service quality associated with a class is
unde�ned, since it depends on the arriving load in that class: as the traÆc in
the Internet is extremely bursty [21], the load in each class and consequently its
service quality
uctuates.

This behavior is shown in the simulation results of Tables 12 and 13. This
simulations have been performed with the Weighted Round Robin implemen-
tation of [22], with a di�erent queue for each class with a weight equal to the
share of the class (3 for the gold class, 2 for the silver and 3 for the bronze).
Table 12 shows that when the load in each class is uniform, the level of di�er-
entiation obtained is the desired. However, when the load in the higher priority
classes is larger, the di�erentiation feature is lost: in the example of Table 13
we can see that all users get the same throughput, independent of the service
class they have contracted (bronze, silver or gold). In addition, isolation is not
provided inside each class, so the most aggressive sources eat up all the available
bandwidth in a class (see test 5 in Table 13).

Table 12. CBA: One user per class

TEST 1 TEST 2 TEST 3

user share source Kbps source Kbps source Kbps

1 3 TCP 4999 UDP 4994 UDP 4996
2 2 TCP 3333 TCP 3336 UDP 3336
3 1 TCP 1666 UDP 1668 UDP 1667

Table 13. CBA: Several users per class

TEST 4 TEST 5 TEST 6

user share source Kbps source Kbps source Kbps

1 3 TCP 1666 UDP 2496 UDP 1666
2 3 TCP 1665 UDP 2498 UDP 1670
3 3 TCP 1664 TCP 2 UDP 1663
4 2 TCP 1665 UDP 3284 UDP 1670
5 2 TCP 1667 TCP 48 UDP 1662
6 1 TCP 1666 UDP 1666 UDP 1666

Inter-domain simulation results have not been provided for this approach
either, since also in this case they do not di�er from the intra-domain ones.

5 Conclusions

The Olympic Service Model is a pricing scheme that provides more network
resources to those users who pay more. With this model users are not given
absolute guarantees but relative ones: with the gold service class the quality
experienced is better than with the silver service class, but this quality is left
unde�ned and depends on the network conditions. Same kind of relationship
exists between silver and bronze service classes.

The main advantage of the Olympic Service Model is its simplicity. The fact
that the model is sender-based avoids the need of signaling, and its relative
nature eliminates the need of admission control. However, this simplicity comes
together with some limitations. With a sender-based approach, there are some
services like Internet access that cannot be provided. The relative guarantees
provided by the Olympic Service Model are well suited for elastic traÆc, but not
for real-time traÆc, which requires of a more complex scheme with some kind
of admission control providing absolute guarantees.

We conclude that the Olympic Service Model trades o� functionality by sim-
plicity, but still solves some major of the current Best E�ort model, such as
traÆc isolation and service di�erentiation. Given the current diÆculties in the
deployment of IETF's Di�Serv and IntServ models, mainly due to their complex-
ity, a pricing scheme like the Olympic Service Model could �nd its application
as the next step after the Best E�ort model in the evolution of the Internet.

The SSD architecture implements the Olympic Service Model by allocating a
�xed number of times more bandwidth to a user of the gold service class than to
a user of the silver service class, and the same for the silver and bronze service
classes. This level of di�erentiation between service classes is preserved when
crossing domains.

The isolation and di�erentiation features of the SSD architecture have been
validated via simulation. These features have been compared, also via simulation,
with other architectures that also implement the Olympic Service Model, namely,
User Share Di�erentiation (USD), Simple Integrated Media Access (SIMA), De-
lay Di�erentiation (DD) and Class-Based Allocation (CBA). Simulation results
show that the SSD architecture is the only one that provides the isolation and
di�erentiation features for both the intra-domain and the inter-domain cases.

References

1. R. Braden, D. Clark, and S. Shenker, \Integrated Services in the Internet Archi-
tecture: an Overview," RFC 1633, June 1994.

2. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, \An Architec-
ture for Di�erentiated Services," RFC 2475, December 1998.

3. J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, \Assured Forwarding PHB
Group," RFC 2597, June 1999.

4. V. Jacobson, K. Nichols, and K. Poduri, \An Expedited Forwarding PHB," RFC
2598, June 1999.

5. \QBone Bandwidth Broker Advisory Council home page,"
http://www.merit.edu/working-groups/i2-qbone-bb.

6. S. Shenker, \Fundamental Design Issues for the Future Internet," IEEE Journal

on Selected Areas in Communications, vol. 13, pp. 1176{1188, September 1995.
7. A. Banchs and R. Denda, \A Scalable Share Di�erentiation Architecture for Elastic

and Real-time TraÆc," in Proceedings of 8th International Workshop on Quality

of Service IWQoS'2000, Pittsburg, PA, June 2000.
8. M. Brunner, A. Banchs, S. Tartarelli, and H. Pan, \A one-to-

any Probabilistic Assured Rate Per-Domain Behavior for Di�er-
entiated Services," Internet draft, February 2001, Available at
http://www.icsi.berkeley.edu/�banchs/papers/one2any-AR-PDB.pdf.

9. C. Kalmanek, D. Shur, S. Sibal, C. Sreenan, and J. Merwe, \NED: A Network-
Enabled Digital Video Recorder," IEEE LANMAN 2001, March 2001.

10. I. Stoica et. al., \Per Hop Behaviors Based on Dynamic Packet States," Internet
Draft, draft-stoica-di�serv-dps.00.txt, Febuary 1999.

11. I. Stoica, S. Shenker, and H. Zhang, \Core-Stateless Fair Queueing: Achieving
Approximately Fair Bandwidth Allocations in High Speed Networks," in Proc.

ACM SIGCOMM 98, Vancouver, Canada, August 1998, pp. 118{130.
12. Z. Cao, Z. Wand, and E. Zegura, \Rainbow Fair Queueing: Fair Banwdith Sharing

Without Per-Flow State," in Proceedings of IEEE INFOCOM'2000, Tel-Aviv,
Israel, March 2000.

13. R. Kapoor, C. Cassetti, and M. Gerla, \Core-Stateless Fair Bandwidth Allocation
for TCP
ows," in Proceedings of IEEE ICC 2001, Helsinki, Finland, June 2001.

14. Z. Wang, \User-Share Di�erentiation (USD): Scalable Bandwidth Allocation for
Di�erentiated Services," in HPN'98, Vienna, 1998.

15. K. Kilkki, \Simple Integrated Media Access," draft-kalevi-simple-media-access-
01.txt, Internet draft, June 1997.

16. M. Loukola, J. Ruutu, and K. Kilkki, \Dynamic RT/NRT PHB Group," draft-
loukola-dynamic-00.txt, Internet draft, November 1998.

17. C. Dovrolis, D. Stiliadis, and P. Ramanathan, \Proportional Di�erentiated Ser-
vices: Delay Di�erentiation and Packet Scheduling," in Proceedings of ACM SIG-

COMM'99, Cambridge, MA, September 1999, pp. 109{120.
18. T. Nandagopal, N. Venkitaraman, R. Sivakumar, and V. Bharghavan, \Relative

Delay Di�erentiation and Delay Class Adaptation in Core-Stateless Networks," in
Proceedings of IEEE INFOCOM'00, Tel-Aviv, Israel, March 2000.

19. Y. Moret and S. Fdida, \A Proportional Queue Control Mechanism to Provide
Di�erentiated Services," in International Symposium on Computer System, Belek,
Turkey, October 1998.

20. \WTP packet scheduler for ns2," http://www.cis.udel.edu/�dovrolis/ns-WTP.tar.
21. A. Feldmann, A. C. Gilbert, and W. Willinger, \Data networks as cascades: In-

vestigating the multifractal nature of the Internet WAN traÆc," in Proceedings of

ACM SIGCOMM'98, Vancouver, Canada, August 1998, pp. 25{38.
22. \Di�serv Model for the ns2 simulator," http://www7.nortel.com:8080/CTL/.

