
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 4, AUGUST 2015 1107

Efficient Interlayer Network Codes for Fair Layered
Multicast Streaming

Joerg Widmer, Senior Member, IEEE, ACM, Andrea Capalbo, Antonio Fernández Anta, Senior Member, IEEE, ACM,
and Albert Banchs, Senior Member, IEEE

Abstract—Multilayer video streaming allows to provide dif-
ferent video qualities to a group of multicast receivers with
heterogeneous receive rates. The number of layers received (and
thus the receive rate) determines the quality of the decoded video
stream. For such layered multicast streaming, network coding
provides higher capacity than multicast routing. Network coding
can be performed within a layer or across layers, and in general,
interlayer coding outperforms intralayer coding. An optimal so-
lution to a network-coded layered multicast problem may require
decoding of the network code at interior nodes to extract infor-
mation to be forwarded. However, decoding consumes resources
and introduces delay, which is particularly undesirable at interior
nodes (the routers) of the network. In this paper, we thus focus
on the interlayer network coding problem without decoding at
interior nodes. We show that the problem is NP-hard and propose
a heuristic algorithm for rate allocation and coding based on the
Edmonds–Karp maximum flow algorithm. We prove that our
algorithm ensures decodability of the information received and
provides some fairness properties. Finally, we perform extensive
simulations and show that our algorithm may even outperform
other heuristics that do require decoding at interior nodes.
Index Terms—Interlayer network coding, layered multicast,

network coding, video streaming.

I. INTRODUCTION

L ARGE-SCALE video streaming is rapidly gaining in pop-
ularity. In case all receivers of a video stream are able to

receive the same bit rate (and hence video quality), IP multi-
cast is a suitable solution [2], an approach used in today's IP-TV
broadcasting systems. When multicasting to receivers with het-
erogeneous reception requirements or receive rates (multirate

Manuscript received March 27, 2013; revised January 31, 2014; accepted
April 02, 2014; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor A. Markopoulou. Date of publication June 05, 2014; date of current
version August 14, 2015. This work was supported in part by the European
Commissions Seventh Framework Programme (FP7-ICT-2009-5) under Grant
Agreement No. 258053 (MEDIEVAL project), Comunidad de Madrid Grant
S2009TIC-1692, Spanish MICINN Grant TEC2011-29688-C02-01, and the
National Natural Science Foundation of China under Grant 61020106002. The
paper is an extended version of “Rate allocation for layered multicast streaming
with inter-layer network coding,” which was presented at the Mini-Conference
track of the IEEE International Conference on Computer Communications
(INFOCOM), Orlando, FL, USA, March 25–30, 2012.
J.Widmer andA. Fernández Anta are with IMDEANetworks Institute, 28918

Madrid, Spain (e-mail: Joerg.Widmer@imdea.org).
A. Capalbo is with Altran, 28022 Madrid, Spain.
A. Banchs is with IMDEANetworks Institute, 28918Madrid, Spain, and also

with the University Carlos III of Madrid, 28911 Madrid, Spain.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2014.2326523

multicast), there are two common approaches to efficiently dis-
tribute video streams. With both approaches, the video is dis-
tributed over several multicast flows, and the number of flows
a receiver obtains determines the video quality. Layered coding
splits the stream into multiple dependent layers. The base layer
provides a basic video quality, and each additional enhancement
layer received refines this quality [3]. A higher enhancement
layer can only be decoded if the base layer and all lower en-
hancement layers are already available. In contrast, with mul-
tiple description coding, the video is split into multiple inde-
pendently decodable substreams [4]. While multiple descrip-
tion coding offers more flexibility in terms of layers received
and hence is very robust to loss of some layers, layered coding
provides higher coding efficiency and, for this reason, is much
more widespread. The most prominent example of a layered
codec is the Scalable Video Coding (SVC) extension to H.264
that offers temporal, spatial, and signal-to-noise ratio (SNR)
scalability and thus supports very fine-grained video quality
adaptation [3].
For both single-rate as well as multirate multicast, network

coding [5] provides capacity gains over plain multicast routing.
For single-rate multicast, the upper bound on throughput is
given by the minimum of the maximum flows from the sender
to each receiver, and network coding achieves this bound [5].
With multirate multicast, throughput for each receiver is
upper-bounded by that receiver's maximum flow, but solutions
that achieve this bound do not always exist [6], i.e., the optimum
solution may provide less than the maximum flow to some
receivers. Network coding solutions for single-rate multicast
networks can be found in polynomial time [7], whereas there
exist no polynomial-time algorithms that solve the multirate
multicast problem [8]–[10].
In multirate multicast, network coding can be performed

within a layer (intralayer coding) or across layers (interlayer
coding), and in general, the latter outperforms the former [11].
Furthermore, an optimum solution to a network-coded layered
multicast problem may require decoding of the network code
at interior nodes to extract information to be forwarded. How-
ever, decoding at interior nodes brings several disadvantages.
Decoding network-coded data requires computationally heavy
Gaussian elimination. The data also needs to be stored in its
entirety before decoding is possible. This introduces a delay
until all information required to decode is available at the node,
in addition to the delay introduced by the Gaussian elimination
operation itself. Such complexity and delay are particularly
undesirable at interior nodes (the routers) of the network, where
processing overhead is one of the main bottlenecks.

1063-6692 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1108 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 4, AUGUST 2015

In this paper, we thus focus on the interlayer network coding
problem without decoding at interior nodes. After a brief
survey of related work (Section II), we show that the problem
is NP-hard (Section III) and propose a heuristic solution of
polynomial complexity that is based on the Edmonds–Karp
max-flow algorithm (Section IV). We prove that our algo-
rithm ensures that each receiver can decode as many layers as
correspond to the minimum max-flow of any of the receivers
(Section V). In addition, we show that our algorithm fulfills
some fairness criterion, in a sense that increasing the number
of layers decoded at a certain receiver to a value may only
reduce the number of layers decoded at other receivers that have
more than layers, and may at most reduce them to layers.
This property is critical for the design of the algorithm since
it allows for an iterative processing of receivers. We further
analyze the complexity of our algorithm and show that it is
moderately more complex than the max-flow algorithm itself,
which is used by other heuristics [11]. We perform extensive
simulations and show that our algorithm may even outperform
other heuristics that do require decoding at interior nodes while
at the same time using fewer network resources. Specifically
in large topologies, our algorithm achieves higher receive rates
(Section VI).

II. RELATED WORK

We first discuss related work on multirate multicast with
intralayer network coding and then interlayer coding schemes.
Intralayer network coding is conceptually simpler than in-
terlayer network coding. Nevertheless, the general intralayer
coding problem with a fixed set of layers is NP-hard [10].
Integer linear programs to optimally solve the intralayer coding
problem have been proposed, for example, in [10], [12], and
[13]. A basic heuristic with polynomial-time complexity was
proposed in [14]. Receivers are grouped into subsets of re-
ceivers that support the same rates. The rate of the base layer
is selected such that it is supported by all multicast receivers,
and a multicast network code for the base layer is constructed
using the approach of [7]. The rate of the second layer is set
such that it can be received by the group of receivers with
the second lowest rate, given the remaining capacity, and a
multicast network code for the second layer is constructed.
Hence, each layer is transported in its own multicast tree. The
procedure is repeated until all receiver groups are served or all
capacity is used, and thus may create as many layers as there
are distinct receive rates. Lakshminarayana and Eryilmaz [15]
provide a more sophisticated solution based on the decomposi-
tion of the intralayer coding problem into that of rate allocation
for subsessions and the information distribution over these
subsessions, which are then solved separately using efficient
low-complexity heuristics.
For interlayer network coding, there is comparatively less

existing work. While NP-hardness results exist, they apply to
problem versions that are slightly different from the one con-
sidered in our paper. Shao et al. [16] study the rainbow net-
work flow problem for multiple description coding, where re-
ceivers try to obtain as many different flows (or colors, hence
“rainbow”) as possible. Multiple description coding allows re-
ceivers to make use of any layer they receive, which makes it

easier to find efficient network codes than for layered coding
with its layer dependencies. They show that deciding if there is
a solution of this problem in which each receiver can decode a
number of layers equal to its max-flow is NP-hard. Their proof
works for the case of intralayer coding and can easily be ex-
tended to interlayer coding.
Kirárly and Kovács [9] study interlayer network coding for

layered coding, as in our problem. However, their results do not
directly apply to our problem due to differences in the assump-
tions used. In their work, the specification of the problem as-
signs to each receiver a number of layers that it expects to re-
ceive. Firstly, they prove that deciding if a feasible solution that
fulfills the expectations of all the receivers exists is NP-hard.
This result does not apply to our problem, since it assumes that
interior nodes that are not receivers can decode. Secondly, they
show that in a system with only two layers, it is NP-hard to fully
serve all the receivers that require two layers and maximize the
number of satisfied receivers among those that demand only one
layer. Since we require that all receivers are able to decode at
least the first layer, also this result is not directly applicable to
our problem. The authors further propose heuristic algorithms
for the two-layer and three-layer version of the problem.
Dumitrescu et al. [17] provide a centralized algorithm for

multirate interlayer network coding for an arbitrary number of
layers. The algorithm is based on integer linear programming
with exponential complexity.
A practical approach to interlayer network coding for overlay

mesh networks is presented in [18]. Here, each node locally
determines the fraction of packets received for each set of
layers that provides the lowest video distortion. This approach
abstracts from the actual network topology and assumes that
packets from different parents are linearly independent (with
sufficiently high probability).
The work most closely related to ours is presented by

Kim et al. [11], where two simple but efficient heuristics for
interlayer network coding are proposed. For the sake of com-
parison, in the following we explain these algorithms in more
detail.
The algorithms assume the network is a directed acyclic

graph. For both algorithms, it is first necessary to determine
the max-flow to each receiver, using one of the well known
max-flow algorithms [19]. The max-flow of a receiver cor-
responds to the minimum cut between the source and that
receiver. The algorithms then propagate the maximum layer
constraints given by the max-flows of the receivers up toward
the source, but they differ in how this is done. In the first algo-
rithm called Min-Req, each receiver propagates its max-flow
value to its parent node or nodes. A parent waits until it hears
from all its children and then propagates the minimum of the
max-flow values it received to its own parent nodes, and so
on. The source then sends linear combinations on its outgoing
links coded over as many layers as is allowed by the maximum
layer constraint. This is illustrated in Fig. 1, where receivers
and with a max-flow of 1 constrain nodes and to the first
layer, which in turn constrain all of the upstream interior nodes,
and hence all receivers only obtain the first layer.
The rationale for propagating up the minimum is that to gen-

erate a linear combination, an interior node can simply code over

WIDMER et al.: EFFICIENT INTERLAYER NETWORK CODES FOR FAIR LAYERED MULTICAST STREAMING 1109

Fig. 1. Example of Min-Req algorithm.

Fig. 2. Example of Min-Cut algorithm.

all incoming links. Due to the layer constraints, none of the in-
coming links will carry a linear combination that is undecodable
because the rate required to decode it exceeds the max-flow of a
receiver further below in the graph. Note that a node generates
a different linear combination for each outgoing link.
In the second algorithm called Min-Cut, an interior node

propagates up its own max-flow value instead of the minimum
of its children's max-flow values, if the own max-flow is larger
than the minimum of the children. In this case, the node also
has to decode the network-coded layers it receives. This is
necessary in order to generate linear combinations containing
only a subset of the received layers for those of its children
that have lower max-flow values. In Fig. 2, both interior nodes
and have a max-flow of 2 and receive two different linear

combinations coded over the first two layers. Hence, these
nodes can decode to extract layer 1 for receivers and ,
while forwarding combinations over two layers to and ,
allowing them to decode the first two layers.
Both algorithms are simple and can be implemented in a dis-

tributed manner. Network coding opportunities are exploited
implicitly. While the Min-Req algorithm does not require de-
coding at interior nodes, its performance in topologies with het-
erogeneous max-flow values may be low. The Min-Cut algo-
rithm fares better in such topologies as long as interior nodes
have sufficiently high max-flow values, but it does require de-
coding at interior nodes. In addition, theMin-Cut algorithm not
only needs to determine the max-flow values of the receivers
as does Min-Req, but also of all interior nodes in the network.
Furthermore, both algorithms transport traffic on all upstream
edges of the receivers, independent of whether they are needed
for the multicast or not. This not only enforces lower layers on

edges where higher layers could be transported (as in the ex-
ample on path), but more importantly, wastes ca-
pacity that may prohibit their use in networks with statistical
multiplexing where links are shared with other flows. In com-
parison, the solution we propose in this paper substantially out-
performs theMin-Req algorithm, while at the same time, it does
not require any decoding at interior nodes and hence has lower
overhead than the Min-Cut algorithm.

III. PROBLEM DESCRIPTION

A. Model
We consider single-source multicast on a directed acyclic

graph with nodes and edges . We denote
the source node by , and the set of receivers by

. Furthermore, let be the set
of incoming edges of node , and be set of outgoing
edges of node . The source multicasts a stream of up to
layers, . Due to the properties of the layered coding,
layer is only useful to a receiver if the receiver also receives
layers . To simplify the notation, we assume each
layer only consists of a single packet. All results directly extend
to layers with multiple packets and to the case where layers
are split into multiple generations and coding over layers only
happens within the same generation. Let
denote the coded layer combination that is sent on edge
with coding coefficients . We have that

where denotes the linear subspace spanned by the set of
vectors .
For simplicity of exposition, we assume that edges have unit

capacity and layers have unit rate, as in [11]. Since our algorithm
is directly based on the Edmonds–Karp max-flow algorithm, it
is straightforward to extend it to nonunitary edge capacities and
nonunitary layer rates.
The problem under consideration is to maximize the sum of

the received rates of all receivers, under the following fairness
constraint: Increasing the number of layers decoded at a certain
receiver to a value may only reduce the number of layers de-
coded at other receivers that have more than layers, and may
at most reduce them to layers (see Section V-A).
In our model, data of layer is always combined with data

from all lower layers, i.e., whenever the source needs to inject
some random linear combination of layer on an outgoing
edge, it does so by sending a random linear combination of all
layers , . This constraint does not change the
solution space, as shown in the following theorem.
Theorem 1: Consider any solution in which, for some

and some , with
and . If the field from which the coefficients

are chosen is large enough, this solution can be transformed
into a solution with coefficients , that achieves
the same rate allocation at all the receivers.

Proof: The new solution has sending a new combination
, so that , for , and a new

value . Consider a receiver that uses combinations
that contain for decoding in the original solution. In the

1110 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 4, AUGUST 2015

Fig. 3. Sample reduction of the proof of Theorem 2: (a) graph instance of
the minimum vertex cover problem and (b) instance of the network-coding mul-
ticast problem obtained from .

new solution, these combinations will have parameter . (Note
that the rest of the parameters of the combinations will be the
same as before.) Let us consider any layer that is able to
decode with the original solution. To do so, it solves a system
with linearly independent equations. Replacing in that
system by , the system can still be solved if the system's
matrix has a nonzero determinant. Solving for the equa-
tion obtained by setting yields one single value that
cannot be used for to maintain the solvability of the system.
The number of possible receivers is bounded by and the

maximum number of systems (i.e., unusable values for) at a
receiver is bounded by . Then, if the field from which the
coefficients are chosen is large enough, can choose a suitable
value for so that the claim of the theorem holds. If is chosen
randomly, choosing a large enough field guarantees decodability
with high probability.
Note that Theorem 1 only holds for the case where decoding

at interior nodes is not allowed (which is the case for the
problem we focus on in this paper).

B. NP-Hardness
We now show that the problem considered in this paper is

NP-hard for any number of layers larger than one.
Theorem 2: Consider a network-coding multicast problem

with two layers and interlayer coding. Finding a solution to the
problem in which all receivers decode layer , and the number
of receivers that decode is maximized, is NP-hard.

Proof: We show that this problem is NP-hard by re-
duction from the minimum vertex cover problem, which is
NP-hard [20]. Consider an instance of minimum vertex cover
given by a graph . The following network-coded
multicast system is obtained from , as shown in Fig. 3(b) for
the example graph of Fig. 3(a).
In addition to the source node , the system initially has two

more nodes and . There is a link from to and a link from
to . For each vertex , nodes and are added to the

multicast system, and links are added from to , from to ,
and from to . Then, for each edge , nodes and

are added to the multicast system, and links are added from
and to and from to . The set of receivers is formed

by nodes , , and , marked in bold in the example graph in
Fig. 3(b).

A solution to the above problem that maximizes the number
of receivers with two layers solves the minimum vertex cover
problem. To see this, observe that to allow to decode layer

, it must receive it from , which must get it directly either
from or from (which, in turn, must receive it from). Then,
the set of nodes such that receives from forms a
vertex cover of .
Furthermore, observe that must obtain layer from .

Hence, the nodes that receive layer do so from their coun-
terpart . The number of such nodes is maximized when the
vertex cover in minimized.
The NP-hardness proof is an adaptation of the proof in [9] for

the problem with two layers. The result can be generalized to a
higher number of layers, so that the number of receivers that re-
ceive the highest layer is maximized, provided all receivers re-
ceive the lower layers. This extension only requires to increase
the number of links to , , and , so that the missing highest
layer is transported via the nodes outside the vertex cover. Note
that for the special case of two receivers with two-layer multi-
cast, it is always possible to achieve the max-flow of both re-
ceivers as shown in [6, Corollary 2].
Corollary 1: Finding a max-min fair allocation is NP-hard.
It can also be shown that the decision problem of whether a

feasible solution exists is NP-hard.

IV. ALGORITHM

In the following, we present our heuristic for the interlayer
network coding problem. We first provide an intuition for
the algorithm with the help of the example topology shown
in Fig. 4 and then discuss the algorithm together with the
pseudocode in more detail.
Our Multi-Layer Max-Flow algorithm first determines the

max-flow from the source to each receiver using any suitable
max-flow algorithm [19]. It then processes the receivers in
ascending order of their max-flow values. This ensures that
resources are first allocated to receivers with low max-flows
before allocating resources to higher max-flow receivers. Our
heuristic thus aims to provide an allocation that is close to the
optimal fair allocation discussed in Section III.
The mechanism to allocate resources to a receiver is sim-

ilar to the original Edmonds–Karp max-flow algorithm that re-
peatedly uses breadth-first search (BFS) [20] to find paths with
spare capacity.1 However, allocating paths to a receiver im-
poses constraints on the layer combinations that can be trans-
ported over that path. The coded combinations must include
sufficiently high layers so that they bring useful information
to a receiver, but must not include layers that are too high and
would therefore be undecodable given the other layer combina-
tions received. These constraints have to be taken into account
when subsequently allocating resources to other receivers that
may use the same paths. Our layer constrained version of BFS,
Layered BFS, starts the search at the receivers and proceeds up-
stream to the source. This allows to find existing flows that can
be reused.

1In our model where we assume unit capacity edges and layer rates, these
paths are edge disjoint.

WIDMER et al.: EFFICIENT INTERLAYER NETWORK CODES FOR FAIR LAYERED MULTICAST STREAMING 1111

Fig. 4. Different stages of the Multi-Layer-MaxFlow algorithm: layer assignment per link and rate achieved versus maximum flow per receiver. (a) Flow assign-
ment: max-flow 1 receivers. (b) Flow assignment: max-flow 2 receivers. (c) Flow assignment: max-flow 3 receiver.

A. Example of the Multi-Layer Max-Flow Algorithm

In the example in Fig. 4(a), first receivers and with a
max-flow of 1 use Layered BFS to find shortest paths to obtain

directly from the source. Next, the max-flow 2 receiver
needs to find a path to a flow coded over and . If such a
path is not found, the receiver would attempt to at least find a
path to . As shown in Fig. 4(b), a suitable -path
is found. The receiver then has to find or a combination of

and . After traversing the two edges to reach node , the
mechanism traverses the remaining path to before exploring
any new edges since the mechanism prioritizes reusing previ-
ously established paths over unused edges. Backtracking from
the source establishes path , where edges and

are shared with receiver and new capacity only needs
to be assigned to edges and . Note that the latter
edges have a maximum layer constraint of 2, but in the current
configuration would carry only layer .
A shared edge can also be traversed to augment the existing

flow on that edge, in case the flow is already received by the
receiver via a different path, or the flow contains layers that are
too low to be useful at this stage of the search. Such a shared
edge traversal implies network coding across flows since the
existing flow on that edge was assigned by another receiver and
thus cannot be replaced. In the example, network coding on a
shared edge occurs when assigning paths to the max-flow 3 re-
ceiver . The receiver first searches for a combination of ,

, and , which it obtains directly from the source via a new
path , as shown in Fig. 4(c). It then needs a combi-
nation of the first two or all three layers. It first explores the
edges and . Edge cannot be traversed to find
layer or above since enforced a maximum layer constraint
of 1 on that edge. While is also transported on edge ,
the maximum layer constraint on that edge is 2, established by
receiver , which is able to decode and given its flow
assignment. Therefore, the Layered BFS can continue via the
shared edge and subsequently finds a suitable combination of

and at node via edge . Node thus forms a linear
combination of received from and the combination of
and received from and forwards it along edge . This
alters the linear combination received on the subtree below edge

, but the layer constraints ensure that this does not change
decodability. Receiver will now receive a linear combination

over the first two layers, marked in Fig. 4(c), which is linearly
independent from the combination of layers and received
via edge .
In this example, theMulti-Layer Max-Flow algorithm is able

to achieve the max-flows for all receivers. It may not be sur-
prising that it performs better than theMin-Req algorithm shown
in Fig. 2, which always propagates the minimum of the max-
flows and thus makes it difficult for nodes with high max-flow
to achieve high rates. However, it is noteworthy that it also out-
performs theMin-Cut algorithm in Fig. 2, which incurs a higher
complexity as it requires decoding at interior nodes. Further-
more, both Min-Req and Min-Cut transport traffic on all up-
stream edges of the receivers. This wastes capacity and estab-
lishes unnecessary constraints on edges that could otherwise
carry higher layers (e.g., in the example on path).

B. Algorithm Description
Let us consider a specific receiver with a max-flow of

. The algorithm first tries to find paths from
source to receiver that allow the receiver to decode

layers. To this end, it not just has to
find such paths that are edge disjoint, but needs to ensure
that the layer combinations received via these
paths do not include any layers higher than , i.e.,

(1)

and that these combinations are linearly independent. A neces-
sary condition for linear independence is that there exists some
permutation of such that

(2)

This ensures that the matrix formed by the linear combinations
is at least lower triangular (i.e., there is one layer combina-
tion coded over at least the first layer, another coded over at
least the first two layers, etc.). Since the source sends out lin-
early independent combinations on all its links of the paths to
a receiver and these paths are edge disjoint, the received com-
binations have a very high probability of being linearly inde-
pendent when interior nodes perform random linear network
coding [21]. If (1) and (2) hold, we say that the receiver sat-
isfies -decodability.

1112 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 4, AUGUST 2015

Note that while the paths of a receiver are mutually edge dis-
joint, they may overlap with paths of other previously processed
receivers. In fact, to avoid wasting network resources, it is de-
sirable to reuse existing paths as much as possible, rather than
establishing new paths. Wherever paths transporting different
flows overlap, network coding among those flows is necessary.
On all the paths used by a receiver, per-edge layer constraints
of that receiver's value are introduced to ensure that (1)
holds. This means that is an upper bound on the highest
layer included in the layer combinations transported over that
edge and receivers processed later on cannot use this edge to
transport combinations of higher layers.
The algorithm starts by trying to find a (partially) existing or

new path for , with , i.e., a path that can transport
combinations including layer (and all lower layers) using
Layered BFS. Layered BFS starts at the receiver and includes
all incoming edges of that receiver that have a layer constraint
of or higher in the list of candidate edges to be explored.
The algorithm first explores edges having a layer constraint of
exactly to reuse existing paths of other receivers as much
as possible. If no such edges exist, unused edges without layer
constraints will be explored. Only if no such edges exist ei-
ther will the algorithm explore edges that have layer constraints
higher than . Using the latter edges lowers their layer con-
straints, which in the worst case could cause another previously
processed downstream receiver to decode fewer layers. Since
receivers are processed in ascending order of max-flow, such
lowering of layer constraints is rare (and can only happen in
connection with lowering a receiver's as explained further
below).
Whenever an edge is explored, all incoming edges

of node are included in the list of candidate edges to
be explored, and the BFS continues until a path to the source
is found. If such a path for layer combination is found,
the algorithm successively tries to find paths for the remaining

. Once all the paths are found, the
algorithm introduces the corresponding layer constraints on
the edges that are used by that receiver and proceeds with the
next receiver. Existing layer constraints may, however, prevent
the algorithm from finding all of these paths. In this case, the
algorithm sets and again checks
for decodability for the receiver to provide it with a lower
number of decodable layers. The algorithm decrements
until -decodability is fulfilled.
This is the case for the max-flow 3 receiver in the example

in Fig. 5(a). There are existing layer constraints of 1 on the in-
coming edges of nodes and , as well as a constraint of 3 on
edges and , introduced by previously processed re-
ceivers. The initial BFS with first explores edges
to nodes , , and , which in turn causes edges and
to be entered in the list of candidate edges. Of these, is ex-
plored first, since reusing an existing flow takes precedence over
using additional resource on , as shown in Fig. 5(b). How-
ever, the next BFS with fails due to the layer constraints
of 1 on the incoming edges of nodes and . Consequently, 's
layer constraint of 3 on edge is removed, and the algo-
rithm starts over with reduced to 2. After exploring edges
to nodes , , and , the BFS again enters edges and

Fig. 5. Layer constrained BFS for receiver . (a) Existing layer constraints.
(b) BFS with fails. (c) BFS with succeeds, lowering a
layer constraint. (d) A constraint for the second flow of is introduced.

in the list of candidate edges, but this time is explored be-
fore to avoid lowering the layer constraint of the latter.
However, does not have any suitable incoming edges, which
leaves as the only remaining edge to explore. A path to
the source is found, and layer constraints of 2 are introduced
on edges and . The final BFS with explores
edges and and finds an existing layer 1 flow via
the latter. Note that this introduces a layer constraint of 2 on
edge , but in fact only a layer-1 flow is transported on that
edge.

C. Reverse Edge Traversal
Whenever the original Edmonds–Karp algorithm finds an ad-

ditional path with spare capacity using BFS, this pathmay not be
part of the optimal resource allocation that allows a receiver to
achieve its max-flow. It may thus have to be modified when fur-
ther paths are found in subsequent BFSs. To this end, whenever
a path is established that generates flow on an edge , a
corresponding negative flow is assigned to a virtual reverse edge

[20].2 In case a subsequent BFS finds a path through such
a reverse edge, the flow originally assigned on the forward edge

is removed.
Our Multi-Layer Max-Flow algorithm proceeds in the same

way if is only used by the current receiver. However,
edge may be a shared edge in which case the flow on that
edge is required by another receiver and cannot be removed.
The BFS may nevertheless traverse the reverse edge to find a
suitable flow, which is then combined with the existing flows
in the subtree below the shared edge . This mechanism is
best explained using the well-known butterfly topology shown
in Fig. 6.
Both receivers and have a max-flow of 2. Let us assume

that first receiver finds two edge disjoint paths to the source,
along which two different combinations of and are trans-
ported. These are marked as 2 and 2 in Fig. 6(a). For receiver ,
the BFS will first find path since it contains only

2Note that here is a directed acyclic graph, and thus .

WIDMER et al.: EFFICIENT INTERLAYER NETWORK CODES FOR FAIR LAYERED MULTICAST STREAMING 1113

Fig. 6. Reverse edge traversal. (a) Receiver . (b) Receiver , step 1. (c)
Receiver , step 2.

one new edge and three shared edges, whereas the other possible
paths require two new edges. Hence, this path is established as
shown in Fig. 6(b), with the corresponding negative flow on
the virtual reverse edges. These reverse edges can now be tra-
versed in subsequent breadth first searches. Note that without
this, receiver would not be able to find a second path to trans-
port a layer combination that is linearly independent of the first
one. A second BFS can now find another suitable path for by
traversing edges , , the virtual reverse edge ,
and then and as shown in Fig. 6(c). If receiver
were the only receiver in the network using , this would
cause the flow on edge to be removed, and two different
combinations of the first two layers would be transported via
two edge disjoint paths and . However,
since edge is shared with receiver , the flow cannot be
removed. Instead, the flow remains but is now also transported
via the path . At the same time, the suitable flow that
was found by BFS via edges and is transported via
the shared edge . This requires combining it with the flow
that was previously assigned to that edge, creating a new linear
combination (marked in the figure) over the first two layers
that is transported along the existing subtree and received by
both receivers and . Note that network coding occurs be-
tween the flow on , corresponding to the reverse edge, and
the new flow on the edge that follows the reverse edge in
the breadth first search. The outgoing edge for this coded com-
bination is , the original outgoing edge for the flow from

. This results in the common network coding solution for
the butterfly topology [Fig. 6(c)].
In case the topology had no node but a direct edge ,

the BFS for may first reach the source via and establish
the path . The second BFS for would proceed to
via nodes , , and , thereby directly traversing the shared

edge . Again this introduces network coding on the shared
edge and the resulting layered network code is the same
as before.

D. Pseudocode
TheMulti-Layer Max-Flow algorithm discussed above is im-

plemented in three different mechanisms. The Layer Assign-
mentmechanism processes receivers in ascending order of their

Fig. 7. Layer Assignment mechanism.

max-flow values andmaintains the global layer constraints. Lay-
ered Edmonds-Karp is a multilayer version of the Edmonds-
Karp maximum flow algorithm that finds the highest for
a receiver as well as the corresponding set of paths that ensure

-decodability, given the existing layer constraints. Finally,
the Layered BFSmechanism is used by Layered Edmonds-Karp
for the layer constrained breadth first search to find a path with
specific layer constraints from a receiver to the sender. The ac-
tual network coding of layers is done in theCoding Stage, taking
into account the previously established layer constraints.
1) Layer Assignment (Fig. 7): The mechanism determines

the receivers' max-flow values (lines 3–5) and then calls Layered
Edmonds–Karp for each receiver in ascending order of max-
flows. Layered Edmonds–Karp returns the flow allocation
of receiver as well as maximum layer constraints . With
these, the global per-edge flow allocation and the maximum
layer constraints are updated (lines 10–13).
2) Layered Edmonds–Karp (Fig. 8): Layered Ed-

monds–Karp searches for a set of paths for a receiver that
provide -decodability, starting with
(line 2). To this end, it searches for paths to transport a flow
with a maximum layer between and , starting with

, then (line 26), and so on, until
all the paths are found. If at any point Layered BFS fails to
return a layer- path with , i.e., flag
is false, the receiver is not able to decode layers given the
existing layer constraints. In that case, all existing temporary
flows and maximum layer constraints are removed, and
Layered Edmonds–Karp reduces by one. This continues
until an -decodable path allocation is found. Note that any
receiver will at least be able to receive , as shown later, and
hence the mechanism always terminates.
Whenever Layered BFS returns with a valid path (line 7),

the path is backtracked from to , and is decremented
(lines 8–27). A path entry contains the tuple of next-hop
following node , as well as the corresponding layer constraint
for edge . The corresponding flow and layer con-

straint are updated (lines 17–23). In case a normal edge
is traversed, the corresponding values are set, whereas in case
of a reverse edge, the layer constraint and the flow is removed.
This continues until the path terminates at the receiver .
A node also maintains a so-called in-out table that maps in-

coming to outgoing edges (for simplicity, this is omitted from

1114 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 4, AUGUST 2015

Fig. 8. Layered Edmonds–Karp mechanism.

the pseudocode). A path creates an entry
at node . may map to multiple outgoing edges,

and multiple incoming edges may map to . The mecha-
nism further checks whether a special marker is set for
edge on the path (lines 12–16). This indicates that the
maximum layer constraint on edge had to be reduced. As
a consequence, the maximum layer constraints on all upstream
edges that contribute to have to be updated as well. The
edges can easily be identified through the in-out tables main-
tained at the nodes.
3) Layered BFS (Fig. 9): The mechanism performs breadth-

first search to find a path from to with matching layer con-
straints. It maintains a priority queue to store tuples of nodes
to be visited next, together with their priority,3 as well as a
mapping to store next-hop nodes for back-
tracking and the corresponding maximum layer constraint for
edge .
The mechanism removes the first node from the queue

(line 7). If is the source, then a suitable path was found and
is returned (line 9). Otherwise, the mechanism explores all for-
ward edges that are not yet used for receiver (lines 13–28) and
all virtual reverse edges that are used for (lines 29–37). An
edge that is not used for has a path entry ,
where signifies a next-hop is not set and means any value,
and a flow value of 0. Forward edges that are entirely
unused by any receiver, i.e., also , are enqueued
with a priority of (lines 16 and 17) since additional

3The lower the value, the higher the priority.

Fig. 9. Layered BFS mechanism.

capacity would have to be allocated on a new edge. Shared
edges can only be traversed if they support a sufficiently high
layer (line 18) and are enqueued with the same priority ,
i.e., at the head of the priority queue, if the current maximum
layer constraint can be kept (line 19). In this case, no
additional capacity is used. If, however, the layer constraint has
to be reduced since , this means that other receivers
downstream of may no longer be able to decode up to

but only up to layers. Therefore, this is only allowed in
case , i.e., was already reduced and the receiver
is trying to obtain a maximum layer that is lower than that of
the downstream receivers . The corresponding node
is enqueued last with a low priority of to ensure
that any other option that does not involve reducing a layer
constraint is explored first (line 23). The rationale is that setting

to may reduce the number of layers decodable at other
downstream receivers to , and at the same time, it is necessary
to allow the current receiver to obtain layers (since).
Therefore, reducing the layer constraint results in a resource
allocation that is closer to the max-min fair allocation that our
heuristic aims to obtain. In this case, the marker is set
for to indicate that the maximum layer constraints on
upstream edges that contribute to may have to be updated

WIDMER et al.: EFFICIENT INTERLAYER NETWORK CODES FOR FAIR LAYERED MULTICAST STREAMING 1115

by Layered Edmonds–Karp in case is on the path that is
ultimately chosen.
When traversing reverse edges that are only used by

(lines 31 and 32), the priority is set to since capacity
on an edge is freed, and the layer constraint is reset to .
Traversing shared reverse edges leaves the priority un-
changed (line 34), and the maximum layer constraint is reset
to that of the shared edge since network coding occurs
after the reverse edge.
4) Coding Stage: After the Layer Assignment mechanism

completes, the source sends out linear combinations over as
many layers as is allowed by the layer constraints on the out-
going edges

(3)

The source further needs to ensure that the combinations it sends
out over each edge are linearly independent. An interior node
of the network codes according to its in-out table

(4)

where are local coding coefficients (as opposed to the
global coding coefficients used in (1) and (2); see [7]).

E. Distributed Implementation

While we describe the algorithm as a centralized algorithm, it
can be implemented in a distributed manner (albeit with some-
what more complexity and coordination overhead than the algo-
rithms in [11]). After the first phase to determine the max-flows
of all receivers, the source broadcasts a message to indicate
rounds, and in each round, receivers with the same min-cut
value locally run Layered Edmonds–Karp. State information
(, , , etc.) is maintained at interior nodes on a per-edge,
per-receiver basis. For the Layered BFS that starts at a receiver
and then spreads through the network, it is necessary to imple-
ment queue in a distributed manner. To this end, Layered BFS
messages are forwarded to neighboring nodes after a time delay
that corresponds to the three different priorities (reuse existing
link, add a new link, or overwrite a layer constraint). Addition-
ally, in case messages with higher priority arrive later, they are
allowed to overwrite previously established paths and layer con-
straints of the same receiver.

V. ANALYSIS

We first prove some basic properties of the algorithm and
then analyze decodability and fairness properties. Due to space
constraints, we only include sketches of the proofs.
Without loss of generality, in the following we assume

. This
implies that in the Layer Assignment mechanism, receivers are
processed in the order . Let us denote by and

the values of vectors and after processing receiver
in Layer Assignment. Initially, and

for all edges . Also, recall that and are receiver 's
layer constraints and flow allocation returned by Layered

Edmonds–Karp . We claim that, when processing a re-
ceiver with some assignment of the vectors and ,
the following property holds.
Lemma 1: When the call Layered Edmonds–Karp ex-

ecutes the return statement (line 30 in the corresponding pseu-
docode in Fig. 8), it has found and processed a set of

edge-disjoint paths from to so that we
have the following:
1) For every edge , either was not used by any pre-

viously processed receiver (i.e.,) or it was used,
but the maximum layer assigned to was no smaller than
(i.e.,),

2) Every edge is assigned a maximum layer that is no
smaller than and no larger than (i.e.,).

3) For every edge shared by a path and a path of a pre-
viously processed receiver , , every edge
that precedes in is assigned a maximum layer

. Additionally, .
Proof: As previously described, the call completes when

for some value the Layered
BFS mechanism has been executed times and has found

suitable disjoint paths. Each call to Layered BFS
has a different value . Let be the path
found by Layered BFS when called with . It can be ob-
served in the code of Layered BFS that only uses edges with

or (Property 1). Additionally (Property 2),
the maximum layer associated to an edge (and later
assigned to) is never smaller than and never larger than

(see lines 19–25 of Fig. 9). Finally (Property 3),
for any edge previously used, its maximum layer in vector

is set if: 1) it is in one of the paths found; or 2) it is an
edge upstream in a path from an edge that also be-
longs to some path . In either case, the value of is set to

(see lines 23–25 of Fig. 9 and lines 12–16 of
Fig. 8).
We now show that all the calls to Layered Edmonds–Karp

execute the return statement.
Lemma 2: Let . Then, Layered

Edmonds–Karp will execute the return statement with a
set of paths.

Proof: Assume Layered Edmonds–Karp does not
execute the return statement. Then, it eventually executes an
iteration of the for loop with .
Observe that, in this iteration, all edges satisfy the property that

or , for all , and
hence all paths in the network are suitable to be found. There
are at least edge-disjoint paths from to , and under
no layer restrictions, Layered Edmonds–Karp works like the
Edmonds–Karp algorithm. Hence, edge-disjoint paths will
be found, the do-while loop will complete with and

, and the return statement will be executed. This
contradicts the assumption, and hence the return statement is al-
ways executed with some set of paths.

A. Fairness

Observe that when processing , the number of layers
that some receiver can decode may be reduced, if was

1116 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 4, AUGUST 2015

processed before . The following theorem shows a certain
level of fairness in this reduction.
Theorem 3: Consider that the processing of receiver allows

it to decode layers. In this process, no receiver , , has
its number of decodable layers reduced below (if it is reduced
at all).

Proof: Assume that before processing , receiver was
able to decode layers. Then, with the network code according
to constraints there are paths from to , so that
the combinations sent on these paths ensure -decodability at
. If , from Property 3 of Lemma 1, the maximum

layer constraints of the edges of these paths do not change, and
decodability at remains the same after processing . On the
other hand, if , the maximum layer of an edge

can be reduced when processing , but only to
. Then, there is a subset of size of the paths

that guarantee -decodability at .
The above theorem thus shows that the proposed algorithm

provides a form of fairness similar to max-min fairness, as it
only reduces the number of layers of a receiver if this allows
increasing the number of layers of a receiver that is worse off.

B. Decodability

We now show that after processing the paths found for re-
ceiver in Layer Assignment, it can decode layers.
Lemma 3: If the network coding described in

Section IV-D.4 is used according to the constraints , then
satisfies -decodability.

Proof: In theCoding Stage, will send over each path a
linearly independent combination. These combinations reach
via edge disjoint paths, maybe coded with other combinations.
If one of the combinations is coded with another combination
at some interior node, Property 3 of Lemma 1 guarantees that
the latter has at most layer . Then, from Property 2, the com-
binations received at satisfy -decodability.
Building on the previous results, it can be shown that the pro-

posed algorithm satisfies some minimal decodability properties.
The following theorem proves that Layer Assignment guaran-
tees a minimum number of layers that can be decoded.
Theorem 4: Let . All re-

ceivers are able to decode layers .
Proof: For , we have .

Since for all , Lemma 2 shows that Layered
Edmonds–Karp executes the return statement after
finding paths for . Lemma 3 guarantees that the

paths can be used to decode layers . Ap-
plying induction, assume that all receivers are
able to decode at least layers . According to
Lemma 2, Layered Edmonds–Karp returns after finding

paths when processing receiver .
From Lemma 3, layers can be decoded at .
Since , after processing receiver every receiver

can still decode at least layers ac-
cording to Theorem 3.
Note that the above theorem ensures that, in the worst case

where some receivers have a max-flow of 1, all receivers will

at least be able to decode layer 1. Thus, the theorem provides a
lower bound on the performance of the algorithm.

C. Comparison With Previous Approaches

Theorem 5: The Multi-Layer Max-Flow algorithm always
performs better or at the same level as Min-Req in terms of
fairness.

Proof: As long as a receiver running our algorithm
does not impose a layer constraint below on an
edge, other receivers will see the same constraints as Min-Req
on some links and no constraints on other links. With less
constraints, receivers can achieve at least the same number of
layers, and possibly more. Thus, in this case we will outperform
Min-Req. In the following, we address the case in which this
does not hold for at least one receiver.
Let us consider the first receiver that is only able to achieve

layers by imposing a constraint
on an edge (i.e., receiver is not able to achieve its max-flow
given the prior layer constraints and therefore aims to impose
lower constraints). With Min-Req, this receiver would receive
fewer than layers. Until this point, all receivers had only
imposed their max-flow value as constraints on some edges.
Hence, receiver will see the same constraints as Min-Req on
some links and no constraints on other links. If it could achieve

layers without imposing a constraint below ,
it would not impose this constraint. This means that Min-Req,
which does not impose such a constraint, cannot possibly de-
code layers.
A receiver that is processed afterwards will see some of

the links with the same constraints as Min-Req, others with a
constraint of , and others with no constraint. Such a receiver
will either: 1) be able to decode or more layers; 2) decode

layers with our algorithm and the same withMin-Req;
or 3) decode number of layers layers with our approach
and a smaller number with Min-Req. Similar reasoning applies
to any receiver processed later on. Let receiver be the lowest
layer receiver processed so far for which condition 3) applies
when processing receiver . Then, one of the following holds:
1) receiver will be able to decode or more layers; 2) it will
decode layers with our algorithm and the same with
Min-Req; or 3) it will decode layers with our approach
and a smaller number with Min-Req. Note that, according to
Theorem 3, any receiver processed before will not decode
fewer than layers only because of constraints imposed by .
Let us denote by the receiver with the smallest number of

layers for which case 3) applies when the execution of the al-
gorithm is terminated. From the above, we have that this re-
ceiver decodes layers with our approach and fewer withMin-
Req, while all the receivers with fewer layers decode the same
number of layers with Min-Req and our approach. Therefore,
our approach outperforms Min-Req according to the max-min
fairness criterion.
Comparing algorithm Multi-Layer Max-Flow to Min-Cut,

there are networks in which Min-Cut performs worse despite
decoding at interior nodes, as illustrated in Figs. 2 and 4.
However, as expected, there are cases in which Min-Cut out-
performs our algorithm. This can be observed, for example,

WIDMER et al.: EFFICIENT INTERLAYER NETWORK CODES FOR FAIR LAYERED MULTICAST STREAMING 1117

in Fig. 11 in Section IV. A large number of receivers impose
constraints on each others' paths, reducing the performance of
our algorithm. Min-Cut instead can decode and give to each
receiver the appropriate layers.

D. Complexity Analyses
There are two parts in the centralized version of algorithm

Multi-Layer Max-Flow that share the largest fraction of the time
complexity: the initial computation of the maximum flow for
each receiver and the flow assignment to each of them. The first
part (lines 3–5 in the Layer Assignment mechanism) involves

executions of a max-flow algorithm.
The second part involves a call to Layered Edmonds–Karp

for each receiver. Layered Edmonds–Karp implies
iterations of the do-while loop (lines 7–27

of Layered Edmonds–Karp), involving a call to Layered BFS
and operations for updating of and . Each execution of
Layered BFS processes each link of the network at most once.
However, it uses a priority queue to store vertices of the graph.
Since at most vertices will ever be stored, each operation on
the queue has complexity . Then, the complexity of
each call to Layered BFS is bounded by .
The update of the values and after each call to Layered
BFS (lines 8–27) may imply iterations of the while
loop (lines 10–25). In each iteration, the values of up
to links may have to be updated. Hence, the com-
plexity of the call Layered Edmonds–Karp is bounded
by . Let us define

. Since it is unreal-
istic to have , the complexity of the second part
of Layer Assignment becomes .
Therefore, the time complexity of the Layer Assignment algo-

rithm can be bounded as ,
where is the complexity of the max-flow algorithm used.
It is realistic to assume that the graphs considered are sparse, in
which case [19]. Hence, the time complexity
of Layer Assignment becomes .
On its hand, the complexity of the Min-Req and Min-Cut
algorithms is dominated by the initial phase in which the
maximum flow for each receiver (inMin-Req) or each node (in
Min-Cut) is computed. This leads to complexities
and , respectively, using the lower bound of

[22]. Then, the complexity of the Layer
Assignment algorithm is larger than that of Min-Req by an

factor. (The value is expected
to be small in a practical setting.) The factor with respect to
Min-Cut is , which may be in
practical settings.
Following the same lines as the time complexity analysis

of the centralized version, it can be derived that the sig-
naling complexity of distributed Multi-Layer Max-Flow is

messages, where
is the signaling complexity of the max-flow algorithm used.
The complexities of Min-Req and Min-Cut are and

messages, respectively. Let us assume a state of
the art maximum-flow algorithm is used [23], whose signaling
complexity is . Then, the distributed version
of the algorithm has a signaling complexity that is only a factor

larger than that of Min-Req, and a factor
away from that of Min-Cut.

VI. SIMULATION RESULTS
For the performance analysis, we implement ourMulti-Layer

Max-Flow heuristic (called ML-MaxFlow in the legend of
the graphs) as well as the Min-Req and Min-Cut algorithms
from [11] in MATLAB. As main performance metrics, we use
the average rate achieved by receivers as well as the fraction
of nodes that achieve their max-flow value given in percent
(similar to [11]). In addition, we measure network load in terms
of number of links used by the algorithms as a fraction of the
total number of links of the network topology. For the coding,
we use random linear network coding over a sufficiently large
finite field . Simulation results for each setting of pa-
rameters are averaged over 1000 runs. For each value, we also
plot the 95% confidence interval for the average. Topologies are
generated by randomly establishing links between the nodes of
the network, ensuring that the resulting topology is connected
and free of cycles. For the number of links, we set
and use unless stated otherwise.4 The algorithms are
run on the same set of random topologies to avoid any bias due
to unfavorable topologies for one particular algorithm.

A. Different Network Sizes
We first analyze the impact of varying the network size.

Fig. 10 shows the performance of the different algorithms for
networks of 20–320 nodes. Given the constant ratio of number
of edges to number of nodes of 3.7, the average max-flow
value of the receivers increases slightly from 4.1 to 4.9 as the
network size increases, as shown in Fig. 10(a). Note that there
may not exist any network coding solution that achieves this
max-flow. The 95% confidence intervals for the average rate
are also shown, but since they amount to less than 1% of value
of the average, they are barely visible in the plot.
The rates achieved by the Min-Cut and ML-MaxFlow al-

gorithms are similar, in particular for small networks. As the
network size (and thus the average max-flow value) increases,
ML-MaxFlow makes effective use of the larger number of
available paths between the source and the receivers, and
the algorithm consistently achieves a rate above 90% of the
max-flow value. Also, the rate of Min-Cut improves as it
is increasingly likely to have high max-flow interior nodes
throughout the network that prevent layer requests from low
max-flow receivers from propagating all the way to the source.
However, its rate remains belowML-MaxFlow, and the rate gap
grows slightly larger for larger networks. For all network sizes,
both algorithms are able to serve all or almost all receivers
with a max-flow value of up to four at their full rate. However,
ML-MaxFlow is better able to find paths to transport high layers
to high max-flow receivers as the average max-flow increases.
ForMin-Cut, transporting high-layer flows all the way to the re-
ceivers requires that there are sufficiently many high max-flow

4Note that the authors of [11] restrict themselves to basic scenarios with only
two to three layers and few receivers, whereas in our scenarios, we do not restrict
the number of layers and we also explore larger topologies. As the algorithms'
performance depends to a large degree on the structure of the topology, our
results partly differ from the ones reported in [11].

1118 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 4, AUGUST 2015

Fig. 10. Different network sizes of nodes, for receivers. (a) Average rate of the receivers. (b) Average rate per max-flow
value for , . (c) Percentage of nodes that achieve their max-flow. (d) Fraction of links used for the network code.

interior nodes close to those receivers, and that the lower
layers can be generated at interior nodes close to low max-flow
receivers to prevent their requests from propagating too far up
in the network. To illustrate this further, Fig. 10(b) shows the
average rate of receivers grouped according to their max-flow
values for the network with 160 nodes. As can be seen, the
overall rate gap between Min-Cut and ML-MaxFlow is entirely
due to ML-MaxFlow serving high-max flow receivers with a
higher rate. The same holds true for all the other network sizes,
thus the higher the number of high max-flow receivers, the
larger the rate gap. The corresponding graphs (not shown) have
a shape similar to Fig. 10(b).
The Min-Req algorithm achieves a substantially lower rate

that even decreases as the network size increases. With a higher
number of paths between source and receivers and a longer
average path length, it becomes more and more likely that
paths of low max-flow and high max-flow receivers overlap
at some point along the path. Consequently, Min-Req propa-
gates low-max flow requests on most of the paths and the rate
achieved by receivers with max-flow larger or equal to four
stays constant, as can be seen in Fig. 10(b). (Note that few of
the random topologies have receivers with max-flow values of
11 and 12. Hence, those rate averages are largely dependent on
the corresponding topologies, and the drop for Min-Req for a
max-flow of 12 is only due to the low number of samples.)
When looking at the fraction of receivers that achieve their

max-flow value in Fig. 10(c), the performance differences be-
tween the three algorithms are more pronounced. As expected,

Min-Req performs poorly. Since this algorithm propagates the
minimum layer request a node receives, most of the layer com-
binations on the links contain layers one to three, whereas the
majority of the receivers have max-flows in the range of three
to five. Both ML-MaxFlow and Min-Cut perform much better.
Between the two algorithms,ML-MaxFlow serves a higher frac-
tion of high max-flow receivers with a rate equivalent to their
max-flow value and hence increasingly outperformsMin-Cut as
the network size increases.
Interestingly, for the network with only 20 nodes,

ML-MaxFlow achieves a higher average rate than Min-Cut,
but with Min-Cut, a higher fraction of receivers achieve their
max-flow. The smaller the interior of the network compared
to the number of receivers, the more beneficial Min-Cut's
decoding at interior nodes becomes, which allows such nodes
to locally generate high- as well as low-layer flows. As there
are only nine interior nodes (as well as one source and 10
receivers), there are too few edge disjoint paths available for
ML-MaxFlow, and Min-Cut does provide a slight advantage.
In addition to not requiring decoding at interior nodes and

a performance on par with that of the Min-Cut algorithm,
ML-MaxFlow also uses substantially fewer links as shown in
Fig. 10(d). For a small topology of 20 nodes, less than 80%
of the links are used, and as the network size increases, this
fraction drops to only 30%, despite the increase in average rate.
Due to their design, both Min-Req and Min-Cut always utilize
all available links in the network, independently of the network
size and the number of receivers.

WIDMER et al.: EFFICIENT INTERLAYER NETWORK CODES FOR FAIR LAYERED MULTICAST STREAMING 1119

Fig. 11. Average rate of the receivers for different numbers of receivers.

B. Varying the Number of Receivers
We next explore the impact of varying the number of re-

ceivers in a network with nodes. Since the total
number of nodes is fixed, the higher the number of receivers,
the lower the number of interior nodes. As a result, the average
max-flow value drops from 5.3 to 3.8 as the number of receivers
increases from 1 to 80.5
From Fig. 11, we observe that for a low number of receivers,

theML-MaxFlow algorithm outperforms theMin-Cut algorithm
in terms of achieved rate, but when the number of receivers
is a significant fraction of the total number of nodes, the op-
posite is true. In the latter case, paths of high max-flow and
low max-flow receivers frequently overlap. Since without de-
coding, low max-flow receivers enforce low-layer constraints
on the whole path from the receivers to the sender, few available
paths for high max-flow receivers remain, despiteML-MaxFlow
assigning only the necessary number of paths. In contrast, in
a sufficiently dense network, the Min-Cut algorithm maintains
high maximum layer constraints throughout the core of the net-
work and only needs to decode close to the receivers to deliver
exactly the right number of layers to each. Here, the additional
flexibility with respect to layer assignments provided by the de-
coding at interior nodes pays off. In the extreme, when half
of all nodes are receivers, ML-MaxFlow only achieves 80% of
Min-Cut's rate (rate of 2.4 versus 2.9). As in the previous exper-
iment, both algorithms outperform the Min-Req algorithm by a
large margin.
In terms of network utilization, with an increasing number

of receivers, ML-MaxFlow uses more and more of the links,
ranging from 25% of links used for the networks with one single
receiver to 60% of links used for networks with 80 receivers
(compared to 100% for Min-Cut and Min-Req).

C. Different Network Densities
The relative performance of the algorithms remains similar

for different nodes densities. In Fig. 12, we show the per-
formance when varying the number of edges ,

. Both ML-MaxFlow and
Min-Cut continue to have very similar performance with a
slight performance advantage for ML-MaxFlow as the network

5Although the total number of links remains unchanged, they are concentrated
on fewer nodes, and it is more likely that some interior nodes have more links
than can be used by the receivers below them. Thus, fewer of the links contribute
to the max-flow.

Fig. 12. Average rate of the receivers for different edge densities .

Fig. 13. Average rate of the receivers for different field sizes.

density increases, and both outperform Min-Req. At the same
time, link utilization (not shown) for ML-MaxFlow drops from
80% down to 34% as the node density increases since additional
edges in parts of the network with low max-flow receivers
remain unused. The smaller rate difference toMin-Req for very
low network densities is due to the increased homogeneity of
the network. Since we verify that the network is connected and
each interior node has at least one incoming and outgoing edge,
only few edges remain that can be assigned randomly. Since all
algorithms achieve at least rate 1, the performance gap is small.

D. Impact of Field Size

In the previous scenarios, we use a field size of to
isolate the performance of the layer allocationmechanisms from
the impact of field size. In this section, we now analyze the
impact of the field size.
The performance results given in Fig. 13 are for the worst

case where a layer consists only of a single packet. Here, the re-
dundant links used byMin-Req andMin-Cutmay in fact provide
additional useful linear combinations, in case some other linear
combinations happen to be linearly dependent due the small
field size. Nevertheless, for the most common practical field
size of , even for the extreme case of a layer size of one
packet, the performance degradation of ML-MaxFlow is negli-
gible. More importantly, these considerations are mainly rele-
vant for very small layer sizes. For common layer sizes on the
order of tens or hundreds of packets, the probability of noninno-
vative packets for a given field size is much lower [24], and thus
the performance degradation, specifically for ML-MaxFlow, is
much less pronounced.

1120 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 4, AUGUST 2015

VII. CONCLUSION

In this paper, we investigated rate optimization for multi-
rate multicast with interlayer network coding. We first proved
NP-completeness of the problem. We then designed a heuristic
algorithm that does not require decoding at interior nodes of
the network and delivers a rate of at least the minimum of all
the receivers' max-flow values to each receiver. Furthermore,
the algorithm has some fairness property in the sense that allo-
cating resources to a receiver so that it decodes a certain number
of layers may only reduce the number of layers of receivers
that decode more layers. We performed a complexity analysis
and show that the complexity of our flow assignment is only
moderately larger than the complexity of the Edmonds–Karp
maximum flow algorithm. Through extensive simulations, we
demonstrated that our algorithm vastly outperforms an existing
heuristic that does not require decoding at interior nodes and
even achieves multicast rates comparable to a heuristic with de-
coding at interior nodes. At the same time, our algorithm uses
far fewer network resources.

REFERENCES

[1] J. Widmer, A. Capalbo, A. Fernández Anta, and A. Banchs, “Rate
allocation for layered multicast streaming with inter-layer network
coding,” in Proc. IEEE INFOCOM (Mini-Conf. Track), Orlando, FL,
USA, Mar. 2012, pp. 2796–2800.

[2] R. Jain, “I want my IPTV,” IEEE Multimedia, vol. 12, no. 3, p. 96, Jul.
2005.

[3] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable
video coding extension of the H.264/AVC standard,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 17, no. 9, pp. 1103–1120, Sep. 2007.

[4] Y. Wang and A. Reibman, “Multiple description coding for video de-
livery,” Proc. IEEE, vol. 93, no. 1, pp. 57–70, Jan. 2005.

[5] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information
flow,” IEEETrans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

[6] R. Koetter andM.Medard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Nov. 2003.

[7] S. Jaggi et al., “Polynomial time algorithms for multicast network code
construction,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 1973–1982,
Jun. 2005.

[8] X. Wu, B. Ma, and N. Sarshar, “Rainbow network flow of multiple
description codes,” IEEE Trans. Inf. Theory, vol. 54, no. 10, pp.
4565–4574, Oct. 2008.

[9] Z. Király and E. R. Kovács, “A network coding algorithm for multi-
layered video streaming,” in Proc. IEEE NetCod, 2011, pp. 1–7.

[10] A. Gopinathan and Z. Li, “Optimal layered multicast,” Trans. Multi-
media Comput., Commun., Appl., vol. 7, no. 2, Feb. 2011.

[11] M. Kim, D. Lucani, X. Shi, F. Zhao, and M. Medard, “Network coding
for multi-resolution multicast,” in Proc. IEEE INFOCOM, San Diego,
CA, USA, Mar. 2010, pp. 1810–1818.

[12] J. Zhao, F. Yang, Q. Zhang, Z. Zhang, and F. Zhang, “LION: Layered
overlay multicast with network coding,” IEEE Trans. Multimedia, vol.
8, no. 5, pp. 1021–1032, Oct. 2006.

[13] C. Xu, Y. Xu, C. Zhan, R. Wu, and Q. Wang, “On network coding
based multirate video streaming in directed networks,” in Proc. IEEE
IPCCC, Apr. 2007, pp. 332–339.

[14] N. Sundaram, P. Ramanathan, and S. Banerjee, “Multirate media
streaming using network coding,” in Proc. 43rd Annu. Allerton Conf.
Commun., Control, Comput., Sep. 2005.

[15] S. Lakshminarayana and A. Eryilmaz, “Multirate multicasting with in-
tralayer network coding,” IEEE/ACM Trans. Netw., vol. 21, no. 4, pp.
1256–1269, Aug. 2013.

[16] M. Shao, X. Wu, and N. Sarshar, “Rainbow network flow with network
coding,” in Proc. NetCod, Jan. 2008, pp. 1–6.

[17] S. Dumitrescu, M. Shao, and X. Wu, “Layered multicast with
inter-layer network coding,” in Proc. IEEE INFOCOM, Rio de Janeiro,
Brazil, Apr. 2009, pp. 442–449.

[18] N. Thomos, J. Chakareski, and P. Frossard, “Prioritized distributed
video delivery with randomized network coding,” IEEE Trans. Mul-
timedia, vol. 13, no. 4, pp. 776–787, Aug. 2011.

[19] A. V. Goldberg and R. E. Tarjan, “A new approach to the max-
imum-flow problem,” J. ACM, vol. 35, no. 4, pp. 921–940, 1988.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. Cambridge, MA, USA: MIT Press, Sep. 2009.

[21] T. Ho et al., “A random linear network coding approach to multicast,”
IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[22] A. V. Goldberg and S. Rao, “Beyond the flow decomposition barrier,”
J. ACM, vol. 45, no. 5, pp. 783–797, Sep. 1998.

[23] T. L. Pham, M. Bui, I. Lavallée, and S. H. Do, “An adaptive dis-
tributed algorithm for the maximum flow problem in the underlying
asynchronous network,” in Proc. IEEE RIVF, 2006, pp. 187–194.

[24] C. Cooper, “On the distribution of rank of a random matrix over a finite
field,” Random Struct. Algor., vol. 17, no. 3–4, pp. 197–212, 2000.

JoergWidmer (M'06–SM'10) received the M.S. and
Ph.D. degrees in computer science from the Univer-
sity of Mannheim, Mannheim, Germany, in 2000 and
2003, respectively.
He is a Research Professor with IMDEANetworks

Institute, Madrid, Spain. From 2005 to 2010, he was
Manager of the Ubiquitous Networking Research
Group, DOCOMO Euro-Labs, Munich, Germany,
leading several projects in the area of mobile and
cellular networks.
Dr. Widmer is a Senior Member of the Association

for Computing Machinery (ACM).

Andrea Capalbo received the B.Sc. and M.Sc. de-
grees in computer engineering from Politecnico di
Torino, Turin, Italy, in 2007 and 2009, respectively.
He worked as a Research Assistant with IMDEA

Networks Institute, Madrid, Spain, from 2011 to
2012. He currently works as a consultant for Altran,
Madrid, Spain, in the VPN Solutions Design &
Technology Department of Telefonica International
Wholesale Services.

Antonio Fernández Anta (M'98–SM'02) received
the M.Sc. and Ph.D. degrees in computer science
from the University of Louisiana, Lafayette, LA,
USA, in 1992 and 1994, respectively.
He is a Research Professor with IMDEANetworks

Institute, Madrid, Spain. Previously, he was a fac-
ulty member with the Universidad Rey Juan Carlos,
Madrid, Spain, and the Universidad Politécnica de
Madrid, Madrid, Spain, where he received an award
for his research productivity.
Dr. Fernández Anta has been a Senior Member of

the Association for Computing Machinery (ACM) since 2007.

Albert Banchs (M'04–SM'12) received the M.Sc.
degree in telecommunications engineering and
Ph.D. degree in telematics engineering from the
Polytechnic University of Catalonia, Barcelona,
Spain, in 1997 and 2002, respectively.
He was a Visiting Researcher with the Interna-

tional Computer Science Institute (ICSI), Berkeley,
CA, USA, in 1997. He worked for Telefonica I+D,
Barcelona, Spain, in 1998, and for NEC Europe,
Ltd., Heidelberg, Germany, from 1998 to 2003. He
has been with the University Carlos III of Madrid,

Madrid, Spain, since 2003. Since 2009, he also has a double affiliation as
Deputy Director of IMDEA Networks Institute, Madrid, Spain.

