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Abstract—The 802.11e standard enables user configuration of
severalMACparameters, makingWLANs vulnerable to users that
selfishly configure these parameters to gain throughput. In this
paper, we propose a novel distributed algorithm to thwart such
selfish behavior. The key idea of the algorithm is for stations to
react, upon detecting a misbehavior, by using a more aggressive
configuration that penalizes the misbehaving station.We show that
the proposed algorithm guarantees global stability while providing
good response times. By conducting an analysis of the effectiveness
of the algorithm against selfish behaviors, we also show that a mis-
behaving station cannot obtain any gain by deviating from the al-
gorithm. Simulation results confirm that the proposed algorithm
optimizes throughput performance while discouraging selfish be-
havior. We also present an experimental prototype of the proposed
algorithmdemonstrating that it can be implemented on commodity
hardware.

Index Terms—CSMA/CA, distributed algorithms, IEEE 802.11,
selfish behavior, wireless LAN.

I. INTRODUCTION

T HEMECHANISMS defined in IEEE 802.11e, which have
been incorporated into the 802.11 standard since 2007,

expose a number of configurable parameters that can be modi-
fied by a simple command. This gives users direct control of the
contention parameters used by their wireless adapter and allows
them to modify the behavior of the wireless interface. Users can
therefore easily configure the 802.11e parameters of their wire-
less device with aggressive values that increase their share of
the medium at the expense of the other users.1 Such selfish be-
havior can lead to severe unfairness in the allocation of network
capacity among users sharing the same WLAN.
In the literature, the approaches proposed to address this

selfishness problem can be classified as being either central-
ized [2]–[5] or distributed [6]–[8]. In this paper, we propose a
novel distributed approach to address the selfishness problem.
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1Indeed, in [1] it has been shown that a station can obtain very substantial
gains in throughput by misbehaving.

The advantage of distributed approaches is that they do not rely
on a central authority and thus can be used both in infrastructure
and ad hoc modes, in contrast to centralized approaches that
can only be used in infrastructure mode.
Previous analysis of the selfishness problem in a WLAN [8]

has shown that, if misbehaving stations are not penalized, the
WLAN naturally tends to either great unfairness or network col-
lapse. Following this result, in this paper we focus on the design
of a penalizing mechanism in which any station that misbehaves
will be punished by the other stations and thus will have no in-
centive to misbehave. A key challenge when designing such
a penalizing scheme is to carefully adjust the punishment in-
flicted on a misbehaving station. If, on the one hand, the punish-
ment is not sufficiently severe, a station could benefit from mis-
behaving. However, on the other hand, an overreaction could
trigger the punishment of other stations, leading to an endless
loop of punishments. Our design makes use of Lyapunov sta-
bility theory to address this challenge. The main contributions
of our paper are as follows.
• We propose a novel distributed algorithm that penalizes
misbehaving stations by making use of a more aggressive
configuration of the 802.11e parameters upon detecting
misbehavior.

• We conduct a stability analysis of the algorithm to show
that when all stations implement our algorithm, theWLAN
convergences to the optimal point of operation.

• We conduct an analysis of the effectiveness of the algo-
rithm against selfish behavior that shows that a station
cannot increase its throughput by deviating from the
algorithm.

• We extensively evaluate the performance of the proposed
algorithm via simulation under a wide variety of conditions
that confirm its good properties.

• We show the feasibility of implementing the algorithm by
deploying a prototype and evaluating it in a small experi-
mental testbed.

The rest of the paper is structured as follows. In Section II, we
discuss the selfishness problem in 802.11. Section III presents
the algorithm proposed. The algorithm is evaluated analytically
in Section IV:We first analyze its performance when all stations
implement the algorithm, and then study the case when stations
may deviate from the algorithm. The performance of the algo-
rithm is exhaustively evaluated via simulation in Section V, and
its feasibility of implementation is validated in Section VI by
means of a prototype. Finally, Section VII closes the paper with
some concluding remarks.

II. SELFISHNESS IN 802.11
In this section, we briefly summarize the EDCA mechanism

of 802.11e, identify the selfishness problem, and briefly review
related work.
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A. 802.11e EDCA

The 802.11e EDCA mechanism works as follows. When a
station has a new frame to transmit, it senses the channel. If
the channel remains idle for a period of time equal to the AIFS
parameter, the station transmits. Otherwise, if the channel is de-
tected busy, the station monitors the channel until it is measured
idle for an AIFS time, and then executes a backoff process.
When the backoff process starts, the station computes a

random number uniformly distributed in the range
and initializes its backoff time counter with this value. CW is
called the contention window, and for the first transmission
attempt, the minimum value is used. In case of a
collision CW is doubled, up to a maximum value .
As long as the channel is sensed idle, the backoff time

counter is decremented once every slot time of duration , and
“frozen” when a transmission is detected on the channel. When
the backoff time counter reaches zero, the station accesses the
channel in the next slot time. Upon accessing the channel, a
station can transmit several consecutive frames for a duration
given by the TXOP parameter.
A collision occurs when two or more stations start transmit-

ting simultaneously. An acknowledgment (Ack) frame is used
to notify the transmitting station that the frame has been success-
fully received. If the Ack is not received within a given timeout,
the station {reschedules the transmission by doubling CW, up
to a maximum value , and reenters the backoff process.
If the number of failed attempts reaches a predetermined retry
limit, the frame is discarded. Once the backoff process is com-
pleted, CW is set again to .
It can be seen from the above that the behavior of a station

depends on a number of parameters, namely ,
AIFS, and TXOP. As these are (according to the 802.11 stan-
dard) configurable parameters whose setting can be modified by
means of simple commands, a user can easily configure these
parameters selfishly to gain extra throughput (i.e., to increase
the individual throughput received by the user). We refer to this
as the problem of selfishness in 802.11.

B. Related Work

The above problem of selfishness in 802.11 has been mod-
eled using game theory. In these models, the players are the
wireless stations that configure their 802.11e parameters to ob-
tain as much throughput as possible. The simplest models are
those based on static games, in which each player makes a single
move and all moves are made simultaneously. The modeling of
the selfishness problem in 802.11 based on static games [6], [7]
leads to the following two families of Nash equilibria: In the first
family, there is one player that receives a non-null throughput
while the rest of the players receive a null throughput, and in the
second family, all players receive a null throughput (the latter is
known as the tragedy of the commons: The selfish behavior of
each player leads to a tremendous misuse of the public good).
Both of the above families of solutions are highly undesirable,

as they lead either to extreme unfairness or network collapse.
One alternative to avoid these undesirable solutions is to allow
users to make additional moves (i.e., change their 802.11e con-
figuration) during the game. This has been modeled by making
use of the theory of repeated games [9]. With repeated games,
time is divided into stages, and at each stage, a player can take

a new decision based on the observed behavior of the other
players in the previous stages. Therefore, if a station is detected
misbehaving, the other stations can punish this station and thus
discourage such behavior.
Making use of repeated games, [6] and [7] have proposed

two approaches to address the selfishness problem in 802.11.
The approach proposed by [6] is based on selective jamming:
If a station detects that another station is misbehaving, there-
after it listens to its transmitted packets and switches to trans-
mission mode, jamming enough bits so that the packets cannot
be properly recovered at the receiver. While the use of jamming
punishes misbehaving stations, it has the major drawback of re-
lying on functionality not available in current wireless devices.
Indeed, due to the accurate timing required, the implementation
of such a mechanism would need to be performed at the hard-
ware level and entails substantial complexity.
The approach proposed by [7] does not suffer from the above

drawback, but addresses only two types of misbehaving sta-
tions: the so-called selfish stations, with , and the
so-called greedy stations, with . While the scheme pro-
posed is effective when dealing with these two particular con-
figurations, other CW configurations that may greatly benefit
a misbehaving station are neither detected nor punished by this
mechanism, as we show in the simulation results of Section V-E.
Additionally, the algorithm of [7] is based on heuristics that do
not guarantee quick convergence, and indeed we show in a fur-
ther simulation result in Section V-G that this approach may
suffer from convergence issues.
In this paper, we propose a novel approach that, in contrast

to the previous two approaches, relies exclusively on function-
ality readily available in current wireless devices and is effec-
tive against any selfish configuration of the 802.11e parameters.
Additionally, by relying on Lyapunov stability techniques, our
approach is guaranteed to quickly converge to the desired point
of operation.
In [2]–[5], the issue of selfishness in 802.11 WLANs is also

addressed. However, in contrast to our distributed algorithm,
these papers propose a centralized approach and therefore can
only be applied to a WLAN operating in infrastructure mode.
Additionally, many of these approaches only address the detec-
tion of misbehaving stations, while our approach not only de-
tects but also punishes such stations.
A number of other works address selfishness in wireless net-

works from a game-theoretic point of view [10]–[13]. Besides
focusing on a different MAC protocol, these studies differ from
ours in that they consider some kind of transmission cost or
pricing mechanism that plays a key role in the resulting equi-
libria. In contrast to these approaches, we achieve the desired
equilibrium by means of a penalizing mechanism.
Perhaps the most closely related to this paper is our pre-

vious work of [14], which uses a similar technique to coun-
teract selfish behavior. However, both the scope of the work and
the algorithm design are substantially different. Indeed, while
here we address the problem of selfishness in 802.11, [14] deals
with a completely different random access protocol, namely dis-
tributed opportunistic scheduling (DOS), and hence focuses on
a different problem.2 Furthermore, [14] relies on local linearized

2With DOS, upon gaining access to the channel, a station measures the radio
conditions and only transmits when the channel quality is above a certain
threshold; hence, this mechanism is fundamentally different from 802.11.
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analysis, while here we use Lyapunov theory for the global de-
sign and analysis of the algorithm. As a consequence, the algo-
rithm proposed in this paper provides much stronger guarantees
on stability and convergence than that of [14].

III. PAS ALGORITHM

In this section, we present our algorithm to address the
problem of selfishness in 802.11, which we call the selfish-
ness-Proof Adaptive Stable (PAS) algorithm. In the following,
we first present the objectives pursued and then describe the
algorithm design to achieve these objectives.

A. Algorithm Objectives and Scope

The central objective of the PAS algorithm is to drive the con-
figuration of the 802.11e EDCA parameters to target values that
maximize the overall WLAN performance. To achieve this ob-
jective, PAS enforces that a misbehaving station cannot benefit
from using a different configuration, which provides stations
with an incentive to adopt the target configuration.
Following the arguments given in [6], [15], and [16], in this

paper we aim at the following setting of the four EDCA pa-
rameters, which maximizes the throughput performance of the
WLAN (hereafter, we refer to this setting as the target configu-
ration or optimal configuration).
• The AIFS parameter is set to its minimum value

.
• The TXOP parameter is set such that a fixed payload is
transmitted upon accessing the channel. For simplicity, in
the rest of the paper we assume that this payload corre-
sponds to one packet (i.e., packet). How-
ever, the analysis would be identical for any other payload
value.3

• The maximum backoff stage is set equal to 0.4 This
yields the same value for and (i.e.,

); in the following, we refer to this
value simply as CW.

• The CW parameter is set equal to the value that, given
the above setting for the other parameters, maximizes the
throughput of the WLAN when all stations are saturated.
Hereafter, we refer to this value as .

With the above, the objective of PAS can be reformulated as
being to achieve the following two goals: 1) when all stations
implement PAS (i.e., they are well behaved), the system should
converge to the target configuration, namely
(where is the CW used by station ); and 2) if a station
misbehaves (by using a different from and/or a
different setting of the other parameters), this station should not
obtain a throughput benefit from such misbehavior.
In the following, we address the design of the PAS algorithm.

Like the previous work in [6] and [7], in the design of the algo-
rithm, we assume that all stations are saturated (i.e., always have
a packet ready for transmission), are within transmission range

3As explained in [15], the setting of this parameter responds to a tradeoff
between throughput and delay. Indeed, by increasing TXOP, throughput is im-
proved at the expense of increasing delay. Based on this, [15] suggests to set
this parameter to the largest possible value that gives an acceptable delay.

4The maximum backoff stage is defined as the number of times that the CW
is doubled until reaching (i.e., ).

of each other (i.e., no hidden nodes), and use the same modula-
tion-coding scheme. In Section V, we show that the proposed al-
gorithm can be extended to effectively prevent selfish behavior
with nonsaturated stations. While the design assumes no hidden
terminals, the algorithm also works for hidden terminals as long
as the RTS/CTS mechanism is used.5 Furthermore, in the case
of different modulation-coding schemes, the algorithm can be
applied to enforce the target configuration proposed in [17].

B. Computation of
We use the model of [18] to compute the throughput of

station as a function of the transmission probabilities

(1)
where is the number of active stations in
the WLAN, is the packet payload in bits,

is the average duration of a slot in seconds,
the duration of a transmission, and the duration of an empty
slot time.
By [19, Lemma 1], the rate region boundary is the set

of throughput vectors such that , where
is the fraction of airtime (including both

successful and colliding transmissions) used by station . When
all stations use the same transmission probability, it follows
immediately that the value maximizing throughput is the
unique solution to

(2)

Once we have , then . When is small,

a good approximation is .
The following fundamental property will also prove useful:6
Theorem 1: Consider the set of points

. For any , the following
inequality holds:

(3)

where and
is the maximum achievable throughput of a station when

.
This theorem is a continuity result that can be used to bound

the difference between the optimum and actual WLAN
sum-rate throughput.

C. Algorithm Description
Following the 802.11 standard, which updates the configura-

tion of the 802.11e parameters upon receiving a beacon frame,
PAS implements an adaptive algorithm in which each station
updates its at every beacon interval, while keeping the
configuration of the other parameters fixed to the values pro-
vided in Section III-A; hereafter, we refer to each beacon in-
terval as a stage of the algorithm. The central idea behind PAS

5The reason for this is that, as in [6], [7], in order to detect selfish behaviors,
we need to know the throughput received by the other stations.

6The proof of all theorems is provided in the Appendix.
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is that when a station is detected as misbehaving, the other sta-
tions reduce their in subsequent stages to prevent this sta-
tion from benefiting from misbehaving.
A key challenge in PAS is to carefully adjust the reaction

against amisbehaving station. Indeed, asmentioned in Section I,
if the reaction is not severe enough, such a station may ben-
efit from its misbehavior, but if the reaction is too severe, the
system may become unstable by entering an endless loop where
all stations indefinitely reduce their to punish each other.
In order to address this challenge, we use techniques from Lya-
punov theory [20] in the design of PAS to guarantee that the

of all stations converges to and avoid that the
system enters into a spiral of increasing punishments that lead
to throughput collapse.
The iterative PAS update of the can be modeled as a

discrete-time dynamical system whose state is given by
, where is related to the probability with which

station transmits in a slot time. That is

(4)
where is a nonlinear function that models
the system dynamics. The main design challenge is to deter-
mine the function . To this end, we adopt a standard feedback
approach [21] and update at each stage as

(5)
where is a scalar parameter and .
In order to allow for large values of , which reduces the con-

vergence time of the algorithm,7 we impose that the probability
of transmitting in a slot time does not fall below (where

is the optimal value, given later). Similarly, if ex-
ceeds 1, we transmit with probability 1. Thus

(6)
where is the probability that the station transmits in a slot
time, after imposing the above constraint. Given , the
parameter of the station at stage is .
We next address the design of function in (5). Our require-

ments when designing are twofold: 1) misbehaving stations
should not be able to obtain extra throughput from the WLAN
by following a different strategy from PAS; and 2) as long as
there are no misbehaving stations that deviate from PAS, the
of all stations should converge to the optimal value . To

meet the above requirements, we select as follows:

(7)

where is a function that we design below, and is the
throughput received by station over the beacon interval corre-
sponding to stage . Similarly to [6] and [7], to obtain the
values, we rely on the broadcast nature of the wireless medium,
which provides WLAN stations with the ability to measure the
throughput received by the other stations.
Observe that, according to (7), consists of the following

two components, each of which fulfills one of the requirements
identified before.
• The first component, , serves to punish
misbehaving stations: If a station receives less throughput
than the other stations, this component will be positive, and

7The fact that imposing a lower bound on allows for larger values can
be seen from the proof of Theorem 2.

hence station will increase its transmission probability
to punish the other stations.

• The second component, , drives the system to the
target configuration in the absence ofmisbehaving stations.

Regarding , to drive the to the target value , we
require to be positive when , and negative other-
wise. Furthermore, should not allow misbehaving stations
to obtain a throughput gain over well-behaved stations. To gain
insight, we consider a scenario with one misbehaving station in
steady-state operation, which implies that the misbehaving sta-
tion uses a static configuration. (In the analysis of Section IV-B,
we show that PAS is also effective against selfish strategies
that change the configuration over time.) In steady-state, the
left-hand side (LHS) and right-hand side (RHS) of update (5)
must be equal for the well-behaved stations using PAS, i.e.,

, where is the misbehaving station and
the superscript indicates values when the system is in steady
state, and so

(8)

where is the throughput of a well-behaved station (which,
by symmetry, is the same for all such stations in steady state).
We require that the throughput of the misbehaving station does
not exceed the target throughput, . That is

which is satisfied when

(9)

where .
The intuition here is that when a station misbehaves, it

receives more throughput than the well-behaved stations.
This, however, moves the point of operation away from the
optimal one, reducing the overall efficiency in terms of the
aggregate throughput. The bound (9) ensures that the addi-
tional throughput received by the misbehaving station does
not outweigh the throughput it loses due to the overall loss
of aggregate throughput. This guarantees that, in steady state,
the misbehaving station does not receive more throughput and
hence does not benefit from its misbehavior.
Following the above requirements, we select as

and
and

(10)
The above choice meets the design requirements set above

for the function : 1) it satisfies (9), preventing misbehaving
stations from obtaining any gain; and 2) for well-behaved sta-
tions, it fulfills for and for

, which ensures convergence to optimal operation.8
Note that, as long as , we set equal to one half of
the upper bound provided by (9). This choice has been made to

8The only exception to this is when : In this case, (10) gives
independent of the value of . However, as we show later in Sec-

tion IV-A, this does not affect the convergence of the algorithm to the desired
point of operation.
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ensure that, when misbehaving, a station is punished and sees
its throughput reduced (this would not happen if our choice of

was equal to the upper bound).
To compute update (5) with these choices of and ,

each station only needs to measure at the end of every stage
the throughput it has received during this stage as well as the
throughput that each of the other stations has received.

IV. ALGORITHM ANALYSIS

In this section, we study analytically the performance of the
system. First, we prove that when all the stations are well-be-
haved and implement the PAS algorithm, the WLAN converges
to the optimal configuration (Section IV-A). Then, we show that
a misbehaving station does not have any incentive to deviate
from the PAS algorithm (Section IV-B).

A. Stability Analysis

We show that when all stations implement PAS, the WLAN
is driven to the optimal configuration, i.e., .
Formally, a point is said to be a globally asymp-

totically stable equilibrium of the system (4) if: 1)
such that ; and

2) . These conditions ensure
that the system converges to independently of its initial state
and that the equilibrium point is unique. We have the following
result.
Theorem 2 (Global Stability): The target configuration

is a globally asymptotically stable
equilibrium point under update (5) provided and

where .
The proof of Theorem 2 makes use of Lyapunov's direct

method [20]. Namely, a point is the globally asymptotically
stable equilibrium of the system if there exists a continuous
radially unbounded function such that

and

(11)

To apply this result, we must find a Lyapunov function
with these properties. Selecting
as a candidate Lyapunov function, with the equilibrium point

, the proof of Theorem 2 estab-
lishes that

(12)

That is, Lyapunov equation (11) is satisfied by this choice of ,
and so is a globally asymptotically stable equilibrium.
It remains to select the value of the parameter . This involves

a tradeoff: The smaller , the slower the rate of convergence
is. However, if is set too large, the system risks instability
(as shown by Theorem 2). Following the same rationale as the
Ziegler–Nichols rules [22], which have been proposed to ad-
dress a similar tradeoff in the context of classical control theory,
we recommend setting to half of the value at which the system
turns unstable, i.e., .

The analysis conducted so far assumes that stations have per-
fect knowledge of the values. However, since these values
are measured by the stations, measurement errors may introduce
disturbances into the system and make its trajectory differ from
that of the undisturbed system. In this case, [23, Theorem 2]
(along with Corollary 1) can be used to guarantee that, as long
as the disturbances are bounded, the trajectory of the disturbed
system approaches a ball around the equilibrium of the undis-
turbed system.9 The following sufficient conditions are given
in [23]: 1) there exist two class functions and such
that for ; 2) there exists
a class function such that

for ; 3) there exists a Lyapunov func-
tion for the undisturbed system that is uniformly continuous
in ; and 4) the update function (5) is uniformly continuous
in the disturbance. Condition 1 is satisfied for

. Condition 2 is guaranteed by Theorem 3 below for
. Condition 3 is satisfied by the Lyapunov

function we have selected. Finally, Condition 4 holds since, for
a given is uniformly continuous in the 's and so in the
disturbances of the measurements. Thus, PAS does not only
converge when measurements are error-free, but it is also robust
to measurement errors.
Theorem 3: There exists a function ,

that satisfies
.

B. Effectiveness Against Selfish Behavior

In Section IV-A, we have seen that when all stations imple-
ment PAS, the system converges to the target configuration, i.e.,
all stations have and receive a throughput equal to

. In this section, we conduct an analysis to show that a sta-
tion cannot obtain a throughput greater than by following
a different strategy from PAS. In what follows, we say that a
station is well behaved when it implements PAS to configure its
802.11e parameters, while we say that it is misbehaving when
it follows a different strategy from PAS to configure its param-
eters with the aim of obtaining greater throughput.
The analysis conducted in this section assumes that users are

rational and want to maximize their own throughput. Like other
previous analyses on selfishness in 802.11 [6], [7], we consider
the throughput obtained by a station over an infinite interval,
which is a common assumption when users do not know when
they will leave the system. Under these assumptions, the fol-
lowing theorem shows the effectiveness of PAS against a mis-
behaving station. Note that the theorem does not impose any
restriction on the strategy followed by the misbehaving sta-
tion, which may play with all four of the 802.11e parameters,
changing their settings over time.
Theorem 4: Consider a misbehaving station that uses a con-

figuration that can vary over time. If all the other stations imple-
ment the PAS algorithm, the throughput received by this station
will be no larger than .
A consequence of the above theorem is that if all other sta-

tions run PAS, the best alternative for a given station is to run
PAS as well since it cannot benefit from following a different

9Furthermore, [23] also shows that the radius of this ball is proportional the
supremum norm of the disturbance, which guarantees that as disturbances fade,
so does their effect.
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Fig. 1. Throughput of a misbehaving and a well-behaved station as a function
of the of the misbehaving station.

strategy. Therefore, a station does not have any incentive to de-
viate from PAS, establishing the effectiveness of the PAS algo-
rithm against selfish behavior.10

V. PERFORMANCE EVALUATION
In this section, we thoroughly evaluate PAS by conducting

an extensive set of simulations to show that: 1) a misbehaving
station cannot benefit from following a different strategy from
PAS; and 2) when all stations are well behaved, PAS provides
optimal performance, is stable, and reacts quickly to changes.
For the simulations, we have implemented our algorithm in
OMNET++. The physical-layer parameters of IEEE 802.11g
and a fixed payload size of 1500 B have been used in all of the
experiments. We set the beacon interval to 100 ms, a typical
value used in 802.11 WLANs (this is the interval over which
the PAS algorithm measures the throughput of the stations and
updates the configuration).
In the simulations of Sections V-A–V-H, we focus on the

CW parameter: We assume that all stations (both well-behaved
and misbehaving) use a fixed configuration of their AIFS,
TXOP, and parameters equal to the optimal configuration
and play only with the CW parameter. Then, in the simula-
tions of Section V-I, we study all four parameters and show
that misbehaving stations cannot obtain any benefit from any
configuration of these parameters. Unless otherwise stated,
we assume that all stations are sending traffic under saturated
conditions and measurements are error-free. For all simulation
results, 95% confidence intervals are below 0.5%.

A. Impact of Selfish Behavior
In order to gain insight into the impact of the configura-

tion used by a misbehaving station, we evaluate the resulting
throughput distribution when the misbehaving station uses
a fixed CW value and all other stations implement PAS.
Fig. 1 shows the throughput obtained by the misbehaving
station and by a well-behaved station as a function of the CW
value used by the misbehaving station, , when there are

stations in the WLAN. We observe from this figure
that there are some values for which the misbehaving

10From a game-theoretic perspective, this corresponds to symmetric Nash
equilibrium: When all other stations run PAS, a station cannot gain any extra
utility (in this case, throughput) by following a different strategy.

Fig. 2. Throughput of a station when using different strategies.

station obtains a larger throughput than a well-behaved station,
and others for which a well-behaved station obtains a larger
throughput. However, if the misbehaving station chooses the

that maximizes its throughput, then it does not receive
more throughput than a well-behaved station, and hence does
not have any gain over a well-behaved station as a result of
its selfish behavior. We further observe that, as a consequence
of our design choice for , when a station misbehaves (by
setting ), it is punished, seeing its throughput
reduced to as much as half of the optimal throughput for the
most aggressive configuration.

B. Protection Against Selfish Behavior
According to the analysis conducted in Section IV-B, a station

cannot obtain more throughput with a selfish strategy than by
running PAS. To validate this result, we evaluate the throughput
obtained by a misbehaving station with the following strategies.
In the first strategy (static), the misbehaving station uses the
fixed configuration of that provides the largest throughput,
obtained from performing an exhaustive search over all possible
configurations (as in Fig. 1). In the second strategy (adaptive 1),
the misbehaving station periodically tries to gain
throughput andwhen it realizes that its throughput is below ,
it assumes that it has been detected as misbehaving and switches
back to .The third strategy (adaptive 2) is similar
to the previous one, but instead of switching back to , the
station increases its by 5. In the last strategy (adaptive 3),
the misbehaving station decreases its by 5 as long as its
throughput is larger than in the previous stage, and increases it by
5 otherwise. Fig. 2 compares the throughput obtained with each
of these strategies against that obtained with PAS for different
values. We observe that, when all other stations run PAS, a

given station maximizes its payoff by running PAS as well, as it
obtains a larger throughput with PAS than when using any of the
other strategies.

C. Throughput Performance
The PAS algorithm has been designed with the goal of

optimizing throughput performance when all stations run PAS.
To verify this goal, we evaluate the throughput performance
as a function of the number of stations . As a benchmark
against which to compare throughput performance, we consider
a WLAN in which the of all stations is statically set to
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Fig. 3. System stability for different settings.

the optimal value . We observe from the results (not
shown here for space reasons) that throughput performance
when all stations run PAS follows very closely the optimal
configuration (differences are always below 0.5%). Based on
this, we conclude that the proposed algorithm is effective in
providing optimal throughput performance.

D. Stability and Speed of Reaction
To validate that the PAS algorithm guarantees stable be-

havior, we analyze the evolution over time of the parameter
for our setting and a configuration of this parameter 10

times larger, in a WLAN with 10 stations. We observe from
Fig. 3 that with the proposed configuration (label “ ”), the
only presents minor deviations around its stable point of opera-
tion, while if a larger setting is used (label “ ”), the
exhibits strongly unstable behavior with large oscillations.
To investigate the speed with which the system reacts against

a misbehaving station, we consider a WLAN with 10 stations
where initially all stations runPASand then, after 50 s, one station
changes its to2.Fig.4shows theevolutionof the throughput
of themisbehaving station over time.We observe from the figure
that with our setting (label “ ”), the system reacts quickly, and
in less than a few tens of seconds, the misbehaving station does
no longer benefit from its misbehavior. In contrast, for a setting
of this parameter 10 times smaller (label “ ”), the reaction is
very slow, and even 2 min afterwards, the misbehaving station is
still receivingmore than1Mb/sextra throughput.
Since with a larger setting of the system suffers from insta-

bility while with a smaller one it reacts too slowly, we conclude
that the proposed setting provides a good tradeoff between sta-
bility and speed of reaction.

E. Comparison Against Other Approaches
In order to illustrate the advantages of PAS over other

approaches, we compare the performance of PAS against
CRISP [7] and the standard DCF configuration when there is a
misbehaving station in the WLAN. In particular, we consider a
WLANwith a misbehaving station that uses the value that
maximizes its throughput and show the throughput received by
the misbehaving station and by a well-behaved station.11 The
results, depicted in Fig. 5, show that PAS outperforms very

11To obtain the that maximizes the misbehaving station's throughput,
we evaluated all possible values and choose that which provides the
largest throughput to the misbehaving station.

Fig. 4. Speed of reaction for different settings.

Fig. 5. Comparison against CRISP and DCF.

substantially CRISP and DCF. Since CRISP has been designed
to punish only severely misbehaving users with or

, a misbehaving station with a slightly larger
goes undetected and can gain very significant throughput,
leaving well-behaved stations with low throughputs as shown
in the figure. With the standard DCF configuration, a misbe-
having station maximizes its gain with , which yields
zero throughput for the well-behaved stations. The results also
show that both with DCF and with CRISP, a station has a strong
incentive to misbehave as it obtains substantial gains (if it was
well-behaved, it would receive the throughput given by PAS).

F. Robustness to Measurement Errors
By the robustness analysis in Section IV-A, provided themea-

surement noise is not too large, the operation of the system with
measurement errors should remain close to that when error-free.
To validate this result, we consider a scenario with 10 well-be-
haved stations where the probability that a station running PAS
does not correctly decode an ongoing transmission in the channel
(so inducing ameasurement error) is 10%.12The total throughput
in the network in this case is equal to 30.79 Mb/s, the same
throughput that we obtain for the error-free case. To further val-
idate the effectiveness of the algorithmwithmeasurement errors,

12To evaluate the impact ofmeasurement errors,we consider that a station only
suffers from errors when decoding frames addressed to other stations, i.e., when
measuring their throughput, andneverwhen receivinga frameaddressed to itself.
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Fig. 6. Robustness to perturbations of PAS versus CRISP.

we revisit theabovescenariowithoneof thestationsmisbehaving
byusing contentionwindowof ; in this case, themisbe-
having station receives a throughput of 2.58Mb/s,while itwould
receive a throughput of 3.08Mb/s if it ranPAS.These results con-
firm the algorithm's robustness to measurement errors; indeed,
even with a measurement error rate as high as 10%, PAS is ef-
fective in driving the system to optimal operation as well as in
preventing selfish behaviors.

G. Robustness to Perturbations
In addition to robustness against measurement errors, PAS

has also been designed to achieve robustness against perturba-
tions. Indeed, by Theorem 2, PAS is guaranteed to converge to
the desired point of operation independent of the initial state.
Therefore, no matter the state to which the system is brought by
a perturbation, it will always tend to recover. In order to demon-
strate this feature, we consider the following experiment. In a
WLAN with 15 stations, all running PAS, we introduce a burst
of errors that affect one of the stations for 1 s. Fig. 6 shows the
evolution of the throughput of the affected station and one of
the other stations over time. The figure also shows the behavior
provided by CRISP under the same conditions.
We observe from the figure that PAS quickly converges to the

desired point of operation after the perturbation. Indeed, imme-
diately after the perturbation, the station that suffered the burst
of errors believes that the other stations aremisbehaving (as they
have received a larger throughput) and so uses a smaller
for a period of time, resulting in a larger throughput for this sta-
tion. However, after a short transient, all stations return to using
the optimal . In contrast to the above, CRISP does not
show a robust behavior. With CRISP, the affected station se-
lects after the burst to punish the others. These react
by decreasing their to 2 and eventually to 1, and from this
point on, the stations keep punishing each other, which brings
the total throughput in the WLAN practically to 0. The WLAN
remains in this state for the rest of the simulation run, which is
300 s long (only the first 20 s are shown in the figure).

H. Nonsaturated Stations
So far, we have assumed that all stations are saturated, which

is the most relevant case for selfishness and the only one consid-
ered in [6] and [7]. However, PAS can be easily extended to sup-
port nonsaturated stations as follows: 1) to avoid reacting to other
stations receiving more throughput, a nonsaturated station does

Fig. 7. Protection of PAS against selfish strategies that may use any of the
802.11e parameters.

not use the PAS algorithm to compute its configuration; 2) a satu-
rated station only includes in the sum of (7) those stations that are
receiving more throughput, thus excluding the nonsaturated sta-
tions; and3) to compute ,we take into account the sending
rate of the nonsaturated stations (following, e.g., [16]). To show
the performance of PAS with nonsaturated stations, we consider
the aWLANwith 10 stations, half of them saturated and the other
half sending at a rate equal to half of the saturation throughput. In
this scenario, a station that misbehaves by using the value
thatmaximizes itsgainobtainsa throughputof4.51Mb/s,while it
would obtain 4.52Mb/s if it ran PAS.This confirms the effective-
ness of the algorithm in thwarting selfish behaviors in the pres-
ence of nonsaturated stations.

I. Other 802.11e Parameters
In the experiments so far, we have only considered situations

where misbehaving stations adjust the parameter. How-
ever, according to the 802.11e standard, there are a number
of additional parameters a user can play with, namely the
backoff stage , the arbitration interframe space AIFS, and
the transmission opportunity duration TXOP. In order to show
that a misbehaving user cannot benefit from adjusting any of
these parameters, we have conducted a number of experiments
in which the parameters differ from the target values given in
Section III-A. For each of the settings, the misbehaving station
uses the that maximizes its throughput.
The results of the above experiment are given in Fig. 7 for

different values. We observe that the misbehaving station
never obtains any throughput gain by deviating from PAS inde-
pendently of the parameters it adjusts. We conclude that PAS is
effective not only against selfish adjustment of , but also
against all of the other configurable parameters of the 802.11e
standard. This is in line with Theorem 4, according to which
a station cannot benefit from following a strategy different
from PAS. This result is particularly relevant since previous
approaches [6], [7] focus only on the parameter and are
not evaluated against any of the other 802.11e parameters.

VI. EXPERIMENTAL PROTOTYPE
One of the advantages of PAS is that it relies on function-

ality readily available in standard devices and therefore can be
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TABLE I
EXPERIMENTAL RESULTS

implemented with current off-the-shelf hardware. In order to
show this, we have implemented the PAS algorithm on Linux-
based laptops. Our implementation is based on Linux kernel
2.6.24 laptops equipped with Atheros AR5212 cards operating
in 802.11a mode and employing the MadWifi v0.9.4 driver. The
PAS algorithm runs as a user-space application. In order to col-
lect information about other stations' throughput, PAS uses a
virtual device configured in promiscuous mode and monitors
all frames that belong to the same BSS. With this informa-
tion, it computes the CW configuration by executing the algo-
rithm described in Section III and updates the computed
and parameters in the driver every beacon interval by
means of a private IOCTL call.
In order to validate our implementation, we deployed a small

testbed consisting of three laptops, two of them sending traffic
to the third one. For the traffic generation, nodes ran the iperf
tool using 1470-B UDP packets. The sending rate at each sta-
tion was set to 20 Mb/s, ensuring that they always had a packet
ready for transmission. We evaluated the following strategies:
1) both stations employing the PAS algorithm to compute their
configuration; 2) both stations using a fixed CW configuration
(for a wide range of CW values); and 3) one station executing
PAS and the other one using a fixed CW configuration. The re-
sults of these experiments (summarized in Table I) confirm the
good properties of PAS: 1) when all stations are well-behaved,
PAS outperforms any static configuration; and 2) when
one station runs PAS, the other station is better off running PAS
than any other configuration.

VII. CONCLUSION

With 802.11e, users may selfishly configure the parameters
used by their station so as to increase their share of throughput at
the expense of other users. In order to prevent such undesirable
behavior, in this paper we design a novel adaptive algorithm
called selfishness-Proof Adaptive Stable (PAS). With the PAS
algorithm, upon detecting misbehavior, users react by using a
more aggressive configuration of the parameters that serves to
punish the misbehaving station.
A critical aspect in the design of such an adaptive algorithm is

to carefully adjust the reaction against a misbehaving station to
avoid the system becoming unstable. By conducting a Lyapunov
stability analysis of the PAS algorithm, we show that when all
of the stations in the WLAN run PAS, the system is globally
stable and converges to the desired configuration. Furthermore,
by conducting an analysis of the effectiveness against selfish
behavior, we show that a misbehaving station cannot benefit by
following a different strategy from PAS (either with a fixed or
a variable configuration). These results are confirmed by means
of simulations as well as experiments.
While the focus of this paper has been on 802.11 MAC pro-

tocol, the main ideas of the paper can be generalized to other
MAC protocols as long as we can compute the loss of efficiency
when operating with nonoptimal configurations.

APPENDIX

A. Proof of Theorem 1
We proceed by establishing two useful lemmas, and then

present the proof of Theorem 1.
Lemma 1: Consider the set of points

. Over
set , the vector minimizing has all elements
equal, i.e., .

Proof: By (1),

where and . Minimizing
over set then corresponds to the following

optimization:

s.t.

which we can rewrite equivalently as

s.t.

where .
It is enough to show that any optimum satisfies

.
The objective is convex, the equality constraint is linear, and

the inequality constraints convex, hence this is a convex opti-
mization. Since , the Slater condition is satisfied, and
so strong duality holds. The Lagrangrian is

and the main KKT conditions are

(13)
which must be satisfied by any optimal point . When

it follows from the KKT conditions that
the minimum occurs when .
When for some (and so by complementary slackness

), we would like to show that we must have
for all (and so for all ). First, when

, since , it follows immediately that
for all . Otherwise, we proceed by contradiction.

Suppose that and for
some . The elements of are therefore not all the same value.
Consider the point . This
point satisfies the constraints

(14)
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and so is feasible. By the strict convexity of the exponential,
we have (with strict
inequality since the elements of are, by assumption, not all
the same value). Observing that , it
follows immediately that , yielding
a contradiction. That is, we must either have for all
or for all . Since in the case we are analyzing we

have for some , this implies for all . By an
almost identical argument, it also follows that when for
some , we must have for all .
Lemma 2: Consider the set of points

. Over set , the vector
minimizing satisfies either for all or

for all .
Proof: If , the result follows trivially. Suppose

therefore . By Lemma 1, minimizing s.t.
, is equivalent to finding a

solving
(15)

and setting . Taking logs and letting
, this optimization can be rewritten as

with
.

Importantly, the objective function is concave in since:
1) the first term is linear; 2) expanding the term, it can
be verified that the second term is convex [24]; and 3) the third
term is constant. Hence, for any

, lying in the interval , we have
. It follows immediately that the minimum of

over interval must be located at one of the boundary
points.

Proof of Theorem 1: By Lemma 2, is min-
imized either when or . For ,
we have

(16)

where and are the values of when and
, respectively. From the above

from which we have that (3) holds for this case.
We next address the case . If , it is

easy to see that (3) holds, as in this case the denominator of
(3) is larger than and the numerator is smaller than . To
prove that (3) also holds for , we proceed as follows.
Let be the throughput of a station as a function of when

for all . Then, by expressing as the integral of its
derivative

(17)

From

We next show that the above derivative is negative in the
interval . The sign of the derivative depends on

that of the term . Since the throughput is maximized at
and , the derivative at is 0 (when the number

of stations , the optimum attempt probability must lie in
the interior of ), and so . The derivative of

is , which is negative for
. Thus, equals 0 at and decreases

afterwards, which implies that for .
With this, (17) can be rewritten as

(18)

which can be bounded as follows:

(19)

where is an upper bound for the absolute value
the derivative in the interval .
To find , we proceed as follows. Given that

and , we want to evaluate
at for , which

yields

(20)

where is the value of for . Note that,
for , we have and
(the latter holds since we have earlier shown that the term

is negative for ). With this, the absolute value of
can be bounded by

(21)

Before, we have shown that the term is equal to
0 at , i.e., . Adding this term to

gives . Furthermore, since
, this can be expressed as . Com-

bining this with the above equation yields

(22)
Finally, combining the above bound on the maximum value of
the derivative with (19) leads to

from which (3) also holds for this case.

B. Proof of Theorem 2
Once again, we proceed by establishing a number of interme-

diate lemmas, and then present the proof of Theorem 2.
Lemma 3:
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with
.

Proof: (i) Let be the throughput of station . Since
, we have

. Substituting from (1) and rearranging, we have

where follows from the fact that and
(the latter holds since ).

(ii) Since , we have
. The second part of the result now follows using an identical

argument to (i).
Lemma 4: (i) ; and (ii) ,

where
.

Proof: (i) When , then . Since ,
it follows that . When , then

, and hence , while . (ii) When
, then and .

When , we have two cases: a) if , then
; b) if , then

since .
Lemma 5: When

and , then under update (5)

(23)
where .

Proof: It is sufficient to show that

where is the value of for station (in the equation, we
have dropped the arguments from all quantities to streamline
notation). Since when , this
simplifies to . Substituting from (1), we
obtain

(24)

By Lemma 4, and a sufficient condition
for (24) is . Since , this holds
when .
Lemma 6: Under the conditions of Lemma 5,

, with equality only when .
Proof: It is sufficient to show that

(25)

with equality only when . When
, equality holds. Assume now that for some .

Since , the above condition is satisfied when

(26)

If , then since and , (26) is
satisfied. Suppose therefore and define function

. The partial derivative of with

respect to is given by . It can
be verified that (since ). Also

since and is monotonically increasing in
. Hence, , which implies that takes a max-
imum for the largest possible value of , for all . Since

, this means that is maximized when for
all . In this case, (26) becomes , where

. Since is the maximum throughput
when all stations use the same transmission attempt probability,

only if . However, by assump-
tion , and so we must have .

Proof of Theorem 2: To establish global asymptotically sta-
bility, we show that unless

. By definition,
, where and are the maximum and

minimum values of the elements of vector , respectively. We
proceed in a case-by-case fashion.
Case 1: . For

, we require
(27)

Substituting from (5) and (7), (27) is satisfied provided

(28)

(29)

where the dependency on has been omitted to simplify
notation.
Case 1a ( : ).

Using Lemma 3 plus Theorem 1 with , (28) is
satisfied provided

(30)

By Lemma 4, . Also, by assumption,
, and so . It follows that (30) [and so (28)] is

satisfied provided

(31)

Given that ,
the above is satisfied provided

(32)

Since , (29) is satisfied provided

(33)

By assumption, , and so
. Also, by assumption, , and so

. If , then , and (33) holds
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provided (the RHS equals 0, while the LHS is lower-
bounded by ). Otherwise, we have

. By Lemma 3, (33) is satisfied provided

By Lemma 4, . .
Hence, (33) is satisfied provided

(34)

Case 1b ( : ).
From , it holds that

. If , then either: 1)
for all , in which case and ;

or 2) for some , in which case and
(as mentioned above) . In both cases, (28) is satisfied.
Otherwise, we have . Since , (28) is satisfied
provided . By Lemma 3, this holds
provided

(35)

By assumption, and so . Also,
. Hence, (35) holds when satisfies (34).

Using Lemma 3 plus Theorem 1 with , (29)
is satisfied provided

(36)

By assumption, , and so by Lemma 4,
. Also, by assumption, , and

so . It then follows that (36) [and
so (29)] is satisfied when satisfies (31).
Case 1c ( ): By Lemmas 5

and 6, , and so (28) is satisfied
(observe that the LHS of (28) is ). Since ,
(29) is satisfied provided .
By Lemma 3, this holds provided

By assumption, , and by Lemma 4,
. Hence, the above holds [and so (29)

is satisfied] when satisfies (34).
Case 2: or .

In this case, it necessarily holds that and
. For

, we require

(37)

(38)

Case 2a ( ):
By Lemma 3 and Theorem 1 with , condition
(37) is satisfied provided

(39)

Since then . By Lemma 4,
. When ,

then , and so , i.e.,
. Hence, . When

, then
, where the last inequality follows from

the fact that . It follows that (39) holds when
satisfies (31).
If , then (38) is satisfied since and

(unless ). Otherwise, if , then since
, (38) is satisfied provided .

By Lemmas 3 and 4, this holds when satisfies (34).
Case 2b ( ):

Note that . Hence, to be in Case 2, we must have
, and so , i.e.,

. If , then (37) is satisfied since the LHS
nonnegative while the RHS is positive. Otherwise, if ,
then since , (37) is satisfied provided

. By Lemma 3, this holds when

(40)

As already noted, and .
Hence, . It follows that
(40) is satisfied when satisfies (34).
Using Lemma 3 and Theorem 1 with , condi-

tion (38) is satisfied provided

Since . Also, .
It follows that the above holds when satisfies (31).
Case 2c : Observe

that the LHS of (37) is . By Lemmas 5 and 6,
. By assumption,

. Therefore, (37) is satisfied.
If , then (38) is satisfied. Otherwise, if , then

since , condition (38) is satisfied provided
. By Lemma 3, this holds provided

. By Lemma 4, this holds when
satisfies (34).
Finally, we take for the smallest of the bounds given by

(32) and (34).

C. Sketch of the Proof of Theorem 3

We proceed on a case-by-base basis. For each case, we show
that either the case is not possible, or there is an upper bound on
that belongs to . Thus, by taking equal to the minimum

of all upper bounds, the theorem is proved. This holds for
, and thus .
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Let be such that . Let
, and denote , and , respectively.

Case 1 ( or
): It can be seen that if

, then . Similarly, if
, then . Thus, this case is not possible.
Case 2 ( or

): From the proof of Theorem 2, it can be seen that

.
From the above two cases, in the following we only need to

look at or , and show that is an
increasing function of .
Case 3 :
Case 3a

: In this case, is proportional to
. Following

a similar reasoning to the proof of Lemma 6, it can be seen that
is minimized for , where .

From this, . Note
that this is an increasing function of given that

.
Case 3b

: In this case,

.
Case 3c

: In this case,

.
Case 3d

: It can be seen that an upper bound for in this case
is obtained by setting and . Thus,
we have

.
Case 4 :
Case 4a

: From the proof of Lemma 6, we have that
.

Case 4b
: Following a similar reasoning to Lemma 6, it can

be seen that if we set such that , we have
a lower bound on . Thus,

.
Case 4c

: In this case,
.

Case 4d
: Following a similar reasoning to Case 3d, we have

.

D. Proof of Theorem 4
The PAS algorithm computes at a given stage according

to the following expression:

(41)

If exceeds 1 at any stage, then it decreases in the next stages
until it goes below 1. Indeed, for , we have , which
leads to for and , and thus from the
above expression, decreases. This implies that can never
exceed , where is the maximum distance that
can cover in one stage (which is bounded). Taking this into

account, (41) yields

(42)

where .
When there is a misbehaving station that changes its config-

uration over time and receives a throughput while the rest
of the stations are well behaved, using the same configuration
and obtaining the same throughput , the above can be ex-
pressed as

(43)

If we now consider the throughput of the misbehaving station
over an interval , the average throughput over this interval can
be computed as , where is
the duration of a beacon interval. Thus

(44)

Since we consider a very large interval , the term
tends to 0, which yields

(45)

Let us consider now a given stage . From (10), we have
, which yields

(46)
Since the above equation is satisfied for all

(47)

Furthermore, from (45)

(48)

Adding the above two equations yields
, from which

(49)
which proves the theorem. Since the right-hand side of the above
equation is precisely the throughput that the misbehaving sta-
tion would get if it always ran PAS, this shows that the mis-
behaving station cannot benefit from using a different strategy
no matter how it changes its configuration over time. As the
proof does not make any assumption on the configuration of the
misbehaving station, this holds for any configuration of all the
802.11e parameters.
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