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Abstract— Power-line communications (PLC) are becoming a
key component in home networking, because they provide easy
and high-throughput connectivity. The dominant MAC protocol
for high data-rate PLC, the IEEE 1901, employs a CSMA/CA
mechanism similar to the backoff process of 802.11. Existing
performance evaluation studies of this protocol assume that
the backoff processes of the stations are independent (the
so-called decoupling assumption). However, in contrast to 802.11,
1901 stations can change their state after sensing the medium
busy, which is regulated by the so-called deferral counter. This
mechanism introduces strong coupling between the stations and,
as a result, makes existing analyses inaccurate. In this paper,
we propose a performance model for 1901, which does not rely
on the decoupling assumption. We prove that our model admits
a unique solution for a wide range of configurations and confirm
the accuracy of the model using simulations. Our results show
that we outperform current models based on the decoupling
assumption. In addition to evaluating the performance in steady
state, we further study the transient dynamics of 1901, which is
also affected by the deferral counter.

Index Terms— HomePlug, power-line communications (PLC),
deferral counter, CSMA/CA, decoupling assumption.

I. INTRODUCTION

POWER-LINE communications (PLC) are increasingly
important in home networking. HomePlug, the most pop-

ular specification for PLC, is employed by over 180 million
devices worldwide [2], and offers data rates up to 1.5 Gbps.
Moreover, PLC plays an important role in hybrid networks
comprising wireless, Ethernet, and other technologies [3], as it
contributes to increasing the bandwidth of such networks with
an independent, widely accessible medium. Yet, despite the
wide adoption of HomePlug specifications in home networks,
little attention has been paid to providing an accurate analysis
and an evaluation of the HomePlug MAC layer.
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The vast majority of HomePlug devices employ a
multiple-access protocol based on CSMA/CA that is
specified by the IEEE 1901 standard [4]. This CSMA/CA
mechanism resembles the CSMA/CA mechanism employed
by IEEE 802.11, but with important differences in terms of
complexity, performance and fairness. The main difference
stems from the introduction of a so-called deferral counter
that triggers a redraw of the backoff counter when a station
senses the medium busy. This additional counter significantly
increases the state-space required to describe the backoff
procedure. Moreover, as we explain in more details later, the
use of the deferral counter introduces some level of coupling
between the stations, which penalizes the accuracy of models
based on the decoupling assumption. This assumption was
originally proposed in the 802.11 analysis of [5] and has been
used in all works that have analyzed the 1901 CSMA/CA
procedure so far (i.e., [6]–[8]). In this paper, we show that
this decoupling assumption leads to inaccurate results, and
the modeling accuracy can be substantially improved by
avoiding it.

The decoupling assumption relies on the approximation that
the backoff processes of the stations are independent and that,
as a consequence, stations experience the same time-invariant
collision probability, independently of their own state and of
the state of the other stations [5]. In addition, to analyze 1901,
it has been assumed that a station senses the medium busy
with the same time-invariant probability (equal to the collision
probability) at any time slot [6], [7]. In this paper, we show
that the deferral counter introduces some coupling among
the stations: After a station gains access to the medium,
it can retain it for many consecutive transmissions before any
other station can transmit. As a result, the collision and busy
probabilities are not time-invariant for 1901 networks, which
makes the decoupling assumption questionable.

Figure 1 provides some evidence of the coupling phenom-
enon described above, for a HomePlug AV testbed with two
stations. While Station A transmits during several consecutive
slots, Station B is likely to remain in a state where it has a
higher probability of colliding or sensing the medium busy.
B is then even less likely to attempt a transmission while
in this state, and it might have to wait several tens of
milliseconds before the situation reverts. Thus, the collision
probabilities observed by the stations are clearly time-varying,
which invalidates the decoupling assumption.

In this paper, we propose a theoretical framework to model
the CSMA/CA process of 1901 without relying on the decou-
pling assumption. We first introduce a model that consid-
ers the coupling between stations and accurately captures
1901 performance. This model is relatively compact: com-
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Fig. 1. Testbed trace of 50 successful transmissions by two saturated stations
with 1901 and 802.11a. 1901 exhibits short-term unfairness: a station holding
the channel is likely to keep holding it for many consecutive transmissions,
which causes high dependence between the stations. 802.11 is fairer, which
makes the decoupling assumption viable in this case.

puting the throughput of the network only requires to solve a
system of m non-linear equations, where m is the number of
backoff stages (the default value for 1901 is m = 4). We then
prove that this system of equations admits a unique solution.
We confirm the accuracy of the model by using both simula-
tions and a testbed of 7 HomePlug AV stations. In addition,
we investigate the accuracy of our model and that of previous
works relying on the decoupling assumption, showing that ours
is the first model for 1901 reaching this level of accuracy.

The remainder of the paper is organized as follows.
We present the 1901 backoff process in Section II. We then
review the related work on MAC layer in Section III.
We present our model for 1901 and discuss the system
dynamics in Section IV. We evaluate the performance of our
model and discuss the decoupling assumption in Section V.
Finally, we give concluding remarks in Section VI.

II. THE CSMA/CA PROTOCOL OF IEEE 1901
We describe the main features of the CSMA/CA protocol

used in 1901 [4]. We highlight in particular the mechanism
that causes the strong coupling between stations and that is
the main difference between 1901 and 802.11.

The 1901 CSMA/CA procedure includes two counters: the
backoff counter (BC) and the deferral counter (DC). Upon the
arrival of a new packet, a transmitting station enters backoff
stage 0. It then draws the backoff counter BC uniformly at
random in {0, . . . , CW0 − 1}, where CW0 denotes the con-
tention window used at backoff stage 0. Similarly to 802.11,
BC is decreased by 1 at each time slot if the station senses the
medium to be idle (i.e., below the carrier-sensing threshold),
and it is frozen when the medium is sensed busy. In the
case the medium is sensed busy, BC is also decreased by 1
once the medium is sensed idle again. When BC reaches 0,
the station attempts to transmit the packet. Also similarly to
802.11, the station jumps to the next backoff stage if the
transmission fails. In this case, the station enters the next
backoff stage. The station then draws BC uniformly at random
in {0, . . . , CWi − 1}, where CWi is the contention window
used for backoff stage i, and repeats the process. For 802.11,
the contention window is doubled between the successive
backoff stages, i.e., CWi = 2iCW0. For 1901, CWi depends
on the value of the backoff stage i and the priority of the

TABLE I

IEEE 1901 VALUES FOR THE CONTENTION WINDOWS CWi AND THE
INITIAL VALUES di OF DEFERRAL COUNTER DC , FOR EACH BACKOFF

STAGE i AND EACH PRIORITY CLASS. CA0/CA1 PRIORITIES

ARE USED FOR BEST-EFFORT TRAFFIC AND CA2/CA3
FOR DELAY-SENSITIVE TRAFFIC

packet: There are four backoff stages, as given in Table I.
Also, there are two groups of priority classes (CA0/CA1 and
CA2/CA3) that correspond to different values for the CWi’s.

The main difference between 1901 and 802.11 is that a
1901 station might enter the next backoff stage even if it did
not attempt a transmission. This is regulated by the deferral
counter DC, which works as follows. When the station enters
backoff stage i, DC is set at an initial DC value di, where
di is given in Table I for each backoff stage i. After having
sensed the medium busy, a station decreases DC by 1 (in
addition to BC). If the medium is sensed busy and DC = 0,
then the station jumps to the next backoff stage (or re-enters
the last backoff stage, if it is already at this stage) and
re-draws BC without attempting a transmission.

The deferral counter was introduced in 1901, so that 1901
can employ small contention window values – which provide
good performance for a small number of stations – while
avoiding collisions, thus maintaining good performance for
a large number of stations. In particular, to reduce collisions,
1901 stations redraw their backoff counter when they sense
a number of transmissions before their backoff counter
expires; in this way, they react to a high load in the network
without the need of a collision, in contrast to 802.11 that
only reacts to collisions.

Although the above mechanism achieves its goal, i.e.,
providing good performance in terms of throughput, it might
lead to short-term unfairness: When a station gets hold
of the channel and uses a small contention window, it is
likely to transmit several frames and thus trigger the defer-
ral counter mechanism of the other stations, which further
increase their contention windows and hence reduce even more
their probability of accessing the channel. Such a coupling
effect penalizes the accuracy of existing models that assume
that the backoff processes of different stations are independent.

III. RELATED WORK

The backoff process of 802.11 can be considered as a
version of 1901 where the deferral counter DC never reaches 0
(i.e., di = ∞, for all i). Hence, we first review relevant studies
on 802.11 and then we present the existing work on 1901.

A. Analyses of IEEE 802.11
Most work modeling 802.11 performance relies on the

decoupling assumption, initially proposed by Bianchi in [5].
Bianchi proposes a model for single contention domains, using
a discrete-time Markov chain. Under the decoupling assump-
tion, the collision probability experienced by all stations is
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time-invariant and can be found via a fixed-point equation that
depends on the parameters of the protocol. Kumar et al. [9]
examine the backoff process of 802.11 using the same assump-
tions and renewal theory. The authors also extract a fixed-point
equation for the collision probability. The decoupling assump-
tion has later been examined in [10] and [11] (analytically and
experimentally) and found to be valid for 802.11.

Sharma et al. [12] study 802.11 without the decoupling
assumption. They analyze an m-dimensional chain (m being
the number of backoff stages) that describes the number of
stations at each backoff stage. Drift equations capture the
expected change of the number of stations at each backoff
stage between two consecutive time slots, and their equi-
librium point yields the average number of stations at each
backoff stage in steady state. Similarly to [12], we also use
drift equations to obtain an accurate model for 1901.

B. Analyses of IEEE 1901 Under the Decoupling Assumption
There are a few works analyzing the backoff mecha-

nism of 1901 that rely on the decoupling assumption. First,
Chung et al. [6] introduce a model using a discrete-time
Markov chain similar to Bianchi’s model for 802.11 [5]. The
additional state required to capture the effect of the deferral
counter DC significantly increases the complexity of the
Markov chain.

Our works of [7] and [13] propose a simplification to
the model of [6], reducing the Markov chain to a single
fixed-point equation; by applying a similar theoretical
technique to [9], these papers also prove that this fixed-point
equation admits a unique solution. Being less accurate but
simpler than the model introduced here, the model of [13]
enables us to optimize the performance of the protocol
towards high throughput.

Cano and Malone [8] provide a simplification of the analysis
of [6] for computing the delay under unsaturated traffic sce-
narios. They also evaluate the implications of the assumption
made in [6] that the buffer occupancy probability is indepen-
dent of the backoff stage at which the transmission takes place.

IV. ANALYSIS

In this section, we introduce our model for the 1901
CSMA/CA protocol. Our analysis relies on the following
network assumptions (all of them widely used [5]–[13]):

• There is a single contention domain with N stations.
• All stations are saturated (always have a packet to send).
• There is no packet loss or errors due to the physical layer,

and transmission failures are only due to collisions.
• The stations have an infinite retry limit; that is, they never

discard a packet until it is successfully transmitted.1

The 1901 standard introduces four different priority classes
(see Section II) and specifies that only the stations belonging to
the highest contending priority class run the backoff process.2

In our analysis, we follow this, and we consider a scenario

1Contrary to 802.11, 1901 does not specify a retry limit. However, there is
a timeout on the frame transmission that is vendor specific. For instance, for
the HomePlug AV devices tested in Section V, the timeout for CA1 priority
frames is 2.5 s, which is very large compared to the maximum frame duration
(2.5 ms [4]). Therefore, the infinite retry limit assumption is reasonable.

2In practice, the contending priority class is decided during a so-called
priority resolution phase, using a simple system of busy tones.

in which all the contending stations use the same set of
parameters (corresponding to the highest priority class).
A. Baseline Model

We model the PLC network as a dynamical system that is
described by the expected change in the number of stations
at each backoff stage between any two consecutive time
slots. In the stationary regime, the expected number of
stations at each backoff stage is constant hence, we can
compute performance metrics by finding the equilibrium of
the dynamical system.

Let us now introduce the variables of our model. Let m be
the number of backoff stages and let ni, 0 ≤ i ≤ m − 1
denote the number of stations at backoff stage i. Note that∑m−1

i=0 ni = N and ni ∈ N. Let us further denote with τi the
transmission probability at stage i, i.e., τi is the probability
that a station at backoff stage i transmits at any given time
slot. In addition, for a given station at backoff stage i, we
denote with pi the probability that at least one other station
transmits. We also denote with pe the probability that no
station transmits (or equivalently, that the medium is idle).
Under the assumption of independence of the transmission
attempts, we have pe =

∏m−1
k=0 (1 − τk)nk , therefore

pi = 1 − pe

1 − τi
= 1 − 1

1 − τi

m−1∏

k=0

(1 − τk)nk . (1)

Model of a Station: We now model the behavior of a given
station at backoff stage i. We assume that the event that
some other station transmits in a slot occurs with a constant
probability pi, independent of the station’s backoff and deferral
counters values.3 Hence, this corresponds to the probability
that a transmission of the given station collides, as well as to
the probability that the station senses a slot busy when it does
not transmit. The rest of the backoff process of the station is
modeled accurately as a function of pi, drawing the station’s
backoff counter from a uniform distribution. With this model,
we derive the probability that a station transmits and that it
moves to the stage i + 1 due to the deferral counter. These
two probabilities are used in our network model presented in
the next section.

In 1901, a station with DC originally equal to di can change
its backoff stage either (i) after attempting a transmission or
(ii) due to sensing the medium busy di +1 times.4 To compute
the probabilities of events (i) and (ii), we introduce xi

k as the
probability that a station at backoff stage i jumps to backoff
stage i+1 in k or fewer time slots due to (ii). Note that we can
compute xi

k directly from pi. Let T be the random variable
describing the number of slots among k slots during which the
medium is sensed busy. Because a station at backoff stage i
senses the medium busy with probability pi at each time slot,
T follows the binomial distribution Bin(k, pi). This yields

xi
k = P(T > di) =

k∑

j=di+1

(
k

j

)

pj
i (1 − pi)k−j . (2)

3With this assumption, we are neglecting the coupling between the deferral
counter decrements of different stations. Note, however, that this does not
couple the actual transmissions, as these follow a separate random process;
as a result, the coupling due to the deferral counter is somehow diluted.

4A major difference between 1901 and 802.11 is that, contrary to 1901,
a station using 802.11 can only adapt its backoff because of (i), not of (ii).
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Let us denote by bci the expected number of time slots spent
by a station at backoff stage i. Now, recall that when entering
stage i, the stations draw a backoff counter BC uniformly at
random in {0, . . . , CWi − 1}. Let k denote the value of BC.
Depending on k, one of the following happens:

• If k > di, then event (i) occurs with probability (1−xi
k),

in which case the station spends (k + 1) slots in stage
i (the (k + 1)th slot being used for transmission). Now,
(ii) occurs with probability xi

k. More precisely, (ii) occurs
at slot j, for di+1 ≤ j ≤ k, with probability (xi

j−xi
j−1),

5

in which case the station spends j slots in stage i.
• If k ≤ di, then (ii) cannot happen. Event (i) takes place

with probability 1, which yields that the backoff counter
expires and that the station spends (k+1) slots in stage i.

By grouping all the possible cases described above, we have

bci =
1

CWi

CWi−1∑

k=di+1

⎡

⎣(k + 1)(1 − xi
k) +

k∑

j=di+1

j(xi
j − xi

j−1)

⎤

⎦

+
(di + 1)(di + 2)

2CWi
. (3)

Now, the transmission probability τi can be expressed as
a function of xi

k and bci, using the renewal-reward theorem,
with the number of backoff slots spent in stage i being the
renewal sequence and the number of transmission attempts
(i.e., 0 or 1) being the reward. The expected number of
transmission attempts at stage i can be computed similarly to
bci. By dividing the expected number of transmission attempts
at stage i with the expected time slots spent at stage i, τi is
given by

τi =

∑CWi−1
k=di+1

1
CWi

(1 − xi
k) + di+1

CWi

bci
. (4)

Similarly, we define βi as the probability that, at any given
slot, a station at stage i moves to the next backoff stage
because it has sensed the medium busy di+1 times (event (ii)).
βi is given by

βi =

∑CWi−1
k=di+1

1
CWi

∑k
j=di+1 (xi

j − xi
j−1)

bci
. (5)

It will be very important in the following to remember
that τi and βi are functions of pi (through xi

k and bci).
To simplify the exposition and the analysis of τi with respect
to pi, we finally introduce the variable Bi; it is defined as
Bi

.= 1/τi − 1. After some computations in (4), we have

Bi =
CWi(CWi−1)

2 −
∑CWi−1

k=di+1 (CWi − 1 − k)xi
k

CWi −
∑CWi−1

k=di+1 xi
k

. (6)

Our notation is summarized in Table II. We next study the
evolution of the expected change in the number of stations at
each backoff stage i.

5Observe that (xi
j − xi

j−1) is the difference of two complementary CDFs
and denotes the probability that (ii) happens exactly at slot j.

TABLE II

NOTATION LIST RELEVANT TO A STATION AT BACKOFF STAGE i

B. Transient Analysis of the System
Building on the analysis above, we now introduce our

model. A key feature is that we do not assume that the
stations are decoupled, as the collision probability is allowed
to depend on the station’s state. To study the system, we use
a vector that includes the number of stations at each backoff
stage. In particular, let X(t) = (X0(t), X1(t), . . . , Xm−1(t))
represent the number of stations at each backoff stage
(0, 1, . . . , m − 1) at time slot t. We use the notation
n(t) = (n0(t), n1(t), . . . , nm−1(t)) to denote a realization
of X(t) at some time slot t.

Network Model (NM): To model the network, we rely on
the simplifying assumption that a station transmits, or moves
to the next backoff stage upon expiring the deferral counter,
with a constant probability (independently of previous time
slots). This is necessary as otherwise, we would need to keep
track of the backoff and deferral counter values of each station
and the model would become intractable. In particular, our
assumptions are as follows: (i) a station at backoff stage i
attempts a transmission in each time slot with a constant
probability τi(pi); and (ii) a station at backoff stage i moves
to backoff stage i + 1 due to the deferral counter expiration
with a constant probability βi(pi) in each time slot where it
does not transmit. Both τi and βi depend on the probability pi

that the station senses a slot busy, which is computed from the
transmission probabilities of the other stations following (1).

With the above assumptions, X(t) is a Markov chain.
The transition probabilities τi and βi depend on the state
vector n(t) and they can be computed from (1), (4) and (5);
hereafter, to simplify notation, we drop the input variable t
from pi(t), τi(t), βi(t), and n(t) as the equations are
expressed for any slot t.

Let now F(n) = E[X(t + 1) − X(t)|X(t) = n] be the
expected change in X(t) over one time slot, given that the
system is at state n. Function F(·) is called the drift of
the system, and is given by

Fi(n)

=

⎧
⎪⎪⎨

⎪⎪⎩

∑m−1
k=1 nkτk(1 − pk) − n0τ0p0 − n0β0, i = 0

ni−1 (τi−1pi−1 + βi−1) − ni(τi + βi), 0 < i < m − 1
nm−2 (τm−2pm−2 + βm−2) − nm−1τm−1(1 − pm−1),

i = m − 1.
(DRIFT)

(DRIFT) is obtained by balancing, for every backoff stage, the
average number of stations that enter and leave this backoff
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stage. In particular, n0 increases by 1 only when some station
transmits successfully. Since such a station could be in any of
the other backoff stages and there are nk stations in stage k,
this occurs with probability

∑m−1
k=1 nkτk(1 − pk). Similarly,

n0 decreases when some stations at stage 0 are either involved
in a collision (which occurs with probability n0τ0p0), or do not
transmit and sense the medium busy d0+1 times (which occurs
with probability n0β0). The decrease of n0 in both cases is 1,
thus the expected decrease is equal to the sum of the two
probabilities. The resulting drift F0 is computed by adding all
these (positive and negative) expected changes in n0.

Similarly, Fi, 0 < i < m − 1 is computed by observing
that in these backoff stages, ni decreases if and only if
some stations at stage i sense the medium busy or transmit.
ni increases if and only if some stations at stage i−1 sense the
medium busy or transmit and collide. Finally, nm−1 increases
after some stations at stage m − 2 experience a collision or
sense the medium busy dm−2+1 times. It decreases only after
a successful transmission at stage m − 1.

The evolution of the expected number of stations n̄(t) .=
E[X(t)] is described by the m-dimensional dynamical system

n̄(t + 1) = n̄(t) + F(n̄(t)), (7)

where F(n̄(t)) is given by (DRIFT).
Our model relies on the key insight that the stochastic sys-

tem X(t) stays close to the typical state given by the equilib-
rium of (7), and accurate estimates of various metrics such as
throughput can be obtained by assuming that the system is in
this typical state at all times. However, in reality the stochastic
system might stay in other states with a certain probability. In
the following, we evaluate the accuracy of approximating our
random system by a deterministic model given by (7).

C. Accuracy of the Deterministic Model Approximation

It is intuitive that the approximation becomes more accurate
as the number of stations in the system grows: If the number of
stations at each backoff stage is very large, the behavior of the
stochastic system is expected to be close to the deterministic
one given by (7) due to the law of large numbers. This has
been proven for 802.11 in [10], [12], and [14]: By analyzing
a properly scaled version of the stochastic system, these
papers show that the 802.11 stochastic system converges to
the deterministic model as the number of stations grows to ∞.
In the following, we show the same result for 1901.

As in all the previous analyses of 802.11 [10], [12], [14], we
consider a scaled version of our system, YN(T ), where time is
accelerated by a factor of N while the transition probabilities
are scaled down by the same factor, i.e., YN(t/N) = X(t)/N
(this factor N being equal to the number of stations):

• By scaling time, the evolution of time slots is accelerated
by N , such that a variable at time t before this operation
is translated into the scaled one at time T = t/N .

• By scaling the transition probabilities, the evolution of
each node is slowed down by a N .

With this scaling, the expected change of the state of the
system between two consecutive time-slots is order of 1/N ,
which tends to zero as N → ∞. By accelerating the evolution

of time-slots by N , the change of the system over time remains
in the same order of magnitude as the original system.

Following this reasoning, to scale down the transition prob-
abilities we let the probability that a station attempts a trans-
mission at backoff stage i be τi(pi)/N , and the probability that
it jumps to the next backoff stage due to the expiration of the
deferral counter be βi(pi)/N . We further set yi(T ) equal to the
fraction of stations at backoff stage i, i.e., yi(T ) = ni(T )/N .
By substituting in (DRIFT) the transition probabilities by the
scaled ones, t by NT and ni(T ) by Nyi(T ), we obtain the
following deterministic (asymptotic) system as N → ∞:

dyi

dT

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑m−1
k=1 ykτk(ρ)(1 − ρ)

− y0(τ0(ρ)ρ + β0(ρ)), i = 0
yi−1(τi−1(ρ)ρ + βi−1(ρ)) − yi(τi(ρ) + βi(ρ)),

0 < i < m − 1
ym−2(τm−2(ρ)ρ + βi−1(ρ)) − ym−1τm−1(ρ)(1 − ρ),

i = m − 1,

(ODE)

where the collision probability of a station at stage i is given by

ρ = limN→∞ 1 −
�m−1

k=0 (1−τk(ρ)/N)nk

1−τi(ρ)/N = 1−e−
�m−1

k=0 ykτk(ρ).
The following theorem shows that the stochastic system

under study converges to the deterministic model given above
as N → ∞, which confirms that the proposed analysis
becomes very accurate as the number of stations grows large.

Theorem 1: As N → ∞, the scaled random system YN(T )
converges to the deterministic process y(T ) given by (ODE).

Proof: The proof follows from [15], which establishes
the convergence of YN(T ) to y(T ) when the following
conditions are satisfied6: (i) there exists a ‘vanishing intensity’
ε(N) such that limN→∞ F(n, N)/ε(N) exists, F(n, N) being
the drift function F(n) of the scaled system for a given N ;
(ii) E[W 2

N ] < c1N
2ε(N)2, where WN is an upper bound on

the number of stations that do a transition in a time-slot in the
scaled system and c1 is a positive constant; and (iii) F(n, N)
is a smooth function of n and N (i.e., it has continuous
derivatives everywhere including at the boundary).

By taking the ‘vanishing intensity’ ε(N) = 1/N , it follows
that limN→∞ F(n, N)/ε(N) can be expressed as a function
of τi(ρ) and βi(ρ), and hence condition (i) is satisfied.

To verify condition (ii), we let α = maxi,pi(τi(1 −
pi), τipi + βi). Note that α < 1.7 Then, the probability that
a station changes its state is upper bounded by α/N , and
the number of stations that change their state is stochastically
upper bounded by a random variable WN that follows the
binomial distribution Bin(N, α/N).8 Thus, we have E[W 2

N ] =
E[WN ]2 + Var[WN ] < α2 + α, and condition (ii) is satisfied.

Finally, both τi and βi are smooth functions of pi which in
turn is a smooth function of the ni’s, and hence, the transition

6Note that assumptions H1 and H4 of [15] do not apply to our system, since
the system does not have the so-called ‘common resource’.

7We have α < 1, given that τi(1 − pi) < 1 and τipi + βi < 1 (the latter
follows from τi + βi = 1/bci < 1).

8Note that, under our network model, a station changes its state indepen-
dently of the transitions of the other stations.
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probabilities are smooth functions of n. Additionally, the
transition probabilities are also smooth functions of N . This
also holds for the boundaries of the transition probabilities,
including N → ∞. Therefore, condition (iii) is satisfied.

D. Steady-State Analysis of the System
We next study the the system under steady state. To obtain

the average number of stations at each backoff stage in steady
state, we compute the equilibrium point(s) of system (7) corre-
sponding to the stationary regime. To compute the equilibrium
point(s) of (7), we impose F(n̄) = 0, which yields

n̄i =
(

τi−1pi−1 + βi−1

τi + βi

)

n̄i−1, 1 ≤ i ≤ m − 2,

n̄m−1 =
(

τm−2pm−2 + βm−2

τm−1(1 − pm−1)

)

n̄m−2.

Let us define

K0
.= 1, Ki

.=
τi−1pi−1 + βi−1

τi + βi
, 1 ≤ i ≤ m − 2,

Km−1
.=

τm−2pm−2 + βm−2

τm−1(1 − pm−1)
. (8)

Since
∑m−1

i=0 n̄i = N , the equilibrium n̂ of (7) is given by

n̂i =
N

∏i
j=0 Kj

∑m−1
k=0

∏k
j=0 Kj

, 0 ≤ i ≤ m − 1. (EQ)

Recall that τi and βi are functions of pi, given by
(4) and (5). Thus, the n̂i’s in (EQ) are also functions of pi,
0 ≤ i ≤ m − 1. From the above, substituting (EQ) in (1)
yields a system of m equations with m unknowns pi for
0 ≤ i ≤ m − 1.

After solving the equations for finding the steady-state
number of nodes n̂0, . . . , n̂m−1 at each backoff stage, we
can compute the throughput of the network as follows. The
probability that a slot is idle is pe. The probability of a
successful transmission of a station at stage i is τi(1 − pi).
Therefore, the probability ps that a slot contains a successful
transmission is given by ps =

∑m−1
i=0 n̂iτi(1 − pi), assuming

that n remains in a neighborhood of the equilibrium point n̂.
Let pc denote the probability that a slot contains a collision.
We have pc = 1− pe − ps. We now have enough information
to compute the normalized throughput S of the network as

S =
psD

psTs + pcTc + peσ
, (9)

where D is the frame duration, Ts is the duration of a
successful transmission, Tc is the duration of a collision, and
σ is the time slot duration. In Section V, we evaluate the
stationary regime of the system, and show that our model is
very accurate for a wide range of configurations.

E. Uniqueness of the Equilibrium Point
In this subsection we prove that, as long as the configuration

of CWi’s and di’s is chosen such that the sequence τi is
decreasing with i for any ni distribution, then the equilibrium
point given by (EQ) is unique. We argue that such a condition
should be met by any sensible configuration of CWi’s and di’s.
The argument is as follows. Jumping to the next backoff stage

is an indication of high contention, either because of a collision
or a sequence of busy slots. Therefore, in this case τi should
decrease with i, and the high contention should be dissolved by
reducing the aggressiveness of the sources. Note that similar
studies for the 802.11 MAC protocol [9], [10] require the same
sufficient condition (i.e., τi decreasing with i) for the model to
admit a unique solution. To simplify the exposition, we define
this condition as follows.

τi > τi+1, 0 ≤ i ≤ m − 2. (COND)

We now prove, in Theorem 2, that if (COND) is satisfied, the
equilibrium point given by (EQ) is unique.

Theorem 2: The system of equations formed by
(EQ) and (1) for 0 ≤ i ≤ m − 1 has a unique solution if
(COND) is satisfied.

Proof: Recall that pe =
∏m−1

k=0 (1 − τk)n̂k . For any value
of pe, τi can be computed from the fixed-point equation that
results from combining (1) (i.e., pi = 1−pe/(1−τi)) with (4),
where (4) is expressed as a function of pi through (2). Hence,
τi can be computed as a function of pe, and so can pi,
and βi. Now, n̂i can also be computed as a function of pe

using (EQ). Let Φ(pe)
.=

∏m−1
k=0 (1 − τk(pe))n̂k(pe). Then,

a solution of (EQ) has to satisfy the following equation:

pe = Φ(pe). (10)

It can be seen that (10) has at least one fixed-point. Φ(pe)
is defined in [0, 1 − τmax], where τmax := 2/(CW0 + 1)
is the maximum transmission probability at stage 0. Observe
that Φ(0) > 0 and Φ(1 − τmax) < 1 − τmax thus, by the
intermediate value theorem, Φ(pe) has at least one fixed-
point in [0, 1 − τmax]. We now show that (10) has only one
fixed-point. To this end, we show that Φ(pe) is monotonically
decreasing with pe. The derivative of Φ(pe) can be written as

dΦ(pe)
dpe

=
m−1∑

j=0

(
∂Φ
∂pj

dpj

dpe
+

∂Φ
∂βj

dβj

dpe
+

∂Φ
∂τj

dτj

dpe

)

. (11)

We now examine separately each of the partial derivative
products of (11) with respect to pj, βj and τj . To prove
the theorem, we rely on our analysis in the Appendix. First,
Lemmas 2 and 3 imply respectively that dpj/dτj < 0 and
dτj/dpe < 0. Because dpj/dpe = (dpj/dτj) · (dτj/dpe), we
have dpj/dpe < 0. Also, from Lemma 5, we have ∂Φ/∂pj >
0. Thus, the first product of partial derivatives in (11) is
negative for all j. Second, from Lemma 4, we have ∂Φ/∂βj ≥
0. Now, Corollary 1 states that dβj/dpj > 0 and we have
shown above that dpj/dpe < 0. Hence, we have dβj/dpe < 0
thus, the second product of partial derivatives in (11) is also
negative. Third, from Lemma 6 we have ∂Φ/∂τj < 0, and
from Lemma 3 we have dτj/dpe > 0. We have shown that all
the partial derivative products of (11) are negative, so Φ(pe)
is monotonically decreasing with pe.

Since (11) is strictly negative and (10) admits at least one
fixed-point, there exists a unique value for pe that solves (10).
Computing the corresponding value for pi by (1), we have a
solution to (EQ). The uniqueness of the solution then follows
from the fact that all relationships between τi, βi, pi and pe
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are bijective, and any solution must satisfy (10), which (as we
have shown) has only one solution.

We next provide some configuration guidelines for
(CWi, di) that ensure that (COND) is satisfied. In Section V,
we discuss a counterexample of a configuration that does not
satisfy (COND) and does not yield a unique solution to the
system of equations formed by (EQ) and (1).

F. Protocol Configurations Satisfying (COND)

Before showing in Theorem 3 that (COND) is satisfied for a
wide range of configurations, we prove a useful lemma. Note
that compared to 802.11, where τi is a function of only CWi,
the analysis here is substantially more challenging, because τi

is a function of CWi, di, and pi.
We have to investigate the relationship between τi and τi+1.

Recall that these two transmission probabilities are func-
tions of two different collision probabilities pi and pi+1,
respectively, which makes the analysis challenging. Assume
that the collision probability is the same for two succes-
sive backoff stages i and i + 1, and is equal to pi. Under
this hypothesis, in Lemma 1, we show that if τi(pi) >
τi+1(pi), ∀pi ∈ [0, 1], then τi(pi) > τi+1(pi+1), for
any pair pi, pi+1 that satisfies (1). In Theorem 3, we pro-
vide some sufficient conditions to guarantee that τi(pi) >
τi+1(pi) is satisfied for all pi ∈ [0, 1] and 0 ≤ i <
m − 1; from Lemma 1, this implies that (COND) is
satisfied.

Lemma 1: Let ps
i be a value of the collision probability at

stage i. Then, if τi(ps
i ) > τi+1(ps

i ) for all ps
i ∈ [0, 1], we have

τi(pi) > τi+1(pi+1) for any ni distribution.
Proof: The proof goes by contradiction. Let us assume that

there exists a solution ns, such that the corresponding values
of τs

i , ps
i , τs

i+1 and ps
i+1, p

s
e satisfy τs

i (ps
i ) < τs

i+1(p
s
i+1) and

(consequently) ps
i > ps

i+1. Note that, for any ni distribution,
pi and pi+1 satisfy (1). Due to (1), we have

1 − ps
i

1 − ps
i+1

=
1 − τs

i+1

1 − τs
i

. (12)

Let us fix τi and pi to the values given by the solution
described above, and vary pi+1 by choosing different values
of γ, defined as 1 − pi+1

.= γ(1 − ps
i ). For each γ, we

first compute τi+1 that corresponds to this pi+1, and then we
compute the expression (1− τs

i )/(1− τi+1) that results from
this τi+1 and the (fixed) τs

i value. Then, if such a solution s
exists, there must be some value of γ ≥ 1 for which

f(γ) .=
1 − τs

i

1 − τi+1(γ)
= γ,

because of (12) and the definition of γ. Next, we show
that such a γ does not exist, which contradicts our initial
assumption.

By hypothesis, for γ = 1 we have pi+1 = ps
i , so τi(ps

i ) >
τi+1(ps

i ), and f(1) < 1. A sufficient condition to ensure that
there exists no γ > 1 value for which f(γ) = γ is that the
derivative of f(γ), i.e. df(γ)/dγ, does not exceed 1 in the

region γ ≥ 1. To prove this, we proceed as follows.

df(γ)
dγ

=
1 − τs

i

(1 − τi+1)2
dτi+1

dγ
=

1 − τs
i

(1 − τi+1)2
dτi+1

dpi+1

dpi+1

dγ

= − (1 − τs
i )(1 − ps

i )
(1 − τi+1)2

dτi+1

dBi+1

dBi+1

dpi+1

=
(1 − τs

i )(1 − ps
i )τ

2
i+1

(1 − τi+1)2
dBi+1

dpi+1

γ≥1

≤
(1 − pi+1)τ2

i+1

(1 − τi+1)2
dBi+1

dpi+1
=

(1 − pi+1)
B2

i+1

dBi+1

dpi+1
.

From the above, it is sufficient to prove dBi+1/dpi+1 ≤
B2

i+1/(1−pi+1). This is shown in Corollary 2 in the Appendix
for pi+1 ∈ [0, 1). For pi+1 = 1, we also have pi = 1 by (1).
Thus, a solution s cannot exist and τi(pi) > τi+1(pi+1).

The following theorem provides some sufficient conditions
on the (CWi, di) configurations that ensure that (COND)
holds. Notably, Lemma 1 can be employed to show
that (COND) holds for more configurations than the ones
covered by the theorem; indeed, it is sufficient to show that
the configuration satisfies the hypothesis of the Lemma 1 for
all 0 ≤ i ≤ m − 2.

Theorem 3: (COND) holds if the following condition is
satisfied for 0 ≤ i ≤ m − 2

CWi+1 >

{
CWi, if di+1 = di

2CWi − di − 1, otherwise.
(13)

Proof: We analyze two cases: 1) di+1 = di; 2) di+1 �= di.
1) We start for the case di+1 = di. By using Lemma 1, we

need only to prove that τi+1(pi) < τi(pi). If this is satisfied
for CWi+1 = CWi+1, by using induction it is easy to see that
it holds for any CWi+1 > CWi. Now, as τi = 1/(Bi+1), it is
sufficient to show that Bi+1 > Bi when CWi+1 = CWi + 1.

Due to space constraints, we only provide a sketch of the
proof. First, we compute the difference Bi+1−Bi by using (6).
Recall that xi

k = xi+1
k for all di + 1 ≤ k ≤ CWi − 1, so

we rearrange the terms that cancel out. Next, we rely on two
inequalities: First, we use xi

CWi
≥ xi

k, di +1 ≤ k ≤ CWi −1
(with equality at pi = 0, 1), so

∑CWi−1
j=di+1 xi

j ≤ (CWi −
di − 1)xi

CWi
≤ CWix

i
CWi

. Second, we use xi
j ≤ 1.

2) We now look at the case di+1 �= di. The result for this
case follows from Lemma 2 in the Appendix. Using this, the
minimum value of Bi is Bmin

i
.= (CWi −1)/2 at pi = 0, and

its maximum value is Bmax
i

.= CWi − di/2 − 1 at pi = 1.
Setting CWi+1 > 2CWi − di − 1 yields Bmin

i+1 > Bmax
i .

Hence, Bi+1 > Bi for all pi ∈ [0, 1], pi+1 ∈ [0, 1].
Observe that, from Table I, the above constraints on CWi

and di are compliant with the standard, except for the class
CA2/CA3 at backoff stage i = 1. The results obtained in this
paper suggest that it might be worth to revisit the configuration
of this priority class; indeed, for the proposed configuration
of CA2/CA3 we have τ2 > τ1 and (COND) does not hold.

We next discuss whether (COND) is sufficient for the global
asymptotic stability of (EQ).

G. Global Asymptotic Stability and Convergence

In addition to showing that our system has only one equi-
librium point, it is also interesting to show that it converges
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to this equilibrium point from all possible initial states. In the
following, we study the global stability of the system to assess
its convergence to the equilibrium. We first study analytically
the system (ODE) given in Section IV-C, and present two
theorems that guarantee that it is globally asymptotically stable
for m = 2 and m = 3, respectively. Then, we provide
additional numerical results that show that the system given
by (7) converges for a wide range of values of m as well as
of the other system parameters.

Theorem 4: If (COND) is satisfied, the system (ODE) is
globally asymptotically stable for m = 2.

Proof: Let us consider the Lyapunov function L(y) =
(y0(t)− ŷ0)2+(y1(t)− ŷ1)2, where {ŷ0, ŷ1} is the equilibrium
point of (ODE). Let γ(t) .= τ0y0(t) + τ1y1(t) (observe that
ρ = 1 − e−γ). We start by proving that, if at some time t
we have y0(t) > ŷ0, this implies γ(t) > γ̂. This can be seen
by contradiction. Let us assume γ(t) < γ̂. Given y0(t) > ŷ0,
it holds y1(t) < ŷ1 from y0(t) + y1(t) = 1. Then, from γ =
− ln(1−ρ) and Lemma 2 in the Appendix we have τ0 > τ̂0 and
τ1 > τ̂1. Thus, γ = τ0y0(t) + τ1y1(t) > τ̂0y0(t) + τ̂1y1(t) >
τ̂0ŷ0(t) + τ̂1ŷ1(t) = γ̂, since τ̂0 > τ̂1 holds from (COND).
This contradicts the initial assumption.

Given γ(t) > γ̂, we have τ0(1 − e−γ) + β0 > τ̂0(1 −
e−γ̂)+β̂0. This can be seen as follows. By employing a similar
reasoning to Corollary 1, we have ∂(τ0+β0)/∂γ > 0. We also
have −∂(τ0e

−γ)/∂γ > 0 from Lemma 2. Then, adding both
expressions we obtain ∂(τ0(1 − e−γ) + β0)/∂γ > 0. Given
γ(t) > γ̂, we also have τ1e

−γ < τ̂1e
−γ̂ . Thus,

dy0(t)
dt

= −y0(τ0(1 − e−γ) + β0) + y1τ1e
−γ

< −y0(τ̂0(1 − e−γ̂) + β̂0) + y1τ̂1e
−γ̂

< −ŷ0(τ̂0(1 − e−γ̂) + β̂0) + ŷ1τ̂1e
−γ̂ = 0.

Since dy0(t)/dt + dy1(t)/dt = 0, this in turn implies
dy1(t)/dt > 0. Putting all this together yields

dL(y)
dt

= 2(y0(t) − ŷ0)
dy0(t)

dt
+ 2(y1(t) − ŷ1)

dy1(t)
dt

< 0.

Similarly, it can be seen that if y0(t) < ŷ0, then
dy0(t)/dt > 0 and dy1(t)/dt < 0. We have dL(y)/dt < 0
also in this case. Therefore, the system is globally asymptoti-
cally stable.

Theorem 5: If (COND) is satisfied, the system (ODE) is
globally asymptotically stable for m = 3.

Proof: See the Appendix.
In order to show the convergence of the system for other

values of m, we have conducted a comprehensive numerical
study for the dynamical system given by (7), comprising all the
values of the parameters CWi, m and di that satisfy (COND)
within the ranges CWi = {8, 16, 32, 64}, m = {3, 4, 5, 6}
and di = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30}. For each
configuration, we have randomly chosen 100 different initial
points and evaluated the trajectory of the system until it
converges (with an error of 10−8). In total, around 106

tests of convergence have been conducted, and in every test,
the system converges to the equilibrium given by (EQ). All
these (numerical and theoretical) results provide very strong
evidence of the convergence of the system.

TABLE III

SIMULATION PARAMETERS

Fig. 2. Throughput obtained by simulation, with our model, and the models
based on the decoupling assumption (D.A.), for the default configurations of
1901 given in Table I.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of 1901 under
different configurations and scenarios as follows. We first
compare the accuracy of our model against a model that
relies on the decoupling assumption, called “D.A.” model [7].
Furthermore, we evaluate other aspects of our model,
such as the performance of the configurations that do not
satisfy (COND) and the accuracy of our model in the transient
regime.

We conduct simulations for a wide range of configura-
tions (CWi, di), comprising the parameters recommended by
the 1901 standard as well as more broad configurations, fol-
lowing the recommendations of [1] and [13]. We consider the
following timing parameters. We use the same time slot dura-
tion and timing parameters as specified in the standard (see
Table III). The PLC frame transmission has a duration D and
is preceded by two priority tone slots (PRS), and a preamble
(P ). It is followed by a response inter-frame space (RIFS),
the ACK, and finally, the contention inter-frame space
(CIFS). Thus, a successful transmission has a duration Ts

.=
2PRS + P + D + RIFS + ACK + CIFS. In the case of
a collision, the stations set the virtual carrier sense (VCS)
timer equal to EIFS, where EIFS is the extended inter-
frame space used by 1901, and then the channel state is idle.
Hence, a collision has a duration Tc

.= EIFS. Finally, we
assume that all the packets use the same physical rate.9

A. Comparison With Decoupling Assumption Model
We first compare our model (which hereafter we refer to as

“drift model”) with the D.A. model for various configurations
and number of stations. In Figure 2, we show the throughput
obtained by 1901 with the default parameters for the two
priority classes CA1 and CA3 (CA0 and CA2 are equivalent).

9We wrote a Matlab simulator that implements the full CSMA/CA mecha-
nism of 1901. The simulator has been validated experimentally [1].
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Fig. 3. Throughput obtained by simulation, with the drift model, and the
D.A. model for different configurations. The initial values di of the deferral
counter at each backoff stage are given by di = f i(d0 + 1) − 1.

Fig. 4. Throughput obtained by simulation, with the drift model, and the
D.A. model for various values of CWmin.

We also show the throughput predicted by the two models. The
model based on the decoupling assumption is substantially less
accurate for CA1 when N is small, because the class CA1 uses
larger contention windows, which increases the time spent in
backoff and, as a result, the coupling between stations.

We now study the accuracy of the two models in more
general settings. To this end, we introduce a factor f ,
such that at each stage i, the value of di is given by
di = f i(d0 + 1) − 1. This enables us to define various
sequences of values for the di’s, using only f and d0. At each
stage i, CWi is given by CWi = 2iCWmin, and there are
m backoff stages (i ∈ {0, m − 1}). In Figure 3, we show
the throughput for various such values of d0 and f , with
CWmin = 8 and m = 5. We observe that the D.A. model
achieves good accuracy when the di’s are large, because in
these configurations, the deferral counter is less likely to
expire, which reduces the coupling among stations. Note that
the drift model achieves good accuracy when the di’s are
small, while there is a small deviation for large di’s; this
is due to the assumptions of our network model (NM) of
Section IV-B, which are not used by the D.A. model.10

Finally, in Figure 4 we show the throughput for different
values for CWmin. In all cases, the drift model closely follows
simulation results, in contrast to the D.A. model.

B. Uniqueness of the Solution and Selected Counterexample
One of the fundamental results of our steady-state analysis

is that there is a unique equilibrium for configurations that

10The 802.11 model that does not rely on the decoupling assumption [12]
has a similar deviation compared to Bianchi’s model [5].

Fig. 5. Simulation of a system with a unique equilibrium point (left,
configuration of CA1 class) and with 3 equilibrium points (right, configuration
given by (14)). The probability pe is computed for each 500 slots and is shown
for one simulation run (plain black). The values of the equilibrium point(s) are
also shown for each system (dashed red). The same behavior was observed
for both systems for multiple simulation runs, not shown here.

satisfy (COND). In this subsection we investigate the per-
formance of the system depending on the (non-)unicity of
the equilibrium of the dynamical system. To this end, we
explore a counterexample of a configuration that does not
satisfy (COND) and does not yield a unique equilibrium for
the dynamical system (7). An example of such a configuration,
which yields 3 equilibrium points for N = 10,11 is the
following:

{CWi, di} =

⎧
⎪⎨

⎪⎩

{32, 3}, 0 ≤ i ≤ 3
{4,∞}, 4 ≤ i ≤ 53
{64, 3}, 54 ≤ i ≤ 59.

(14)

To study this configuration, we compute the instanta-
neous pe, i.e, the probability that a time-slot is idle, for every
500 slots in simulation. Figure 5 shows the results for the
CA1 class and for the configuration given by (14). We observe
that for CA1 class, for which we have a unique equilibrium,
the instantaneous pe is approximately equal to the one
given by the equilibrium point of the dynamical system (7).
However, for configuration (14) pe oscillates between two
of the equilibrium points and the value of pe averaged the
entire simulation run is not equal to any of the equilibrium
points; indeed the average pe obtained by one simulation run
is 0.3478, whereas the values of the equilibrium points of (7)
are (p1

e, p
2
e, p

3
e) = (0.5202, 0.2087, 0.0585).

Our results show that the equilibrium points (EQ) are not
sufficient to characterize the performance of the real system
when (EQ) are not unique: The real system might oscillate
and, as a result, the behavior might not be close to any of
the equilibrium points. They also suggest that such configu-
rations should be avoided as they might lead to an unstable
thus, undesirable behavior. Indeed, multiple equilibria yield
metastable regimes and typically involve severe unfairness or
network collapse. For instance, with configuration (14) some
stations remain at a state with CWi = 4 for long periods,
leading to a very high collision probability and low throughput.
The problems resulting from metastable regimes are reported
in [19] for 802.11.

11These 3 equilibrium points have been obtained by plotting Φ(pe) (see the
proof of Theorem 2) and computing the fixed-points for which pe = Φ(pe).
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Fig. 6. Convergence to the equilibrium point of the number of stations
for backoff stages 1 and 3, for the CA1 class (left) and for a configuration
with di → ∞ and CWi = 2iCW0, ∀i, CW0 = 8, m = 7, (right). Both
the expected values obtained from (7) and the average values obtained from
2000 simulation runs are shown.

C. Accuracy of the Drift Model in the Transient Regime

The above experiments have focused on the accuracy of
our steady-state analysis for the stationary regime. In the
following, we investigate the accuracy of the analysis for
the transient regime. To this end, we consider a system with
N = 20 stations and two different configurations, and compare
the expected number of stations n̄(t) obtained from (7) and
from simulations, as a function of the time slot t, when the
initial condition at time slot 0 is n(0) = {20, 0, 0, ..., 0, 0}.

We focus on a configuration that follows the 1901 standard,
i.e., CA1 class, and on a configuration that follows the
802.11 standard, i.e., the deferral counter does not expire.
The results from the experiments described above are shown
in Figure 6. We observe that our model works well both
in terms of accuracy and of convergence times. As far as
accuracy is concerned, there is slightly higher inaccuracy in
the transient regime than in the stationary regime, which is
due to the assumption on the constant transition probabilities
βi and τi.12 The convergence time to the equilibrium points
is also captured by our model with reasonable accuracy. This
time is higher for the 802.11 system for two reasons: 1) in the
802.11 system, the stations are allowed to have larger backoff
counters and to move into higher backoff stages; 2) in the
1901 system, the stations change their backoff stage with a
higher probability than in 802.11 due to the deferral counter.

D. Configuration Guidelines With Respect to (COND)
As discussed in Section IV-E, (COND) is not only a

condition for uniqueness, but also a configuration guideline for
proper reaction to high contention. Jumping to the next backoff
stage is an indication of high contention hence, to dissolve
the current contention, the transmission aggressiveness should
decrease, that is τi+1 < τi. We now show that configurations
where τi is increasing with i perform poorly. To confirm this,
in the following we run several experiments with different α
values, where α is the multiplicative factor of the contention
windows between successive backoff stages, i.e., CWi+1 =
αCWi. Figure 7 presents throughput obtained by simulation
and with our model for various values of α, with CWi =

12To confirm that the deviations are due to this assumption, we simulated the
Markov chain X(t) with constant transition probabilities, and verified that the
trajectory of X(t) averaged over 300 runs coincides with the solution of (7).

Fig. 7. Performance of 1901 with parameters CWi = �αi−1 · 8�, and
di = �αi−1 − 1� for different values of α. Lines represent throughput
obtained by simulation and points show throughput computed by our
model (left). We also present the ratio τ1/τ0 computed using our
model (right).

	αi−1 · 8
, di = �αi−1 − 1�, 0 ≤ i ≤ 4. Results show
that configurations with τi increasing, i.e., α < 1, yield poor
performance. This supports our argument that (COND) should
be met to ensure good performance. Theorem 3 provides some
configuration guidelines to ensure that (COND) is satisfied.

As it can be seen from the figure, throughput performance
improves for large α. However, a closer look at the proto-
col behavior for different α’s reveals that, while large α’s
provide very good throughput performance, they also suffer
from severe unfairness. Indeed, for such configurations only
one station grasps the channel, while the others move to
higher backoff stages with much larger CWi values and
barely transmit. This shows that throughput considerations
are not sufficient to properly evaluate the suitability of a
given 1901 configuration, and short-term fairness also needs
to be taken into account.

VI. CONCLUSION

Although the IEEE 1901 CSMA/CA protocol is adopted by
the vast majority of PLC devices nowadays, it has received
little attention from the research community so far. In this
paper, we focus on the performance analysis of this protocol.
Our analysis comprises performance in steady-state as well as
in the transient regime, and involves both the long-term and
the short-term dynamics of 1901. One of the key results of the
analysis is the finding that the decoupling assumption, which
is commonly adopted for the analysis of MAC protocols such
as IEEE 802.11 and 1901, might not hold for 1901. This is due
to the coupling that 1901 introduces to the stations contending
for the medium. Building on this finding, we have proposed
a model that does not rely on the decoupling assumption, and
as a result, substantially improves the accuracy of previous
analyses. Accuracy is particularly improved for networks with
a small number of stations, which is the most frequent scenario
in practice. We have shown that our model admits a unique
solution for a wide range of configurations.

APPENDIX

Lemma 2: Bi is an increasing function of pi, and τi is a
decreasing function of pi for any 0 ≤ i ≤ m − 1.

Proof: The reader is referred to [1] for the proof of this
lemma.

Corollary 1: βi is an increasing function of pi.
Proof: The reader is referred to [1] for the proof of this

corollary.
Corollary 2: For any value of i, dBi/dpi < B2

i /(1 − pi)
∀pi ∈ [0, 1), and dBi/dpi < Bi/pi ∀pi ∈ (0, 1].
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Proof: We start with the first inequality. The derivative
dBi/dpi can be computed from (6) as

dBi

dpi
=

∑CWi−1
k=di+1 (Bi − (CWi − 1 − k))dxi

k

dpi

CWi −
∑CWi−1

j=di+1 xi
j

, (15)

where13

dxi
k

dpi
=

k!
(k − di − 1)!di!

pdi

i (1 − pi)k−di−1. (16)

From (15), we have

dBi

dpi
< Bi

1

CWi −
∑CWi−1

j=di+1 xi
j

CWi−1∑

k=di+1

dxi
k

dpi
. (17)

From (16) and (2), we have dxi
k/dpi = k(xi

k − xi
k−1)/pi.

Thus, (17) yields

dBi

dpi
<

Bi

pi

CWix
i
CWi−1 −

∑CWi−1
k=di+1 xi

k

CWi −
∑CWi−1

k=di+1 xi
k

≤ Bi

pi
xi

CWi−1.(18)

Note that

xi
CWi−1

pi

=
CWi−1∑

j=di+1

(
CWi − 1

j

)

pj−1
i (1 − pi)CWi−1−j

=
CWi−1∑

j=di+1

CWi − j

j(1 − pi)

(
CWi − 1

j − 1

)

pj−1
i (1 − pi)CWi−1−(j−1)

≤ CWi − 1
2(1 − pi)

CWi−1∑

j=di+1

(
CWi − 1

j − 1

)

pj−1
i (1 − pi)CWi−1−(j−1)

≤ CWi − 1
2(1 − pi)

≤ Bi

1 − pi
.

Thus, combining the above two equations we have
dBi/dpi < B2

i /(1 − pi). Then, dBi/dpi < Bi/pi follows
from (18), since xi

CWi−1 ≤ 1, which completes the proof.
Lemma 3: Let us consider the expression of τi as a function

of pe resulting from combining (4) with (1). According to this
expression, τi is an increasing function of pe.

Proof: Since τi = 1/(Bi + 1), we need to show that
dBi/dpe < 0. Note that

dBi

dpe
=

dBi

dpi

dpi

dpe
. (19)

From pi = 1 − pe/(1 − τi) = 1 − pe(Bi + 1)/Bi, we have

dpi

dpe
= −Bi + 1

Bi
+

pe

B2
i

dBi

dpe
. (20)

Combining (19) and (20) yields

dBi

dpe
= −dBi

dpi

Bi + 1
Bi

1
1 − pe

B2
i

dBi

dpi

. (21)

Let us distinguish two cases to prove this lemma, one for
pi = 1 and the other for 0 ≤ pi < 1. First, for pi = 1,
we have pe = 0 from (1). Thus, (21) is smaller than 0.

13To compute dxi
k/dpi, we observe that xi

k is the complementary cumu-
lative function of a binomial distribution.

We now look at the case 0 ≤ pi < 1. From Lemma 2,
we have dBi/dpi > 0 therefore, dBi/dpe < 0 as long as

dBi

dpi
<

B2
i

pe
=

Bi(Bi + 1)
1 − pi

. (22)

According to Corollary 2, dBi/dpi < B2
i /(1 − pi),

which is a sufficient condition for (22). This terminates the
proof.

The following lemmas relate to the stationary regime of (7).
Let Φ(pe) =

∏m−1
k=0 (1 − τk(pe))n̂k(pe). The following lem-

mas examine the function Φ(pe), where each n̂k(pe) is a
function of βi(pe), pi(pe), τi(pe), 0 ≤ i ≤ m − 1, as given
by (EQ).

Lemma 4: Let Φ(pe) =
∏m−1

k=0 (1 − τk(pe))n̂k(pe). Then,
if (COND) is satisfied, ∂Φ/∂βj > 0, for any 0 ≤ j < m − 1.

Proof: The reader is referred to [1] for the proof of this
lemma. Note that, while [1] requires CWi+1 ≥ 2CWi−di−1,
here we only require that (COND) is satisfied, which allows
for a wider range of configurations. In spite of this difference,
the proof of both lemmas is identical.

Lemma 5: Let Φ(pe) =
∏m−1

k=0 (1 − τk(pe))n̂k(pe). Then,
if (COND) is satisfied, ∂Φ/∂pj > 0, for any 0 ≤ j ≤ m − 1.

Proof: The reader is referred to [1] for the proof of this
lemma. The comment of Lemma 4 also applies to this one.

Lemma 6: Let Φ(pe) =
∏m−1

k=0 (1 − τk(pe))n̂k(pe). Then,
if (COND) is satisfied, ∂Φ/∂τj < 0, for any 0 ≤ j ≤ m − 1.

Proof: The reader is referred to [1] for the proof of this
lemma. The comment of Lemma 4 also applies to this one.

Lemma 7: Let ji(pi)
.= τi(pi)pi +β(pi). Then dji/dpi ≤ 1.

Proof: Let us define Ji
.= 1/ji. Then, from (4) and (5),

it can be seen that

Ji =

∑CWi−1
k=di+1

(
(k + 1)(1 − xi

k)+
∑k

j=di+1 j(xi
j − xi

j−1)
)

CWi−
∑CWi−1

k=di+1 (1 − xi
k)(1 − pi)

.

(23)

An equivalent expression for Ji is as follows

Ji =
1

CWi

CWi−1∑

k=di+1

(1 − xi
k)(1 − pi)Ji +

CWi − 1
2

− 1
CWi

CWi−1∑

k=di+1

k∑

j=di+1

xi
j . (24)

By derivation of the above expression, we obtain

dJi

dpi
=

1
CWi

CWi−1∑

k=di+1

(1 − xi
k)(1 − pi)

dJi

dpi

− 1
CWi

Ji

CWi−1∑

k=di+1

dxi
k

dpi
(1 − pi) + (1 − xi

k)

− 1
CWi

CWi−1∑

k=di+1

k∑

j=di+1

dxi
j

dpi
.

From the above

−dJi

dpi
=

CWi−1∑

k=di+1

(
Ji

(dxi
k

dpi
(1 − pi)+ (1 − xi

k)
)
+

k−1∑

j=di+1

dxi
j

dpi

)

CWi −
∑CWi−1

k=di+1 (1 − pi)(1 − xi
k)

.
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Note that dxi
j/dpi = j(xi

j−xi
j−1)/pi. Furthermore, it holds

Ji ≥ 1/pi. This can be seen as follows. For di = 0 it can be
seen from (24) that Ji is equal to the average of a geometric
random variable of probability pi. By rewriting (23) as follows,
it can also be seen that Ji becomes larger as di increases
(indeed, when di increases, the terms xi

j decrease for all j, and
hence the numerator increases and the denominator decreases):

Ji =

∑CWi−1
k=di+1

(
(k + 1) −

∑k
j=di+1 xi

j

)

CWi −
∑CWi−1

k=di+1 (1 − xi
k)(1 − pi)

. (25)

Therefore, Ji = 1/pi for di = 0 and Ji > 1/pi for any
other di. From this,

−dJi

dpi

≤
Ji

CWi−1∑

k=di+1

(
dxi

k

dpi
(1 − pi)+(1 − xi

k)+
k−1∑

j=di+1

j(xi
j−xi

j−1)
)

CWi −
∑CWi−1

k=di+1 (1 − pi)(1 − xi
k)

.

(26)

Recall that 1− xi
k is the probability of the event that there

have been di or fewer transmissions in k time slots, from
which

1 − xi
k ≥ k!

(k − di)!di!
pdi

i (1 − pi)k−di .

From the above and (16), we have

1 − xi
k ≥

(
1 − pi

k − di

)
dxi

k

dpi
≥ 1 − pi

k

dxi
k

dpi

hence, (1 − pi)dxi
k/dpi ≤ k(1 − xi

k).
Combining the above with (26) yields

−dJi

dpi

≤
Ji

CWi−1∑

k=di+1

(
(k + 1)(1 − xi

k) +
k−1∑

j=di+1

j(xi
j − xi

j−1)
)

CWi −
∑CWi−1

k=di+1 (1 − pi)(1 − xi
k)

,

and combining the above with (23) we obtain −dJi/dpi ≤ J2
i ,

which proves the lemma due to ji = 1/Ji.
Lemma 8: Let γ = τ0y0+τ1y1+τ2(1−y0−y1). If (COND)

is satisfied, it holds that 0 < ∂γ/∂yi ≤ τi.
Proof: The partial derivative can be expressed as

∂γ

∂yi
=

∂

∂yi
(τ0y0 + τ1y1 + τ2(1 − y0 − y1))

= τi − τ2 + y0
∂τ0

∂γ

∂γ

∂yi
+ y1

∂τ1

∂γ

∂γ

∂yi

+ (1 − y0 − y1)
∂τ2

∂γ

∂γ

∂yi
, (27)

from which
∂γ

∂yi
=

τi − τ2

1 − y0
∂τ0
∂γ − y1

∂τ1
∂γ − (1 − y0 − y1)∂τ2

∂γ

. (28)

From Lemma 2, we have that τi is a decreasing function
of ρ = 1 − e−γ , and hence ∂τi/∂γ ≤ 0. Furthermore, due
to (COND), we have τi − τ2 > 0 for i = 0, 1. Combining
this with (28) yields ∂γ/∂yi > 0. Now, combining (27) with
∂τi/∂γ ≤ 0 and ∂γ/∂yi ≥ 0 yields ∂γ/∂yi ≤ τi.

Proof of Theorem 5: For m = 3, the system (ODE) can be
expressed with the following two equations as a function of
y0 and y1 (where y2 = 1 − y0 − y1):

dy0

dt
= γe−γ − y0(τ0 + β0) = f0(y0, y1)

dy1

dt
= y0(τ0(1 − e−γ) + β0) − y1(τ1 + β1) = f1(y0, y1).

where γ = τ0y0 +τ1y1 +τ2(1−y0−y1) (to simplify notation,
we have omitted the dependency of τi and βi on γ in the
above equations).

According to the Markus-Yamabe theorem,14 the above
system is globally asymptotically stable if the real part of the
eigenvalues of the following Jacobian matrix are negative for
all points (y0, y1): ⎛

⎜
⎜
⎝

∂f0

∂y0

∂f0

∂y1

∂f1

∂y0

∂f1

∂y1

⎞

⎟
⎟
⎠.

The characteristic polynomial of the matrix is given by
λ2 − (c00 + c11)λ + c00c11 − c01c10,

where cij = ∂fi/∂yj .
According to the Routh-Hurwitz stability criterion, as long

as the following two inequalities are satisfied, the real part
of the eigenvalues of the above characteristic polynomial are
guaranteed to be negative:

−(c00 + c11) > 0, (29)

c00c11 − c01c10 > 0. (30)

Sufficient conditions for (29) are (i) c00 < 0 and
(ii) c11 < 0, and sufficient conditions for (30) are:
(iii) −c00 > c10, (iv) −c11 > c01 and (v) c10 and c01 are
never negative simultaneously. In the following, we show that
each of these five conditions is satisfied.

Condition (i): c00 < 0.

c00 =
∂f0

dy0
= (1 − γ)e−γ ∂γ

∂y0
− (τ0 + β0)

− y0
∂(τ0 + β0)
∂(1 − e−γ)

∂(1 − e−γ)
∂γ

∂γ

∂y0
. (31)

Removing some negative terms from the above equation and
considering that ∂(τ0 +β0)/∂(1−e−γ) > 0, ∂γ/∂y0 > 0 (see
Lemma 8) and (1−γ)e−γ < 1, we obtain the following upper
bound on c00:

c00 <
∂γ

∂y0
− τ0.

From Lemma 8, the left-hand side of the above is smaller
than or equal to 0.

Condition (ii): c11 < 0.

c11 = y0
∂(τ0(1 − e−γ) + β0)

∂(1 − e−γ)
∂(1 − e−γ)

∂γ

∂γ

∂y1

− (τ1 + β1) − y1
∂(τ1 + β1)
∂(1 − e−γ)

∂(1 − e−γ)
∂γ

∂γ

∂y1

≤ y0
∂(τ0(1 − e−γ) + β0)

∂(1 − e−γ)
∂(1 − e−γ)

∂γ

∂γ

∂y1
− τ1.

14This theorem was initially stated as a conjecture for any n, and was later
proved to be true for n = 2 (which is the case here) and false for n > 2 [20].
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From Lemmas 7 and 8, and e−γ < 1, we obtain the
following upper bound

c11 < y0τ1 − τ1 ≤ 0.

Condition (iii): −c00 > c10.
We have

c10 = τ0 + β0 + y0
∂(τ0 + β0)
∂(1 − e−γ)

∂(1 − e−γ)
∂γ

∂γ

∂y0
− e−γτ0

− y0
∂(e−γτ0)

∂(1 − e−γ)
∂(1 − e−γ)

∂γ

∂γ

∂y0

− y1
∂(τ1 + β1)
∂(1 − e−γ)

∂(1 − e−γ)
∂γ

∂γ

∂y0
.

Comparing the above equation with (31), it can be seen that
it holds −c00 > c10 as long as

−(1 − γ)e−γ ∂γ

∂y0

> −e−γτ0 − y0
∂(e−γτ0)

∂(1 − e−γ)
∂(1 − e−γ)

∂γ

∂γ

∂y0

− y1
∂(τ1 + β1)
∂(1 − e−γ)

∂(1 − e−γ)
∂γ

∂γ

∂y0
.

Removing some terms and rearranging others, we obtain the
following sufficient condition for the above

e−γ

(

τ0 −
∂γ

∂y0

)

> −γe−γ ∂γ

∂y0
− y0

∂(e−γτ0)
∂γ

∂γ

∂y0
.

Following a similar reasoning to Lemma 8, it can be seen
that ∂γ/∂y0 < τ0 + y0∂τ0/∂y0, from which we obtain the
following sufficient condition

−e−γy0
∂τ0

∂y0
> −γe−γ ∂γ

∂y0
− y0

∂(e−γτ0)
∂γ

∂γ

∂y0
.

Taking into account that ∂τ0
∂y0

= ∂τ0
∂γ

∂γ
∂y0

, this is equivalent to

−e−γy0
∂τ0

∂γ
> −γe−γ − y0

∂(e−γτ0)
∂γ

.

Operating on the above we obtain

−e−γy0
∂τ0

∂γ
> −γe−γ − y0e

−γ ∂τ0

∂γ
+ y0e

−γτ0.

The above is equivalent to

0 > −e−γ(γ − y0τ0),

which is true given that γ > y0τ0 for y0 < 1 (for the case
y0 = 1 it can be seen that this condition also holds).

Condition (iv): −c11 > c01.
A sufficient condition for this case is given by

y0
∂(e−γτ0)

∂γ

∂γ

∂y1
+ (τ1 + β1) + y1

∂(τ1 + β1)
∂γ

∂γ

∂y1

> (1 − γ)e−γ ∂γ

∂y1
. (32)

The left-hand side of (32) is lower bounded by

τ1 − y0e
−γτ0

∂γ

∂y1
+ y0e

−γ ∂τ0

∂γ

∂γ

∂y1
.

Given ∂τ0
∂γ

∂γ
∂y1

= ∂τ0
∂y1

and ∂γ
∂y1

< τ1, the above is lower
bounded by

τ1 − y0e
−γτ0τ1 + y0e

−γ ∂τ0

∂y1

= τ1e
−γ(1 − y0τ0) + τ1(1 − e−γ) +

∂τ0

∂y1
y0e

−γ .

From 1 − e−x > xe−x, the above is lower bounded by

τ1e
−γ(1 − y0τ0) + τ1γe−γ +

∂τ0

∂y1
y0e

−γ . (33)

It can be seen that 0 > ∂τ0/∂γ > −1. From the proof of
Corollary 2, ∂B0

∂(1−e−γ ) ≤ B2
0

e−γ , where B0 = 1
τ0

− 1. Thus,

∂τ0

∂γ
= − 1

(B0 + 1)2
∂B0

∂(1 − e−γ)
∂(1 − e−γ)

∂γ
> −1. (34)

Combining this with Lemma 8 yields |∂τ0/∂y1| < τ1, from
which τ1γe−γ > −γe−γy0

∂τ0
∂y1

. Combining this with (33)
yields the following lower bound for the LHS of (32)

τ1e
−γ(1 − y0τ0) +

∂τ0

∂y1
y0e

−γ(1 − γ). (35)

From ∂γ/∂y1 < τ1+y0∂τ0/∂y1, the right-hand side of (32)
is upper bounded by

(1 − γ)e−γτ1 + (1 − γ)e−γy0
∂τ0

∂y1
. (36)

Comparing (35) with (36), it can be seen that that in (35)
the positive term is larger and the negative terms are equal,
which implies that (32) is satisfied.

Condition (v): either c10 ≥ 0 or c01 ≥ 0.
To show that c10 and c01 are never negative simultaneously,

we prove that when y0 < 1−γ it holds c01 ≥ 0, and otherwise
c10 ≥ 0. Let us start with c01,

c01 = (1 − γ)e−γ ∂γ

∂y1
− y0

∂(τ0 + β0)
∂(1 − e−γ)

∂(1 − e−γ)
∂γ

∂γ

∂y1

= (1 − γ)e−γ ∂γ

∂y1
− y0

∂(τ0(1 − e−γ) + β0)
∂(1 − e−γ)

e−γ ∂γ

∂y1

− y0
∂(τ0e

−γ)
∂(1 − e−γ)

e−γ ∂γ

∂y1
.

Given that τ0 is a decreasing function of 1−e−γ (Lemma 2),
the last term of the above expression is positive, hence

c01 ≥ (1 − γ)e−γ ∂γ

∂y1
− y0

∂(τ0(1 − e−γ) + β0)
∂(1 − e−γ)

e−γ ∂γ

∂y1
.

By combining the above with Lemma 7, we obtain

c01 ≥
(
(1 − γ)e−γ − y0e

−γ
) ∂γ

∂y1
,

which is larger than or equal to 0 as long as y0 < 1 − γ.
We now look at c10 when y0 > 1 − γ,

c10

= τ0(1 − e−γ) + β0 + y0
∂(τ0(1 − e−γ) + β0)

∂(1 − e−γ)

· ∂(1 − e−γ)
∂γ

∂γ

∂y0
− y1

∂(τ1 + β1)
∂(1 − e−γ)

∂(1 − e−γ)
∂γ

∂γ

∂y0

= τ0(1 − e−γ) + β0 + y0
∂(τ0(1 − e−γ) + β0)

∂(1 − e−γ)
∂(1 − e−γ)

∂γ
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· ∂γ

∂y0
− y1

∂(τ1(1 − e−γ) + β1)
∂(1 − e−γ)

∂(1 − e−γ)
∂γ

∂γ

∂y0

− y1
∂τ1e

−γ

∂(1 − e−γ)
∂(1 − e−γ)

∂γ

∂γ

∂y0
≥ τ0(1 − e−γ)

− y1
∂(τ1(1 − e−γ) + β1)

∂(1 − e−γ)
∂(1 − e−γ)

∂γ

∂γ

∂y0
.

From Lemma 7 we obtain the following inequality

c10 ≥ τ0(1 − e−γ) − y1e
−γτ0.

Given y0 > 1 − γ, we have y1 ≤ 1 − y0 < γ. Substituting
this into the above equation yields

c10 ≥ τ0(1 − e−γ) − τ0γe−γ ,

which is larger than 0 given that 1 − e−x > xe−x. �
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