Network Slicing for Guaranteed Rate Services: Admission Control and Resource Allocation Games

Pablo Caballero, Albert Banchs, Senior Member, IEEE, Gustavo de Veciana, Fellow, IEEE, Xavier Costa-Pérez, Member, IEEE, and Arturo Azcorra, Senior Member, IEEE

Abstract—Technologies that enable network slicing are expected to be a key component of next generation mobile networks. Their promise lies in enabling tenants (such as mobile operators and/or services) to reap the cost and performance benefits of sharing resources while retaining the ability to customize their own allocations. When employing dynamic sharing mechanisms, tenants may exhibit strategic behavior, optimizing their choices in response to those of other tenants. This paper analyzes dynamic sharing in network slicing when tenants support inelastic users with minimum rate requirements. We propose a NEtwork Slicing (NES) framework combining: 1) admission control; 2) resource allocation; and 3) user dropping. We model the network slicing system with admitted users as a NES game; this is a new class of game where the inelastic nature of the traffic may lead to dropping users whose requirements cannot be met. We show that, as long as admission control guarantees that slices can satisfy the rate requirements of all their users, this game possesses a Nash equilibrium. Admission control policies (a conservative and an aggressive one) are considered, along with a resource allocation scheme and a user dropping algorithm, geared at maintaining the system in Nash equilibria. We analyze our NES framework’s performance in equilibrium, showing that it achieves the same or better utility than static resource partitioning, and bound the difference between NES and the socially optimal performance. Simulation results confirm the effectiveness of the proposed approach.

Index Terms—Wireless networks, network slicing, multi-tenant networks, resource allocation, guaranteed rate service, inelastic traffic.

I. INTRODUCTION

IT IS widely agreed among the relevant industrial community [1] and ongoing standardization efforts [2] that enabling network slicing is a key technological requirement

for 5G mobile networks. Such technology enables wireless infrastructure to be “sliced” into logical networks, which may be customized to support one or more specific services. This provides a basis for efficient infrastructure sharing among diverse entities, so-called tenants, each owning a slice. Tenants could be traditional or virtual mobile network operators acquiring a network slice from an infrastructure operator to support their business, as well as new players that simply view connectivity as a service, such as Over-The-Top (OTT) service providers which provision network slices to ensure quality of service to their end-customers.

A major element underlying network slicing is a mechanism for resource allocation amongst slices. One of the approaches considered in 3GPP suggests that base station resources could be statically partitioned based on fixed ‘network shares’ [3]. However, given that slices’ loads may be non-uniform across space and varying in time, sharing gains can be achieved by dynamically allocating resources to slices based on their current needs (while respecting their overall network shares). At the same time, tenants should retain the ability to operate their slices autonomously and, in particular, to customize the allocation of resources to their users. This suggests the need for a flexible framework for resource sharing, wherein (i) tenants indicate their preferences to the infrastructure (e.g., by dynamically subdividing their network share amongst their users), and (ii) base station resources are allocated to slices according to such preferences (e.g., proportionally to the shares assigned to the users).

Under such a resource allocation model, it is to be expected that tenants might exhibit strategic behavior, adjusting their preferences to current demands at the different base stations so as to maximize their performance (subject to their share of the network). This could potentially have adverse effects on the network; e.g., the overall network efficiency might be harmed, or tenants’ preferences (and the corresponding requests) might exhibit oscillations. While this problem has been studied in [4] for the case of elastic users, in many cases tenants’ traffic will be inelastic in nature, wherein a user must either be guaranteed a minimum rate or her utility decreases sharply. When attempting to satisfy such user requirements, tenants’ behavior may differ substantially from that in [4], affecting both network efficiency and stability. The focus of this paper is thus on the analysis of resource allocation for network slicing when tenants support inelastic users.
A. Related Work

The resource allocation mechanism analyzed in this paper corresponds to a Fisher market, which is a standard framework in economics. In such markets, buyers (in our case slices) have fixed budgets (in our case corresponding to pre-agreed network shares) and bid for resources within their budget (according to their preferences), which are then allocated to buyers proportionally to their bids [5]. Within the Fisher Market framework, our model falls in the category of buyers that anticipate the impact of their bids [6]. The analysis of Fisher markets under such price-anticipating buyers has been limited, so far, to the case of buyers with linear [6] or concave [4], [7] utility functions.

A related resource allocation model often considered in the networking field is the so-called ‘Kelly’s mechanism’, which allocates resources to players proportionally to their bids [8]. This model has also been analyzed for price-anticipating players [9]. However, in Kelly’s mechanism players respond to their payoff (given by the utility minus cost) whereas in our model tenants’ behavior is only driven by their utilities (since they have a fixed budget, i.e., the network share). Moreover, Kelly’s model has mainly been studied for concave utility functions.

The topic of network slicing is currently attracting substantial attention from the research community. One of the main issues investigated is the resource allocation across different slices, which is the focus of this paper. A number of works have been devoted to the resource allocation among different operators or tenants sharing the same wireless infrastructure (see e.g. [10]–[12]), and in [13], the authors focus on resource allocation of processing resources in network slicing in the context of C-RAN; see [14] for a survey on resource slicing in virtual wireless networks. In contrast to our paper, all these works have focused on elastic traffic.

In the context of network slicing, there are some works which have considered inelastic traffic. The algorithm proposed in [15] attempts to satisfy the demands of all slices but does not account for the resources each slice is entitled to. Similarly, [16]–[18] propose algorithms to meet requests from all tenants, but do not account for elastic demands and do not consider budget constraints. In [19], the authors propose an algorithm to trade resources among tenants, but their approach involves complex negotiations and relies on heuristic considerations rather than a well-established analytical framework. In contrast to all these works, our approach supports both elastic and inelastic services and is based on fixed budgets, corresponding to the network shares; this is in line with one of the scenarios considered in 3GPP [3] and does not involve pricing individual requests, which may represent an advantage in practical deployments.

In this work, we build on the Fisher Market mechanism for resource allocation across slices and analyze the game resulting from the interaction of several non-cooperative slices aiming to maximize their own network utility given a fixed budget. This problem has been addressed in the context of concave utility functions: [7] ensures the existence of Nash Equilibria (NE) for this type of utility functions, [20] proves the existence of a NE for price-taking players, [4] shows the convergence of Best Response Dynamics for certain classes of concave functions and [6] shows they may not converge for linear utilities. Much less attention has been paid to non-concave utility functions; among the few works on this topic it is worth mentioning [21], which uses potential games to prove convergence of Best Response Dynamics to a region around the NE for finite strategy games [22].

In the specific context of Fisher market-like frameworks, to the best of our knowledge our work is the first attempt to analyze resource allocation for inelastic traffic. In particular, this work addresses the following gap in the literature of resource allocation models: the analysis of budget-constrained resource allocation under price-anticipating users with inelastic utilities. The nature of inelastic utility functions leads to a new class of non-cooperative games, where a slice prefers to drop users whose rate requirements cannot be met, rather than allocating them insufficient resources. The nature of such games differs substantially from the ones previously analyzed in the literature for elastic traffic.

On the 5G standardization front, network slicing is currently being specified by 3GPP [2]. In particular, 3GPP’s SA5 is working on the definition of a management and orchestration framework to support network slicing [23], [24]. While these efforts do not specifically address dynamic resource allocation, which is our focus here, the algorithms we propose are in line with this framework. One of the key features of our approach is the ability of tenants to customize their allocations; there is wide consensus in the standardization community that this is needed to efficiently satisfy their very diverse requirements (see, e.g., [25] for examples of possible vertical tenants).

B. Key Contributions

The rest of the paper is organized as follows. In Section II we present our system model, and propose the Network Slicing (NES) framework to address resource allocation in such system. NES consists of three modules: admission control, weight allocation and user dropping. Section III focuses on the admission control module: it finds the requirements to ensure stability and proposes two policies, a conservative and an aggressive one, to perform admission control. Section IV presents the other two modules: a resource allocation mechanism and a strategy to drop users when rate guarantees are infeasible, and analyzes the convergence of the resulting dynamics. We then study in Section V the performance of NES versus two benchmark allocations: static resource partitioning and the social optimal. Throughout the paper, we present analytical results that support the design of NES, including (i) the existence of a Nash Equilibrium and the convergence of Best Response Dynamics, (ii) the effectiveness of admission control and protection from other slices, (iii) the user selection and weight allocation policies, and (iv) the gains over static slices and loss over social optimal. We further evaluate the performance of NES via simulation in Section VI, confirming that it provides substantial gains in terms of utility, throughput performance and reduced blocking probability while incurring an acceptable complexity.
II. NETWORK SLICING MODEL

We consider a wireless network consisting of a set of resources B (the base stations or sectors) shared by a set of network slices O (each operated by a different tenant). At a given point in time, the network supports a set of active users U (the customers or devices), which can be subdivided into subsets U_b^o, U_b and U^o, corresponding to the users of slice o at base station b, the users at base station b, and the users of slice o, respectively. We consider that the association of users with base stations is fixed (e.g., by a pre-specified user association policy) and let $b(u)$ denote the base station that user u is (currently) associated with.

A. Resource Allocation Model

Following a similar approach as [4] and [10], in our model each slice o is allocated a network share s_o (corresponding to its budget) such that $\sum_{o \in O} s_o = 1$. The slice is at liberty to distribute its share amongst its users, assigning them non-negative weights (corresponding to the bids):

$$w_u \quad \text{for} \quad u \in U^o, \quad \text{such that} \quad \sum_{u \in U^o} w_u \leq s_o.$$

We let $w^o = (w_u : u \in U^o)$ be the weights of slice o, $w = (w_u : u \in U)$ those of all slices and $w^{\sim o} = (w_u : u \in U \setminus U^o)$ the weights of all users excluding those of slice o. We further let $l_b(w) = \sum_{u \in U_b} w_u$ denote the load at base station b, $d_b^o(w^o) = \sum_{u \in U_b^o} w_u$ the aggregate weight of slice o at b, and $d_b^{\sim o}(w^{\sim o}) = \sum_{u \in U \setminus U_b^o} w_u$ the aggregate weight of all other slices (excluding o) at b. We shall allocate each user a fraction of the base station’s resources in proportion to her weight w_u.

We let c_u denote the achievable rate for user u, defined as the product of (i) the average rate per resource unit achieved by the user, and (ii) the total amount of resources available at the base station. Note that this depends on the modulation and coding scheme selected for the current radio conditions, which accounts for noise as well as the interference from the neighboring base stations. Following similar analyses in the literature [10], [26], [27], we shall assume that c_u is fixed for each user at a given time.

We further let r_u denote the rate allocated to user u. Under our model, r_u is given by c_u times the fraction of the base station’s resources allocated to the user. Given that users are allocated a fraction of resources proportional to their weights, we have that r_u is a function of the weights w given by:

$$r_u(w) = \frac{w_u}{\sum_{v \in b(u)} w_v} c_u = \frac{w_u}{l_b(u)(w)} c_u. \quad (1)$$

When implementing the proposed resource allocation mechanism, a slice may assign a non-zero weight to some users while others may be dropped. To decide the setting of the users’ weights, we assume that each slice o is aware of the aggregate weight of the other tenants at each base station, i.e., $d_b^{\sim o}(w^{\sim o})$. It is worth noting that for the mechanism under study we have that (i) a slice only sees the aggregate weight of the other slices; in particular, the weights of each tenant are not disclosed, and (ii) the mechanism needs to store very limited data; indeed, it is sufficient to keep the total load of each base station, as a tenant can obtain $d_b^{\sim o}(w^{\sim o})$ by simply subtracting its weight from the base station’s load. Such information is already considered within the network slicing management system defined by 3GPP [24], and hence should be readily available.

In order to avoid the indeterminate form resulting from having all the weights at a base station equal to 0 in (1), we will require weights to exceed a fixed lower bound (i.e., $w_u \geq \delta$, $\forall u$). This bound can be arbitrarily small; indeed, in practice it should be set as small as possible, to allow slices the highest possible flexibility while avoiding zero weights. Accordingly, in the rest of the paper we assume that δ is so small that its effect can be neglected, except for Theorem 2, where this assumption is required to prove the existence of a Nash Equilibrium.

In the case where a slice o is the only one with users at a given base station b, such a slice would simply set w_u to the minimum possible value for these users, allowing them to receive all the resources of this base station while minimizing the consumed share. To avoid dealing with this special case, hereafter we shall assume that all base stations have users from at least two slices. Note that this assumption is made to simplify the expressions and discussion, and does not limit the generality of our analysis and algorithm, which indeed supports base stations with all users from the same slice.

B. Slice Utility

Network slices may support services and customers with different needs, or may wish to differentiate the service they provide from competing slices. To that end, we assume that each slice has a private utility function, U^o, that reflects the slice’s performance according to the preferences and needs of its users. The slice utility consists of the sum of the individual utilities of its users, U_u, i.e.,

$$U^o(w) = \sum_{u \in U^o} U_u(r_u(w)).$$

For inelastic traffic, we assume each user u requires a guaranteed rate γ_u, hereafter referred to as the user’s minimum rate requirement. Following standard practice, we shall model inelastic traffic utility functions as

$$U_u(r_u(w)) = \phi_u f_u(r_u(w)), \quad \text{for} \quad r_u(w) \geq \gamma_u,$$

where $f_u(\cdot)$ is a concave utility function associated with the user, and ϕ_u is the relative priority of user u (where $\phi_u \geq 0$ and $\sum_{u \in U} \phi_u = 1$). The relative priorities reflect the importance that users are given by the tenant of their slice; they are, i.e., jointly with the load at the respective base stations, the weights assigned to the users, which in turn determine the rate allocation.

1Inelastic traffic utility functions are typically modeled as a discontinuous function [28] or a sigmoidal one [29]. In this paper we adopt the former model, which aims at providing users with a guaranteed rate, and thus is aligned with the Guaranteed Bit Rate (GBR) class of 3GPP [30].

2Note that, even when $f_u(\cdot)$ is concave, we are dealing with non-concave utility, due to the minimum rate requirement.
Note that the above utility function is only defined for rates above the minimal requirement, as performance degrades drastically if this guarantee is not met. Note also that the above definition includes elastic traffic, which corresponds to the special case \(\gamma_u = 0 \); thus, the results of this paper apply to mixes of elastic and inelastic traffic.

While most of our results hold for arbitrary \(f_u(\cdot) \) functions, in some cases we will focus on the following widely accepted family of utility functions (see \(\alpha \)-fairness, [31]):

\[
f_u(r_u) = \begin{cases}
(r_u)^{1-\alpha_o} & \alpha_o \neq 1 \\
\log(r_u), & \alpha_o = 1,
\end{cases}
\]

where the \(\alpha_o \) parameter sets the level of concavity of the user utility functions, which in turn determines the underlying resource allocation criterion of the slice. Particularly relevant cases are \(\alpha_o = 0 \) (maximum sum), \(\alpha_o = 1 \) (proportional fairness), \(\alpha_o = 2 \) (minimum potential delay fairness) and \(\alpha_o \to \infty \) (max-min fairness).

In our model for slice behavior, a tenant proceeds as follows to optimize its performance. First, it maximizes the number of users as can be possibly served. Second, it maximizes the utility function, given by

\[
u_o(w) := \sum_{u \in O_o} U_o^\alpha(w_u),
\]

where we note that, in this case, the rate of a user depends only on the weights of the other users in her slice, i.e., \(w_o \). A slice can then unilaterally optimize its weight allocation as follows:

\[
\max_{w_o \geq 0} U_o^\alpha(w_o)
\]

\[
s.t. \sum_{u \in \mathcal{U}} w_u = s_o, \quad r_u(w_u) \geq \gamma_u, \quad \forall u \in \mathcal{U}_o.
\]

We shall denote the resulting optimal weights and resource allocation in the socially optimal setting by \(w^* \) and \(r^* = (r^*_u(w^*) : u \in \mathcal{U}) \), respectively.

1) Socially Optimal Allocation (SO): By static slicing (also known as static splitting [32]) we refer to a complete partitioning of resources based on the network shares \(s_o, o \in \mathcal{O} \). In this setting, each slice \(o \) receives a fixed fraction \(s_o \) of each resource, which is shared among its users proportionally to their weights,

\[
r^*_u(w^o) = \frac{w_u}{\sum_{v \in \mathcal{U}_o} w_v} s_o c_u, \quad \forall u \in \mathcal{U}_o, \quad \forall o \in \mathcal{O},
\]

where we have abused notation to indicate that in this case the slice’s utility, given by

\[
U^o_o(w^o) = \sum_{u \in \mathcal{U}_o} U_o^\alpha(w^*_u(w^o)),
\]

depends only on \(w^o \). We shall denote the resulting optimal weights resulting from static slicing by \(w^{o,ss} \).

C. Baseline Allocations

Below we introduce two approaches to resource allocation that we will use as benchmarks to assess the performance of the proposed framework. For now, we shall assume the users' rate requirements can be met, and thus focus on the weight allocation that maximizes the slice’s utility.

1) Socially Optimal Allocation (SO): If slices were to share their utility functions with a central authority, one could in principle consider a (share-constrained) allocation of weights (and resources) that optimizes the overall performance of the network, expressed in terms of the network utility \(U(w) \) defined as the sum of the slices’ utilities (see [4], [10]):

\[
U(w) := \sum_{o \in \mathcal{O}} U^o_o(w).
\]

The above is referred to as the socially optimal allocation, which is given by the following maximization:

\[
\max_{w \geq 0} U(w)
\]

\[
s.t. \sum_{u \in \mathcal{U}_o} w_u = s_o, \quad \forall o \in \mathcal{O}, \quad w_u \geq \delta,
\]

\[
r_u(w) \geq \gamma_u, \quad \forall u \in \mathcal{U}.
\]
conditions, or new users may have been admitted; as a result, when playing the game we may not be able to meet all rate requirements. Thus, the game involves slices deciding (i) which set of users to serve when the rate requirements of all users cannot be met, and (ii) how to allocate weights amongst the slice’s users, in response to other slices’ decisions. Hereafter we refer to this game as the network slicing game; its formal definition is stated as follows:

Definition 1: Consider a set of slices \(o \in \mathcal{O} \), each with a set of admitted users \(u \in \mathcal{U}^o \). In the network slicing game, each slice selects which subset of users to serve within the set \(\mathcal{U}^o \) and their associated weight allocation \(\mathbf{w}^o \) such that (i) as many users as possible are served (meeting their rate requirements), and (ii) the slice’s utility \(U^o \) is maximized for the selected subset of users.

III. Admission Control for Sliced Networks

In order to meet user rate requirements, NES needs to apply admission control on new users, rejecting them when the slice cannot guarantee with a very high probability that it will be able to satisfy the rate requirements of all its users during their lifetime. Note that this only applies to new users; in case the user rate requirements can no longer be satisfied as a result of users moving, or other tenants changing their allocations, this is handled by the *user dropping* module described in Section IV-A.

In the following, we analyze the implications of applying admission control on the system stability, and propose two different admission control algorithms, *Worst-case admission control (WAC)* and *Load-driven admission control (LAC)*. These two algorithms correspond to different trade-offs between slice isolation and efficiency: while WAC provides perfect isolation, guaranteeing that a slice will never need to drop users because of changes in the other slices’ loads, LAC achieves a higher efficiency at the cost of providing more relaxed guarantees on isolation (yet ensuring that the probability of dropping a user remains sufficiently low).

A. Nash Equilibrium Existence

A critical question is whether the *network slicing game* defined in Section II-D possesses a Nash Equilibrium (NE), i.e., there exists a choice of users and associated weight allocation \(\mathbf{w} \) such that no slice can unilaterally modify its choice to improve its utility. In the following, we analyze the requirements on admission control policies in order to ensure that a NE exists *after* admission control is applied. Note that, if the game does not have a NE, strategic slice behavior may lead to system instability affecting the practicality of the proposed approach.

The following theorem shows that if admission control cannot ensure that slices can satisfy the rate requirements of all their users, the network slicing game may not have a NE. The proof of the theorem exhibits a case where instability arises when there is no weight allocation such that the rate requirements of all the users of a given slice are met given feasible allocations for the other slices. Note that in a dynamic setting such a situation could arise, e.g., when a slice initially admits users for which the requirements are feasible, and subsequently other slices admit additional users to their slice, making some of the users in the first slice infeasible (see the Appendix for the proof of all the theorems).

Theorem 1: When slices cannot satisfy all of their users’ rate requirements, the existence of a NE cannot be guaranteed for the network slicing game.

The problem identified by the above theorem can be overcome by applying an admission control scheme that avoids such situations. According to the following theorem, a NE exists as long as admission control is able to guarantee that a slice can satisfy the rate requirements of all its users under any feasible weight allocation of the other slices (including future allocations when possibly new users may have been admitted). Note that in this case the resulting game focuses on maximizing slice utilities while meeting the rate requirements of all users. This result implies that, as long as proper admission control is implemented and ensures that rate requirements can always be satisfied, the stability of the system can be guaranteed.

Theorem 2: Suppose admission control ensures that, for any feasible weight allocation of the other slices, each slice has a weight allocation \(\mathbf{w}^o \) such that its users’ rate requirements are met. Then, the network slicing game has a (not necessarily unique) NE.

Note that the above theorem guarantees the existence of a NE when all slices are elastic; indeed, elastic slices have a rate requirement equal to 0, and therefore their rate requirements can always be satisfied. This leads to the following result.

Corollary 1: When all slices are elastic, the network slicing game has a NE.

In the following, we propose two alternative admission control policies (one more aggressive and one more conservative) that aim at ensuring that the conditions given by Theorem 2 are met. Note that it is ultimately up to the tenant to choose and customize its admission control strategy, and hence each tenant may independently apply its own admission control policy.

B. Worst-Case Admission Control (WAC)

The WAC policy is devised to ensure that the rate requirements of all users are always met, independently of the behavior of the other tenants. To that end, under the WAC policy a slice admits users as follows: it conservatively assumes it has access to only a fraction \(s_o/b_u \) of resources at each base station, and admits users only if their requirements can be satisfied with these resources. Given that a user needs a fraction \(\gamma_u/c_u \) of the base station’s resources to meet her rate requirement, this policy imposes that for slice \(o \) the following constraint is satisfied at each base station \(b \):

\[
\sum_{u \in \mathcal{U}_b^o} \frac{\gamma_u}{c_u} \leq s_o. \quad (4)
\]

The WAC policy aims at ensuring that (4) is satisfied at all times. However, even if this condition holds when a new user is admitted, it may be subsequently violated upon changes in the slice, e.g., due to mobility of users or changes in their \(c_u \). To provide robustness against such changes,
we follow the approach in [33] for single-tenant networks. Specifically, we add a guard band to (4) aimed at ensuring that the condition will continue to hold with high probability after any changes. Thus, a slice admits a new user request as long as the following holds
\[
\sum_{u \in U^o} \frac{\gamma_u}{c_u} \leq \rho_w \cdot s_0,
\]
where \(\rho_w < 1\) parametrizes the guard band: the smaller this parameter, the larger the guard band. In practice, this parameter may be set to different values by different slices based on the slice specifics, such as the fluctuations of \(c_u\) or user association (where larger fluctuations will require a larger guard band) or the desired level of assurance to its users (stricter guarantees will require a larger guard band). The reader is referred to [33] for a discussion on how to set this parameter.

In the following, we analyze the properties of WAC under the assumption that (4) is satisfied with this policy. The theorem below shows that, as long as this condition is satisfied, a slice will always be able to meet its users’ rate guarantees independent of the setting of the other slices. Thus, a high degree of protection to the choices and changes in other slices is provided. The theorem also shows that if the slice deviates from the proposed policy, it is not protected from the other slices’ choices, implying that this policy represents a necessary condition to provide protection.

Theorem 3: Consider a slice \(o\) with users having rate requirements \(\gamma^o = (\gamma_u : u \in U^o)\), then the following hold:

1. If (4) is satisfied, there exists at least one weight allocation \(w^o\) such that \(\forall u \in U^o \ r_u(w) \geq \gamma_u\), for any feasible allocation of the other slices’ aggregate weights \(a^o\).
2. If (4) is not satisfied, slice \(o\) is not protected, as there is a feasible \(a^o\) allocation such that slice \(o\) is not able to meet the rate requirements of its admitted users.

Note that combining this result with Theorem 2, it follows that a NE exists when all slices run WAC. Indeed, the above theorem ensures that a slice can find an allocation that meets the rate requirements of all its users for any feasible \(a^o\), which comprises all the possible allocations of the other slices \(w^{-o}\). Theorem 2 guarantees that when this holds, a NE exists. Thus, we have the following corollary:

Corollary 2: If (4) is satisfied by all slice, then the network slicing game has a NE.

Note that Corollary 2 imposes more conservative conditions than Theorem 2; for instance, if a slice never has users at a given base station, according to Theorem 2 such a slice cannot place any weight on this base station; in contrast, the arguments behind (4) account for, and protect the slice against, such possibility.

C. Load-Driven Admission Control (LAC)

While the WAC policy protects a given slice from the others, it may be overly conservative in some cases where base stations are lightly loaded or where some slices are unlikely to use resources at certain base stations. In those cases, one may opt to be more aggressive in admitting users without running significant risks. To this end, we propose the Load-driven Admission Control (LAC) policy, where a slice measures the current load across base stations and performs admission control decisions based on the measured loads (assuming that they will not change significantly).

The following theorem provides a basis for the design of the LAC policy. It gives a necessary and sufficient condition that has to be satisfied to meet the rate requirements of the slice’s users, given the current weight allocations of the other slices. This constraint is shown to be less restrictive than the one imposed by (4), implying that LAC (potentially) allows the admission of more users than WAC.

Theorem 4: Consider a slice \(o\) comprising users with rate requirements \(\gamma^o = (\gamma_u : u \in U^o)\), and suppose the aggregate weight of the other slices is given by \(a^o\). Then, a weight allocation \(w^o\) that meets slice \(o\)’s rate requirements exists if and only if the following is satisfied:
\[
\sum_{b \in B} \frac{\sum_{u \in U^b} \gamma_u/c_u}{1 - \sum_{u \in U^b} \gamma_u/c_u} a^o_b \leq s_0.
\]

where \(U^b_o\) is the subset of users of slice \(o\) associated with base station \(b\), according to the given user association policy.

Moreover, if the rate requirements satisfy (4), then the above condition is satisfied.

The central idea of the LAC policy is as follows. Upon receiving a request of a new user \(u\) with a rate requirement \(\gamma_u\), slice \(o\) assesses the current \(a^o\) values in the network and checks whether (5) would be satisfied with the new user. According to the theorem, as long as (5) is satisfied, the rate requirements can be met if the \(a^o\) values do not change. However, in practice \(a^o\) may change due to the response of the other slices to slice \(o\), or to changes in the other slices (e.g., the admission of new users). We shall address this uncertainty by following a similar approach to WAC: when admitting a new user, we verify that (5) is satisfied with a sufficiently large guard band, i.e.,
\[
\sum_{b \in B} \frac{\sum_{u \in U^b} \gamma_u/c_u}{1 - \sum_{u \in U^b} \gamma_u/c_u} a^o_b \leq \rho_l \cdot s_0.
\]

where \(\rho_l < 1\) is the parameter providing the guard band for LAC. Note that, in addition to other considerations, in this case the setting of \(\rho_l\) will need to account for observed statistical fluctuations of \(a^o\), larger fluctuations requiring a larger guard band.

The following theorem shows that, as long as the chosen value for \(\rho_l\) is sufficiently conservative, LAC is effective in guaranteeing that the rate requirements of all users are met.

Theorem 5: There exists a \(\rho_l\) value sufficiently small such that the rate requirements of all the users of slice \(o\) can be met independent of how the other slices change their weights.

The following corollary follows from the above result and Theorem 3. Indeed, as long as every slice satisfies either (4) and (6), Theorems 3 and 5 guarantee that all slices can choose
a weight allocation that satisfies the rate requirements of all their users. Furthermore, Theorem 2 guarantees that when this holds there exists a NE. These implies that, as long as all slices run either WAC or LAC, the system can be expected to be stable.

Corollary 3: If either (4) or (6) holds for every slice (the latter with a sufficiently small ρ_0), then there exists a NE.

IV. WEIGHT ALLOCATION AND USER DROPPING FOR NETWORK SLICING

Once a slice decides which users to admit, possibly following one of the admission control policies presented above, it needs to determine the weight allocation of the admitted users. In NES, this is determined based on a sequence of best responses, where in each round a slice chooses its best response given the choices of the other slices. A slice’s best response involves the following two steps: (i) user subset selection, to determine which subset of users to serve, and (ii) weight allocation, to set the weights of the users in the selected subset. In the following, we first present the algorithms to perform the user subset selection and weight allocation, and then analyze the convergence of the sequence of best responses.

A. User Subset Selection

When a slice cannot satisfy the rate requirements of all its users, it needs to decide which subset to serve. Note that, while admission control aims at ensuring that rate requirements of all users can always be satisfied, in practice this can only be ensured with a (very) high probability due to the unpredictable nature of the mobile network; thus, in some unlikely cases it may happen that the rate requirements of some users cannot be met. When this happens, the slice has to drop those users. Note that this yields a novel paradigm for managing the resources of a slice, where changes in one part of the network may lead to dropping users in another part.

Below we present the algorithms for two possible approaches for user selection: (i) MaxSubsetSelection, which maximizes the cardinality of the subset of served users (thus minimizing user dropping); and (ii) PriorityUserSelection, which uses a priority ordering on a slice’s users (enabling a slice to customize its users’ service).

To realize MaxSubsetSelection we use a greedy algorithm which at each step adds the user which needs the smallest aggregate weight to meet the selected users’ rate requirements. To that end, let \tilde{U}^o be a candidate subset of the admitted users by slice o, U^o, and let $\omega^o(\tilde{U}^o)$ be the minimum aggregate weight required to satisfy the rate requirements the candidate subset’s users on base station b, \tilde{U}_b^o. The value of $\omega^o(\tilde{U}^o)$ can be computed as follows. The minimum weight w_u needed to satisfy the rate requirement of user $u \in \tilde{U}_b^o$ must satisfy $w_u c_u / b_b = \gamma_u$; summing these over $u \in \tilde{U}_b^o$ and isolating $\sum_{u \in \tilde{U}_b^o} w_u$ yields

$$\omega^o(\tilde{U}^o) = a^o_b(w^{-o}) \frac{\sum_{u \in \tilde{U}_b^o} \gamma_u / c_u}{1 - \sum_{u \in \tilde{U}_b^o} \gamma_u / c_u}$$

where we are assuming $\sum_{u \in \tilde{U}_b^o} \gamma_u / c_u \leq 1$ (otherwise we let $\omega^o(\tilde{U}^o) = \infty$).

We further let $\omega^o(\tilde{U}^o) = \sum_{b \in B} \omega^o_b(\tilde{U}^o)$ denote the aggregate minimal weight requirement for the slice, i.e., for any user $u' \in U^o$ we define the marginal aggregate weight of the user u' given candidate subset \tilde{U}^o as

$$\Delta \omega^o(\tilde{U}^o, u') = \omega^o(\tilde{U}^o \cup \{u\}) - \omega^o(\tilde{U}^o).$$

Building on the above notation, we present a greedy solution in Algorithm 1, which provides as output the set of selected users \tilde{U}^o. The following theorem confirms the effectiveness of this algorithm.

Algorithm 1 MaxSubsetSelection Algorithm

Initialize: $\tilde{U}^o = \emptyset$

while $\tilde{U}^o \neq U^o$ do

$\quad u^* = \arg\min_{u' \in U^o \setminus \tilde{U}^o} \left\{ \Delta \omega^o(\tilde{U}^o, u') \right\}$

if $\omega^o(\tilde{U}^o \cup \{u^*\}) \leq s_o$ then $\tilde{U}^o := \tilde{U}^o \cup \{u^*\}$ else return

end

Theorem 6: The MaxSubsetSelection algorithm results in a subset of users that maximizes the number of users the slice can serve and still meet their minimal rate requirements.

Alternatively, slices might apply a PriorityUserSelection algorithm to customize their user subset selection policy by assigning users a priority order. Such an ordering may depend, e.g., on the users’ traffic class, the revenue they generate, how long users have been in the system, and/or their current signal to noise ratio, among other factors. To this end, the algorithm simply adds users sequentially to the subset to be served in order of decreasing priority until no more can be added, i.e., $\omega^o(\tilde{U}^o \cup \{u^*\}) > s_o$.

B. Weight Allocation

Once a slice has selected a set of users whose requirements can be satisfied, it sets their weights as follows. Given the aggregate weights of the other slices, $a^o_b(w^{-o})$, a slice chooses w^o such that the its utility is maximized, i.e.,

$$w^o = \arg\max_{w^o} \sum_{u \in U^o} U^o(w^o, w^{-o}),$$

s.t.:

$$\frac{w'_u}{\omega^o_u(w^{-o})} + \frac{b'_b(w^o)}{\omega^o_b(w^{-o})} \geq \frac{\gamma_u}{c_u}, \quad \forall u \in \tilde{U}^o,$$

$$w'_u \geq \delta, \quad \forall u \in \tilde{U}^o, \quad \sum_{u \in \tilde{U}^o} w'_u \leq s_o,$$

where, for convenience, we write $U^o(w^o, w^{-o}) = U^o(w)$ to highlight dependencies on other slices weights.

Note that as long as utility functions $f_u(\cdot)$ are concave in the allocated user rates, the above maximization corresponds to a (computationally tractable) convex optimization problem.

C. Convergence of Best Response Dynamics

With NES, we determine users’ weight allocation based on a sequence of best responses. The proposed algorithm
implements the best response computed above in rounds: slices update the weight allocation of their users \(w^o \), sequentially, one at a time and in the same fixed order, in response to the other slices weights \(a^i \). Following standard game theory terminology, we refer to this iterative process as Best Response Dynamics.

The following theorem shows that the above dynamics may not converge. In particular, the proof of the theorem considers an instance satisfying the conditions of Theorem 2, i.e., a feasible instance under admission control, and shows that, even though a NE is guaranteed to exist under such conditions, Best Response Dynamics do not converge.

Theorem 7: Consider a game instance such that, for each slice \(o \in O \) there exists an allocation satisfying the rate requirements of all its users for any possible allocation of the other slices. Even though a NE is guaranteed to exist under these conditions, Best Response Dynamics may not converge.

While the above theorem shows that convergence cannot be ensured, our simulation results show that in practice Best Response Dynamics converge quickly to a region close to the NE, and hence we can simply force the system to halt after a number of best response rounds and use the weights obtained in the last round. Specifically, following the results provided in Section VI-D, in our simulations we halt the system after 7 rounds.

From the above, it can be seen that NES incurs an acceptable computational load, as its execution involves solving a sequence of convex optimization problems (each of which scales with the number of users of the slice and number of base stations) for a limited number of times (namely, the number of slices in the network multiplied by 7). Moreover, the above computations may be possibly performed at centralized controllers, as the resource allocation does not need to be implemented in the base stations before the sequence of optimizations converges or stops. Also, resources may be re-allocated only periodically to alleviate the overhead associated to the reconfiguration of base stations. Quantitative results on the computational load are provided in Section VI-E.

V. ANALYSIS OF THE NES FRAMEWORK

In the following, we analyze the performance achieved by the NES approach proposed above as compared to the two baseline allocations given in Section II-C: (i) the socially optimal allocation, and (ii) static slicing. Our analysis assumes that NES reaches a Nash equilibrium.

A. Gain Over Static Slicing

The result below shows that NES outperforms static slicing.

Theorem 8: For the same set of admitted users, the utility achieved by an operator under NES is never lower than the utility that this operator would obtain under static slicing.

While the theorem assumes the same set of admitted users for static slicing and NES, we argue that the result holds in general. Indeed, a tenant is free to choose any admission control policy, including that employed by static slicing, and it is to be expected that it will apply the policy that maximizes its utility. Thus, it follows that the level of satisfaction of the tenant will be greater with NES, under the chosen admission policy, than with static slicing.

B. Loss Over the Socially Optimal Allocation

We now study the difference in the utility achieved under socially optimal resource allocation vs. that achieved under NES. We focus on the case where \(f_u(\cdot) \) follows (2) for \(\alpha_o = 1 \) and \(\alpha_o = 2 \), which are two highly relevant settings in practice (corresponding to proportional and minimum delay potential fairness, respectively). To perform the comparison, we define the Loss over the Social Optimal (LSO) as follows. For \(\alpha_o = 1 \) we define \(LSO = U(w^*) - U(\hat{w}) \), where \(w^* \) is the socially optimal weight allocation and \(w \) is the weight allocation with NES, while for \(\alpha_o = 2 \) we define it as \(LSO = \frac{U(w)}{\gamma}(w) \). Note that these definitions are adjusted to the type of utility function: for \(\alpha_o = 1 \), utilities are logarithmic in the rate, and hence by subtracting utilities we capture the ratio between rates, while for \(\alpha_o = 2 \) utilities are inversely proportional to the rates, and hence the ratio between rates is obtained by dividing utilities.

The following theorem provides a bound on the LSO and gives an instance for which the LSO is close to this bound, showing that the bound is tight.

Theorem 9: Let user utilities \(f_u(\cdot) \) follow (2), \(\gamma_u \) be the minimum rate guarantee in the network, \(\hat{c}_o \) be the largest possible achievable rate and \(\varepsilon = \gamma_u / \hat{c}_o \). Under a given set of admitted users, we have that:

1) If \(\alpha_o = 1 \) \(\forall o \in O \), then \(LSO \leq -\log(\varepsilon) \) and there is an instance for which \(LSO \geq -\frac{1}{2}\log(2\varepsilon) \).

2) If \(\alpha_o = 2 \) \(\forall o \in O \), then \(LSO \leq \frac{1}{3} \) and there is an instance for which \(LSO \geq -\frac{1}{2} \).

Note that, according to the above results, the bound on the LSO relaxes as we decrease the minimum rate requirement in the network, and becomes unbounded in the case where we have elastic traffic with no rate guarantees, i.e., \(\gamma_u = 0 \). However, in a well provisioned network all users should experience a sufficiently large rate, and in this case the LSO should be low according to the above result. This is corroborated by our simulation results, which show that in practice NES performance is close to optimal and LSO is very small.

VI. PERFORMANCE EVALUATION

We next evaluate the performance of NES via simulation. Unless otherwise stated, the mobile network setup of our simulator follows the IMT-A evaluation guidelines for dense ‘small cell’ deployments [36], considering a network with 19 base stations disposed in a hexagonal grid layout with 3 sectors, i.e., \(|B| = 57 \). User mobility follows the Random Waypoint (RWP) model. The users arrive to the network following a Poisson Process with intensity \(\lambda \) arrivals/sec, and their holding times are exponentially distributed. Users’ SINR is computed based on physical layer network model specified in [36] (which includes path loss, shadowing, fast fading and antenna gain) and user association follows the strongest signal policy. The achievable rate for a user \(u, c_u \), is determined based on the thresholds reported in [37].

Unless otherwise stated, the rate requirement of the inelastic
users is set to $\gamma_u = 0.5$ Mbps, we have $\alpha_o = 1$ for all slice, there are 5 slices in the network with equal shares, the arrival rate is $\lambda = 5$ (equally split among slices) and the average holding time is 1 minute. In the simulations, we consider both slices with mixed traffic of different types (Sections VI-A and VI-C) as well as slices dedicated to one specific traffic type (Section VI-B). All confidence intervals are below 1%.

A. Network Utility

We first analyze the network utility achieved by NES as compared to the two benchmark solutions presented in Section II-C (namely, SS and SO). To ensure that the rate requirements of admitted users are always met, we adopt the policies proposed in Section III (WAC and LAC), while for SS we apply the policy given in [33]. For all settings, we drop users based on the MaxSubsetSelection algorithm, and adjust the guard bands to ensure that the probability of dropping an admitted user is no more than 1%. To increase the offered load sufficiently so that we can observe the behavior of the blocking probability, we set $\gamma_u = 1$ Mbps and an average holding time of 2 minutes. The results are given in Fig. 3 as a function of the fraction of inelastic user arrivals (θ). They show very high gains over SS for both approaches (WAC and LAC), and confirm that, by behaving more aggressively, LAC is able to admit many more users than WAC.

B. Throughput Gains

To give a more intuitive measure of the gains achieved by NES, we define the throughput gain over SS, Δ, as follows: it is the value such that, if we increase the rate of all users in SS by Δ, we reach the same network utility as NES (e.g., $\Delta = 100\%$ means that SS achieves the same utility as NES when multiplying all user rates by 2). Fig. 2 illustrates the throughput gains for (i) $\alpha_o = 1$ and $\alpha_o = 2$, which are the two most relevant α_o values in practice, (ii) elastic and inelastic slice, where all users are either elastic and inelastic, and (iii) different arrival rates λ, yielding different network loads. We conclude from the results that (i) gains are very substantial, ranging from 100% to 20%, (ii) they decrease with the load, as already observed in [4], and (iii) they are fairly insensitive to the fraction of inelastic traffic and choice of utility function.

C. Blocking Probability

In addition to improving the performance of admitted users, one of the key advantages of the dynamic resource allocation implemented by NES is that it allows admitting more users while meeting their rate requirements. In order to assess the achieved improvement, we evaluate the blocking probability (i.e., the probability that a new user cannot admitted) under NES versus SS. For NES, we consider the two admission policies proposed in Section III (WAC and LAC), while for SS we apply the policy given in [33]. For all settings, we drop users based on the MaxSubsetSelection algorithm, and adjust the guard bands to ensure that the probability of dropping an admitted user is no more than 1%. To increase the offered load sufficiently so that we can observe the behavior of the blocking probability, we set $\gamma_u = 1$ Mbps and an average holding time of 2 minutes. The results are given in Fig. 3 as a function of the fraction of inelastic user arrivals (θ). They show very high gains over SS for both approaches (WAC and LAC), and confirm that, by behaving more aggressively, LAC is able to admit many more users than WAC.

D. Convergence to the NE

To better understand the dynamics of NES, we have evaluated a very large number of randomly generated scenarios (namely 10^4 scenarios) with the following settings: (i) a uniform number of slices between 2 and 10, i.e., $|\mathcal{O}| \sim U(2, 10)$, (ii) a number of users per slice of $|\mathcal{U}| \sim U(0, 350)$, (iii) inelasticity level $\theta \sim U(0, 100)\%$, (iv) minimum rate requirements $\gamma_u \sim U(0, 3)$ Mbps, and (v) the shares s_o proportional to the number of users. We have found that a vast majority (97.6%) of scenarios converge to the NE after 100 rounds. For such scenarios, Fig. 4 shows the difference between the weight allocation at a given round and the one at the NE in terms of mean squared error (RMSE), providing
Fig. 3. Blocking probability for new arrivals for the two policies proposed and the SS benchmark.

Fig. 4. Box plot for the RMSE of the weight allocation at a given round with respect to the NE weight allocation. We observe that the RMSE decreases exponentially in the number of rounds. After 7 rounds we are already very close to the NE (the median is below 10^{-4}), which justifies our choice in Section IV-C. Additional results, not included for space reasons, show that user rates exhibit a very similar behavior to the weights.

E. Computational Load

Next we evaluated the computational complexity of the NES algorithm when the system halts after 7 rounds (as given by the configuration chosen in this paper). Fig. 5 shows the computational times for a dual-core 2.9GHz i7 processor for elastic and inelastic traffic and different numbers of slices and users, when the number of base stations is scaled with the number of users and admission control is adjusted to ensure that dropping probabilities below 1%. Results confirm that NES can be applied to practical settings, as complexity is roughly linear with the size of the network and computational times remain low even for large size problems; for instance, for a network with 9000 users the time falls below 2.5 seconds. We further observe that inelastic traffic slightly increases complexity but does not challenge the practicality of the approach. Finally, we note that the computational time values provided here could be further improved by optimizing the code, parallelizing tasks and/or increasing the machine computational power.

F. Slice Differentiation

We next analyze the ability of NES to deploy slices providing a customized service. To this end, we consider a scenario with 4 slices with different requirements: (i) slice 1 provides rate requirements of $\gamma_u = 1$ Mbps with WAC, (ii) slice 2 provides $\gamma_u = 0.5$ Mbps with WAC, (iii) slice 3 provides $\gamma_u = 0.5$ Mbps with LAC, and (iv) slice 4 provides no minimum rate requirements. All slices have the same share, the arrival rate is of $\lambda = 10$ equally split among the slice, and admission control is configured to provide dropping probabilities below 1%. Fig. 6 shows the empirical CDF of the user rates for each slice as well as the blocking probabilities ($\approx 47.2\%$, 16.7%, 3.58% and 0%, respectively). We observe
that (i) the minimum rate requirements are satisfied for all slices; (ii) as the rate requirements increase, so does the blocking probability, yielding an overall improvement of the user rate distribution, and (iii) by employing LAC, we achieve a dramatic reduction of the blocking probability while paying a very small prices in terms of user rate distribution. We conclude that NES is effective in enabling slice differentiation.

VII. CONCLUSIONS

In this paper we proposed and analyzed a framework for network slicing that relies on network shares and allows slices to customize resource allocations to their users. This framework results in a network slicing game where each slice unilaterally reacts to the settings of the others. While this game has been previously studied for elastic traffic, the slices’ behavior changes substantially when users have minimum rate requirements, and so does the outcome of the game. Indeed, we have shown that (in contrast to the elastic case) this game may not have a Nash Equilibrium and, even when it has a NE, Best Response Dynamics may not converge to the equilibrium.

In spite of this (apparently) negative result, we have shown that as long as admission control is applied (which is to be expected under inelastic traffic), we can guarantee that a NE exists. We have proposed algorithms for admission control, weight allocation and user dropping, which jointly bring the system to a NE. We have further analyzed performance at the equilibrium, showing that it is close to the social optimal and provides substantial gains over static slicing. Based on these results, our main conclusion is that the proposed NES framework provides an effective and implementable scheme for dynamically sharing resources across slices, both for elastic and for inelastic traffic.

APPENDIX

Proofs of the Theorems

A. Proof of Theorem 1

Consider a setting with two base stations (a and b) and two slices (1 and 2), each slice with one user associated to base station b. We refer to these users as \(U = \{1a, 1b, 2a, 2b\} \). Let the rate requirements of slice 1 be \(\gamma_1a = \gamma_1b = 2C/3 \), the users of slice 2 have no minimum rate requirements, and \(s_1 = s_2 = 1/2 \). We show that this game has no NE by contradiction. We necessarily have that either \(w_{2a} \leq 1/4 \) or \(w_{2b} < 1/4 \). Let us assume that \(w_{2a} < 1/4 \) and \(w_{2b} > 1/4 \). Since in this case slice 1 can only meet the rate requirements of user 1a, its best response will concentrate its weight on this user, \(w_{1a} = 1/2 \). However, the best response of slice 2 to such allocation of slice 1 is to concentrate its share on user 2a. Thus, \(w_{2a} > 1/4 \), which contradicts the initial assumption. Following a similar argument, it can be seen that if we assume \(w_{2a} = 1/4 \) or \(w_{2a} > 1/4 \), we also reach a contradiction.

B. Proof of Theorem 2

Let \(W \) be the convex and compact set of feasible weights \(w \) satisfying (i) \(w_u \geq \delta \) \(\forall u \), and (ii) \(\sum_{u \in U_o} w_u = s_o \) \(\forall o \) and let us consider the mapping \(w \to \tilde{w} = \Gamma(w) \), where \(\tilde{w} \) is the best response of slice \(o \) to \(w^{-o} \). We next show that this mapping satisfies the conditions of Kakutani’s theorem: i) \(\Gamma(w) \) is non-empty, ii) \(\Gamma(w) \) is a convex-valued correspondence, and iii) \(\Gamma(w) \) has a closed graph. Conditions i) and ii) follow from the fact that the best response of a slice to \(w^{-o} \) is a unique allocation \(\tilde{w} \). This implies that \(\tilde{w} \) exists and is a single point (and hence a convex set). Condition iii) is shown by proving that \(\tilde{w} \) is a continuous function of \(w^{-o} \) for all slices. Consider the set of users for which \(r_u > \gamma_u \) and the set for which \(r_u = \gamma_u \). As long as these sets do not change, \(\tilde{w} \) can be expressed as a continuously differentiable function of \(\{\tilde{w}^o, w^{-o}\} \), and it follows from the implicit function theorem that \(\tilde{w} \) is a continuous function of \(w^{-o} \). When some user moves from set \(r_u > \gamma_u \) to \(r_u = \gamma_u \) (or viceversa), such user satisfies both the equation for \(r_u = \gamma_u \) and the one for \(r_u > \gamma_u \), providing continuity over the transitions. Since all the conditions of Kakutani’s theorem are satisfied, we have that the mapping \(\Gamma \) has at least one fixed point, which implies that at least one NE exists.

To show that the NE is not necessarily unique, we provide an example with multiple NEs. Consider a scenario with three slices (1,2,3) and three base stations (a,b,c). Let the first slice have users in base stations \(a \) and \(c \) (users 1a, 1c), the second slice in \(a \) and \(b \) (2a, 2b) and the third slice in \(b \) and \(c \) (3b, 3c). Let \(\phi_{1a} = \phi_{1c} = 1/2 \), \(\phi_{2a} = \phi_{3c} = 1 \) and \(\phi_{2b} = \phi_{3b} = 0 \). Also, let \(\gamma_u = 1/2 \) for users 2b and 3b, \(\gamma_u = 0 \) for all other users and \(c_u = 1 \) for all users. It can be seen that all the weight allocations satisfying \(w_{1a} = w_{1c} = 1/6 \), \(w_{2b} = w_{3b} = w \) and \(w_{2a} = w_{3c} = 1/3 - w \) for \(w \in [\delta, 1/3 - \delta] \) correspond to a NE, which shows that multiple NE exist for this example.

C. Proof of Theorem 3

The result of 1) follows directly from [4, Lemma 1]. If users are admitted at base stations such that under static slicing their rate guarantees are met, i.e. \(r_u^{as} \geq \gamma_u \), then it follows by the above mentioned lemma that there exists an allocation satisfying \(r_u \geq r_u^{as} \geq \gamma_u \), which proves the first part of the theorem.

To prove 2), we proceed as follows. Suppose slice \(o \) admits users such that their associated rate requirements violate (4) at some base station \(b \), i.e., \(\sum_{u \in U_o^c} \gamma_u/c_u > s_o \). If all other slices place their entire share at that base station, we have

\[
\sum_{u \in U_o^c} r_u/c_u = \frac{\sum_{u \in U_o} w_u}{\sum_{u \in U_o} w_u + 1 - s_o} \leq s_o,
\]

which implies \(\sum_{u \in U_o} r_u/c_u < \sum_{u \in U_o^c} \gamma_u/c_u \) and hence necessarily \(r_u < \gamma_u \) for some \(u \), proving the second part of the theorem.

D. Proof of Theorem 4

Recall that the rate of user \(u \) is given by \(r_u = w_u c_u/l_b(u) \). If we add the rates of the users of slice \(o \) at a given base
station b and isolate $\sum_{u \in U^o} w_u$, we obtain

$$\sum_{u \in U^o} w_u = \frac{\sum_{u \in U^o} r_u / c_u}{1 - \sum_{u \in U^o} r_u / c_u} a^o_b.$$

By summing the above over all base stations and noting that $\sum_{u \in U^o} w_u = s_o$, we obtain

$$\sum_{b \in B} \frac{\sum_{u \in U^o} r_u / c_u}{1 - \sum_{u \in U^o} r_u / c_u} a^o_b = s_o. \quad (7)$$

We now prove that as long as (5) is satisfied, there exists a weight allocation w^o that meets the rate requirements of all users. Let us consider the weight allocation satisfying the

$$w_u = \frac{\gamma_u / c_u}{\sum_{v \in U^o} (\gamma_v / c_v) b(v)} s_o, \quad \forall u \in U^o. \quad (8)$$

Note that with the above weight allocation, the rates r_u are proportional to γ_u, which means that either we have $r_u \geq \gamma_u \forall u$ or $r_u < \gamma_u \forall u$. The latter yields a contradiction; indeed, if $r_u < \gamma_u \forall u$ it follows that

$$\sum_{b \in B} \frac{\sum_{u \in U^o} \gamma_u / c_u}{1 - \sum_{u \in U^o} \gamma_u / c_u} a^o_b > \sum_{b \in B} \frac{\sum_{u \in U^o} r_u / c_u}{1 - \sum_{u \in U^o} r_u / c_u} a^o_b = s_o,$$

which contradicts (5). Hence, it follows that $r_u \geq \gamma_u \forall u$.

We next prove that if (5) is not satisfied, then there exists no weight allocation meeting the rate requirements. The proof goes by contradiction. Assume (5) is not satisfied but $r_u \geq \gamma_u \forall u$. From the latter, it follows that $\sum_{u \in U^o} r_u / c_u \geq \sum_{u \in U^o} \gamma_u / c_u \forall b$. Combining this with (7) yields

$$\sum_{b \in B} \frac{\sum_{u \in U^o} \gamma_u / c_u}{1 - \sum_{u \in U^o} \gamma_u / c_u} a^o_b \leq s_o,$$

which contradicts that assumption that (5) is not satisfied.

Finally, we show that if the rate requirements satisfy (4), then they surely satisfy (5). The lhs of (5) increases with $\sum_{u \in U^o} \gamma_u / c_u$. As long as this value is no larger than s_o, we have that the following equation gives a sufficient condition for (5) to be satisfied: $\frac{1}{\sum_{u \in U^o} \gamma_u / c_u} \leq s_o$.

The above is surely satisfied since $\sum_{b \in B} a^o_b = 1 - s_o$. As (4) imposes $\sum_{u \in U^o} \gamma_u / c_u \leq s_o$, it follows that as long as (4) is satisfied, i.e., (5) is also satisfied.

E. Proof of Theorem 5

Let us take $\mu_1 = \min_b \frac{s_o}{1 - \sum_{u \in U^o} \gamma_u / c_u}$. Then, from (6) it follows that $\sum_{b \in B} \sum_{u \in U^o} \gamma_u / c_u \leq s_o$. From this, we have that condition (4) is satisfied. According to Theorem 3, as long as this condition is satisfied, there exists a choice of w^o that satisfies the rate requirements of all users of slice o independent of the weight setting of the other slice, which completes the proof.

F. Proof of Theorem 6

The proof goes by contradiction. Let \bar{U}^o be the set of users selected by the MaxSubsetSelection algorithm, and let us assume that there exists an alternative feasible user selection \tilde{U}^o such that $|\tilde{U}^o| > |\bar{U}^o|$. If we take the set \bar{U}^o and substitute each user by another one in the base station with smaller γ_u / c_u, the resulting set \tilde{U}^o is feasible and has the same number of users as the original one. Note that set \tilde{U}^o necessarily has some base station b with more users than set \bar{U}^o - otherwise $|\bar{U}^o| > |\tilde{U}^o|$ would not hold. Let us assume that there exists some other base station b' with fewer users. In this case, let us remove user u from one of the base stations with more users, b, and add user u' in one of the base stations with fewer users, b'. The resulting set remains feasible, as $\Delta w^\phi_b(\bar{U}^o, u) \leq \Delta w^\phi_{b'}(\bar{U}^o, u)$ - otherwise MaxSubsetSelection would have chosen a different subset of users. We can do this until there are no base station with fewer users than in \bar{U}^o. The result of these operations is a feasible set where all base stations have as many users or more than \bar{U}^o, and overall it has more users. However, this yields a contradiction: if such set was feasible, the MaxSubsetSelection algorithm would have selected more users.

G. Proof of Theorem 7

Let us consider a scenario with three base stations (a,b,c) and three slices (1,2,3), with $s_1 = s_2 = s_3 = 1/3$ and any arbitrary $\alpha_1, \alpha_2, \alpha_3$ values. Let slice 1 have two users associated to base stations a and b (u_{1a}, u_{1b}), slice 2 two users associated to base stations b and c (u_{2b}, u_{2c}) and slice 3 two users associated to base stations a and c (u_{3a}, u_{3c}). Let $\phi_{ia} = \phi_{ib} = \phi_{ic} = 1/2$, $\phi_{ia} = \phi_{ib} = \phi_{ic} = 0$, and $\phi_{ia} = \phi_{ib} = \phi_{ic} = 1$. The NE of this instance is $w_u = 1/6 \forall u$. However, if we start with $w_{3c} = w < 1/6$ and $w_{3a} = 1/3 - w$, and perform a best response cycle starting with slice 1 followed by 2 and 3, it can be seen that this leads to an endless cycle where each slice takes a weight allocation of either $\{w, 1/3 - w\}$ or $\{1/3 - w, w\}$ at each step (none of which corresponds to the NE). Hence, Best Response Dynamics do not converge for this instance of the game.

H. Proof of Theorem 8

The proof follows from [4, Lemma 1], which shows that, given a slice o and a feasible weight allocation w^o for the other slice, there exists a weight allocation w^o for slice o possibly dependent on w^{-o}, such that the resulting weight allocation w satisfies $r_u(w) \geq r^{as}_u$ for all $u \in U^o$. Therefore, there exists a weight allocation that provides the same utility as static slicing. Since the weight allocation chosen by NES is the one that maximizes the slice’s utility, it surely provides a utility no smaller than that under static slicing.
I. Proof of Theorem 9

We start for $\alpha_o = 1$. To prove the bound on the LSO, we first note that

$$U(\mathbf{w}^*) = \sum_{o \in \mathcal{O}} \sum_{u \in \mathcal{U}_o} s_o \phi_u \log \left(\frac{w_u}{\sum_{u' \in \mathcal{U}_o} w_{u'}} \right) \leq \sum_{o \in \mathcal{O}} \sum_{u \in \mathcal{U}_o} s_o \phi_u \log (\epsilon_u).$$

Furthermore, from the minimum rate constraint it follows that

$$U(\mathbf{w}) = \sum_{o \in \mathcal{O}} \sum_{u \in \mathcal{U}_o} s_o \phi_u \log \left(\frac{\bar{w}_u}{\sum_{u' \in \mathcal{U}_o} \bar{w}_{u'}} \right) \geq \sum_{o \in \mathcal{O}} \sum_{u \in \mathcal{U}_o} s_o \phi_u \log (\gamma_u).$$

Combining the above two equations, we obtain $U(\mathbf{w}^*) - U(\mathbf{w}) \leq \log(\epsilon_u/\gamma_u) = -\log(\epsilon)$, which completes the first part of the proof.

To show that the above bound is tight, we consider the following network instance. We have two slices with shares $s_1 = s_2 = 1/2$ and two base stations. The first slice has two users in the first base station (weights w_{11} and w_{12}) and the second slice has one user in the first base station (w_{21}) and another one in the second base station (w_{22}). All users have $c_u = \epsilon_u$ and the rate requirements are $\gamma_1 = (1/2 - \epsilon)$ for the first user and $\gamma_2 = (1/2 + \epsilon)$ for the other ones. Furthermore, let $\phi_1 \rightarrow 0$, $\phi_2 \rightarrow 1$, and $\phi_2 \rightarrow 1$.

In the allocation employed by NES (which corresponds to the NE) we have $w_{11} = 1/2 - \epsilon$, $w_{12} = \epsilon$, $w_{21} = 1/2$ and $w_{22} = 0$, which yields $U(\mathbf{w}) = \frac{1}{2} \log(\epsilon_c) + \frac{1}{2} \log(\epsilon_u)$. In the social optimal, we have the following weight allocation: $w_{11} = (\frac{1}{2} - \epsilon) (1 + \frac{1}{w_{11} - \epsilon})$, $w_{12} = (\frac{1}{2} - w_{11})$, $w_{21} = \frac{1}{2}$ and $w_{22} = 1/2 - w_{21}$, from which $U(\mathbf{w}^*) = \frac{1}{2} \log((1/2) \epsilon_c) + \frac{1}{2} \log(\epsilon_u)$. This yields $U(\mathbf{w}^*) - U(\mathbf{w}) = \frac{1}{2} \log(2\epsilon)$, which terminates the proof for $\alpha_o = 1$.

To prove the LSO bound for $\alpha_o = 2$, we note that

$$U(\mathbf{w}^*) \geq - \sum_{o \in \mathcal{O}} \sum_{u \in \mathcal{U}_o} s_o \phi_u \frac{1}{\epsilon_u}$$

and

$$U(\mathbf{w}) \leq - \sum_{o \in \mathcal{O}} \sum_{u \in \mathcal{U}_o} s_o \phi_u \frac{1}{\gamma_u}.$$

Pablo Caballero received the B.S. degree in telecommunications and the M.S. degree in telecommunications engineering from the University Carlos III of Madrid in 2013 and 2015, respectively. He is currently pursuing the Ph.D. degree with the Wireless Networking and Communications Group, The University of Texas at Austin, under the supervision of Prof. G. de Veciana and Prof. A. Banchs. Before his Ph.D. degree, he was a Research Assistant with the IMDEA Networks Institute and as a Research Intern with NEC Laboratories Europe. His research interests lie in the design and performance evaluation of communication networks, game theory, and algorithm analysis.

Albert Banchs (M’04–SM’12) received the M.Sc. and Ph.D. degrees from the Polytechnic University of Catalonia in 1997 and 2002, respectively. He was with ICSI Berkeley in 1997, Telefonica I+D in 1998, and NEC Europe Ltd. from 1998 to 2003. He is currently a Full Professor with the University Carlos III of Madrid and also the Deputy Director of the IMDEA Networks Institute. His research interests include the performance evaluation and algorithm design in wireless and wired networks. He is an Editor of the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS and the IEEE/ACM TRANSACTIONS ON NETWORKING.

Gustavo de Veciana (S’88–M’94–SM’01–F’09) received the B.S., M.S., and Ph.D. degrees in electrical engineering from the University of California at Berkeley in 1987, 1990, and 1993, respectively. He joined the Department of Electrical and Computer Engineering, The University of Texas at Austin, where he is currently a Cullen Trust Professor of engineering. His research focuses on the analysis and design of communication and computing networks, data-driven decision-making in man-machine systems, and applied probability and queueing theory. He served as an Editor and is currently serving as the Editor-at-Large for the IEEE/ACM TRANSACTIONS ON NETWORKING. In 2009, he was designated as an IEEE Fellow for his contributions to the analysis and design of communication networks. He currently serves on the Board of Trustees of IMDEA Networks Madrid.

Xavier Costa-Pérez (M’01) received the M.Sc. and Ph.D. degrees in telecommunications from the Polytechnic University of Catalonia. He is currently the Head of 5G Networks R&D at NEC Laboratories Europe, where he manages several projects focused on 5G mobile core, backhaul/fronthaul, and access networks. His team contributes to NEC projects for products roadmap evolution, to European Commission R&D collaborative projects, and to open-source projects and related standardization bodies. He has received several R&D awards for successful technology transfers. He received a national award for his Ph.D. thesis. He has served on the program committees of several conferences and holds multiple patents.

Arturo Azcorra (SM’02) received the M.Sc. degree in telecommunications from UPM in 1986, the Ph.D. degree in 1989, and the M.B.A. degree (Hons.) in 1993. He is currently a Professor with the University Carlos III of Madrid and the Director of the IMDEA Networks Institute. He has been a Visiting Researcher at MIT and UC Berkeley. He has participated in 49 research projects since the first Framework Program of EU. He has been the project coordinator of 5G-TRANSFORMER, 5G-Crosshaul, CARMEN, CONTENT, and E-NEXT. He is an ACM SIGCOMM Member. More information in: http://en.wikipedia.org/wiki/Arturo_Azcorra.