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Abstract— In a virtualized radio access network (RAN),
baseband processing is performed by software running in
cloud-computing platforms. However, current protocol stacks
were not designed to run in this kind of environment; the
high variability on the computational resources consumed by
RAN functions may lead to eventual computational outages
(where frames are not decoded on time), severely degrad-
ing the resulting performance. In this paper, we address this
issue by re-designing two key functions of the protocol stack:
1) scheduling, to select the transmission of those frames that do
not result in computational outages, and 2) modulation and coding
scheme (MCS) selection, to downgrade the selected MCS in case
no sufficient computational resources are available. We formulate
the resulting problem as a joint optimization and compute
the (asymptotically) optimal solution to this problem. We further
show that this solution involves solving an NP-hard problem, and
propose an algorithm to obtain an approximate solution that is
computationally efficient while providing bounded performance
over the optimal. We thoroughly evaluate the proposed approach
via simulation, showing that it can provide savings as high as
80% of the computational resources while paying a small price
in performance.

Index Terms— 5G, computation-aware scheduling, virtualized
RAN, joint scheduling, MCS selection.

I. INTRODUCTION

FOLLOWING current trends in network virtualization,
virtualized RAN (Radio Access Network) is considered as

one of the key components of future 5G networks [1]. Enabled
by the Network Function Virtualization (NFV) paradigm, this
technology virtualizes the RAN functions and moves them
out from the base stations. The RAPs (Radio Access Points)
only perform simple processing of the Radio Frequency (RF)
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signal while the majority of the baseband processing is
executed in Virtual Network Functions (VNFs) running in
cloud-computing platforms.1 The cloud-computing platforms
typically run the baseband processing of a number of RAPs in
a single location; depending on the scenario, such location may
be placed in edge nodes close to the antennas (e.g., in MEC
– multi-access edge computing) or in the network core (e.g.,
in centralized RAN).

There is wide consensus in the scientific and industrial
communities on the advantages of RAN virtualization. Indeed,
this technology provides, among other benefits, high flexibility
and increased multiplexing gains. Driven by these benefits,
substantial research and standardization efforts have been
devoted over the last few years to the design and analysis
of virtualized RAN solutions [2]–[6].

In spite of the efforts conducted to date, there are still
some unresolved research challenges with RAN virtualiza-
tion; one of them is the dimensioning of the computational
resources. The dimensioning of resources should be based
on the processing demands of the different functions; how-
ever, the computational load of functions such as baseband
processing is known to be highly variable [3], which makes the
resource allocation based on peak demands highly inefficient.
A much more efficient strategy would be to pool the baseband
processing and allocate resources to this pool based on typical
(rather than peak) demands [7].2 This implies that occasionally
the baseband processing pool may not have all the resources
needed to process all frames within the involved timing
constraints; following [10], hereafter this is referred to as a
computational outage.

The current RAN protocol stack has been designed under
the assumption that required computational resources are
always available, and RAN functions are not prepared to
cope with computational outages [11]. Indeed, when such
computational outages occur (e.g., when the decoding function
cannot meet the given deadline), current virtualized RAN
implementations [12] just drop the frame being processed, and
as a result they see their performance severely degraded.

1This is the case, for instance, with options 7 and 8 for the functional split
defined by 3GPP [2].

2Indeed, one would expect that resources are typically allocated dynamically
based on estimates of the average demand. However, such predictions may
fail due to the fluctuations of the demand or other events such as, e.g., an
unexpected flash-crowd. While in such cases more resources may be provided
by adding Virtual Machines or containers to the cloud, this usually happens
at time scales (of tens of seconds or minutes) [8] that are much larger than
the user QoS requirements (of hundreds of milliseconds) [9].
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In order to provide a more robust behavior against com-
putational outages, a re-design of the RAN protocol stack
is required. As a first step towards this end, in this paper
we focus on the design of two key functions of the protocol
stack: scheduling and modulation and coding scheme (MCS)
selection. By making these functions computationally aware,
our solution provides a graceful performance degradation in
presence of computational outages, in contrast to the severe
degradation with the current stack. Our two key ideas are as
follows:

• By being aware of the frames’ computational resource
consumption when scheduling transmissions, we can
select those frames that prevent the system from incurring
into computational outages.

• As shown in [13], computational resource consumption
decreases when selecting more robust modulation-and-
coding schemes (MCS); hence, by reducing the selected
MCS for some frames we can control the overall com-
putational resource consumption.

We remark that the above techniques are not decoupled,
and they may be combined in different ways to mitigate
the impact of computational outages. Following this, the key
contribution of this paper is the design of a mechanism that
jointly optimizes scheduling and MCS selection to improve the
performance of a virtualized RAN system with (temporarily)
limited computational resources.

A. Related Work

There is a vast amount of work in the literature focusing on
the design of algorithms for scheduling and for modulation-
and-coding scheme selection. However, most of this work
assumes unlimited amount of computational resources, and
focuses only on communications resources (namely, channel
quality). In this context, many scheduling algorithms have
been designed to optimize performance under the given chan-
nel quality (see, e.g., [14]–[16]). From all these algorithms,
the most relevant ones are those aiming at providing pro-
portional fairness [17]–[22], which is the criterion we focus
on in this paper. However, these algorithms do not take
into account computational resources, and the choice of the
optimal schedule may substantially vary when taking them
into account.

There have also been many proposals on modulation and
coding scheme (MCS) selection algorithms [23]–[25]. How-
ever, all these algorithms assume that the only constraint when
selecting the MCS is the channel quality, and do not consider
any other aspect. Our approach is therefore fundamentally
different, as channel quality only provides us with an upper
bound on the MCS that can be selected, but depending on the
available computational resources we may select lower MCSs.

In traditional networks, scheduling and MCS selection are
fully decoupled: first, the highest MCS under the current
channel quality is selected for each device, and then devices
are scheduled with the selected MCS for each of them. This
is fundamentally different in our case, where we can counter
computational resources outages either by scheduling less
demanding users or by selecting a more robust MCS for some

of them, and hence we need to address scheduling and MCS
selection jointly.

Current trends on virtualization and cloudification of net-
work functions have led to some research work focusing
on understanding the computational load incurred by RAN
functions [26]. Bhaumik et al. [27] analyze this based on a
real experimental testbed, but do not consider the impact of
the SNR, which is known to influence computational load very
substantially. Rost et al. [13] provide a more accurate model
for computational load. In this paper we employ the model
in [13], which is the most accurate proposed to date, for our
performance evaluation experiments.

Perhaps the closest work to ours is that of [10]. In that work,
the authors propose to downgrade the MCS of scheduled users
to fight computational outages. However, in contrast to our
approach, [10] does not consider radio resource scheduling.
In the performance evaluation, we show that our approach
(which jointly optimizes scheduling and MCS selection) sub-
stantially outperforms an approach that combines a standard
scheduling with the MCS selection of [10] (relying on two
separate optimizations).

The re-design of the VNF internals to make them robust
to computational outages will be a fundamental cornerstone
of virtualized mobile network protocol stacks. By building
network functions that are elastic with respect to the computa-
tional resources available in the cloud, infrastructure providers
can host more tenants on the same infrastructure, having a
better resources utilization and increasing thus the CPU cycle
per dollar ratio.

B. Key Contributions

The key contributions of the paper are as follows. After
presenting the system model (Section II), we introduce the
maximum step algorithm, which maximizes the resulting
performance at each step, and show that this algorithm is
asymptotically optimal (Section III). As the maximum step
algorithm involves solving an NP-hard problem, we devise the
Computation-AwaRE Scheduling (CARES) algorithm, which
is computationally efficient and provides bounded performance
guarantees (Section IV). Finally, we exhaustively evaluate the
performance of the proposed approach via simulation, show-
ing that CARES achieves savings in terms of computational
capacity of up to 80% while paying a very small price in
performance (Section V).

II. MODEL AND PROBLEM FORMULATION

In this section, we present our system model and
formulate the optimization problem that will drive the
computational-aware scheduling of the users. The model is
inspired in LTE-A but is generally applicable to any cellular
system.

A. System Model

We consider a typical cloud-computing platform that is
serving a set S of RAPs. The amount of resources devoted
to the baseband processing for these RAPs is given by the
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computational capacity C. Each RAP has a number B of
resource blocks. We denote by Us the set of users associated
with RAP s ∈ S.

In line with standard LTE schedulers [28]–[32], time is
divided into Transmission Time Intervals (TTIs) and at every
TTI scheduling decisions are performed for the next TTI based
on the current channel quality of the different users. Such a
scheme allows to take into account the SNR level of each user
resulting from fading, interference and other effects. We can
thus select users when they experience their best channel
quality; this is commonly referred to as “multi-user diversity”,
as it exploits the fact that different users will experience peaks
in their channel quality at different times. More specifically,
at each TTI a central scheduler decides (i) the mapping of
users to resource blocks, and (ii) the MCS selected for each
user. This decision is taken with the goal of improving the
overall system performance given the SNR of each user and
the available computational capacity C.

In our system model, we assume that each user sees the
same SNR level in all resource blocks at a given TTI. The
SNR level constrains the set of MSC schemes that may be
selected for a user: we denote the set of possible MCS schemes
available for user u at TTI t by Mu(t). Specifically, we may
select an MCS scheme from this set under the constraint that
all the resource blocks assigned to the user in a TTI have
to employ the same MCS (as imposed by LTE-A). We further
let cu,m(t) denote the computational load incurred to decode a
resource block for user u under MCS m ∈Mu at TTI t (given
the user’s channel at that time). Following [10], we impose
that the aggregate computational load in the system (given by
the individual loads cu,m(t)) cannot exceed the computational
capacity C.

Note that the computational load cu,m(t) incurred by user
u at time t is a function of the SNR level at that time and the
MCS selected for the user. Indeed, the computational effort
required to decode a sub-frame increases with the number
of iterations, the number of code blocks and the number of
information bits, among other factors; in turn, the number
of iterations depends on the SNR, and the number of code
blocks and information bits depend on the selected MCS. To
determine the value of cu,m(t), we follow the model provided
in [13], according to which the computational load for MCS
m with a given SNR is equal to

cm(SNR) = rm max

[
1,

log2

(
− (ζ−2) log10 ε̂channel

Kζ

)
log2 (ζ − 1)

− 2 log2 [log2 (1 + SNR)− rm]
log2 (ζ − 1)

]

where rm is the rate provided by one resource block with
MCS m, ε̂channel is the constraint on the channel outage prob-
ability, and ζ and K are constant parameters; following [13],
we set ζ = 6 and K = 0.2 and ε̂channel = 0.1%. Moreover,
in the above expression we set a minimum computational load
which corresponds to one iteration in order to account for large
SNR values. Fig. 1 illustrates the resulting computational load
per resource block, cu,m, as a function of the instantaneous

Fig. 1. Computational load a function of SNR level, obtained from the
analysis of [13].

SNR level; specifically, the figure shows (i) the computational
load of a few selected MCSs (in different colors) and (ii) the
computational load of the highest possible MCS for each SNR
value (in gray).

Note that the above computational load values correspond
to a cloud environment (e.g., a datacenter) consisting of
commodity hardware, which is the natural scenario for a
virtualized RAN system such as the one considered in this
paper. If we used hardware with accelerators such as GPU
(Graphics Processing Unit) or FPGA (Field-Programmable
Gate Array), the computational load would change as a result
of parallelizing some of the tasks. In any case, the algorithm
we propose can be applied to any hardware platform, simply
by taking the corresponding values for the computational load
and capacity.

B. Legacy Proportional Fair (PF) Scheduler

In this paper, we aim at providing proportional fairness (PF),
which is a widely accepted criterion for sharing resources.
Indeed, much effort in the literature has been devoted to
the design of PF scheduling algorithms (see, e.g., [17]–[22]).
In the following, we present the formulation of a legacy PF
scheduler under no computational capacity constraints, which
will be taken as a baseline for our approach.

Let xu,b(t) be a variable that indicates if resource block b
is assigned to user u at TTI t. Let ru,b(t) be the rate provided
to user u by resource block b at that time, depending on
the user’s SNR. A scheduling algorithm involves deciding
the assignment of resource blocks to users (i.e., the xu,b(t)
values) depending on the users’ channel quality at each point
in time (reflected by ru,b(t)). Once a scheduling decision
is taken, the rate received by user u at TTI t is equal to
ru(t) =

∑
b∈Bs(u)

xu,m(t)ru,b(t), where Bs(u) is the set
of resource blocks at user u’s RAP. The average rate of
user u is then given by the following expression, which
corresponds to an exponential moving average updated at each
TTI [17], [19], [21], [22], [33]:

Ru(t + 1) = (1− α)Ru(t) + αru(t),

where ru(t) is the rate received by user u at TTI t and α
is a smoothing factor which discounts past values of ru(t) to
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reflect that more recent transmissions provide a higher value to
the user. As the PF criterion aims to maximize the long-term
throughputs [17]–[22], this implies that, with this criterion,
recent transmissions are not valued significantly higher than
previous ones. Following this, in the rest of the paper we
assume that the discount factor α takes a small value.

With the above, PF scheduling can be formulated as an
optimization problem that maximizes the overall performance
or utility, given by the sum of the logarithms of the average
rates, under the constraint that a resource block cannot be
assigned to more than one user:

maximize
{xu,m(t)}

∑
u∈U

log E[Ru(t)]

subject to
∑
u∈U

xu,b(t) ≤ 1, xu,b(t) ∈ {0, 1} ∀u, b, t.

The above problem has been solved by the literature, showing
that performance is optimized when at a given TTI t, the user
with the highest ru(t)/Ru(t) is scheduled (see, e.g., [22]).

C. Computation-Aware Proportional Fair Scheduling and
MCS Selection

The previous problem formulation assumes that computa-
tional resources are unlimited; under such conditions, optimiz-
ing MCS selection and scheduling are decoupled problems:
users first select the highest MCS allowed by their radio
conditions, and then scheduling chooses the users that maxi-
mize the system’s utility given the pre-selected MCSs. In this
paper, we focus on computational-constrained systems where
scheduling and MCS selection decisions take computational
resources into account, which couples these decisions and
leads to a joint optimization problem. In the resulting problem
formulation, scheduling and MCS selection are driven by
the decision variable xu,b,m(t), which indicates that resource
block b is assigned to user u with MCS m at TTI t. Based on
this variable, the rate received by user u at TTI t is given by:

ru(t) =
∑

b∈Bs(u)

∑
m∈Mu(t)

xu,b,m(t)ru,m(t), (1)

where Bs(u) is the set of resource blocks at user u’s RAP,
Mu(t) is the set of MCS options available for user u at time t
(according to the radio conditions at that time) and ru,m(t) is
the rate provided to user u by one resource block with MCS m.
With this, the goal of maximizing overall performance or
utility in terms of PF in this system leads to the following
optimization3:

maximize
{xu,b,m(t)}

∑
u∈U

log E[Ru(t)] (2a)

subject to
∑
u∈U

∑
b∈Bs(u)

∑
m∈Mu(t)

xu,b,m(t) cu,m(t) ≤ C, ∀ t,

(2b)

3Our formulation focuses on uplink scheduling, as the load at the
cloud-computing platform is dominated by uplink frames [27]; however,
the formulation could be easily extended to incorporate downlink scheduling
by simply adding downlink transmissions with their (low) computational cost.

∑
u∈U

∑
m∈Mu(t)

xu,b,m(t) ≤ 1, ∀ b, t, (2c)

xu,b,m(t) + xu,b′,m′(t) ≤ 1,

∀u, b, b�, m� �= m, t, (2d)

xu,b,m(t) = 0, ∀u, b, m /∈ Mu(t), (2e)

xu,b,m(t) ∈ {0, 1} ∀u, b, m, t. (2f)

The above formulation corresponds to a joint optimiza-
tion problem involving both scheduling and MCS selection,
under the constraints that the consumption of computational
resources does not exceed the available capacity (2b), each
resource block is only assigned once (2c), a user can employ
only one MCS4 (2d) and we cannot select a higher MCS
than the one allowed by current radio conditions (2e). The
optimization problem is similar to the legacy proportional fair
scheduling presented in Section II-B, except for the constraint
on computational load. However, this constraint makes the
problem much harder, as it couples scheduling decisions with
MCS selection (which are decoupled in the legacy case)
and makes the problem NP-hard (in contrast to legacy PF
scheduling).

The above problem formulation allows to select an MCS
lower than the allowed by the user’s radio conditions (which
we refer to as an MCS downgrade) when computational
resources are limited. While this may have a negative impact
on throughput, our optimization guarantees that such MCS
downgrades will only be performed when this contributes to
improving the overall system performance. Indeed, the results
presented in Section V show that such selective MCS
downgrades can drastically reduce computational resource
consumption while paying a minimum price in terms of
throughput performance.

The underlying assumption behind the above problem for-
mulation is that all users are backlogged, i.e., they always
have a frame ready for transmission, and the algorithm devised
hereafter is based on this assumption. However, in case some
of the users are not backlogged, we can adapt our algorithm
following the approach proposed in [34] to ensure that (i) a
user cannot steal resources from the other users upon becom-
ing backlogged, and (ii) under low loads, i.e., when there
are no backlogged users, the system provides low latencies
(see [34] for more details).

III. OPTIMAL SOLUTION

We next present the maximum step algorithm and show
that this algorithm is asymptotically optimal, meaning that
it provides optimal performance when α → 0. Note that,
as mentioned before, we can expect that α will be set to
a small value, which means that in practice the maximum
step algorithm will provide a very good approximation to the
optimal solution.

The maximum step algorithm maximizes the objective func-
tion increase at each step, i.e., it maximizes the following

4In particular, following the LTE-A specifications mentioned in
Section II-A, this constraint forces that if xubm is equal to 1 for a
certain user u and a certain MCS m, it cannot be equal to 1 for the same
user u and another MCS m′.
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expression for each t,∑
u∈U

log Ru(t + 1)−
∑
u∈U

log Ru(t).

The above can be expressed as follows:∑
u∈U

log Ru(t + 1)−
∑
u∈U

log Ru(t) =
∑
u∈U

log
Ru(t + 1)

Ru(t)

=
∑
u∈U

log

α
∑

b∈Bs(u)

∑
m∈Mu(t)

xu,b,m(t)ru,m(t)+(1−α)Ru(t)

Ru(t)
,

where s(u) is the RAP serving user u.
Maximizing the above expression is equivalent to maximiz-

ing

∏
u∈U

(
α
∑

b∈Bs(u)

∑
m∈Mu(t) xu,b,m(t)ru,m(t)

Ru(t)
+ (1− α)

)
.

If we divide the above by (1−α)|U|, the maximization still
holds, yielding to

∏
u∈U

(
α
∑

b∈Bs(u)

∑
m∈Mu(t) xu,b,m(t)ru,m(t)

(1 − α)Ru(t)
+ 1

)
.

To simplify notation, let us denote the number of
resource blocks assigned to user u with MCS m at time
t by nu,m(t), i.e., nu,m(t) =

∑
b∈Bs(u)

xu,b,m(t), which
allows to write the above as a more compact expression:∏

u∈U
(

α
�

m∈Mu(t) nu,m(t)ru,m(t)

(1−α)Ru(t) + 1
)

. It can be seen that
this expression is equivalent to∏

u∈U

∏
m∈Mu(t)

(
αnu,m(t)ru,m(t)

(1 − α)Ru(t)
+ 1
)

,

since the terms for which nu,m(t) = 0 have no effect in either
of the expressions.

Let us denote by Δ(t) the strategy followed for the assign-
ment of users to resource blocks as well as for selecting the
MCS of each user. The definition of a strategy is determined
by variables {nu,m(t), ∀u, m}. According to the analysis
presented in this section, we have that the strategy followed
by the maximum step algorithm is given by

arg maxΔ(t)

∏
u∈U

∏
m∈Mu(t)

(
αnu,m(t)ru,m(t)

(1− α)Ru(t)
+ 1
)

(3)

under the constraints (2b)-(2f).
Hence, the maximum step algorithm takes the scheduling

decision at each TTI t that maximizes (3) given the value of
the various variables at that time. More specifically, it decides
the number of resource blocks to assign to each user, nu,m(t),
depending on the rate a user would receive, ru,m(t), and her
current average rate based on previous transmissions, Ru(t).

The following theorem shows that this algorithm is
asymptotically optimal as α → 0, which (as discussed
in Section II-B) is a reasonable assumption when dealing
with long-term rates. The theorem also assumes that the
channel state of the various RAPs can be modeled as a
finite Markov chain. Note that this is a mild constraint,

as Markov chains allow for very general models. Indeed,
many works rely on similar assumptions to model wireless
channels [33], [35]–[39]. The proof of the theorem is provided
in Appendix I.

Theorem 1: If the wireless channels of the RAPs behave
according to a Markov chain, then the maximum step algo-
rithm becomes (asymptotically) optimal as α→ 0.

While the maximum step algorithm provides (asymptoti-
cally) optimal performance, it involves finding the best strategy
Δ(t) at each t, which is very costly in terms of computational
complexity. This is confirmed by the following theorem, which
shows that the maximum step algorithm is an NP-hard problem
and thus infeasible in practical scenarios. The proof of the
theorem is provided in Appendix II.

Theorem 2: The maximum step algorithm is NP-hard.

IV. APPROXIMATE SOLUTION: CARES ALGORITHM

In this section we propose an heuristic, the Computational-
AwaRE Scheduling algorithm (CARES), to obtain an approxi-
mate solution to the optimization problem of (2a)-(2f). The
proposed approach (i) incurs an acceptable computational
overhead, and (ii) provides a performance that is provably
close to the optimal by a constant factor.

The CARES algorithm proposed here is inspired by the
algorithm proposed in [40] for the multiple-choice knapsack
problem. While the problem addressed in [40] and CARES
have some similarities, there are also fundamental differ-
ences: (i) in [40] there are no constraints on the number of
items that can be inserted in a knapsack, while in CARES
this is limited by the number of available resource blocks;
(ii) in CARES, a single user cannot employ different MCSs,
while [40] does not have such a constraint, (iii) in CARES,
a user can be assigned several resource blocks, while items
cannot be repeated in [40], and (iv) CARES aims to utilize
all resource blocks, in contrast to [40]. These differences
have strong implications in terms of (i) the algorithm design
(the branching module has been adapted to the specifics of
our problem, while the improvement module is completely
new), (ii) the theoretical analysis (the complexity analysis
differs substantially and the performance bound proof has been
adapted, adjusting Lemma 1 and incorporating Lemma 2) and
(iii) the performance results (see Figure 5 for a comparison
of CARES against a variation of [40] in terms of network
utilization).

A. Algorithm Description

The CARES algorithm builds on the following approxima-
tion:

log
(αnu,m(t)ru,m(t)

(1− α)Ru(t)
+ 1
)

≈ nu,m(t) log
( αru,m(t)

(1− α)Ru(t)
+ 1
)
, (4)

which is accurate for small α; indeed, when α is small both
the left-hand side and the right-hand side of the above equation
can be approximated by

αnu,m(t)ru,m(t)
(1− α)Ru(t)

.
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Algorithm 1 Branching Module Algorithm

Step 1: Set the initial resource block assignment {x�
u,b,m}

Discard those {u, m} pairs for which pu,m/cu,m <
0.8 P/C
{u�, m�} ← select the {u, m} with the largest pu,m

for each RAP among remaining pairs
{x�

u,b,m} ← assign all the resource blocks of the RAP
to user
u� under MCS m�

Step 2: Determine whether P ∗ > 0.4 P or P ∗ ≤ 1.6 P
holds
P � =

∑
{u,b,m} x�

u,b,mpu,m

� performance in terms of profit for the {x�
u,b,m}

assignment
If P � > 0.8 P then it holds P ∗ > 0.4 P
If P � ≤ 0.8 P then it holds P ∗ ≤ 1.6 P

Step 3: Build the resource block assignment solution
{x̃u,b,m}
C� =

∑
{u,b,m} x�

u,b,mcu,m

If C� ≤ C then return {x̃u,b,m} = {x�
u,b,m} and stop

Else � Build a subset of {x�
u,b,m} denoted by {x̃u,b,m}

{x̃u,b,m} = ∅
While C̃

.=
∑

{u,b,m} x̃u,b,mcu,m ≤ C do
{x̃u,b,m} ← element remaining in {x�

u,b,m} with
the largest pu,m/cu,m

If C̃ > C/2 then return {x̃u,b,m} and stop
Else � Rebuild {x̃u,b,m}
{x̃u,b,m} = ∅, {x̃u,b,m} ← element in {x�

u,b,m}
with the largest pu,m

While C̃ ≤ C do
{x̃u,b,m} ← element in {x�

u,b,m} with largest
pu,m/cu,m

Return {x̃u,b,m} and stop

With the above approximation, the optimal solution is given
by the {xu,b,m} setting that solves the following optimization
problem:

maximize
{xu,b,m}

∑
u

∑
b

∑
m

xu,b,mpu,m

subject to (2b)− (2f),

where we define the profit as pu,m
.= log

(
αru,m(t)

(1−α)Ru(t) + 1
)

.
To solve the above optimization, the design of CARES

consists of three modules: (i) the branching module; (ii) the
binary search module, and (iii) the improvement module.
CARES works as follows. First, it runs the binary search
module to find a candidate solution. In each of the steps of
the binary search, the branching module provides a possible
solution. Once the binary search returns the candidate solution,
the improvement module is executed to try to find a better one.
Below, we describe each of the modules of CARES in detail:

1) Branching Module: Let P ∗ denote the maximum profit,
P ∗ = max

(∑
{u,b,m} xu,b,mpu,m

)
, resulting from finding

the maximum value of
∑

{u,b,m} xu,b,mpu,m under constraints
(2b)-(2f). The aim of this module is to determine, for a given
P value, if P ∗ ≤ 1.6P or P ∗ ≥ 0.4 P . Moreover, it returns

a feasible solution, {x̃u,b,m}; hereafter, we let P̃ denote∑
{u,b,m} x̃u,b,mpu,m for the returned subset. The pseudocode

is provided in Algorithm 1.
2) Binary Search Module: This module performs a binary

search on P until it finds a value that satisfies certain condi-
tions, and returns the solution {xu,b,m} corresponding to this
value. When the binary search module stops, it returns the
solution stored in variable x̂u,b,m, whose (aggregate) profit is
given by P̂ . The pseudocode is provided in Algorithm 2.

Algorithm 2 Binary Search Module Algorithm

1: Remove the {u, m} pairs for which cu,m > C
2: L← maxu,m pu,m, U ← B|S|maxu,m pu,m, P ← U/2
3: P̂ ← L and x̂u,b,m ← user with largest pu,m scheduled

� assignment yielding P̂
4: While U/L > 5 do
5: Run the branching module to

determine if P ∗ ≤ 1.6 P or P ∗ ≥ 0.4 P
get {x̃u,b,m}

6: If P̃ > P̂ then {x̂u,b,m} ← {x̃u,b,m}, P̂ ← P̃
7: If P ∗ ≤ 1.6 P then U ← 1.6P and go to 9
8: If P ∗ ≥ 0.4 P then L← 0.4P and go to 9
9: P ← U/2

3) Improvement Module: The objective of this module is
to further improve performance when the solution x̂u,b,m

returned by the binary search module does not use all the
available resource blocks. The idea is to downgrade the MCS
of some selected users (i.e., choosing lower MCS for them) to
make room for other users to be scheduled. This module runs
in iterations: at each iteration, we obtain a new solution and
compare its performance with the previous iteration. We stop
when the current iteration does not improve performance over
the previous one. The pseudocode is provided in Algorithm 3.

One of the key features of CARES is that it provides a
performance bound. The rationale to achieve this bound is
as follows. CARES runs the binary search module within an
upper limit U and a lower limit L. In each step, we set P =
U/2 and run the branching module to find a solution {x�

u,b,m}.
Based on the outcome of the branching module, we either set
L = 0.4P or U = 1.6P and continue the binary search. It can
be proven that in all the steps of the search it holds that (i)
the profit of the solution provided by the branching algorithm
satisfies P � > L, and (ii) the upper bound satisfies U > P ∗.
Then, by executing the search until U/L ≤ 5, we can bound
the distance between the profit provided by CARES (P �) and
the maximum profit (P ∗). Note that the choice of the various
parameters (such as 0.4 and 1.6) is crucial to guarantee the
provided performance bound. This is further analyzed in the
following section.

B. Performance Bound
To gain insight into the performance provided by CARES,

in the following we provide a theoretical bound for the distance
between CARES’ performance and the optimal one. Note
that, when α → 0, the approximation of (4) becomes exact
and the performance of the optimal solution is equal to the
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Algorithm 3 Improvement Module Algorithm
Step 1: First iteration

1: Take the solution provided by the binary search module
2: Add {u, m} pairs that fit within the leftover capacity in

order of decreasing pu,m

3: primary users ← users selected by the binary search
module

4: secondary users ← users added above
5: Compute the performance of this solution in terms of

aggregate profit
Step 2: Start a new iteration

6: Select the user with the largest cu,m and downgrade her
MCS

7: Remove {u, m} pairs with a higher complexity than the
old

cu,m of the downgraded user
8: Keep fixed the MCS of the user downgraded above and

of
all the other primary users

9: Fill the remaining resource blocks following step 3 of
the

branching module
Step 3: Fill leftover capacity with secondary users

10: If some resource blocks remain unassigned then
11: Add {u, m} pairs that fit within the leftover capacity

in order of decreasing pu,m

12: � Update both sets for the next iteration
13: primary users ← users selected in step 2
14: secondary users ← users selected in step 3

Step 4: Evaluate performance and decide whether to
perform

a new iteration
15: Evaluate performance with the solution provided by step

3
16: Compare performance with the one obtained in the

previous
iteration

17: If performance has improved then go to Step 2
18: Else stop the algorithm and return the solution from the

previous iteration

maximum profit P ∗. Theorem 3 below shows that under
these conditions the proposed algorithm provides bounded
performance guarantees; specifically, the (relative) difference
between the performance provided by CARES and the optimal
one is bounded by a constant factor. The proof of the theorem
is provided in Appendix III.

Theorem 3: Let {x̂u,b,m} be the solution provided by
CARES and let P̂ be the profit provided by this solution, i.e.,
P̂ =

∑
u∈U

∑
b∈Bp(u)

∑
m∈Mu

x̂u,b,mpu,m. Then, it holds
P∗−P̂

P∗ ≤ 4/5.

C. Complexity Analysis

In the following we analyze the algorithm’s complexity,
showing that it is upper bounded by O(|W| log(B|S|)+|W|2),
where |W| is the number of {u, m} pairs in the network

satisfying cu,m ≤ C, |S| is the number of RAPs and B is the
number of resource blocks per RAP. Moreover, the simulations
of Section V-F show the actual complexity is substantially
lower than this bound. These results confirm that CARES
scales well with the size of the network and that computational
complexity is sufficiently low to allow its deployment in
practical settings, specially taking into account that CARES is
expected to run in the cloud, where computational resources
are typically not scarce.

The computational complexity bound is computed as fol-
lows. For the binary search module, initially we have L ≤
P ∗ ≤ U = B|S|L. Every time we visit step 3.1, U is reduced
to 0.8 of its previous value. Then, we need no more than
loga(B|S|/5) visits to step 3.1 until U ≤ 5L (where a =
10/8). If at any time the algorithm visits step 3.2, L becomes
0.2 U and the algorithm stops. Thus, we run the branching
module no more than loga(B|S|/5) times. Taking into account
that the complexity of the branching module is O(|W|), this
yields to an overall complexity of O(|W| log(B|S|)), until
the binary search module provides a first candidate solution.
After the binary search is complete, the improvement module
runs at most one iteration for each {u, m} pair, since we
can downgrade each pair only once. Every iteration incurs
a complexity of O(|W|). Thus, the overall complexity of this
module is O(|W|2). Adding this value to the one obtained
for the binary search module gives the total complexity of the
algorithm.

V. PERFORMANCE EVALUATION

We next evaluate via simulation the performance of
the CARES algorithm in terms of utility, throughput
and capacity savings. In line with similar works in the
literature [22], [28], [41]–[44], in our simulator the wire-
less channel follows the log-distance path loss model with
Rayleigh fading [45], with a path loss exponent γ = 3 and
SNR0 = 17.6 dB (which is the SNR threshold for the highest
MCS [13]). We set α = 0.01 for all experiments (unless
otherwise stated) and and employ 95% confidence intervals
below 1% (unless explicitly shown). In order to show the gains
provided by the CARES algorithm proposed here, we compare
its performance against the following benchmarks:

• ‘Optimal’, which corresponds to the maximum step algo-
rithm of Section III.

• ‘PF w/ MCS’, which first selects users by means of a
proportional fair scheduler [17] and then adjusts their
MCS following the approach of [10].

• ‘Greedy’, which implements the algorithm proposed
in [46] to solve the knapsack problem resulting from the
approximation given by (4).

• ‘Legacy PF’, which implements a legacy proportional fair
scheduling [17] to select user transmissions and processes
as many frames as possible with the given computational
capacity, dropping the frames that exceed the capacity.

A. Utility Performance

We first analyze performance in terms of the objective
function (2a), which corresponds to proportional fairness
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Fig. 2. Utility and access delay performance in a small scale scenario.

utility [19], comparing the utility provided by CARES against
the other approaches. We consider a scenario sufficiently
small to allow for the computation of the optimal solution: a
network consisting of 5 RAPs, each with 5 users located at a
distances d0, 2d0, . . . , 5d0 from the RAP respectively (where
d0 corresponds to the distance that yields an average SNR
equal to SNR0). Each base station has B = 50 resource
blocks.

Results are shown in Figure 2 as a function of the com-
putational capacity C. They show that CARES closely fol-
lows the optimal performance way beyond the theoretically
guaranteed bound, confirming that our algorithm is effective
in jointly optimizing scheduling and MCS selection. We also
observe that CARES substantially outperforms all the other
approaches, providing a more graceful degradation as C
decreases. The performance obtained with the ‘PF w/ MCS’
approach is substantially lower for smaller C values, where
user selection is heavily constrained by the available capacity
(see Sections V-B and V-C for more details). ‘Greedy’ tends
to schedule users with higher pu,m/cu,m ratios, which is a
valid strategy when the capacity is low, but does not fully
utilize the available capacity when there is plenty of it. Finally,
performance with ‘Legacy’ PF is drastically degraded, as the
number of frames that can be decoded rapidly decreases as we
reduce capacity, reaching a point where no frames are decoded.
As expected, when capacity is sufficient to decode all frames,
all approaches (except for ‘Greedy’) perform optimally, as they
all simply apply an optimal PF scheduler with no capacity
constraints.

While the main objective of the paper is to provide PF,
which mainly concerns throughput performance, delay is also
relevant for many applications. In order to provide insight into
the delay performance of CARES, the subplot of Figure 2
shows the average frame access delay provided by the different
approaches, corresponding to the time elapsed from the instant
when a frame reaches the head of the transmission queue
until it is transmitted. We observe that CARES substantially
outperforms all other approaches and performs close to the
optimal benchmark.

B. Throughput Distribution

In order to gain further understanding on the utility gains
obtained in the previous section, in Figure 3 we analyze

Fig. 3. Throughput distribution for two different C values.

the individual throughput of each user, depending on the
user’s distance to the base station (d0, 2d0, . . . , 5d0), for two
representative capacity values: C = 1 Mbit-iter/s and C = 10
Mbit-iter/s. We observe from the results that the CARES
algorithm provides almost the same throughput distribution
as the optimal approach, achieving larger throughputs and/or
fairer distributions than the other approaches. It is particularly
interesting to observe the behavior of the ‘PF w/ MCS’
algorithm: by decoupling scheduling from MCS selection, this
strategy favors the users with higher SNR when scheduling
frames; however, when the MCS of such users is downgraded,
this decision turns out to be harmful for the fairness without
improving the overall throughput. As anticipated, the ‘Greedy’
approach performs poorly for C = 10 Mbit-iter/s, as it selects
users that (although they may be very efficient in relative
terms) do not exploit all the available capacity. Finally, it is
also interesting to observe that for C = 1 Mbit-iter/s the
‘Legacy PF’ approach is unable to decode any frame, as it
only schedules users with very high computational load and
does not downgrade their MCS.

C. MCS Downgrades

One of the key ideas behind CARES is that, under shortage
of available computational resources, we select MCS schemes
that are lower (and computationally less intensive) than the
highest possible MCS under current radio conditions. Another
approach that follows the same idea is the ‘PF w/ MCS’, which
also downgrades the MCS of scheduled users (until they fit
within the available capacity).

Obviously, when applying the above idea, the common goal
of both approaches is to select the highest MCS schemes
under the available computational capacity. To understand how
well do these approaches meet this goal, Figure 4 depicts the
average number of downgrades performed by both approaches,
i.e., we compare the MCS selected for the transmitted frames
against the highest possible MCS for those frames under the
current radio conditions. As expected, the average number
of downgrades decreases with the computational capacity,
as larger capacities allow to fit higher MCS schemes. We
further observe from the figure that CARES substantially out-
performs ‘PF w/ MCS’, providing significantly lower down-
grade rates. Indeed, as CARES takes computational needs into
account when performing scheduling, it can select combina-
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Fig. 4. Average number of downgrades with respect to the highest possible
MCS.

Fig. 5. Network utilization with CARES and with the binary search module
solution (‘BS’).

tions of users that yield not too high aggregated computational
load, thus limiting the number of required downgrades. In con-
trast, scheduling in ‘PF w/ MCS’ is blind to computational
load, and therefore may lead to scheduling combinations that
require a larger number of downgrades to fit within C.

D. Network Utilization

One of the design goals of CARES is to maximize net-
work utilization, using as many resource blocks as possible,
as this brings advantages in terms of fairness and delay,
among other aspects. The improvement module has been
specifically designed to achieve this goal. In order to assess
its effectiveness, Figure 5 illustrates the fraction of resource
blocks utilized by CARES and by the solution provided by
the binary search module, respectively. Note that the latter is
quite similar to the algorithm of [40], although (as explained
in Section IV-A) the algorithm of [40] has been designed for
a different problem and hence is not directly applicable to
scheduling in a mobile network. Results show the effectiveness
of CARES and its advantages over approaches such as [40],
which have been devised for more general knapsack prob-
lems without taking into account the specific context of our
scheduling problem.

E. Impact of the α Parameter

Since our goal in this paper, following the PF criterion, is to
optimize the long-term throughputs, we have focused on small

α values; as a matter of fact, the optimality proof in Section III
relies on this assumption. However, the proposed CARES
algorithm can be applied to any α value, including large
ones. In order to gain insight into the performance of CARES
for different α’s, Figure 6 shows the utility provided by the
different approaches for a wide range of values. We observe
from the results that CARES outperforms the other approaches
for all α’s. We also observe that, for the ‘PF w/ MCS’
approach, utility improves as α grows; this is due to the fact
that large α values favor the selection of users with lower
MCS, and this avoids downgrades.

F. Large Scale Network

In the following we consider a much larger scale scenario,
consisting of 50 RAPs serving 50 users each, placed at a
random distance between d0 and 5d0 from the RAP. Figure 7
shows the utility performance achieved in this scenario by the
various approaches (except for the optimal one). We observe
here a similar trend to the one shown by the small scale
scenario in Figure 2: the CARES algorithm provides a graceful
degradation as capacity decreases, substantially outperforming
all other approaches. This confirms the advantages of the
proposed approach in realistic (large-scale) scenarios.

In order to understand the computational complexity
incurred by CARES in such a large scale scenario, we have
measured the number of operations it performs as compared to
the upper bound computed in Section IV-C. The results, shown
in the subplot of Figure 7, confirm that the actual complexity
of the algorithm is very far from the upper bound (in more
than two orders of magnitude), which further supports the
feasibility of CARES in terms of computational complexity.

We further analyzed a simplified version of the CARES
algorithm, called S-CARES, which runs the improvement
module algorithm designed in Section IV over the solution
provided by the ‘Legacy PF’ algorithm rather than the one
provided by the binary search module. Results show that
the performance of this approach is fairly close to CARES
while computational complexity is reduced by one order of
magnitude, which means that S-CARES can be a viable
alternative for environments with heavily constrained compu-
tational resources.

G. Savings in Computational Capacity

By making RAN functions robust against computational
outages, CARES allows to reduce the amount of computational
resources allocated to those functions while providing mini-
mum degradation in performance. In the following, we analyze
the capacity savings provided by CARES over the current
RAN stack (that is, the ‘Legacy PF’ approach).

As an intuitive measure to assess performance degrada-
tion, we define the relative performance X as follows. Let
us consider a reference throughput distribution r, and let
U(r) be the corresponding utility. We say that an alternative
throughput distribution r� provides a relative performance X
if the utility it provides is equivalent to multiplying by X the
throughput of each individual user in the reference distribution,
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Fig. 6. Utility performance for different α values.

Fig. 7. Utility and complexity in a large scale scenario.

i.e., U(r�) = U(r̃), where r̃u = Xru ∀u (for instance, a rela-
tive performance of X = 99% is equivalent to multiplying all
throughputs by 0.99).

For a given relative performance level X , we obtain the
(computational) capacity savings achieved by CARES as
follows. Let Cmax be the computational capacity required to
ensure that we are always able to decode all frames under the
‘Legacy PF’ approach, and let Umax be the utility achieved
in this case. Let Cx be the capacity required by the CARES
algorithm to provide a relative performance of X with respect
to the maximum utility Umax. Then, the capacity savings
provided by CARES is given by Cmax−Cx

Cmax
, which reflects the

amount of capacity that can be saved (in %) when admitting
a relative performance degradation of X .

Figure 8 shows the capacity savings achieved by CARES
for different relative performance levels, X = 99%, 95% and
90%, as a function of the number of RAPs in the network,
under the same conditions as the large scale scenario described
in Section V-F. We observe that our approach provides very
substantial capacity savings (between 70% and 80%), while
paying a very small price in performance. We further observe
that, while capacity savings increase when clustering more
RAPs in the same pool as a result of the multiplexing gains,
they are already very high for a single RAP and almost
maximum with only around 5 RAPs. This implies that it is
not necessary to cluster a large number of RAPs in a central
data-center to achieve high capacity savings; instead, it is

Fig. 8. Computational capacity savings provided by CARES over ‘Legacy
PF’.

sufficient to cluster a small number of RAPs in a location
that can be relatively close to the antennas, as would be the
case for instance with multi-access edge computing (MEC).

The above results highlight the advantage of employing
CARES in a virtualized RAN environment: (i) by mak-
ing RAN VNFs computationally aware, CARES provides
very remarkable capacity savings; and (ii) such savings are
already achieved with relatively small RAP clusters. Thus, this
technology allows an Infrastructure Provider to deploy edge
infrastructure (which usually entails high costs) with a very
high yield of decoded bytes per deployed CPU cycle ratio.

VI. CONCLUSIONS

There is a widely accepted trend towards the virtualization
of RAN functions and their execution in cloud-computing
platforms. However, the current RAN protocol stack was not
designed to be executed in a virtualized environment, and its
performance degrades drastically when the required computing
resources are not available. To address this issue, in this
paper we have re-designed two fundamental functions of the
RAN protocol stack: (i) scheduling, and (ii) MCS selection.
By considering computational load when scheduling frame
transmissions, we aim at reducing the level of variability of
the computational load incurred. Furthermore, by downgrading
the selected MCS when needed, we can reduce the impact of
computational resource shortage on performance.
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One of the key contributions of this paper has been to
address the design of the two schemes jointly, which leads to
substantial performance improvements. When addressing the
joint optimization of scheduling and MCS selection, we have
relied in analytical tools to obtain the solution that provides
optimal performance. Building on the insights gained from
this solution, we have designed the CARES algorithm, which
incurs limited complexity while providing a performance that
is provably close (by a certain factor) to the optimal.

The conducted performance evaluation has confirmed that
CARES is a practical and effective approach for virtualizing
the RAN functionality. With CARES, we can reduce the
amount of computing resource allocated to RAN functions
by 70% or more, while retaining almost the entire utility.
Furthermore, performance with CARES is gracefully degraded
in case of (temporary) resource shortages, such that improper
dimensioning of virtual machines pools have a very mild
impact in performance. In summary, CARES represents a
pioneering step towards a new paradigm of virtualization-
enabled protocol stacks.

One of the main contribution in this paper has been
the proposal of a new paradigm for scheduling algorithms:
computational-aware scheduling, which takes into account
computational resources and jointly optimizes scheduling and
MCS selection. While here we have taken a proportional fair
scheduler as baseline and have extended it to account for
computational resources, the same concept could be applied
to other scheduling algorithms (e.g, a scheduler that optimizes
delay performance and/or provides minimum rate guarantees),
which could be extended following a similar methodology to
the one employed in this paper.

APPENDIX I
PROOF OF THEOREM 1

Theorem 1: If the wireless channels of the RAPs behave
according to a Markov chain, then the maximum step algo-
rithm becomes (asymptotically) optimal as α→ 0.

Proof: To prove the theorem, we start by showing that
as α → 0 the maximum step algorithm defined by our paper
is equivalent to the gradient algorithm analyzed in [33]. If we
define U(t) =

∑
u∈U log Ru, the gradient is given by

∇U(t) =
(

1
R0(t)

, . . . ,
1

R|U|(t)

)
.

The gradient algorithm is the one that maximizes (see [33])

G = ∇U(t)(R0(t + 1)−R0(t), . . . , R|U|(t + 1)−R|U|(t)).

Noting that Ru(t + 1)−Ru(t) = αnu,m(t)ru,m(t)− αRu,
we have

G =
∑
u∈U

∑
m∈Mu(t)

αnu,m(t)ru,m(t)
Ru(t)

− α|U|.

Given that α|U| is a constant, maximizing G is equiva-
lent to maximizing

∑
{u,m}

αnu,m(t)ru,m(t)
Ru(t) . Hence, we con-

clude that the gradient algorithm is the one that maximizes∑
{u,m}

αnu,m(t)ru,m(t)
Ru(t) .

We now look at the maximum step algorithm and show that
it maximizes the same expression as the gradient algorithm.
If we take the log of the function maximized by this algorithm,
i.e., (3), and let α → 0, we can see that this algorithm
maximizes the following expression

lim
α→0

log

⎛
⎝∏

u∈U

∏
m∈Mu(t)

(
αnu,m(t)ru,m(t)

(1− α)Ru(t)
+ 1
)⎞⎠

= lim
α→0

∑
u∈U

∑
m∈Mu(t)

log
(

αnu,m(t)ru,m(t)
(1 − α)Ru(t)

+ 1
)

=
∑
u∈U

∑
m∈Mu(t)

αnu,m(t)ru,m(t)
(1− α)Ru(t)

,

which (given that the constant 1 − α does not change the
maximization) coincides with the expression of the gradient
algorithm. This confirms that both algorithms are maximizing
the same expression and hence are the same algorithm.

We next show that the gradient algorithm is asymptoti-
cally optimal. According to [33], the gradient algorithm is
asymptotically optimal as long as the following conditions
are satisfied: (i) the objective function U is a strictly con-
cave smooth function, (ii) for each element, there is always
some decision under which its rate is non-zero, and (iii) the
region of long-term rates Ru is convex, bounded and closed.
Note that [33] relies on a model that covers our system:
it allows that at a given state m (in our case the channel
conditions) there are a set k ∈ K of scheduling options (in
our case the users scheduled in each resource block and the
selected MCS) each of which provides a service rate vector
(μm

1 (k), . . . , μm
|U|(k)) (where μm

u (k) is the rate of user u with
the number of resource blocks and MCS corresponding to this
scheduling option).

To show that the three conditions of [33] are satisfied by
our system, we proceed as follows. Condition (i) holds for our
objective function, U =

∑
u∈U log Ru; indeed, this function

is precisely one of the functions explicitly considered in [33],
referred to as ‘Type II Utility Function’. Condition (ii) follows
from the fact that when we schedule some user, this user
experiences a positive rate. Finally, condition (iii) holds under
some natural non-restrictive assumptions that are satisfied by
our system model (see [33]).

Since all conditions are satisfied, the result of [33] applies,
and the gradient algorithm is (asymptotically) optimal as
α → 0. Since, as we have shown above, the maxi-
mum step algorithm and the gradient algorithms provide the
same solution as α → 0, this means that the maximum
step algorithm is asymptotically optimal, which proves the
theorem. �

APPENDIX II
PROOF OF THEOREM 2

Theorem 2: The maximum step algorithm is NP-hard.
Proof: The reduction is via the multiple-choice knap-

sack (MCKP) problem, which is known to be NP-hard. Recall
that the multiple-choice knapsack problem is a variant of
the knapsack problem and is stated as follows. We have m
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mutually disjoint classes N1, . . . , Nm of ni items to pack in a
knapsack of capacity W . Each item i of class j, i ∈ Nj , has
a profit pij and a weight wij , and the problem is to choose at
most one item from each class in such a way that (i) the total
profit sum is maximized, and (ii) the sum of weights does not
exceed W . The MCKP can thus be formulated as:

maximize
{xij}

m∑
j=1

∑
i∈Nj

pijxij

subject to:
m∑

j=1

∑
i∈Nj

wijxij ≤W,

∑
i∈Nj

xij ≤ 1 ∀j,

xij ∈ {0, 1} ∀j, i ∈ Nj .

Let us define an instance of our algorithm where we have:
(i )one resource block per RAP, (ii) a RAP s for each class
Nj , (iii) only one MCS available for each user, (iv) for
each item i of class Nj , a user u at RAP s such that

log
(

αru,m(t)
(1−α)Ru(t) + 1

)
= pij and cu,m(t) = wij , and (v) the

total computational capacity C equal to W .
If now we take a solution to the maximum step algorithm

and choose the items that correspond to the users scheduled
for transmission, the resulting set of items provides a solution
to the MCKP, which proves the theorem. �

APPENDIX III
PROOF OF THEOREM 3

To prove Theorem 3, we first prove the two Lemmas below.
Lemma 1: Let P � be the value computed by the branching

module for a given P . If P � > 0.8 P then P ∗ > 0.4 P , and
if P � ≤ 0.8 P then P ∗ ≤ 1.6 P

Proof: Suppose P � > 0.8 P . Consider the fol-
lowing two cases: (i)

∑
{u,b,m} x�

u,b,mcu,m ≤ C, and
(ii)

∑
{u,b,m} x�

u,b,mcu,m > C.
In case (i), {x�

u,b,m} provides a feasible solution to the
problem satisfying

∑
{u,b,m} x�

u,b,mpu,m > 0.8 P and hence
P ∗ > 0.8 P > 0.4 P .

In case (ii), we choose a subset B� of resource blocks,
and an additional resource block b� (assigned to user u�

under MCS m�) such that
∑

{b∈B′,u,m} x�
u,b,mcu,m < C

and
∑

{b∈B′,u,m} x�
u,b,mcu,m + cu′,m′ > C. Given that

pu,m/cu,m ≥ 0.8 P/C for {x�
u,b,m}, we have∑

{b∈B′,u,m}
x�

u,b,mpu,m + pu′,m′

≥ 0.8P

C

⎛
⎝ ∑

{b∈B′,u,m}
x�

u,b,mcu,m + cu′,m′

⎞
⎠ > 0.8P.

Further, P ∗ ≥ ∑{b∈B′,u,m} x�
u,b,mpu,m and P ∗ ≥ pu′,m′ ,

which implies that

2P ∗ >
∑

{b∈B′,u,m}
x�

u,b,mpu,m + pu′,m′ > 0.8P

and therefore P ∗ > 0.4P .

Now suppose that P � ≤ 0.8 P . Let x∗
u,b,m be the optimal

assignment that yields P ∗. Consider the optimal assignment,
and denote by B1 (respectively B2) the set of resource blocks
within this assignment for which pu,m/cu,m < 0.8P/C
(respectively pu,m/cu,m ≥ 0.8P/C) holds. Then,

P ∗ =
∑

{u,b,m}
x∗

u,b,mpu,m

=
∑

{b∈B1,u,m}
x∗

u,b,mpu,m +
∑

{b∈B2,u,m}
x∗

u,b,mpu,m.

But∑
{b∈B1,u,m}

x∗
u,b,mpu,m <

0.8P

C

∑
{b∈B1,u,m}

x∗
u,b,mcu,m ≤ 0.8P.

Further, from our initial assumption and the choice at
step 1 of the branching module, we have∑

{b∈B2,u,m}
x∗

u,b,mpu,m ≤
∑

{u,b,m}
x�

u,b,mpu,m ≤ 0.8P.

Therefore P ∗ < 1.6P . �
Lemma 2: When P � > 0.8 P , the setting returned by the

branching module satisfies P̃ > 0.4 P .
Proof: If

∑
{u,b,m} x�

u,b,mcu,m ≤ C, we can see from

the proof of Lemma 1 that P̃ = P � > 0.8 P > 0.4 P holds
for the items selected by the branching algorithm. Otherwise,
we consider two cases: (i) the sum of the cu,m’s of the items
selected by the branching module is larger than C/2, and
(ii) the sum of the cu,m’s of these items is smaller than or
equal to C/2.

For case (i) we have
∑

{u,b,m} x̃u,b,mcu,m > C/2, and thus
it holds

P̃ =
∑

{u,b,m}
x̃u,b,mpu,m ≥ 0.8P

C

∑
{u,b,m}

x̃u,b,mcu,m

>
0.8P

C

C

2
= 0.4P.

For case (ii), we proceed as follows. If we take any
item {u�, m�} that belongs to {x�

u,b,m} but not to {x̃u,b,m},
necessarily the sum of the cu,m of this item plus all the items
in {x̃u,b,m} exceeds C, as otherwise {u�, m�} would be part
of {x̃u,b,m}. Applying the same reasoning as in Lemma 1,
we have ∑

{u,b,m}
x̃u,b,mpu,m + pu′,m′ > 0.8P.

Furthermore, since {x̃u,b,m} comprises the item with the
largest pu,m, we also have∑

{u,b,m}
x̃u,b,mpu,m ≥ pu′,m′ .

The above two equations yield P̃ =∑
{u,b,m} x̃u,b,mpu,m > 0.4P . �
Theorem 3: Let {x̂u,b,m} be the solution provided by

CARES and let P̂ be the profit provided by this solution, i.e.,
P̂ =

∑
u∈U

∑
b∈Bp(u)

∑
m∈Mu

x̂u,b,mpu,m. Then, it holds
P∗−P̂

P∗ ≤ 4/5.
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Proof: Based on Lemmas 1 and 2, we proceed as
follows to prove the theorem. The proof focuses only on the
binary search module and does not consider the improvement
module. Indeed, as the improvement module just increases
the performance provided by the previous steps, any bound
obtained without taking into account this module will hold
for the complete algorithm.

It can be seen that P̂ ≥ L; indeed, (i) initially we have
P̃ ≥ L; (ii) when we visit step 3.2 of the binary search
module, L increases to L = 0.4 P but from Lemma 2 we
have that the resulting P̃ satisfies P̃ > 0.4 P and hence
P̃ ≥ L holds; and (iii) when we visit step 3.1, we have that
P̃ may increase while L remains constant. Hence, P̃ ≥ L
holds in any intermediate steps, and will also hold in the last
step, i.e., P̂ ≥ L. Furthermore, from Lemma 1 it holds that
U ≥ P ∗; indeed, initially U ≥ P ∗, and we only decrease U
to 1.6P when P ∗ ≤ 1.6P .

The algorithm is guaranteed to stop because the length of
the interval [L, U ] decreases by at least 12.5% every time
the algorithm runs steps 3 and 4. When the algorithm stops,
we have U/L ≤ 5 from the stopping conditions. Since
U ≥ P ∗, this implies that P ∗/L ≤ 5 and hence L ≥ P ∗/5.
Furthermore, since P̂ ≥ L this yields P̂ ≥ P ∗/5, which
proves the theorem. �
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