PDP and GSDL: a new service discovery middleware to support spontaneous
interactions in pervasive systems*

Celeste Campo, Mario Mufioz, José Carlos Perea, Andrés Marin, Carlos Garcia-Rubio
Telematics Engineering Department. University Carlos III of Madrid
{celeste,munozm,jperea,amarin,cgr} @it.uc3m.es

Abstract

In pervasive computing environments, mobile devices
communicate via wireless links without requiring any fixed
infrastructure. These devices must be able to discover and
share services dynamically. In this paper, we propose a new
service discovery middleware specifically designed for this
kind of environments. This middleware is composed of a
service discovery protocol, Pervasive Discovery Protocol
(PDP), and a service description language, Generic Service
Description Language (GSDL). PDP is a fully distributed
protocol that merges characteristics of both pull and push
solutions; it reduces power consumption of the most limited
devices. GSDL is an XML based markup language that uses
a hierarchical service description designed taking into ac-
count the specific requirements of pervasive environments.

1. Introduction

Service discovery addresses the general problem in
which some elements in a network, the clients, need to
know the services offered by other elements in the network,
the servers. This problem can be solved following a dis-
tributed approach or following a centralised approach. In
the distributed approach no additional device is needed and
the discovery of services can be done in two ways: push
mode, in which servers send unsolicited advertisements, and
clients listen to these advertisements selecting the services
they are interested in; pull mode, in which clients request a
service when they need it, and servers that offer the service
answer the request. In the centralised approach, a new el-
ement, the directory, is introduced (be it a single physical
host or a hierarchy of hosts). Servers register their services
in the directory and clients send their requests to the direc-
tory. This way, the number of transmissions is minimized.
The different protocols defined in the literature are based in

*Thanks to UBISEC (IST STREP 506926) and EVERYWARE (MCyT
No02003-08995-C02-01) projects.

one or more of these approaches.

In wired networks, there are several solutions proposed
with different levels of acceptance, like IETF’s SLP [8],
UPnP’s SSDP [7], SUN’s Jini [12], UC Berkeley’s SSDS
[4] and Salutation [3]. However the heterogeneity and
volatility of ubiquitous environments demand a novel ap-
proach to the problem of service discovery in the software
of ubiquitous computing systems.

The paper is organized as follows. First, in section 2,
we describe the new challenges for service discovery and
description in pervasive environments. Then, in section 3,
we introduce our proposals, the PDP and GSDL. In sec-
tion 4 we present an implementation of our middleware us-
ing J2ME. Section 5 reviews the related work, and finally
we draw some conclusions and future work in section 6.

2. Challenges for service discovery in pervasive
environments

Pervasive computing environments impose new restric-
tions that must be taken into account when defining a mid-
dleware for service discovery. These restrictions can be
divided in those that concern to the way services are dis-
covered (i.e. the service discovery protocol) and those that
concern to the way services are defined (i.e. the service de-
scription). Here, we will present both.

2.1. Challenges for service discovery protocol

There is a big consensus that legacy solutions for service
discovery fail in addressing the requirements imposed for
pervasive environments [9]. Here, we summarize some of
the most outstanding challenges that must be addressed.

e Minimize network transmissions: One of the main
sources of power consumption is network transmission
[6]. This implies that one of the most important issues
when designing a service discovery protocol is to min-
imize the number of transmissions, especially of the
most limited devices.

IFI",F

COMPUTER
SOCIETY

Proceedings of the 3rd Int'l Conf. on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops)
0-7695-2300-5/05 $20.00 © 2005 IEEE

e Do not rely on fixed infrastructure and adapt to highly
changing environments: In pervasive computing net-
works, most or all devices are mobile. No fixed infras-
tructure, including a directory of services, should be
required. However, in certain places, but not always,
some devices will be fixed and will stay forever. A ser-
vice discovery protocol must adapt well to all places.

e Maximize cooperation between devices: In environ-
ments saturated with limited devices, cooperation al-
lows them to carry out more complex tasks. This con-
cept, applied to mobile services discovery, means that
devices within the same system must cooperate to dis-
cover services, for the sake of the common good.

e Take into account different application needs: Some
applications look for any device offering a service in
the network, e.g. any temperature sensor in the room,
while others browse all the devices offering that ser-
vice in the network, e.g. a word processor that searches
for printers and wants to display all the available ones.
Traditionally, service discovery protocols have not dif-
ferentiated between both kinds of searches.

2.2. Challenges for service description

The proliferation of services in ubiquitous computing en-
vironments requires a scalable service description mecha-
nism complex enough to capture every detail in every ser-
vice. Here we summarize the challenges for service descrip-
tion in these environments.

e Simplicity: Many of the devices are limited devices
in terms of processing power, memory and networking
capabilities. Simplicity is therefore a need.

e Scalability: A service description mechanism adapted
to pervasive environments should be able to capture
every detail in every service that could be present in
the environment. There is a certain trade off between
simplicity and scalability which has to be taken into
account.

e Backward and forward compatibility: It is important
that new services are available not only for new appli-
cations but for legacy applications also. New applica-
tions, on the other hand, should be able to use legacy
services.

3. Definition of a new service discovery middle-
ware

In this section we present the definition and implemen-
tation of a new service discovery middleware which con-
sists of a service discovery protocol, the Pervasive Discov-
ery Protocol (PDP), and a service description language, the

Proceedings of the 3rd Int'l Conf. on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops)
0-7695-2300-5/05 $20.00 © 2005 IEEE

Generic Service Description Language (GSDL), especially
designed to work in ubiquitous environments.

3.1. Definition of a new service discovery protocol

One of the key objectives of the PDP protocol is to min-
imize the number of transmissions necessary to discover
services, and so the battery consumption, especially of the
most mobile and limited devices. This is accomplished
through the use of the availability time, a parameter that will
be introduced bellow. PDP prioritizes the replies of the less
limited devices, allowing the others to abort their answers.
PDP also does away with the need for the central server,
and it is a fully distributed protocol that merges character-
istics of both pull and push solutions. Devices maintain a
cache of services previously announced, that is also used
for the answers. In PDP all messages are broadcast, and all
devices cooperate by coordinating their replies and sharing
the information in their caches. PDP takes into account the
different applications needs, and this allows to further re-
ducing the power consumption. In this section, we explain
in more detail how PDP works.

Application scenario Let’s assume that there is a ubig-
uitous environment, composed of D devices, each device
offering S services and expecting to remain available in this
network for T seconds. This time T is called the availabil-
ity time and it is configured in the device, depending on its
mobility characteristics.

Each device has a PDP User Agent (PDP_UA) and a
PDP Service Agent (PDP_SA). The PDP_UA is a process
working on behalf of the user to search information about
services offered in the network. The Service Agent PDP
(PDP_SA) is a process working to advertise the services of-
fered by the device. The PDP_SA always includes the avail-
ability time T of the device in its announcements.

Each device has a cache containing a list of the services
that have been heard from the network. Each element of the
cache has two fields: the service description and the service
expiration time. The service expiration time is the estimated
time for the service to remain available. This time is calcu-
lated as the minimum of two values: the availability time
of the local device, and the service announced availability
time. Entries are removed from the cache when they time-
out.

Protocol description PDP has two mandatory messages:
PDP_Service Request, which is used to send service
requests, and PDP_Service Reply, which is used to
answer a PDP_Service Request, announcing avail-
able services. Additionally, PDP has one optional message:
PDP_Service Deregister, which is used to inform
that a service is no longer available.

IFI",F

COMPUTER
SOCIETY

When an application or the final user of the device needs
a service of a certain type, it calls its PDP_UA. In order to
support the needs of different applications, in PDP we have
defined two kinds of queries:

e One query-one response (1/1): the application is inter-
ested in the service, not in which device offers it.

e One query-multiple responses (1/n): the application
wants to discover all devices in the network offering
the service. In this kind of query, we introduce a spe-
cial type of service, named ALL, in order to allow
an application to discover all available services of all
types in the network.

Both types of query use the same message,
PDP_Service Request. A flag in the header of
the message indicates if it is 1/1 or 1/n.

In one query-one response queries, the PDP_UA
searches for a service_ type in the list of local services
and in its cache. If it is found, the PDP_UA gives the ap-
plication the corresponding service description, without any
network transmission. If it is not found, the PDP_UA broad-
castsa PDP_Service Request for that service, waiting
CONFIG _WAIT RPLY seconds for replies. If no reply ar-
rives, the PDP_UA answers to the application that the ser-
vice is not available in the network. If some reply arrives,
the PDP_UA gives the application the service description
received.

In one query-multiple responses queries, the PDP_UA
makes a list of known services of the specified type, that
is, a list of the ones locally offered or stored in its cache
(all the services if the service type is ALL). Then, it sends
a PDP_Service Request including this list. It waits
CONFIG WAIT RPLY seconds for replies and when this
timer expires, it gives the application the list of known ser-
vices plus, if any replies arrived, the service descriptions
received.

PDP_UAs in all devices are continually listening to the
network for all types of messages (requests and replies) and
update their caches with the services announced in them.
Moreover, the device’s cache has a limited size. When a
PDP_UA hears a new announcement but the cache is full, it
deletes the service entry closer to expire.

The PDP_SA advertises services offered by the device.
It has to process PDP_Service Request messages and
to generate the corresponding PDP_Service Reply, if
necessary.

In order to minimize the number of transmissions,
the PDP_SA takes into account the type of query made
by the remote PDP_UA. When a PDP_SA receives a
PDP_Service Request 1/1, it checks whether the
requested service is one of its local services. In that case,
a PDP_Service_ Reply is scheduled for a random time,

inversely proportional to the availability time of the device.
During this time, if another reply to the same PDP request
is heard, the reply is aborted as the remote PDP_UA will
just pass the first service to the application and discard any
other. If the timer expires and no reply has been heard, the
reply is sent.

The algorithm awards the more static devices with more
opportunities of answering requests. Therefore the algo-
rithm gives higher priority to answers coming from devices
with longer estimated availability.

When a PDP_SA receives a
PDP_Service Request 1/n, it checks whether
the requested service is one of its local services, or if
it is in the cache. If so, it generates a random waiting
time, inversely proportional to the availability time of
the device and the number of known services. During
this time, the PDP_SA listens to the network for any
PDP_Service Reply of the same request. When the
timer expires, if the PDP_SA knows about some additional
devices offering this type of service that have not been
announced yet, it sends its PDP_Service Reply. So,
the more time the device is able to offer the service and the
bigger the cache, the higher the probability of answering
first. We suppose the device with the highest availability
time and the biggest cache is the one with the most accurate
view of the world.

In certain cases, a device may detect when it is
about to be switched off or to roam to other net-
work. If so, the PDP_SA of the device has to send a
PDP_Service Deregister, listing all its local ser-
vices, before switching off or roaming. When another de-
vice hears this message, it must remove the services listed
from its cache. In other cases, when a device tries to ac-
cess a service listed in its cache and the service is down,
it may also use the PDP_Service Deregister mes-
sage to inform the rest of the network that this service is no
longer available. The device that receives the message may
delete the entry from the cache.

3.2. Definition of a new service description language

In this section we present a new service description lan-
guage we have defined for pervasive computing environ-
ments that satisfies the requirements captured in the pre-
vious section. This language is called Generic Service De-
scription Language (GSDL).

GSDL makes use of the service hierarchy described in
[13]. This hierarchy defines general services common to
all the environments in next generation networks in a first
layer, specifies a second layer with more specific services
that are shared by groups or families of devices and finally
incorporates, in a third and successive layers, the specific
services for each device (in fact, layers 1 and 2 are abstract

IFI",F

COMPUTER
SOCIETY

Proceedings of the 3rd Int'l Conf. on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops)
0-7695-2300-5/05 $20.00 © 2005 IEEE

layers whose functions are implemented in services in lay-
ers 3 and beyond). The services exported by each device
are inserted in an inheritance tree in which the specific de-
tails in layer 3 are descendant from more generic services in
layer 2 and so on. This allows applications in pervasive en-
vironments to use the services in other devices even if they
are not familiar or have no previous knowledge of the de-
tails in layer 3 by means of a well known ancestor in layers
1 or 2. This service hierarchy is a good solution for both the
simplicity and scalability requirements stated in the previ-
ous section since it allows, on the one hand, the definition
of specific services and, on the other, their generic use by
limited devices through well known services in layers 1 and
2. Moreover, this hierarchical service definition provides
forward and backward compatibility of services and appli-
cations as long as layer 1 and 2 services are not modified.

It is important that the service description language is
well integrated with the service access mechanisms. Per-
vasive computing environments are open and network ori-
ented by nature. Several access protocols are defined for
these open communication environments such as CORBA,
RMI and Web Services. We have selected Web Services
as the service access mechanism since it is well adapted
to ubiquitous computing. Web Services are XML based
and use the ubiquitous Internet protocols such as HTTP.
Web Services are simple enough to be integrated in small
devices. GSDL is defined to be a service description lan-
guage which is well integrated with Web Services. In fact,
GSDL is defined to be a complementary description to the
service interface. Web Services use WSDL as the language
to specify the interface for service access. Although WSDL
is powerful enough to capture every aspect related to the
service interface it does not specify any relationship be-
tween different services. This is the reason why we have
designed GSDL since the definition of a hierarchical re-
lationship among services provides a simple, scalable and
forward and backward compatible way to define new ser-
vices. GSDL captures only the hierarchical relationships
for the described service and uses WSDL as the language
for interface description.

GSDL is XML based and is specified using an XML
Schema. The first elements in the Schema are graphically
represented in Figure 1. For every specific service, GSDL
describes the level 1 and level 2 services from which this
specific service inherits. These level 1 and level 2 services
are well known services and represent a generic way to ac-
cess every specific service (in fact they are defined taking
into account the different network scenarios in next gener-
ation networks, from which pervasive computing environ-
ments are an important part). The specific details of level 3
services are captured specifying the URL where the inter-
face description in WSDL can be obtained.

In order to reduce the size of the PDP messages, we do

® name g
olanms

_{ + levell d + Noliﬁcatiungendingq
ofsemteeorring
“ level2 d + SendRemoteInfol:i
string

+ level3

Figure 1. GSDL Schema graphical represen-
tation (generated with Turbo XML from Tibco)

not include the full GSDL description of the services. In-
stead of this, for a specific service, we include the layer 1
and layer 2 services codified in two byte (there are three ser-
vices of level 1 and seven services of level 2) and the URL
where the device can obtain the level 3 service descriptions.

4. Implementations issues

The middleware is implemented in J2ME Personal Pro-
file. This library is composed of two packages (one im-
plementing PDP and the other implementing GSDL) with
a total file size of 39KB, and needs three external libraries
to run. These external libraries (58KB), kSoap.jar, kOb-
jects.jar and kXML jar, have to do with SOAP and XML
parsing mechanisms suitable for J2ME platform, developed
under the Enhydra kXML-RPC projects.

5. Related work

In this section, we will present the main proposals that
have appeared during the last years, and that, as our middle-
ware, focus on providing a generic solution for service dis-
covery in pervasive computing environments. We also dis-
cuss the main differences between them and our proposal.

DEAPspace Algorithm [14] proposes a push solution, in
which all the devices hold a list of all known services, the
so called ”world view”. Each device periodically broad-
casts its “world view” to its neighbors, which update their
“world view” accordingly. DEAPspace confines itself to a
small network by assuming a single hop ad hoc network and
uses broadcasts to send the messages. Its primary goal is to

IFI",F

COMPUTER
SOCIETY

Proceedings of the 3rd Int'l Conf. on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops)
0-7695-2300-5/05 $20.00 © 2005 IEEE

obtain a fast convergence of service information available
in the network. DEAPspace uses service attributes as the
format for service description.

Rendezvous [1] enables automatic discovery of comput-
ers, devices, and services on IP networks. Service discovery
and description in Rendezvous are based on clasical DNS
and in a distributed DNS, called Multicast DNS, for ad-
hoc networks, consisting on a pull mode service discovery
with multicast responses. Another proposal of distributed
DNS, LLMNR [5], is under development within the DN-
SEXT group of the IETF.

Konark [10] is a middleware designed specifically for the
discovery and delivery of services in multi-hop ad hoc net-
works. With regard to the service discovery mechanism,
Konark supports both push and pull modes, with a cache
in all devices. Konark has recently defined a new dis-
covery mechanism, called Konark service gossip protocol
[11]. This is based on a message exchange round, which is
triggered by a service request message or by a service an-
nouncement message. With regard to service description,
Konark defines an XML based service description language
similar to WSDL.

Regarding how services are discovered, when compared
with PDP, these proposals have the following lacks: (i) they
do not take into account the different characteristics of the
devices (battery, memory size), they handle all of them the
same way; (ii) except Rendezvous, they are based in a push
mode, announcements are transmitted even when no other
device is in the network. This is a waste of battery in many
situations; (iii) pull mode is supported, but it is not well
integrated with the push mode. Applications must choose
between consulting the cache or issuing a service request
(pull); (iv) they do not take into account different applica-
tion needs.

With regard to how services are described, when com-
pared with GSDL, the description mechanisms used by
these proposals have the following lacks: (i) they are not
scalable enough, every service is defined independently of
other related services; (ii) the service description based only
on service URLSs or service attributes requires also the spec-
ification of a service access mechanism. In open environ-
ments such as pervasive computing networks the service
access mechanism should be very well integrated with the
service description language.

6. Conclusions and future work

A good service discovery mechanism for ubiquitous en-
vironments must address the highly changing nature of
these environments, no depending on any existing infras-
tructure. It must consider the power constraints of most of
the devices. It must take into account that interactions with
close devices will be likely and interactions with far devices

Proceedings of the 3rd Int'l Conf. on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops)
0-7695-2300-5/05 $20.00 © 2005 IEEE

will be unusual. It must exploit cooperation between de-
vices to achieve the best performance with the least effort.
Finally, it must address the different needs of applications,
with some looking for any instance of a particular service
and others looking for all instances of that service. PDP has
been designed taking into account these needs.

The service description mechanism used in pervasive en-
vironments should provide a simple and yet scalable way to
describe whatever services conceivable in this kind of envi-
ronments. Moreover it should be very well integrated with
the service access mechanism in a forward and backward
compatible way. GSDL fulfils these requirements basing its
service description on a hierarchical categorization of per-
vasive services which is integrated with Web Services for
service access.

We are aware of the security issues of ubiquitous com-
puting environments and we are working in a distributed
trust model for them [2].

References

[1] http://developer.apple.com/macosx/rendezvous/.

[2] F. Almenarez, A. Marin, C. Campo, and C. Garcia-Rubio.
PTM: A Pervasive Trust Management Model for Dynamic
Open Environments. In PSPT 2004, Boston, MA, USA,
Aug. 2004.

[3] S. Consortium. Salutation Architecture: Overview, 1998.

[4] S.E.Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and
R. H. Katz. An Architecture for a Secure Service Discovery
Service. In Proc. Mobicom’99, 1999.

[5] L. Esibov, B. Adoba, and D. Thaler. Linklocal Multi-
cast Name Resolution (LLMNR). Internet-Draft (work in
progress), Oct. 2004.

[6] L. M. Feeney and M. Nilsson. Investigating the Energy Con-
sumption of a Wireless Network Interface in an Ad Hoc Net-
working Environment. In IEEE INFOCOM, 2001.

[7]1 Y. Y. Goland, T. Cai, P. Leach, and Y. Gu. Simple Service
Discovery Protocol/1.0. Internet-Draft (work in progress),
Apr. 1999. draft-cai-ssdp-v1-03.txt.

[8] E.Guttman, C. Perkins, J. Veizades, and M. Day. RFC 2608:
Service Location Protocol, Version 2, June 1999.

[9] S. Helal. Standards for Service Discovery and Delivery.
IEEE Pervasive Computing, pages 95-100, jul/sep 2002.

[10] S.Helal, N. Desai, and V. Verma. Konark-A Service Discov-
ery and Delivery Protocol for Ad-hoc Networks. In /EEE
WCNC), New Orleans, Mar. 2003.

[11] S. Helal, N. Desai, V. Verma, and B. Arslan. Konark: A
System and Protocols for Device Independent, Peer-to-Peer
Discovery and Delivery of Mobile Services. [EEE Trans-
actions on Systems, Man, and Cybernetics, 33(6):682—-696,
Nov. 2003.

[12] S. Microsystems. Jini Architectural Overview., 1999.

[13] M. Muiioz and C. Garcia-Rubio. A New Model for Service
and Application Convergence In B3G/4G Networks. [EEE
Wireless Communications, 11(5):6—12, Oct. 2004.

[14] M. Nidd. Service Discovery in DEAPspace. IEEE Personal
Communications, Aug. 2001.

IFI",F

COMPUTER
SOCIETY

