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Abstract—Vehicular ad hoc networks have proven to be quite
useful for broadcast alike communications between nearby cars,
but can also be used to provide Internet connectivity from
vehicles. In order to do so, vehicle-to-Internet routing and IP
address autoconfiguration are two critical pieces. TREBOL is
a tree-based and configurable protocol which benefits from the
inherent tree-shaped nature of vehicle to Internet traffic to reduce
the signaling overhead while dealing efficiently with the vehicular
dynamics. This paper experimentally evaluates the performance
of TREBOL using a Linux implementation under lab-controlled
realistic scenarios, including real vehicular traces obtained in the
region of Madrid.

I. INTRODUCTION

Enabling vehicles to talk – that is, to be able to exchange

useful information that can be used for example to prevent

traffic accidents or let drivers know of critical traffic conditions

ahead – has been and continue to be a key research topic.

Most of the work has been focused so far on human safety

and traffic efficiency applications, which mostly make use

of broadcast communications. However, drivers and passen-

gers also demand to enjoy Internet connectivity from their

vehicles, so classical and new Internet applications could be

enabled in cars. Providing vehicles with Internet connectivity

would additionally help speeding up the adoption of vehicular

communication systems by the users, since they will see an

additional benefit in the installation of communication systems

in their cars.

The use of vehicular ad hoc networks (VANETs) is the most

widely adopted approach to provide connectivity in vehicular

environments in a cheap and scalable way. A VANET is an ad

hoc, multi-hop and short-range wireless network, formed by

vehicles in a certain area and fixed roadside gateways placed

along the roads. Compared to other wireless communication

approaches, using a multi-hop solution brings benefits to the

user (i.e., cost savings and high bandwidth), and to the net-

work providers that can alleviate their already overloaded 3G

infrastructure. In real deployments, these roadside gateways

(RSGs) can be co-located with the Road Side Units (RSUs)

deployed around the roads for safety purposes.

To enable Vehicle-to-Internet communications, some func-

tionalities are needed:

• Address configuration: Vehicles have to be able to auto-

configure a valid IP network address in an automatic way,

without requiring manual intervention from the user.

• Routing capability:mechanisms for an efficient routing of

IP datagrams, mainly unicast, from the vehicle to roadside

gateways and vice versa.

• Mobility management: vehicular networks are character-

ized by high mobility. Thus, an effective mechanism

for seamless handover between different networks and

roadside gateways is required.

We proposed TREBOL in [1], a tree-based protocol for

vehicle-to-Internet communications, which addresses two of

the previously mentioned functionalities, namely routing and

address configuration. In this paper we experimentally vali-

date TREBOL, by implementing the protocol in a controlled

testbed, and performing tests using real traffic traces in an

emulated vehicular environment.

The rest of the paper is organized as follows. Section II

introduces how TREBOL works, while in Section III we

describe our prototype implementation of TREBOL. We report

our experimental evaluation of TREBOL in Section IV, and

Section V finalizes this paper.

II. TREBOL

TREBOL [1] is a tree-based routing and IP address au-

toconfiguration protocol which bases its data forwarding de-

cisions on IPv6 addresses (i.e., it is a topological routing

protocol). Data paths follow a tree built by the TREBOL

protocol, which is formed using position information (e.g.,

vehicles are assumed to have a GPS receiver) to minimize the

control overhead load. We describe next how this is achieved.

Let’s focus first on the routing capabilities of TREBOL, by

assuming for the time being that nodes are already provided

with IPv6 addresses.

We argue that vehicle-to-Internet unicast communications

exhibit a common set of characteristics that may be exploited

by the VANET routing protocol. In particular, not all network

nodes behave in the same way: roadside gateways (RSG) play

a critical role, since they operate as relays to the Internet. The

required network connectivity graph is anchored at the RSG



Fig. 1. TREBOL area

(i.e., all data traffic traverses the RSG), as opposed to other

vehicle scenarios, in which a mesh graph is desired. On the

other hand, as opposed to the very popular geographical rout-

ing protocols, TREBOL forwarding is not based on positions,

so neither beacon messages nor location service information

is needed, allowing great savings in terms of control overhead.

In TREBOL, the upstream tree (i.e., the tree used in the

forwarding of data packets from the vehicle to the Internet) is

built and updated when each node learns about its parent upon

receiving periodical configuration messages (CM) sent by the

roadside gateway (RSG). It is assumed that each RSG plays

the role of relay (i.e., forwarding traffic from/to the Internet)

for the vehicles within a limited geographical area, known

as TREBOL area (see Fig. 1). Thus, configuration messages

sent by a RSG are spread within its TREBOL area. On the

other hand, the creation of the downstream tree (i.e., the tree

used in the forwarding of data packets from the Internet to the

vehicle) follows a reactive approach: each node learns who are

its children on a per data packet basis, as part of the forwarding

of data packets.

As already mentioned, TREBOL builds and refreshes the

upstream tree by using periodical configuration messages

(identified by a unique and incremental sequence number)

which are initially sent by the RSG and then regenerated and

sent by a subset of the VANET nodes. Once a node receives

a CM with a newer sequence number, the sender of that CM

becomes the parent of the receiving node, and the forwarding

state is updated accordingly (i.e., the parent is used as next hop

for upstream data traffic towards the Internet). Then, the node

regenerates the CM (i.e., updating some fields but keeping the

original sequence number) and sets a backoff timer. Only if

this backoff timer expires, the node broadcasts this regenerated

CM to its neighbors. In the meantime, if the node receives

another CM with this same sequence number (i.e., sent by

another node with a shorter backoff time), it cancels the

sending of the regenerated CM. It is worth mentioning that

only if a node sends a regenerated CM, it has the chance to

become a parent node. Parent nodes take the responsibility

of forwarding data traffic from/to the Internet from/to its

descendants, so a critical issue in TREBOL is to select as

parents those nodes that according to their characteristics (e.g.,

speed, position, etc.) lead to more stable trees. The CMs sent

by the RSG include the following information:

• areaBoundary: geographic information describing the

TREBOL area. Nodes outside this area receiving a CM

discard the message.

• sendPos: geographic position of the sender of the CM.

It is set initially to the location of the RSG and then over-

written with the position of the last node that regenerated

and sent the CM.

• prefR: value that represents the preferred distance be-

tween consecutive parents (i.e., nodes with children).

Lower values imply more dense, populated trees, while

higher ones imply sparse trees.

• R: value fixing the maximum allowed distance between

the receiver and the sender (i.e. the RSG or a potential

parent node) of the CM. If the sender is farther away

from the receiver node than R (i.e., sendPos field), then

the CM is discarded. In this way, R serves as a virtual

wireless coverage radius.

• prefS: value that represents the preferred speed of nodes

sending regenerated CMs (i.e., potential parent nodes). It

is set by the RSG. This value is used to preserve the

stability of the tree selecting as parent nodes those that

travel at similar speeds (closer to prefS).

• maxSpeedDiff : nodes whose speed differs more than

this value from prefS will be prevented from sending

regenerated CMs (i.e., becoming parent nodes).

• Dpos and Dspeed: these two values set the maximum

value for the backoff timer. The higher these values

are, the more time is required to build the tree. On the

other hand, too short values might cause many wireless

collisions.

Selecting the potential parent nodes is a completely dis-

tributed process based on a backoff timer:

Tbackoff =
‖((‖pos− sendPos‖)− prefR)‖

R
×Dpos

+
‖speed− prefS‖

maxSpeedDiff
×Dspeed

where pos is the node’s position and speed is the node’s speed.

A node that is located at a distance prefR from the sender

of the CM, and that travels at a speed of PrefSpeed would

immediately send the regenerated CM (Tbackoff = 0 s). After

waiting Tbackoff seconds, the node sends the regenerated CM

(with the sendPos field updated) only if it has not received

another CM with the same sequence number from one of its

neighbors before. In this way, the shorter the Tbackoff of a

node is, the more likely the node sends a regenerated CM

becoming a potential parent (i.e., assuming the responsibility

of having children and forwarding their data traffic).

On the other hand, the TREBOL downstream tree (i.e.,

the tree followed to deliver data traffic from the Internet to the

vehicle) is built and refreshed on a per data packet basis as part

of the data packets forwarding process. A node will be aware

of the identity (i.e., the IPv6 address) of its descendants (i.e.,

downstream nodes in the tree) when it receives data traffic

addressed to the Internet from one of its children (i.e., the

child has selected the node as next hop for traffic towards

the Internet). Thus, upon receiving a data packet addressed



to the Internet, the node learns the identity of the descendant

(i.e., the source address of the data packet) and updates the

corresponding forwarding state information (i.e., the child

which forwarded this data packet becomes the next hop for

downstream data traffic towards the descendant).

So far we have assumed that VANET nodes are already

provided with an IP address that can be used by the TREBOL

routing mechanism as identifier in the forwarding process.

The same CM messages used for building up the upstream

tree could also be used to convey IPv6 prefix information,

allowing nodes to autoconfigure IP addresses in a way similar

to the standard IPv6 SLAAC [2], as described next. All nodes

within the same TREBOL area share the same IPv6 prefix (or

set of prefixes), effectively forming a multi-link subnet. The

RSG sends standard Router Advertisements (RAs) messages,

modified as follows by TREBOL: i) RAs are regenerated by

each parent node, keeping the same prefix, and ii) RAs are

used by all VANET nodes (including parent nodes, which are

also routers) to autoconfigure an address from the prefix. These

RAs are extended with additional options to carry the fields

defined in the CMs (needed by TREBOL routing). In order

to avoid unnecessary control overhead, Duplicate Address

Detection (DAD) is disabled.

This approach reduces the overall control overhead required

by combining routing and address autoconfiguration functions

using a single set of signaling messages [1].

III. IMPLEMENTATION

Number and high mobility of nodes (i.e., vehicles) and

lack of connectivity due to sparse traffic (i.e. low vehicle

density) are some of the challenges that VANETs have to

face to, in comparison to more traditional mobile ad hoc

networks (MANETs). These problems, together with other

low-layer related issues (e.g., severe wireless conditions at

high speed and obstacles), make it very difficult to conduct

realistic experiments. Some testbeds for VANET applications

have been deployed so far, among them we highlight the

following: Cartel and Cabernet projects at MIT [3], [4], Dome

and DieselNet at Amherst [5], VanLan by Microsoft Research

[6] and C-VeT at UCLA [7].

Our long-term goal is to develop a low-cost, flexible

VANET emulation platform using COTS wireless devices to

get more insight of some aspects of VANET protocols that

cannot be investigated using a simulator (tool already used

to evaluate TREBOL in [1]), as for example implementation

complexity or behaviour of the protocol with real data traffic.

This kind of testbed does not aim at looking for a realistic

emulation of the wireless medium, but we rather focus on how

the protocol reacts using a multi-hop connectivity map based

on nodes position and movement. Studying the behaviour

of a VANET protocol using an emulated environment fed

by real traffic traces and realistic mobility patterns can help

to analyze how the protocol operates under conditions that

cannot be easily reproduced in a simulator. We plan to use as

COTS devices, the well-known wireless SOHO router Linksys

Fig. 2. Deployed testbed

WRT54GL 1, but in this paper we report on first validation

experiences using a smaller PC-based testbed consisting in

10 PCs running a Linux system, and TREBOL as VANET

protocol to be analyzed. The installed OS distribution is

Ubuntu 10.10 running a 2.6.35 kernel. Each node is equipped

with an Atheros AR5001X wireless card managed by the

ath5k driver. We are currently working on the migration of

this PC-based testbed to the Linksys-based one.

Fig. 2 depicts the architecture of the testbed deployed in

a laboratory of the Department of Telematics Engineering

of the Universidad Carlos III de Madrid. All nodes in the

testbed are configured in ad-hoc mode, belong to the same

IBSS, and therefore are configured on the same IEEE 802.11a

channel (i.e., 140). Nodes are placed in a reduced space, and

consequently can all directly communicate with each other

(as they are all within 1-hop radio coverage), thus creating a

full-mesh topology. Note that an Ethernet network is used for

controlling and result-gathering purposes.

In order to emulate a dynamic multi-hop connectivity map

of the nodes traveling in a road, it is necessary to know the

complete route of each vehicle in the considered stretch, a

feature provided by the SUMO 2 microscopic traffic simulator.

SUMO supports many mechanisms for providing the input

traffic rate of the system, but our choice was to use real

vehicular traces kindly supplied by the Madrid city council.

The measurements, collected at a fixed observation point along

the M-303 orbital motorway, provide a time mark and the

sensed speed for each vehicle that goes through the checkpoint.

Feeding the simulator with real traces which have a resolution

of 0.1 seconds gives a good estimation of the nodes position at

any time. The final output provided by SUMO is a trace file

for each vehicle providing the vehicle’s position and speed

at every time step. Using these traces we can calculate the

connectivity map for each node at any time. For this evaluation

we used the unit disk coverage rule (with the parameter

coverage radius, R) but more complex rules can be used,

1http://www.linksysbycisco.com/EU/en/products/WRT54GL
2http://sumo.sourceforge.net/
3http://en.wikipedia.org/wiki/M30 motorway



taking into account the vehicles relative speed or the presence

of obstacles. The outcome of this procedure is to obtain, for

each node, the connectivity map at any moment.

In our testbed all nodes are within 1-hop direct radio cover-

age. To emulate a multi-hop connectivity environment we arti-

ficially inhibit the wireless connections using a software mod-

ule. We implemented a library that, using the ip6tables

Kernel API 4, can emulate a dynamically changing multi-hop

wireless connectivity graph. As each vehicle is bound to a

single machine the connectivity mapping can be represented

using the wireless card MAC addresses. Hence, at each time

step, the firewall rules are updated allowing traffic coming

only from the neighbor wireless cards and, thus, creating an

emulated virtual topology over the full-mesh real one.

This approach requires time synchronization among nodes,

a task that we accomplished running a pacemaker module

in the controller node. The synchronization is kept by the

reception of broadcast time-step messages on the Ethernet

control network. By merging the time-step information with

the generated vehicle trace, each node can create a snapshot of

its current connectivity map. The TREBOL software client is

in charge of processing the time-step messages and updating

position, speed and neighbors set (using the aforementioned

library) for each node. The positioning information is also

used by TREBOL in order to calculate the backoff timer while

processing a new RA. TREBOL has to change the forwarding

table in two situations: during the tree-refreshing phases and

when the node is forwarding data on behalf of a child node.

In the first case, the RA source address (i.e., the parent node

address) is taken as the default gateway to the Internet. In

the latter case TREBOL, using the libpcap5 API, gets the

source address of the data packets it is relaying and updates

the routing table accordingly. Netlink sockets [8] are used

for both of the tasks. Finally, the software keeps track of all the

routes added for the downstream tree and periodically cleans

the forwarding table, removing all the unused entries.

IV. RESULTS

In our previous work [1], we focused on comparing TRE-

BOL by simulation with a geographic based routing protocol.

In this paper, we aim at evaluating the behavior of TREBOL

in a more realistic environment, looking at how the algorithm

reacts to possible wireless malfunctions and how real data traf-

fic requirements are met by the emulated moving network. We

have selected three metrics: i) the parent nodes placement, ii)

the total tree construction time, and, iii) the TCP throughput.

Regarding the first of these metrics, analysis of the parent

locations selected by TREBOL, this metric can provide in-

sights on how the protocol reacts to configuration parameters

changes6. Moreover, it can also prove the resilience of the

algorithm to losses of Router Advertisements. We set up a

4http://www.netfilter.org/projects/iptables/
5http://www.tcpdump.org/
6We have not explained in detail how TREBOL works due to space

limitation constraints. The behavior of TREBOL can be influenced by tuning
some parameters [1].
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Fig. 5. UDP Throughput and the hop distance from the RSG

TABLE I
TREE CONSTRUCTION TIMES

prefR T̄build [s] Min [s] Max [s]

180 0.087 0.022 0.214

150 0.088 0.025 0.21

120 0.09 0.03 0.215

emulation scenario representing a stretch of road 2Km long,

with an RSG placed half way, and a total of 9 cars entering

the road (at position 0) with times and speeds reflecting the

actual ones in a real scenario as explained in Section III. The

average distance between the first and the last vehicle of the

queue is around 500m. The test is run 40 times leading to about

240 tree-refreshing phase (the time between consecutive RAs,

TRA, is uniformly distributed between 1.5s and 2.5s). Results

are shown in Fig. 3. In the sub-figures we can see the effect of

varying one of the TREBOL configuration parameters, prefR

(which influences on the desired distance between consecutive

parents): 120m for Fig. 3(a), 150m for Fig. 3(b) and 180m for

Fig. 3(c) keeping the coverage radius R at 200m. We can see

that the protocol behaves as expected: using a prefR value

close to the maximum coverage radius forces parent nodes to

be more separated between them, while shorter values make

the parents topology much denser.

Another important aspect is the time required to build the

tree. This time depends on the real topology (well placed

nodes have shorter backoff times) and on the configuration

parameters. The number of chosen parents (value influenced

by prefR) might have an impact on this time: the higher

the number of the hops, the higher the tree construction

time. Choosing too short values for the parameters that have

an impact on the backoff timer (see [1] for details) might

cause problems for parent selection, as retransmission attempts

would be scheduled too close. On the other hand higher values

will increase the tree construction time, worsening the effect of

asymmetrical paths. Notice that during tree-refreshing phase

the downstream and upstream tree may not match exactly for

short periods of time, which may cause asymmetrical paths.
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Fig. 4. TCP Throughput and the hop distance from the RSG

Results (with the same setup as the previous test) are shown

in Table I. With this setup, we fixed Dpos = 0.04s and

Dspeed = 0.01s. The tree construction time (Tbuild), covering

2 or 3 hops (according to Fig. 3), is on average around

0.9s. This value includes the backoff procedure, the wireless

medium access time and the packet processing time for each

hop. Also the minimum and the maximum T̄build does not

seem to be significantly affected by prefR, but only by Dpos

and Dspeed.

A second goal of this paper is to show how a network running

TREBOL performs under real data traffic conditions . The

first test we run consists in streaming a video 7 from a server

at the infrastructure to a vehicle. For this purpose we used

RTP/RTCP [9] for delivering the multimedia flow. The request

for the video flow is done using the RTSP [10] protocol.

Fig. 5 shows that the throughput consumed by the video is

not influenced by the mechanism used by TREBOL to update

the routes. Although the bitrate value varies over the time (the

video is encoded using Ogg/Vorbis [11], [12], a VBR codec),

the average value is kept stable with the number of hops.

Finally, we evaluated the performance of a TCP connection

(namely a HTTP session) to check the effect that asymmetrical

paths may have on the offered throughput. As already men-

7http://www.sintel.org/

tioned, the TREBOL tree refresh process can lead to asymmet-

ric paths, which are known to affect TCP performance [13].

Although available rate and RTT do not change dramatically

in our testbed, we wanted to make sure that the TREBOL tree

refresh process would not affect the TCP performance heavily.

Our test was done using a node initially placed 400m far from

the RSG. Once it is configured, the node starts downloading a

huge text file stored in a Web Server running in the RSG, while

the node keeps traveling along the road, first getting closer to

the RSG (in terms of distance and hence of hop numbers) and

then moving away.

Results in Fig. 4 show that the tree refresh process only

affects the TCP connection while moving away from the

RSG (i.e., when increasing the hop number). There, due to

the increasing RTT value, the throughput oscillates for short

periods. However, as shown in Fig. 4, TCP Cubic [14] (the

used TCP flavor, it comes by default in Linux kernels since

the version 2.6.19) can easily manage this situation.

V. CONCLUSION

TREBOL is a tree-based routing and IP address autocon-

figuration protocol, proposed in [1], that benefits from the

inherent tree-shaped nature of vehicle-to-Internet traffic to

reduce the signaling overhead while dealing efficiently with

vehicular dynamics.



The performance of TREBOL was analyzed in [1] based

on simulations. In this paper we have gone a step further, by

developing a real prototype of TREBOL in Linux. Besides,

an emulation testbed has also been designed and deployed,

allowing the simulation of dynamic multi-hop connectivity

patterns (such as the ones found in real traffic situations) on

top of a physical testbed deployment in which all nodes are

within direct radio coverage. SUMO and real traffic traces

from Madrid are used in the experiments, with the goal of

emulating scenarios as close as possible to real ones. Obtained

results do not only show that TREBOL can be implemented in

real devices and works as expected, but also that the achieved

performance is good enough for a broad range of applications,

covering both UDP and TCP ones.

Next steps include the migration of the VANET emulation

testbed to COTS devices as well as the analysis of how to

better emulate wireless degradation conditions (not just hard

connectivity decisions) within a reduced physical space.
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