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Abstract—Building vehicular networks in roads and highways
is a challenging research topic with a large number of applia-
tions ranging from the prevention of traffic jams and car colli-
sions to efficient route planning. Analyzing the distance hveen
vehicles in roads is a key factor in, e.g., designing vehicad
networks protocols or planning a supporting infrastructure to
improve connectivity.

This work proposes a Gaussian-exponential mixture model to
characterize the time distance between vehicles in a highwa
lane, based on measurements collected at different locatie in
several highways of the city of Madrid. The model arises fronthe
observed behavior that some vehicles travel very close tater,
like in a burst mode, showing Gaussian inter-arrival times,while
other vehicles are isolated, showing exponentially distbuted
inter-arrival times. The experiments show that such a Gaudgan-
exponential mixture model accurately characterizes intewvehicle
times as observed from real traces.

I. INTRODUCTION

Very likely in the future, vehicles will be provided with

distribution of vehicles and their speed in highways is a
required step in order to be able to design mechanisms that ca
operate efficiently in the vehicle environment and that agrec
with its particular nature. Analyzing the connectivity &wf a
vehicular network requires to build a model of vehiculaffica
from real measurements. Depending on which technology the
vehicles use to communicate among themselves, it is negessa
one model or another. When vehicles communicate using
wireless short-range technologies (i.e., IEEE 802.11p, [5]
the traffic model must consider the aggregation of vehicles
from different lanes in a highway. However, for the case of
infrared communications [6], or the recent cases of visible
light communications [7], [8], a model for single-lane fiaf

is necessary.

A number of previous modeling studies have attempted to
characterize traffic inter-arrival times in the past [9Q]1For
instance, the authors in [10] claim that vehicle intersaairi
times follow an exponential distribution, while the autkor

communications equipment that not only allows them to Shai??[g] consider the log-normal distribution as the most abiie

traffic-related information but also provide a vehiculatwark

infrastructure with services like in a ubiquitous compgtin
fashion. A number of suitable applications for such a vehi(é—nd
ular network have already been proposed in the literatu

ranging from exchanging information between vehicles
prevent traffic jams and car collisions [1]. Other applicat
already proposed in the literature include local hazaraingy,

efficient route planning and coordination of traffic flows.[2]

one to characterize inter-vehicular times. Furthermdrese
two studies also assume that inter-arrival times are inuigret
identically distributed random variables. Howevermwas
{Fill show in the paper, this is not the case as actually theze a

ome dependences between consecutive vehicles, espatiall
highways with dense traffic.

Indeed, we show from our traces that many vehicles travel

close together like in a burst fashion, while others areaisal.

Indeed, both inter-vehicle (or vehicle-to-vehicle) [3]dan g,ch pyrsty vehicles exhibit Gaussian inter-arrival timefsile

vehicle-to-infrastructure communication [4] have beenaan

the others show exponentially distributed times. Basedhesd

tive research topic in the past few years, and a number Gfcornations. this work proposes an exponential-Gaussian
working groups and standardization bodies have already pite model to characterize the inter-arrival times of viefsic

the first stones towards defining a common framework Wy ,pserved from real traffic measurements collected ataieve

this communications arena, see for instance IEEE 16@D

TC204, ETSI TC ITS and the Car to Car Communication

Consortium (C2C-CC).

S

highways in the surroundings of the city of Madrid.
The rest of this article is organized as follows: Section Il
briefly describes the measurement set under study. Sedction |

However, before all such applications become frue, it [Surforms a deep analysis of the traces, showing the basic
necessary to identify the requirements to build a vehiculgfe(s that motivates the Gaussian-exponential mixtureahod
network efficiently and effectively. Thus, characterizit® gection IV introduces the model and confirms its improved
accuracy to model the behavior observed in the traces.l¥inal
Section V summarizes the main findings of this work and
describes our new research directions.

Lhttp://www.standards.its.dot.gov/fasheet.asp?f=80
2http://www.isotc204wg16.org/
Shttp://portal.etsi.org/its/itstor.asp
4http://www.car-to-car.org/



TABLE |
DATA SET COLLECTION.

Trace # Highway Veh/h | Avg. Speed]| Lane
[location in Fig. 1] [Km/h]

1 M-40 [D] 2038 102.64 L

2 A-6 [B 1800 65.62 R

3 A-6 [B 1744 68.20 R

4 A-6 [B 1688 68.33 R

5 A-6 [B 1522 85.88 L
AN 6 AG[B 1506 | 85.82 C
7 A-6 [A 1466 89.13 C

x i 8 A-6 [B 1090 77.38 C
V. : 9 M-50 [E 914 81.47 C

10 M-50 [E 888 108.97 L

11 M-50 [E 684 97.33 R

12 A-6 [B] 593 87.61 R

13 A-1[C 482 97.71 R

14 A-1[C 462 96.08 R

15 A-1[C 462 95.42 R

IIl. ANALYSIS OF THE ARRIVAL PROCESS

Fig. 1. Location of the highways and the measurement points. In this section we start by analyzing the vehicle arrival
process at a given lane in a highway for some representative
cases of Table I. We first analyze the vehicle inter-arrivaés
t;, and then we take advantage of the travel spegds build
a model that is able to both mimic the figures resulting from
the traces and provide some insight on drivers’ behavior.
Table | summarizes the data set used in this work. This . )
comprisesM = 15 traces collected at different locations® |S the arrival process a Poisson process?
on four important highways in the surroundings of the city We first focus on the inter-arrival times between vehicles in
of Madrid, in Spain. Note that the traces are presented arhighway lane. This is, we are interested in analyzing wdreth
decreasing order of traffic, in terms of vehicles per houe Thhe vehicle arrival process can be modeled by a Poisson
considered highways are: process or not. Our motivation is that the classical “Paigsn
. . _ assumption” is very common in the literature, partially fnese
« M-40 and M-50 which are two orbital highways that,¢ jiq jnherent analytical tractability (see, e.g., [9]1[L For
encircle the City of Mf"‘d”d‘ Their speed limits are 10Ghe arrival process to be Poissonian, the inter-arrivaksm
and ,120 km/h respgct!vely. ) hould follow an exponential random variable [12]. In order
« A-6 is a highway linking the north-west of Spain amfo characterize the time between vehiclg's, then, we first

'V'adf‘d- Its _speed "’.“‘t_‘s 120 kmv/h. ) nalyze if their empirical distribution function matchés tone
o A-1 is a highway linking the north-east of Spain an(?rom an exponential

Madrid. Its speed limit is also 120 km/h.

Il. DATA SET DESCRIPTION

The cumulative distribution function (CDH)' of an expo-

Fig. 1 shows the four highways along with the location of theential random variable of meaxr ! is given by
measuring points (A to E in the figure). F(t)=1—e.

The traces were collected in the mornings of four con-
secutive working days, at two different time intervals:rfro Therefore, for ease of presentation it is often better taluse
8.30 to 9.00 AM and from 11.30 to 12.00 AM. For trage the Complementary CDF (CCDF), as its logarithm follows a
(j = 1,...,15), the i-th vehicle measuredi (= 1,...,N;, Straightline with slope-J, i.e.,
where N; refers to the number of s_amp_les in theh trace) log(1 — F(t)) = —AL.
generates the following values: arrival tirig, speedv; and
lane in the highway. In the following; shall denote the inter-  In order to analyze the time between cars, we first normalize
arrival time between theé-th and thei — 1-th vehicles (i.e., each of the traces from Table | by their respective means
t; = T; — Ti_1). Hence, thei-th measurement of thg-th A\, !, and then compute the empirical CCDF. We plot the
trace comprises the tuplév;,t;},; (we discard the sample resulting figures in logarithmic scale in Fig. 2 using dashed
corresponding to the first arriving vehicle of the trace as itines for Traces 1-5, along with the theoretical CCDF of an
inter-arrival time cannot be defined). Note that, accordimg exponential random variable with = 1 using a solid line.
the classification in [9], these traffic traces can be comsitle It can be seen that the experimental data largely deviates
as free-flow non-rush hour traffic with moderate traffic voeimfrom the exponential random variable, and therefeeemust
and high speed. reject the hypothesisthat vehicle arrival times follow a Poisson



distribution. In order to have more statistical confidence of this 1
result, we perform a Kolmogorov-Smirnoff (K-S) goodness o9 [}
of fit test [13] on the complete set of data, which rejects
the hypothesis of exponential inter-arrival times with 95%
confidencen all the cases from Table 1.
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Fig. 3. Correlation plot of the sequences of speeds
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‘ ‘ ‘ ‘ | Based on these results, we conjecture that, for some traces,
1 2 3 4 5 6 some vehicles travel like bursts (i.e., relatively closgetier

Time (s) with similar speeds), while others are somehow isolatethfro
the rest (i.e., with large distances between them and no
dependences with the previous or next car). We will analyze
with more detail this behavior in the next section.

In addition to the above finding, there are two other olf=. Identifying bursts of vehicles
servations that can be derived from Fig. 2. First, inteivalr  We claim that vehicles belonging to the same burst can be
times seems to behifted, i.e., for each trace there seems t@dentified because they travel at a similar speed to thatef th
be a minimum value of before the CCDF starts to decreasehead of the burst, and the distances between them are typical
Given that we are analyzing the arrival process in a highwayiort. To prove this assumption, we analyze the relatignshi
lane, this constitutes a quite expected result, as vehide®t between consecutive speeds, i.,andv;,;, depending on
overlap. Second, the experiments also show that, after@ tifie timet,,; between them. We proceed as follows. ldet
threshold around 2 and 3 s, the experimental CCDFs showd@ghote a time threshold. Based on thisfor each trace we
exponential decay (i.e., a straight line in the log CCDF )plotconstruct two sets of points: in one set (denotef.ag we put
which suggests that the exponential behavior is still sameh those speed pairs from cars that were relatively close,ewhil
present in the traces. in the other set (denoted &5.;) we put the other pairs, i.e.,

0.001
0

Fig. 2. Empirical CCDFs of the normalized time between atsi(dashed
lines) and theoretical CCDF of an exponential distribut{salid line).

B. On the dependences between consecutive vehicles (Vi vig1) € S<s 1 iy <0,

Note that, had the CDF of the inter-arrival times resembled (Vi vig1) € S5 1 tivy > 0.

that of an exponential random variable, this woulat have Fig. 4 shows the corresponding scatter plots of speeds for
implied that the times between vehicles are independent the case of Trace 9 with = 1 s. That is, for all pairs of
and identically distributed (i.i.d.) random variablesdéed, vehicles that are separated by less than one second we plot in
it is often observed that cars travel together following sontig. 4(a) their speeds vs. the speed of its predecessore whil
sort of bursts, even in non-congested highways. Actually, it isve do the same for vehicles traveling more than one second
quite common to observe this phenomenon when a numberapfart in Fig. 4(b). It can be seen that, for the case5ef,
cars are following a slow moving vehicle (e.g., a truck) thatonsecutive vehicles have similar speeds (the scatteriplot
cannot be overtaken easily. In these situations the distanclearly placed around thg = « line), while for the case of
between vehicles are typically short, ahdir traveling speeds S-; this behavior cannot be observed.
are similar, a behavior that has to introduce some dependences$n order to quantify the speed similarity, we compute the
in the arrival process. Pearson product-moment correlation coefficiefdar each data

In order to analyze if this behavior can be observed in oget. For the case of<; the resulting value iss = 0.84,
traces, we compute the correlation plot of the speed segsenghich can be considered as a clear indicator of a “strong”
v;, this resulting in Fig. 3. From the figure, we can see thaprrelatior?, while for the case of5 s the resulting value is
i) for some traces, there exists a noticeable correlatiomemst _ _ _

. . . . . At least, according to the somehow arbitrary thresholdpg@sed in Cohen,

speeds, andz) such correlation in some cases is part'CUIarly. (1988), Statistical power analysis for the behavioraérsres (2nd ed.)
high for consecutive cars (Lag=1). Hillsdale, NJ. : Lawrence Erlbaum Associates.
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Fig. 4. Scatter plot of the speed of consecutive vehi¢les 1, v;) depending on the time distan¢g

noticeable smallerr = 0.6, although still non negligibfe values are large if the relative distances are small. Howeve
Hence, the time between vehicles and their speeds are not still in this case there is a threshold value for this diseanc
independent random variables since, as shown, vehicles that(é ~ 2.5 s), that once crossed the relation between one vehicle
are close together (at least, for the case;0f 1 s) present and its predecessor vanishes.
high speed correlation. Based on the above, we could label vehiclesbaisty or

So far, we have only studied the casejof 1 s for a given isolated, depending on whether they are traveling together
trace. In order to analyze the impact of this parameter, afwlith similar speeds) or not. In order to look insight the
whether we can observe a similar behavior in other traceswrderlying distribution of the arrival process, we analyize
not, we perform a sweep ahbetween).1 s and6 s, and for distribution of the inter-arrival time of Fig. 4, but diviay
each delta value we compute the correlation paramétéor the ¢;'s into two sets according to the identified threshold
the data seb<s. We plot the resulting values in Fig. 5, where), = 2.5 s: in set g we put those values below thig
the 6 traces with the highest density (in terms of vehicles péareshold (i.e., the ones that correspond to bursty asjval
distance) are plot in the left figure, and the other tracepkte while in setr; we put the values above the threshold (the
in the right figure. The results can be summarized as followsnes corresponding to isolated arrivals),

o For the case.of Fig. 5(a) (depse traces), when djstances tierpif t; <2.5 s,
between vehicles are small, i.&.,< 1.5 s, there is a
relatively large correlation between speeds. t, € if t; > 2.5 s.

« In the same figure, whet € (1.5,2.5) there is a steep ) ) )
descent in-2. The resulting histograms for each set of data are plot in

Finally, for the case of dense traces, whien 2.5 s the Fig. 6. According to these histograms, we further confirm the

behavior ofr is relatively flat and independent to change@ehavior that we have identified, i.e., there i$ ahreshold

ons. that separates two very different types of arrivals. On one
« On the other hand, for the case of Fig. 5(b) (small dengide, we have that when vehicles are relatively separated

ties), there is no apparent correlation between consecutigz) the empirical distribution seems to match the probability

speeds regardless of the value of the paramitas the distribution function (PDF) of an exponential random vhh&a
behavior ofr2 is practically flat. which we plot in a continuous line in Fig. 6(b). This way,

Th its. derived f th £ f | statisti we have that when vehicles are not traveling in bursts the
ese results, derved lrom the use ot forma’ Stalls ICglrival process could match a Poisson process. On the other

tools, h?ve aCtga.l"y avery |n'gijltlvellelz(X||3latna;[|0n: Iqrtt:&se of side, however, we observe that when the time distances are
sparse lanes, arivers are quite uniikely fo travet in by relatively short ¢p) the empirical distribution does not re-

g:;fgé[iitlze\rg;]Sicrllgsarpepgﬁﬂéggrg?l?;'eozgztv(\jliz ?gnt:islpﬁivsemble that of an exponential random variable, but instead i
g is similar to the PDF of a normal variable, which we plot in

N
them. On the other hand, for the case of dense lanes vehlcje . -
are more likely to travel in bursts, and therefore the catreh ontinuous line in Fig. 6(a). Note that, because of the way

we have performed the division intg and g, both random
6 _ _ . _ variables are truncated (more specifically, the normalkdei
Note that the traffic regulations necessarily introduce esgorrelation, as . db 0and 2.5 hile th ial .
drivers tend to stay nearer to the speed limits. As we will sed, only in !S truncate etween 0 an .28, while the exponentia aria
very sparse roads the correlation between speeds vanishes. is shifted 2.5 s).
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We try to provide an explanation for the observed resultee valued; = 2.5 s used to make theard decision between
in the following. When vehicles are in a burst, i.e., the casxponential and normal can be seen as “upper bound” for all
of 7, drivers are “traveling together”, and therefore the timgaces (as seen in Fig. 5), but not necessarily the value that
between vehicles is very tied to the driversaction time. We fits best. In addition, the hard decision itself of classityi
argue that this reaction time is around a few seconds, and teamples intorg and 7; results in the truncation of the used
is reasonable to assume that it follows a Gaussian diswibut variables, which could prevent a proper fitting of the model.
(some human-related random variables that follow a normalln the next section we first formally define the random
distribution are, e.g., the distribution of height or th®.). variable that we claim can model the observed behavior; then
When vehicles are not bursty but isolated, the case;pthe we will describe a methodology to obtain the parameters for
arrival process does indeed match a Poisson process, fike othis model; finally, we will assess the relative ability oeth
arrival process quite common in the literature (e.g., ausis proposed variable to model the behavior observed in the real
arrival in a queue, number of phone calls at a call center). traces, as compared against previous proposals.

We claim, based on the above, thia¢ arrival processin a
highway can be modeled using two different random variables:
one exponential and one Gaussian. However, we note that
throughout the above analysis we have not derived a rigorouBased on the results from the previous section, we propose
methodology to estimate the parameters of these variaies, a Gaussian-exponential mixture model to characterize the
have assessed whether the resulting function will be ablewehicle inter-arrival times in a highway lane. More speailiig,
mimic the observed experimental values or not. Furthermoree propose a weighted mixture of:

IV. AN EXPONENTIAL-GAUSSIAN MIXTURE MODEL OF
INTER-ARRIVAL TIMES



TABLE Il

o A Gaussian random variable, to mimic the behavior RESULTING VALUES OF© FOR THE TRACES OFTABLE .
caused by vehicles traveling together in bursts (as seen
in TB)- Trace #| wn wg o o A m

o A shifted exponential variable, to model the Poisson 0.58 1 0.42| 1.44 | 046 | 0.36 | 0.50

arrival process of isolated cars (the one observed,)n
This way, our proposed random varialjlg(t) to model the
time between vehicles arriving at a given point in a highway
lane is formally defined as

1

2 0.65]| 045] 1.45| 0.35| 0.31 | 0.80
3 0.63] 037 | 150 | 0.50 | 0.31 | 0.80
4 0.50| 050 | 1.06 | 0.34 | 0.49 | 0.65
5 0.37] 063 | 1.77 | 0.66 | 0.37 | 0.50
6

7

8

9

0.30| 0.70 | 1.87 | 0.64 | 0.37 | 0.40
0.02] 098 | 0.85| 0.09 | 0.12 | 0.50
0.01] 099 | 1.11| 048 | 0.13 | 0.55

1 _e=w?

fa(t) = wg e 2 +wple M), 0.05| 095 | 244 | 0.87 | 0.13 | 1.00
V2mo? 10 0.04] 0.96 | 0.73 | 0.10 | 0.16 | 0.40

. : ) 11 0.11] 0.89 | 1.52 | 0.41| 0.11 | 0.65
with the following set© of parameters: > 009 T 091 Tos 041l 0171 0.9
o p ando, which are the mean and standard deviation of 13 0.14 | 1.04 | 0.30 | 0.86 | 0.22 | 1.00

14 0.21 | 1.57 | 058 | 0.79 | 0.26 | 1.10
15 0.30 | 1.84| 0.69 | 0.70 | 0.38 | 1.00

the Gaussian random variable.
o A andm, which are the rate and the shift of the expo-
nential random variable.

. andwg, which are the the weights of each distribu- .
,:;}gn (anévfhevrvefloreu]v g = 1v)v 9 ISt uof a dense trace, Fig. 7(b) shows that the observed values are

. . most likely to be modeled with a Gaussian variable, while the
Our model is, then, amnknown mixture of a normal and

ial d bl h ¢ arSFIative component of the exponential variable (in thisecas
an exponential random variables, whose parameters are als ed) is quite small.

unknown. This is a well-known problem in statistics, namely In order to obtain a better representation of the matching

computing the maximum I_|keI|hood OT a set of pargmete%setween the empirical and the obtained distributions, ve¢ pl
(the unobserved latent variables specified above) using a €0 8 the resultin 0-Q plot for the same two traces used
of observed data (the inter-arrival times), than can beesblv g 9 P

using an expectation-maximization (EM) algorithm [14]5[1 in the previous figure. The results visually confirm that for

. . : &oth for the case of dense traffic and the case of sparse traffic
To estimate the required set of parameters, we implement e onosed model as described By(t) is able to mimic
following EM-based algorithm using Matlab: prop Y

L : i . the observed values of the distribution of inter-arrivaids.

1) We |n|t|aI_Iy setm = 0, 1.e., we consider an unshifted We run our EM algorithm on the 15 traces considered
exponential random vz_mable. ) ) ) in the paper, with the resulting values shown in Table II.

2) We run the EM algorithm for either 200 iterations Of; ig jnteresting to observe that these figures, derived from
until the algorithm converged to a set ffi, 0, A, wg } a numerical search as defined by the algorithm, are indeed
parameters. L quite intuitive and further confirm the results from the gsid

3) We compute t_he Iog—Ilkellhood_ (denc_;ted Bg) of _the of Section Il and the proposed methodology. Indeed, we
sequence of time between arrivalswith the obtained can emphasize the following three resuliy: the relative
. ie, weight of the exponential variabteg increases as the density

LL = log(L(ti|©))- of vehicles decrease (note that the results are presented in

4) The aboveLL can be seen, after a run of the Emdecreasing order of densities, see Tablei))by observing the
algorithm, as a functionfey of the set of observations values ofu+o, itis clear that distances between vehicles when

t; and the shift parameter of the exponentia) i.e., they travel in bursts are typically well below the identified
LL = fem(t;,m) that, givenm, assess the likelihood threshold of2.5 s; iii) in all cases, the shift parameter of
of the data according to the obtained model. Thereforé@e exponential random variable is placed between the two
fem quantifies the goodness of a given valuenaf extreme values used in our numerical search.

5) We finally perform a sweep on the parameter from  Finally, in order to assess the ability of the proposed model
0 to 3 s in steps of 0.05 s, to obtain the value th&@ capture the observed behavior, comparing it againsiquev
maximizes the. L (i.e., the functionfey defined above). work, we proceed as follovisFor each of the traces in Table |

In order to illustrate the operation of the EM algorithmWe compute the parameters for three different models:
we plot in Fig. 7 (above) the weighted components of the « The proposed mixture, with the set of paramet®ras
exponential and the normal random variables for the case of given by our EM algorithm.
trace 10 (a sparse trace) and trace 3 (a dense trace). We also An exponential random variable (as proposed in [10]),
plot in Fig. 7 (below) the histograms of the empirical traces  computing its maximum likelihood ratad as given by
along with the resulting theoretical PDFs from the operatio Matlab.
of our algorithm. It can be seen in Fig. 7(a) that, for the case
of a sparse trace, the normal component is relatively Sma|fNote_that in Section Ill we performed a K-S test to reject thpdthesis

d f th b d behavi b d ._that the inter-arrival times followed an exponential ramdeariable with mean
an. most of t e_o serye ehavior can be captured usingna However, for the case of distributions with estimatedameters, the
shifted exponential variable. On the other hand, for the cagilues used for the standard K-S test are invalid [16].
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o A log-normal distribution (as proposed in [9]), with its « Finally, the exponential random variable is never able to
maximum likelihood parametejsando as computed by match the likelihood of the other two alternatives.

Matlab for a given set;. Based on these results, we conclude that our model is the
I%eSt suited to mimic the behavior observed in a highway lane.
In addition, note that the model not only provides a better
Humerical” performance that those of [9], [10], but also it
é)vides valuable insight on drivers’ behavior, some ofckhi
ave been neglected so far, e.g., the dependence between

For each of the traces, we compute the log-likelihood of t
observed values for these tree model, denotelllag,;, LLr |
and L L, respectively, with the obtained results presented i
Table IIl. We also show in the table the estimated paramet

(A%, u and o) for the other exponential and log-norma : ; 2 .
models. For each tragewe mark with a bold font the Iargestconsecu'uve arrivals. As we describe in the next sectiori,gfa
our future work consists on revisiting this assumption oa th

value of L out of the three obtained likelihoods (in case o d. of th d bl delina th hicles’ arisy.
a numerical tie, we mark both numbers). The results can bied- Of the random variable modeling the venhicles” arsva

summarized as follows: V. SUMMARY AND FUTURE WORK

« Our model achieves the highest performance, as it pro-This work has analyzed the inter-arrival times of vehicles
vides the largest likelihood in 86.6 % of the cases (1f8om a set measured traces collected at different locaiions

out of the 15 traces). the city of Madrid. Next, we summarize the major findings of
« The log-normal distribution is the second best modehis work:

being able to outperform our model in 2 out of the 15 « Vehicle arrivals, in general, do not follow a Poisson

traces. process.
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