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Abstract—We are immerse in a world that becomes more
and more mobile every day, with ubiquitous connectivity and
increasing demand for mobile services. Current mobile ter-
minals support several access technologies, enabling users to
gain connectivity in a plethora of scenarios and favouring their
mobility. However, the management of network connectivity using
multiple interfaces is still starting to be deployed. The lack
of smart connectivity management in multi-interface devices
forces applications to be explicitly aware of the variations in
the connectivity state (changes in active interface, simultaneous
access from several interfaces, etc.). In this paper, we analyse
the present state of the connection management and handover
capabilities in the three major mobile operating systems (OSs):
Android, iOS and Windows. To this aim, we conduct a thorough
experimental study on the connectivity management of each
operating system, including several versions of the OS on differ-
ent mobile terminals, analysing the differences and similarities
between them. Moreover, in order to assess how mobility is
handled and how this can affect the final user, we perform an
exhaustive experimental analysis on application behavior in intra-
and inter-technology handover. Based on this experience, we
identify open issues in the smartphone connectivity management
policies and implementations, highlighting easy to deploy yet
unimplemented improvements, as well as potential integration
of mobility protocols.

Index Terms—Mobility, handover, smartphone, Android, Win-
dows Phone, iOS, connection manager.

I. INTRODUCTION & MOTIVATION

In the last years we have witnessed the market explosion

of a new kind of handheld device, the smartphone. At this

point in time it is clear that these devices are going to keep a

steady market penetration and are going to be a major source

of revenue and data traffic for network operators. According to

[1], smartphones account for 88 percent of the growth of global

mobile devices and connections in 2014, with 439 million net

additions in this year. Even though they represent just the 29

percent of global handsets in use, they are responsible for 69

percent of the total handset traffic, which clearly shows the

major adoption of this technology. The use of smartphones

has also modified the traditional patterns of mobile data

consumption. The typical smartphone user is craving for data-

based services, imposing a high burden on the operators,

which see their investments on network deployments pushed

to the limits due to greater bandwidth requirements. Due to

the shift in user profile and data service demand experienced

in the recent years, smartphones have become a powerful

tool in most people’s daily life. In addition, the enhanced

capabilities and fast upgrades of hardware in handheld devices

have considerably increased their usage. These facts pave the

way to advanced research and development that relies on the

use of smartphones for carrying out innovative tasks, mostly

related to health care or behavioral studies and using the

smartphone as a measurement instrument [2]. Moreover, there

is a trend towards specialized, almost personalized services,

which could benefit from an accurate knowledge on the

capabilities supported by smartphones and how they manage

their resources.

The current offer in the market is very wide, in terms of

manufacturers, hardware resources and operating systems, but

do the majority of the devices behave similarly? Is there any

difference in the management of their own resources? Is the

access to an application homogenized across the different sys-

tems? Is the network connectivity management standardized in

all the various devices? Answering these questions could back

the actual research on mobile devices and their applications

to make daily tasks easier, but also more demanding use

cases, applied to different fields. However, mainly because

these details remain closed by manufacturers, most of this

information is still missing or disregarded in research, which

focuses on measuring performance or developing applications

to serve specific purposes.

Smartphone users have one common and defining charac-

teristic, they move. The need for supporting data services on

the move has shaped the design of the cellular network, which

must deploy access and core networks able to redirect users’

traffic to their current location. In addition to the obvious

problem of designing such networks, current smartphones

support several wireless technologies, such as IEEE 802.11

[3], complementing the cellular connection. This heterogeneity

brings new opportunities and challenges to the industry, since

the additional technologies can be used to offload the traffic

from the cellular network to local accesses, such as the

broadband connection usually deployed at home.

The smartphone operating system provides a set of mobility-

related functions from which an application can benefit in case

it decides to handle mobility. These functionalities depend on

the operating system (e.g., Android, iOS, Windows Phone

8) and include connectivity events such as network up or

down events, and commands exposed to the application layer

to extract information on connection availability. Usually the
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terminal connectivity is handled by a service widely known as

the Connection Manager, in charge of deciding which is the

best connection for the terminal in a specific moment, and the

application has to deal with those decisions.

This work focuses on the analysis of the current state of

the art on the mobility support at the Connection Manager in

different terminals, providing a functional view of the differ-

ences between the major operating systems and the different

improvements that can be done to optimize the mobile user

experience. Our main contributions are:

• We analyze the default network connectivity management

of the three currently most popular families of mobile

OSes: Android, iOS and Windows Phone 8,1 including

iOS8 and Android Lollipop, in their latest versions sup-

ported to date. We test the same OS versions in different

terminals, to avoid biased conclusions, derived from the

performance of the terminal rather than from the OS

behavior.

• We study how the smartphones running these different

OSes perform inter- and intra-technology handover, con-

sidering the most widely used access networks: cellular

and IEEE 802.11. For this study, we measure the han-

dover latency in different scenarios and we evaluate the

differences and similarities in the management and con-

figuration of the networking parameters in each device.

• We evaluate how the handover performance affects the

user experience by considering different applications, and

whether they can survive to a change in connectivity:

changes in IP address and changes in access technology.

• As a result of our experimentation, we identify the

challenges and open issues that are present in current

smartphones and discuss on potential improvements for

the connectivity management that are feasible but not

yet implemented and on the integration of connectivity

management with current mobility protocols.

The rest of the paper is structured as follows: In Section II

we present the related work available in the literature and

compare it to our work. We present the networking behavior

of the systems under study, analyzing their main similarities

and differences in Section III. In Section IV we present the

experimental deployment, and in Section V we evaluate the

initial attachment to the access network performed by the

systems under study. In Section VI we present a detailed

analysis of the handover and how the connection manager of

the three families of OSes handle the changes in connectivity,

both inter- and intra-technology, making this analysis extensive

to the management of this change in connectivity by some

popular applications. Section VII summarizes our main results

and highlights our findings comparing all the studied systems.

In Section VIII we identify open issues and improvements to

tackle the shortcomings of the network management in mobile

devices, in light of the data extracted from our experiments.

We also discuss on the integration with mobility protocols.

1Product names, logos, brands and other trademarks are registered and
remain property of their respective holders (Google Inc., Apple Inc. and Mi-
crosoft Corporation). Their use throughout this paper aims only at describing
the results and the work performed and in no way it indicates any relationship
with the holders of such trademarks.

Finally, Section IX concludes the article and present guidelines

for our future work.

II. RELATED WORK

A significant part of the previous works in the literature

analyze the energy consumption of smartphones, however, we

focus on the network stack and how a multi-interfaced smart-

phone manages its network connections. We have compiled in

Table I the previous works that address network performance

in smartphones for a better comparison. Network connectivity

has been addressed, but mostly in terms of application usage

and traffic patterns. For instance, [4] conducted a thorough

study of application popularity and usage, characterizing the

patterns followed by different demographic groups of users

and the traffic generated. Their study confirms the high diver-

sity in smartphone usage, leading to the conclusion that the

tools in use may provide acceptable performance in average,

but it could be considerably enhanced by some specific knowl-

edge on applications performance and usage. Similarly, [5]

also uses a logging application installed in the smartphone of

a group of users and presents a personalized optimization for

Android smartphones, based on application usage patterns per

user, showing that the default task manager can be enhanced

to improve user experience. We argue that a similar approach

to these two can also be extended to network connectivity

management.

The use of mobile devices equipped with several network

interfaces motivates the performance study in [6], which char-

acterizes consistency and compare the WiFi and the cellular

accesses worldwide in terms of download/upload speeds and

latency. The first promising application of this diversity in

network connectivity is WiFi offloading. However, [7] shows

that in spite of the dense WiFi deployment, cellular data

consumption is still dominating and analyses the reasons

behind that fact. A similar study is conducted in [8], but

in this case, the authors conclude that the percentage of

offloaded traffic is not negligible, being mostly exchanged

at home APs. The differences between these two studies

may lie on the geographical differences in their datasets. Yet

again, it is proven that a unique solution for connectivity

management cannot perform optimally, advocating for a kind

of customizable solution per user or based on usage or mobility

patterns. Chen et al. in [9] evaluate network performance of

handheld devices by monitoring the traffic captured at a uni-

versity campus. They also confirm the predominant presence

of TCP and HTTP flows in the traces analyzed and focus

their analysis on parameters such as slow start, the advertised

receive window and characteristics related to the TCP flows.

However, our analysis is centered on the network connectivity

management and the performance in case of a handover. While

the study in [9] is restricted to a WiFi connection, Huang et

al. [10] evaluate network and application performance over

2G and 3G cellular accesses. They measure UDP and TCP

throughput before examining the performance of two widely

used applications, as web browsing and video streaming, by

comparing them with different combinations of smartphone

and network operator.
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TABLE I
COMPARISON WITH RELATED WORK ON SMARTPHONE NETWORKING AND CONNECTION MANAGER

Ref. System Scope Main features studied Contributions Main conclusions

[4] Logging app
Android User interactions, application use, Evaluate the diversity range across users and Patterns on app usage and user interaction time;

Windows Mobile network traffic, energy drain time and their impact on network and energy apply diversity in usage to predict energy drain

[5] Android Logging app
Application usage models, app-launching

Application popularity
optimization, personalized optimization

User experience can be improved by knowing usage
and usage patterns

framework for task manager
patterns and context-aware resource management

[6]
iOS

Speedtest app Cellular and WiFi network performance
Temporal and geographical analysis, Similar throughput performance but,

Android aggregate performance iOS higher latency

[7] Android Logging app Cell, WiFi usage, phone usage
Analysis on application, phone, On average, WiFi traffic is 30%
WiFi and cellular traffic usage of the total data consumption

[8] Android Logging app Traffic volume in 3G and WiFi networks Aggregated and per-user analysis
Total traffic via WiFi much larger than via 3G,

most by a small number of users

[9]
Akamai and Google servers are heavily used.

Smartphones Wireless traffic captured by a Network traffic, TCP impact, comparison Study network performance and traffic,
Different receive window advertised by iOS and

Laptops gateway router in campus network to laptops, app layer parameters mainly focusing on TCP-related parameters
Android, but similar performance

[10]
iOS Measurement tool and methodology for app

Android
Customized app: TCP performance, RTT, DNS lookup time

performance comparison, 3G network
Smartphones are often the web browsing

Windows Mobile
3GTest as metrics for app and network performance

performance for various operators
performance bottleneck, rather than the network

Windows PC
Reduce number of handovers by keeping

[11] Customized Vertical handover, session continuity Connection manager to detect changes between
active connection instead of switching to

[12] connectivity management and handover decision triggers WLAN and WWAN, virtual connectivity manager
WWAN when RSSI is below a threshold

[13] Android
Different use cases for WiFi offloading:

Application for WiFi offloading, simultaneous App for WiFi offloading and content aggregation
content aggregation, SIM authentication

connectivity management usage of cellular and WiFi interfaces (Enhanced Android Connection Manager)
or flow optimization and segregation

[14]
Media players follow different content request

Android Server logs, sniffed wireless traffic Video streaming performance Thorough comparison of iOS and Android
and buffer management approaches. Redundant

iOS and media player source code comparison. clients behavior on streaming
traffic downloaded by iOS

Devices equipped with multiple interfaces typically rely on

the entity of the connection manager mostly for the interface

selection, and then provide networking information to the

applications. In the literature we can find alternative designs

for the connection manager. Zhang et al. [11] study mobility

management between WLAN and WWAN and propose an

architecture that relies on a connection manager and a virtual

connectivity manager, which integrates end-to-end information

to be used to optimize the handover. Their connection manager

includes RSSI monitoring and network availability detection

modules. This architecture is experimentally tested in [12],

achieving promising results such as 2.1 seconds interruption

from WLAN to cellular and seamless handover from cellular

to WLAN, being able to select the best AP to associate with

(in terms of available bandwidth).

To the best of our knowledge, only [13] tackles the short-

comings of the current Android Connection Manager by devel-

oping an application that enhances and extends its functional-

ity. Their application plays with the possibilities offered by the

usage of multiple interfaces and – by enabling simultaneous

usage of cellular and WLAN interfaces – adds support for

WiFi offloading, flow segregation and content aggregation.

However, they do not provide an assessment on the Connection

Manager itself neither analyze the overall behavior under

different network scenarios and various conditions. Besides,

[14] compares iOS and Android behavior in streaming, finding

out that Android and iOS media players request data from the

server differently and they also have different buffer manage-

ment policies. As of the time of writing we are the first ones

to provide a thorough analysis of the network management

supported by an experimental evaluation of the inter- and intra-

technology handover under a wide variety of configurations. In

addition, we examine the network attachment executed by each

device and we analyze the behavior of several applications in

case of a handover, and how they can handle the change in

the global connectivity of the terminal – most of the times

unsuccessfully. The performance of an application does not

only depend on the ability of the developer to handle network

connectivity, but also the accessibility and flexibility offered

by the operating system and the exposed API. Above all,

we compare the three most popular families of operating

systems worldwide2 and state the differences and similarities

among the connection manager of an Android, iPhone and

Windows Phone 8 devices, establishing the guidelines for

further improvements in this unexplored feature.

III. MOBILE TERMINAL NETWORKING STACK

Even though the developer community for the three families

of OSes that we study is considerably large, there is no offi-

cial documentation on the networking stack and the network

management of the system. The effort of the community is

focused on the application layer, thereby the main interest

of a developer is centered at checking whether Internet con-

nection is available, rather than making an efficient usage of

the networking resources and optimizing performance. Still,

we identify the most representative elements that define the

network management in Android, iOS and Windows Phone 8,

and we introduce them comparatively in this section.

A. Android

Android is an open source software stack released by

Google, which makes publicly available the source code under

2http://www.businessinsider.com/android-is-utterly-dominant-in-europe-
2013-7
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Apache or GNU General Public Licenses. An Android system

is based on Linux kernel 3.X (kernel 2.6 in versions up to

Android 4.0). On top of the Linux kernel, there are the libraries

commonly found also in Linux systems3, and the Android

runtime. The Android runtime consists on a Dalvik virtual

machine –where the applications run– and on core libraries,

specific for Android devices and used by the applications. In

Android Lollipop, the new Android Runtime (ART) replaces

Dalvik by default. An application framework interacts between

the lower layers and the applications, which are on top of the

system architecture.

1) Default interface: the Android API provides tools for

an application to set its preferences in the use of the

available interfaces and configure a default interface. It

is important to isolate this behavior from the terminal’s

own networking preferences. In the case of the Android

terminal in our experiments, the default interface is the

cellular one, and simultaneous active connections over

the cellular and the WLAN (Wireless Local Area Net-

work) interfaces are not supported in versions previous

to Lollipop. However, it is possible to modify the default

Android behavior to use both interfaces at the same

time [13]. In Android Lollipop, each interface has its

own routing table and the cellular connection is kept

for 30 seconds after switching to WiFi. The ongoing

communications started over the cellular interface will

remain there. In addition, the terminal will not connect

to a WiFi AP that has no Internet connection.

2) WLAN interface: the hardware abstraction layer (HAL)

contains the software modules that talk directly to the

kernel wireless stack and drivers. The HAL is a user-

space layer developed in C/C++. The application frame-

work uses this C code to interact with the so-called

wpa supplicant module4, which runs in the background

and controls the wireless configuration.

3) Network related events: Android offers the possibility

of tracking the logs of the system and an interested

user is able to monitor the different events that happen

in the system. This can be done through the Android

Debug Bridge (ADB), a command line tool to commu-

nicate from a computer to emulated or physical An-

droid devices. For example, we can monitor the active

network connection (WIFI or cellular) and its coarse-

grained status (disconnected, connecting, connected, dis-

connecting, suspended, unknown). In the case of the WiFi

connection, it is also possible to monitor the state of

the wpa supplicant module, which also reports changes

on its status (associated, associating, authenticating,

completed, disconnected, dormant, four way handshake,

group handshake, inactive, interface disabled, invalid,

scanning, uninitialized). This information is also made

available to application developers by the API framework.

4) Application Programming Interface (API): the An-

droid API framework is published in the form of API

3Note that not all the Linux libraries are fully supported by Android and
some changes have also been introduced to the architecture, such as wake

locks and power management.
4http://w1.fi/hostap.git

levels5. An API level is an integer that identifies the API

revision exposed by an Android version, from the original

API level 1 to the current API level 21. Applications

intended to run on a specific Android version must

support its correspondent API level, and they usually are

backward compatible so that already existing applications

can still be used. Network access is handled by the

Android core libraries. As we have previously stated, the

API provides applications with information of the net-

work connection status and the HAL and kernel modules

access to the network interfaces and are in charge of

the (re)configuration. However, the network management

still keeps a simplistic or conservative approach, as it is

very limited in terms of optimization or using the two

access network interfaces at the same time. Interestingly

enough, the API provides constants and methods to check

whether the signal strength has changed, to know when

a scanning has been performed and information about

surrounding APs is available, compute the difference in

signal strength or change the state or configuration of the

WiFi connection, so that applications could make a much

wiser usage of the network connectivity6.

5) Flexibility and restrictions to the user: because of being

Linux-based, Android offers a high degree of flexibil-

ity in general configuration and networking support. In

addition, the lax licensing has favored the distribution

of customized versions of the firmware7. By default,

Android users are not given root access, contrarily to

Linux users, but it is a common practice among the

Android community to gain root access, empowering the

accessibility to all the terminal features. The root access

and the Linux characteristics make the Android OS the

most flexible and accessible of the systems under study.

In this way, we have full access to the system logs record,

we can monitor the status of the network interfaces and

we can capture traffic with a network analyzer such as

tcpdump8.

B. iOS

The operating system running on Apple mobile devices is

known as iOSn, being n the version number, currently the

latest version available is iOS8, released in September 2014.

iOS is based on the open source OS Darwin, however, iOS

remains as closed-source. Apple’s mobile operating system is

built upon 4 abstraction layers, ordered from the top to the

bottom: i) the Cocoa Touch layer, ii) the Media layer, iii)

the Core Services layer and iv) the Core OS layer. The Core

OS layer is the one that has access to the kernel, drivers and

networking features as the interface to BSD sockets. However,

developers are recommended to implement applications by

using the framework in the highest level as possible, as the

5Not necessarily a new Android version have to support a new API level,
but commonly a new version upgrades the API too.

6The interested reader is referred to http://developer.android.com/reference/
packages.html for a complete guide of the Android API framework.

7One of the most popular ones is CyanogenMod, which reports more than
12 million installs (http://www.cyanogenmod.org/).

8http://www.tcpdump.org/
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complexity of handling networking events or configuration is

hidden by the OS.

1) Default interface: the cellular interface is assumed to

provide always-on connectivity, but as soon as a wireless

AP appears in range, the WiFi connection takes over the

cellular connection. If the WLAN has already been visited

in the past, and the user has allowed this configuration,

the change happens automatically; otherwise, the user can

be notified that there are WiFi networks available.

2) WLAN interface: the WLAN interface is selected as the

primary interface, so it takes over the cellular connection.

3) Network related events: although the development plat-

form does not offer access to the lower layers that talk

directly to the hardware, the manufacturer gives some

development guidelines for an application to be able to

react to network connectivity changes. More specifically,

examples of these events are latency, changes in network

speed and variability of available network technologies.

In the latter case, the documentation provides the SC-

NetworkReachability API (available in the System Con-

figuration framework in Core Services API) to diagnose

the cause of the failure of a connection and determine

availability of different connections.

4) Application Programming Interface (API): iOS pro-

vides three different networking API layers: Foundation

layer, Core Foundation layer (these two are specific to

iOS) and POSIX layer (as in other UNIX systems). The

three of them support common networking tasks, being

recommended to use the highest level API that fulfills the

developer’s requirements. The networking API provided

by iOS7 can be categorized into three main groups: BSD

sockets, web access and Bonjour. The interested reader

is referred to [15] for further details.

5) Flexibility and restrictions to the user: the iOS system

is closed source and the user is not given much flexibility

of configuration with respect to network preferences.

Even though the operating system has been hacked and

it can be jailbroken it does not change the network-

ing behavior or configuration, but increases flexibility

application-wise.

C. Windows Phone 8

Windows Phone 8 (WP8) is developed by Microsoft, and,

as the OS version for PC, they changed completely what was

established in previous releases. Therefore, due to a change

in the architecture, applications designed for WP8 cannot run

in previous versions of the OS or devices running an older

version cannot upgrade to WP8. As part of the features that

Microsoft tried to improve in this new version, they include

the network stack, focusing specially on speeding up the

connection and reducing power consumption.

1) Default interface: one of the main changes in the

networking stack in Windows 8 is the prioritization of

network connections. Despite having a priority, multiple

interfaces can be connected simultaneously. By default,

the cellular interface is the one that is actively connected,

but in the moment that an already visited WiFi network

becomes available, the phone will try to connect to

it. However, the connection through one interface does

not kill a previous connection in another interface. It

is only after a short period of time that the cellular

connection will be terminated, unless it is being used by

an application. In addition to that, existing connections

at the moment of the new attachment, are kept alive and

only the new connections will use the new interface. WP8

even offers the applications the possibility to select the

network interface to use.

2) WLAN interface: the wireless network stack builds on

top of the hardware device (and its firmware) with the

driver and the Wi-Fi service of the OS. With this new

generation of their OS, Microsoft targets to optimize

power consumption and connection delay, which worsens

user experience. In order to do so, they have tried to

integrate as much operations as possible into the hardware

layer.

3) Network related events: as we have mentioned, the

access to the configuration of the WP8 device is much

more restricted to the user, providing no information

on the current connections or the networking events,

other than enabling or disabling a network interface and

changing the priority of a WiFi network in the list of

preferred networks.

4) Application Programming Interface (API): WP8 ex-

poses a set of APIs that comprises the ones for previous

releases (WP7) and the ones that the manufacturer rec-

ommends for applications built from scratch for WP8.

We are only going to mention here the ones recom-

mended for this system, which are .NET HttpClient and

WinRT Sockets, and the so-called “Native code” (IXML

HttpRequest2 and WinSock). Although there are several

development frameworks, we can differentiate two parts:

the one devoted to the web browsing (HTTP-related)

and the one directly related to the network connections

(sockets). Despite the restrained flexibility given to the

user, WP8 offers its applications information about the

network connectivity, when a change in connectivity

occurs and an application can even set preferences on

the use of one interface over the other. Moreover, the

emulator provided by the development framework can

also simulate changes in the network connectivity to test

the application under different scenarios.

5) Flexibility and restrictions to the user: WP8 tries to

optimize mobile user experience and is designed taking

into account the performance of current devices (touch-

screen, portable devices, wireless connectivity). However,

this optimization takes place by implementing a more

integrated system, which speeds up some processes but

does not involve more freedom for the user in configura-

tion nor accessibility. The manufacturer’s claim to favor

this design is that the user just wants to be connected,

but does not care about how they get connected.

IV. EXPERIMENTAL SETUP

This section describes the characteristics of the mobile

terminals under test and provides an overview of the different
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TABLE II
MAIN CHARACTERISTICS OF THE ANALYZED SMARTPHONES

LG Nexus 4 E960 LG Nexus 5 iPhone 3GS iPhone 4 iPhone 5 HTC 8S

OS Version Android 4.2.2, 5.0 Android 5.0 iOS 6.0 iOS 7.0.4 iOS 8.1.2 Windows Phone 8.0

Chipset
Qualcomm Snapdragon Qualcomm MSM8974 Samsung

Apple A4 Apple A6
Qualcomm Snapdragon

S4 Pro APQ8064 Snapdragon 800 APL0298C05 S4 Plus MSM8227

CPU
Quad-core Quad-core 600 MHz 1 GHz Dual-core Dual-core

1.5 GHz Krait 2.3GHz Krait 400 Cortex-A8 Cortex-A8 1.3GHz Swift 1GHz Krait

RAM 2GB 2GB 256MB 512 MB 1GB 512MB

WLAN
Atheros WCN3660 Broadcom BCM4339 Broadcom Broadcom Murata 339S0171 Atheros WCN3660
Murata SS2908001 (5G WiFi combo) BCM4325 BCM4329 Broadcom BCM4334

experiments performed. We aim at studying the connection

manager in several mobile devices running the most represen-

tative OSes – iOS, Windows Phone and Android. The charac-

teristics of the smartphones in our experiments are collected in

Table II. We have included in our analysis the latest versions

available of the OSes, including iOS8 and Android Lollipop.

We have tested the same operating system version running

in different terminals, so we can avoid dependency on the

terminal rather than on the OS. For the sake of fairness we

have avoided performing any modification to the terminals.

In addition to the mobile terminals under study, we deploy

two IEEE 802.11 Access Points that provide Internet access.

These Access Points are under our complete control to keep

track of the behavior of the terminals attached to them and to

be able to modify network parameters, such as the ESSID

(Extended Service Set Identifier), the wireless channel in

which the Access Point (AP) operates and the IP subnet

managed by the access router.

We intend to characterize the Connection Manager on the

systems under study, identifying the main strengths and weak-

nesses on the handling of network connectivity and comparing

their behavior under different study cases. Our analysis focuses

on understanding the following mechanisms:

1) Initial attachment procedure to an 802.11 network.

Regarding this mechanism, we aim at understanding: i)

how the attachment to a WLAN is carried out by every

device, analyzing the differences among them, if any, and,

ii) how the network selection algorithm works and what

criteria are used to choose among the different candidate

networks. This is explained in Section V-A.

2) Initial configuration of the protocol stack. Once the

mobile terminal has attached to a point of access, we aim

at understanding the main steps and the protocols used

to complete its networking stack configuration. Note that,

if this procedure takes place entirely whenever there is a

change in the point of attachment to the network, and not

only as an initial configuration, it may enable potential

optimizations for the handover process. This operation is

explained in Section V-B.

3) Horizontal handover. We examine the handover pro-

cedure between two IEEE 802.11 APs. We play with

different network parameters to have a wide view of the

performance for the different mobile terminals. Specif-

ically, the current AP and the target one may have the

same or different ESSID, operate in the same or different

channels and manage the same or different IP subnets,

in which case the handover would imply also a layer

three reconfiguration. Through this analysis, we aim at

knowing whether there are any dominant factors when

the mobile device changes its point of attachment to

the network and to what extent the different changes

impact the configuration and connectivity management.

The horizontal handover is explained in detail in Section

VI-A.

4) Vertical handover. We evaluate the handover procedure

when it involves a change in the access technology. We

aim at understanding how the mobile devices handle the

inter-technology handover, whether they can keep both

technologies operative simultaneously and whether they

handle the survival of ongoing connections. Characteriz-

ing the inter-technology handover is essential to design

potential optimizations and flow mobility solutions. How-

ever, due to restrictions by the terminal and the network

operator, we were not able to obtain direct measurements

from the cellular interface. The vertical handover results

are presented in Section VI-B.

5) Application behavior. We study application survival to

handover in the cases already explained. The objective is

to know the perception of the user when an application

is running and there is a change in connectivity. In

addition, we get to know whether applications can handle

an interruption due to horizontal or vertical handover

seamlessly. These experiments are presented in Section

VI-C.

We start our analysis in Section V, with the evaluation of

the initial attachment procedure to an IEEE 802.11 network.

V. IEEE 802.11 INITIAL ATTACHMENT PROCEDURE

In order to test the default attachment to an IEEE 802.11

[3] WLAN, we deploy a wireless access point and run thirty

experiments for each smartphone. In each experiment, which

lasts for 60 seconds, we monitor the traffic by means of a

network analyzer9. The monitor interface is located close to

the access point, so we can likely capture all the frames

involved in every exchange. Initially, the WLAN interface

of the mobile terminal is down, so we do not miss any

packet or reach misleading results because of having the device

already connected to another network. We start our experiment

by bringing up the interface and checking that the device

actually connects to the AP under our control. This experiment

9http://www.wireshark.org/
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Fig. 1. Initial attachment to the WLAN.

describes the case in which the terminal finds an already

known network and connects successfully. Note that to connect

to a network for the very first time the user must identify and

select manually the network to connect to.

Figure 1 presents in a diagram the different steps performed

during the initial attachment to the IEEE 802.11 network. Note

that this is a general diagram and it does not try to highlight the

differences among the terminals, but to illustrate the common

procedures followed by all of them. In the following, each

of the steps in the initial attachment is explained in detail,

highlighting the differences among terminals.

A. IEEE 802.11 attachment

Active scanning to broadcast address: when the WLAN

interface of a mobile terminal goes up, it detects all the

surrounding wireless networks available by initiating an ac-

tive scanning procedure. The terminal sends Probe Request

frames to a wildcard ESSID (and to every previously visited

ESSID) in every channel sequentially. Neighboring access

points will receive these Probe Requests and answer with

Probe Response messages, indicating their capabilities and

providing synchronization information. This active scanning

phase differs slightly in the systems under study.

By monitoring the traffic in different channels we are able

to measure the delay induced by the scanning procedure. The

results show high variability in the amount of Probe Requests

being broadcast as well as in the time interval between them,

but we can identify different patterns:10

• The Android terminal scans approximately every 10 sec-

onds in every channel, sending a number of consecutive

Probe Requests inter-spaced approximately 15 ms.

• The Windows terminal spends approximately 6 seconds

between consecutive scans in the same channel. The

time lapse between consecutive Probe Requests is very

variable, but shows two different dominant values: the

terminal sends several requests every 6 ms and one after

60 ms to continue with 6 ms interval again.

• The iPhone terminal presents an interval of approximately

9 seconds between the scan in every channel and the delay

between consecutive Probe Requests is around 20 ms. As

the WP8 terminal, there are several requests spaced 20

ms (much higher interval than WP8) and one 700 ms

after that, to continue sending every 20 ms again.

It is also interesting to evaluate the behavior of the terminals

in channel 14, which is not allowed in Europe, where we

are based. The Android and Windows phones do not list

10Due to the high variability we just provide rough numbers.

the networks operating in that frequency as available, but

the iPhone does, regardless of the regulatory domain. How-

ever, the three terminals send Probe Request frames in every

channel including that out of the allowed frequency band

(at a different interval than in the other channels, though).

Noteworthy, Android and Windows devices do not give the

user the opportunity to attach to these networks although they

actively scan that channel.

The scanning policy followed by a terminal has several po-

tential effects. First, the number of Probe messages sent during

the scanning phase impacts directly the energy consumption.

Second, a terminal can only obtain information regarding

the signal level from the AP by the frames received, hence

receiving more responses before deciding the target point of

attachment can be beneficial. Last, the delay in the attachment

to a WLAN AP is directly influenced by the time spent in the

active scanning process, and so is the handover delay if the

terminal has to scan again before connecting to a new AP.

Target Network Decision: this step corresponds to the

actual decision on the AP to connect to. It seems reasonable

to expect the terminals to perform some kind of complex

algorithm considering, for instance, the signal level received

from the different APs. After the analysis, we have discovered

through our extensive tests that all the terminals use a simple

rule to decide where to connect to. If the AP used in the

immediately previous connection is available, the terminals

will connect to it, no matter its signal level. In case the last

visited AP is not available, the terminal connects to the one

previous to the last one, and so on. In the case secured and

open networks are available, only the iPhone terminal shows

a preference for secured networks if the immediately previous

connection is not possible. It is worth to note that the Android

phone includes an option in the WiFi settings to connect to

a different WLAN or to the cellular network if the signal is

weak. However, even if this option is enabled, the terminal

follows the same approach and disregards signal strength in-

formation to connect to an AP. This way of choosing the target

network leads to weak connections and poor performance.

Active scanning to selected ESSID: in this step, the

terminal addresses a Probe Request message directly to the

AP selected previously and indicates the target ESSID in the

correspondent field in the frame.

Authentication and Association: these are the last two

steps before being attached to a WLAN AP. Both of them are

standard procedures and are equally executed in the different

terminals. Security procedures are out of scope as the main

focus in this work is on the Connection Manager.

Table III gathers the average and standard deviation of the
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TABLE III
INITIAL ATTACHMENT DELAY

OS Version Link layer delay (s)
Network layer delay (s) Total (s)

IPv4 IPv6 IPv4 IPv6

Android 4.2 Nexus 4 0.42 ±0.12 1.09 ±0.31 4.75 ±0.43 1.51 ±0.33 5.17 ±0.45

Android 5.0 Nexus 4 0.47 ±0.05 0.68 ±0.36 9.58 ±3.53 1.15 ±0.33 10.05 ±3.54

Android 5.0 Nexus 5 2.58 ±0.05 0.50 ±0.04 3.33 ±1.15 3.09 ±0.06 5.90 ±1.14

iOS6 1.91 ±0.08 0.13 ±0.01 1.16 ±0.06 2.05 ±0.07 3.08 ±0.14

iOS7 1.98 ±0.26 0.13 ±0.02 1.12 ±0.58 2.12 ±0.26 3.1 ±0.67

iOS8 2.28 ±0.47 0.25 ±0.11 0.87 ±0.25 2.54 ±0.45 3.25 ±0.51

WP8 1.08 ±0.28 1.1 ±0.12 1.28 ±0.15 2.18 ±0.30 2.36 ±0.32

delay during the initial attachment to a WLAN measured for

the different OSes versions. We distinguish between link layer

and network layer configuration, which in turn is measured

for IPv4 and IPv6 configuration, in order to provide more

information on the influence of both processes. The link layer

delay is measured as the time from the interface going up until

the terminal is associated to the AP. The scanning policies

presented previously influence considerably these delays. The

Android terminal clearly outperforms the rest of the systems.

Although it sends a higher number of frames before attaching

to the selected AP, these frames are more frequent, whereas

the other systems have a longer interval and therefore, the

association is delayed. However, Android Lollipop has clearly

impaired performance in the connection for Nexus 5 devices

(well-known issues are being reported by Nexus 5 users since

updated to Lollipop). The WP8 delay doubles that of Android

4.2 and Nexus 4 Lollipop, although the scanning time in every

channel is lower for Windows. There is no clear difference in

performance between iOS6 and iOS7, so this process seems

not to have suffered major modifications from one version to

the other. Still, the latest version, iOS8 increases the delay, as

it happened with the Android update. We have had access to a

new iPhone 6 and been able to perform the same tests, finding

no difference, on average, in our measurements with respect to

the ones in Table III, which correspond to an iPhone 5. It calls

our attention the usage of CTS-to-self frames sent by Android

Lollipop in Nexus 5 and iOS8 in iPhone 6, but not in previous

terminals running the same operating system. Moreover, Nexus

5 just sends one frame right before the authentication frame.

The process and the delay for IP configuration is explained in

detail in the next subsection.

B. Protocol stack initial configuration

IPv4, IPv6 and Multicast configuration: we group these

configuration steps because they are very similar for the

systems being evaluated. Table III shows the delay during the

initial attachment due to the configuration of an IP address

in the wireless interface of the mobile terminal, once it

is associated to the AP (under the column “Network layer

delay”). In the case of IPv4, the different terminals follow

the same mechanism and use DHCP (Dynamic Host Control

Protocol) [16] to configure the IP address when they attach to

the network. In our experiments, the DHCP server is located

in a node belonging to the same network but different from

the AP. The iPhone terminals are the fastest ones in this case

because they start the process much earlier, while Android

4.2 (ICS) and WP8 present a very similar delay, close to one

second over the one from iOS. Contrarily to the attachment

to the WiFi AP, the IPv4 address configuration has been

made faster in the new Android version. Another interesting

difference is that the new iOS version, iOS8, uses gratuitous

ARP in the IPv4 configuration when the wireless interface

goes up, for both iPhone 5 and iPhone 6. Neither Android nor

WP8 use this kind of frames for the IP address configuration

when they attach to the network.

Regarding IPv6 configuration, the WP8 device tries to

configure an IPv6 address by means of DHCPv6 [17], but

as we have no DHCPv6 server in our network, all the

terminals configure local and global IPv6 addresses following

the SLAAC (Stateless Address Auto Configuration) procedure

as specified by [18] and [19] for configuration and DAD

(Duplicate Address Detection). First, the mobile node acquires

a link local IPv6 address and joins the all-nodes and the

solicited-node multicast addresses when the connection is

established in the interface. Then, in order to perform the

DAD the terminal sends a Neighbor Solicitation message to

the solicited-node multicast address. As the source address of

this message is the unspecified address, any other node will

not respond to that message and will identify the tentative

target address on the message so as not to be used. Whether

the node itself receives its own Neighbor Solicitation depends

on the particular implementation of the multicast loopback.

In the case of iOS devices, the delivery to upper layers

of their own multicast message is disabled, so, if no other

node in the network has the same IPv6 address as the target

one, no Neighbor Advertisement from any other node will

be received and the mobile terminal will silently configure

the interface with the target IPv6 address. However, the

Android and Windows terminals send out a solicited Neighbor

Advertisement with their own source address upon receiving

their own Neighbor Solicitation messages to announce this

configuration. The Android device unicasts the message to the

router, while the Windows device broadcasts it to all the nodes.

In light of the results in Table III, the delay for the IPv6

configuration is comparable in the iOS and Windows Phone

systems, but the Android device takes significantly more time,

which delays any IPv6 connection. It is worth to mention that

the three families of mobile OSes follow [20] considerations to

protect privacy. According to SLAAC rules, the IPv6 address is

configured from an interface identifier (EUI-64 identifier), and

the second half of the global IPv6 address (without considering

the 8-byte prefix announced by the router for configuration)
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is the same regardless of the location, so the device could

be tracked. Therefore, IPv6 privacy extensions are defined so

the network interfaces are configured with randomized strings,

which change over time, instead of the interface identifier

in order to complicate the activity correlation. RFC 7217

[21] provides the specification for the generation of these

random interface identifiers while keeping IPv6 addresses

stable in each visited subnet. Typically, the address derived

from the EUI-64 identifier is kept, in addition to a temporary

address built upon randomized identifiers. In our tests, we

have observed that only the Android device configures an IPv6

address matching its EUI-64 identifier and a randomized one.

The WP8 and the iOS devices configure the two IPv6 ad-

dresses from random strings. According to the RFC, “devices

implementing this specification MUST provide a way for the

end user to explicitly enable or disable the use of temporary

addresses”; however, none of the systems are compliant with

this statement. Table III shows a considerably higher delay

for network layer configuration for the Android (Nexus 4)

terminal. It starts the IP address configuration process approxi-

mately 1 second after the association, starting with the Router

Solicitation message, and approximately 4 seconds after the

association, it starts with the SLAAC, which leads to the

highest delay among the terminals studied. Unfortunately, this

process has been impaired significantly in the updated version.

Finally, the use of multicast for the interface configuration is

slightly different in the three families of systems. For instance,

Windows Phone makes use of LLMNR (Link Local Multicast

Name Resolution) protocol [22] in addition to IGMP (Internet

Group Management Protocol) [23] and MLDv2 (Multicast

Listener Discovery) [24], [25] which are used in the iPhone

signaling. The Android phones just makes use of MLDv2

messages, as IGMP is not supported. This behavior is specific

of some Android devices and constitutes a known issue in the

community.11

Higher layer configuration: As part of the process to

gain Internet connectivity, all mobile OSes perform a tech-

nique called Network Connectivity Indicator, to detect captive

portals. This protocol issues a DNS query to establish a

TCP connection intended to send an HTTP GET method and

retrieve a light-weighted web page, which is mainly void.

This procedure serves to check the Internet connection at the

device and prompt the users with a login form to introduce

their credentials, if required by the WLAN administrator. The

API in Android includes a way to access the information

on whether the terminal is connected or connecting to the

Internet, through which interface and allows registering to

event notifications in case of network status changes. In

addition, application developers have the option to try and

reach a website from their app when it starts running, because

the connection manager can only detect the status of the

interface, but not if there is actual connectivity. With regard

to Apple’s devices, it is worth highlighting a recent change

performed in iOS7 compared to iOS6. The captive portal

detection in iOS6 was performed issuing a query to the web

11Issue 51195: many devices have multicast disabled in the kernel. http:
//code.google.com/p/android/issues/detail?id=51195

page http://www.apple.com/library/test/success.html, while in

iOS7 this web page check has been swapped by a randomized

query to a url selected in a list identified by Apple. Table IV

collects the service connections that are preceded by a DNS

query when the different terminals attach to a WLAN. As

soon as the mobile terminals gain Internet connectivity, all the

terminals try to reach the central servers of their correspondent

manufacturers to update their location, configure some services

- time synchronization or push notification service – and re-

initiate some connections – as GTalk, in the case of Android.

IP addresses on the server side are expected to change, so

the terminal connects by hostname, issuing DNS queries,

rather than by IP address. Commonly, servers implement a

load balancing scheme, so it is possible that the same query

returns a different IP address for the same host name. For that

reason, to identify the connections we track an IP address

block, instead of a specific name or address. In addition

we observe that many providers and applications use CDN

(Content Distribution Network) nodes to offer their services,

which complicates the identification of the service as the

connections are hidden by the CDN. For instance, iPhone uses

the Akamai network [26] for all Apple related services.

To sum up, the results show that the Android terminal

associated to the AP much faster in the previous versions

of the system, and the network layer configuration time is

comparable to that of WP8 for IPv4, but it takes significantly

longer than in the other terminals for IPv6 configuration and

Duplicate Address Detection (DAD). However, it calls our

attention that, as Linux does, the first DNS query sent by

the Android phone is always a request for an IPv6 address

(type AAAA), so IPv6 takes precedence over IPv4. On the

contrary, the WP8 device issues the IPv4 query before the

IPv6 one. Note that the differences in hardware, as reported

in Table II, should not be responsible for the differences in

performance, specially in the case of the Android phone, which

is the one with the slowest initial connection. In the case

of the iOS terminals, they require much less time than the

Windows and Android devices to configure an IPv4 address,

but the association to the wireless AP takes longer (except

for Nexus 5). The fast configuration in IPv4 makes possible

to have comparable total times for iOS and Windows devices,

while for IPv6 the Windows terminal is almost 1 second faster

than iOS and almost 3 seconds faster than Android.

VI. HANDOVER DISSECTION

This section presents a thorough study of different handover

scenarios and their effect on applications and user experience.

For these experiments, we vary the configuration of two 802.11

APs in order to cover as many different scenarios as possible.

The different variations in the setup are presented in Figure 2.

We deployed two access points that provide Internet access

to the terminals attached to them and we play with different

parameters of the network – ESSID, channel and IP subnet

– to evaluate their influence when the handover process takes

place from one AP to the other.

We do not only analyze the handover from an 802.11 AP

to another, but also the inter-technology, or vertical handover,
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TABLE IV
DNS QUERIED FOR INITIAL CONFIGURATION OF SERVICES ON WLAN INTERFACE START-UP

Service Android iOS WP8

Initial connection clients3.google.com www.apple.com; login.live.com
to central servers (IPv4 and IPv6) (IPv4 and IPv6) clientconfig.passport.net

Network status clients3.google.com/generate 204 http://www.apple.com/library/test/success.html (iOS6) www.msftncsi.com
indication www.google.com/blank.html randomized (iOS7)

push notification mtalk.google.com 18-courier.push.apple.com (IPv4 and IPv6) push.live.net
service

play.googleapis.com www.apple.com; ctldl.windowsupdate.com
Software updates android.clients.google.com (IPv4 and IPv6) crl.microsoft.com

(IPv4 and IPv6) (IPv4 and IPv6)

Fig. 2. General scenario for handover tests.

moving the connection from the cellular interface to the

WLAN one and vice versa. Lastly, we evaluate the behavior

of several applications when a handover takes place to check

handover impact from the point of view of the user.

A. WLAN Horizontal Handover

1) Initial considerations: In this section we focus on the

main core of the handover analysis, which is the intra-

technology or horizontal handover, where the mobile node

changes the point of attachment to the WLAN and connects

to a different WLAN AP. Table V gathers the link layer delay

measured for the different experiments. We have indicated the

differences in ESSID and channel of operation between the

two APs. Our analysis is centered on the link layer handover,

so we do not change the IP subnet. As none of the three

mobile OS families bases a handover decision on the received

signal strength from the current AP or link quality degradation,

we force a handover in our experiments by initiating it in

the network or in the terminal side following three different

approaches: i) the AP deauthenticates the station (since the

mobile terminals do not react to signal strength or link

quality degradation, we turn off the AP). This is presented in

Table V as “disconnect AP” in light of the obtained results we

differentiate two subcases; ii) the mobile user terminates the

connection by manually omitting – “forgetting” – that network

(referred to in Table V as “forget”) or iii) the mobile user

switches the connection directly to other network (“manual”

in Table V). The difference between the second and the third

option is that, in the latter, the user explicitly indicates the

target network to switch to.

Another preliminary consideration is that the cellular inter-

face is the default interface in smartphones, since it provides

always-on connectivity. Therefore, we also evaluate the influ-

ence of having this interface enabled or disabled in the case

of a horizontal WLAN handover. We have noticed that the OS

families analyzed always fall back to the cellular connection as

soon as the current WLAN connection fails, even if there are

other WiFi networks available. This change involves another

variation of the IP address that provides global connectivity

to the device, however, it does not necessarily worsen the

handover latency and the interruption experienced by the user.

On the contrary, the change to the cellular connection actually

does not increase the handover delay and, as we will see in

Section VI-C, improves the performance in case the handover

implies a change of IP subnet, contributing to the survival of a

running application, depending on the implementation. For the

experiments presented in this section, we have confirmed that

having the cellular data connection enabled or disabled makes

no significant difference in the horizontal handover delay, so

we do not distinguish these two cases in Table V for the sake

of clarity.

2) Handover latency: The first issue that calls our attention

is the considerable handover latency for the systems under

study in every scenario. However, it is remarkable that this

latency does not always translate into a complete loss of con-

nectivity or killing a running application – see Section VI-C.

From the figures in Table V we can clearly see that the

fastest way of handing over from one WiFi network to the

other is to manually change the connection. All the terminals

can change the connection in less than a second, but iOS

devices are particularly fast, with times around 200 ms. In the

case the handover is initiated by the user but just deciding to

disconnect from the current AP, without directly connecting

to the new one (“forgetting” the current connection) the

handover latency increases to values around 1.5 seconds as

the mobile terminal scans again in every channel. However,

the Android terminal presents a stable delay as the handover

delay remains around 0.9 s when the mobile terminal hands
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TABLE V
LAYER 2 HANDOVER DELAY [S] FOR THE DIFFERENT TERMINALS

Handover mechanism

Manual Forget
disconnect AP

AP deauthenticates Connection lost

Same channel

A 4.2 N/A N/A 0.92 ±0.13 5.54 ±0.09
A 5.0 Nexus 4 N/A N/A 7.20 ±2.54 21.09 ±6.39
A 5.0 Nexus 5 N/A N/A 9.12 ±1.72 2.96 ±1.06 (reassoc)

13.14 ±2.66
iOS6 N/A N/A 1.94 ±0.36 4.63 ±1.12 (reassoc)
iOS7 N/A N/A 2.48 ±0.29 4.59 ±0.59(reassoc)
iOS8 N/A N/A 2.44 ±0.81 11.23 ±3.33 (reassoc)

Same WP8 N/A N/A 0.24 ±0.1
ESSID

Different channel

A 4.2 N/A N/A 0.99 ±0.19 5.40 ±0.11
Lollipop Nexus 4 N/A N/A 3.25 ±0.26 (reassoc) 2.71 ±0.37 (reassoc)
Lollipop Nexus 5 N/A N/A 9.05 ±4.68 13.40 ±4.60

iOS6 N/A N/A 1.57 ±0.34 5.66 ±1.38 (reassoc)
iOS7 N/A N/A 2.38 ±0.32 4.88 ±0.97 (reassoc)
iOS8 N/A N/A 14.80 ±5.94 18.87 ±1.87
WP8 N/A N/A 0.4 ±0.097

Same channel

A 4.2 0.95 ±0.08 0.9 ±0.03 0.78 ±0.29 5.42 ±0.1
A 5.0 Nexus 4 0.10 ±0.08 1.04 ±0.45 5.31 ±3.02 10.73 ±3.18
A 5.0 Nexus 5 0.09 ±0.04 4.70 ±1.78 8.53 ±3.81 9.75 ±4.83

iOS6 0.14 ±0.054 1.53 ±0.10 1.36 ±0.53 11.87 ±0.83
iOS7 0.22 ±0.03 1.64 ±0.33 2.41 ±0.67 11.88 ±0.36
iOS8 0.12 ±0.06 0.27 ±0.06 3.90 ±1.90 11.44 ±2.23

Different WP8 0.87 ±0.34 1.52 ±0.62 10.14 ±1.83
ESSID

Different channel

A 4.2 0.93 ±0.07 0.91 ±0.025 0.91 ±0.06 5.41 ±0.15
Lollipop Nexus 4 0.27 ±0.28 3.29 ±0.31 9.07 ±1.65 15.09 ±3.39
Lollipop Nexus 5 0.10 ±0.08 4.24 ±1.30 6.87 ±3.26 13.12 ±4.48

iOS6 0.22 ±0.06 1.43 ±0.45 1.09 ±0.82 12.00 ±0.51
iOS7 0.28 ±0.04 1.69 ±0.61 1.20 ±0.26 12.16 ±0.887
iOS8 4.92 ±0.03 0.17 ±0.08 8.61 ±4.12 12.12 ±2.38
WP8 0.73 ±0.05 0.75 ±0.05 10.41 ±0.065

off between two APs from different ESSs (Extended Service

Sets), regardless whether the handover is initiated by the

terminal or the network. For the rest of the systems, instead, it

varies significantly. It is remarkable the stickiness of the iOS8

wireless client, which tries to remain connected to the same

AP regardless of network conditions or even user choices,

especially when having to change to a different channel, which

explains the 4.92 s delay in the “manual” handover and the

0.17 s for the “forget” handover, as the terminal cannot try to

remain connected to the previous AP.

In the case of roaming between two APs within the same

ESS, the only possibility is to hand off by disconnecting

the AP, because the user cannot choose manually to which

AP in the ESS it connects. When the handover is triggered

from the network side, the AP sends a deauthentication frame

when it disconnects. In this case, we have identified two

differentiated behaviors that repeat in our experiments, except

for the WP8 terminal. In the first case, the mobile terminal

receives the deauthentication from the AP and starts active

scanning for a new AP to connect to. This case shows lower

delays and the signalling is similar to the one described in

Section V for the initial attachment. On the contrary, in the

other case we have measured much higher delays until the

mobile terminal associates to the new AP. The reason for this

difference is that the mobile terminal does not get disconnected

because it recognizes the deauthentication from the AP, but

because the connection is lost (e.g. missed Beacons). The

mobile terminal tries to reconnect to the lost AP by sending

Null Function frames and Probe Requests. As the AP does

not respond anymore, the mobile terminal needs to scan

to look for other available APs. Once again, the Android

terminal presents a similar delay irrespective of whether the

former and the new AP are part of the same ESS (around 5

seconds). However, the iOS devices perform a re-association

in approximately 5 seconds when roaming within the same

ESS, whereas the delay raises to 12 seconds when the two

APs are in different ESSs. We have traced the events that

take place in the case with the higher delays in the wireless

networking stack until the wireless driver. However, we cannot

confirm if this is a buggy behavior of the implementation,

but it clearly gives us some room for improvement in the

connection management. The Windows Phone terminal does

not present these differences in its behavior. Its handover

process is more stable although moving within the same ESS

clearly decreases the delay and reduces the scanning phase.

It is worth to mention that, when roaming within the same

ESS the iOS devices send a Reassociation Request frame

instead of an Association Request to the new AP. The main

difference between these two frames is that the Reassociation

includes the BSSID (Basic Service Set Identifier) of the

previous AP that the mobile terminal was connected to. This
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Fig. 3. Flow diagram of a handover procedure for the different OS families.

is because from iOS6 Apple has implemented support for

802.11r (amendment for Fast BSS transition). Since our APs

do not implement 802.11r mechanisms, this feature reduces

to a regular handover, although having it enabled, should

influence significantly aspects like security or QoS.

If the handover is performed between two APs within the

same ESS, this change should have an effect only at the link

layer, being transparent to the IP layer. Therefore, the mobile

terminal should not renew its DHCP lease until it is expired

even though it changes from one AP to another inside the same

ESS. This behavior is confirmed by the iPhone terminal, but

both Android and Windows phones initiate a DHCP discover

process when they connect to the new AP, regardless of being

part of the same ESS.

In these experiments we do not consider changes in the IP

layer, as we are focusing on the link layer delay. Nevertheless,

there is another relevant characteristic, as for the Android and

Windows phones any kind of handover involves a reconfigura-

tion in the IP layer (new DHCP and IPv6 configuration), even

though the target network is managing the same IP subnet.

As we see, the rest of features do not introduce significant

changes in the handover process, neither in signaling or in

delay.

3) Link layer behavior: Figure 3 illustrates the signaling

differences among the four systems under study for the four

handover cases we have analyzed. The handover process starts

either when the AP sends the deauthentication to the mobile

terminal (“disconnect AP” case in Table V) or the mobile

terminal disassociates (“manual” and “forget” cases in Table

V). One of the main differences we can appreciate is that

Android terminal does not make a difference between the

“manual” and “forget” handovers. Both trigger the active

scanning with broadcast Probe Request frames to the wildcard

ESSID; then it follows targeting the specific ESSID to finally

authenticate and associate. We also notice that the WP8

terminal follows a shorter path than the other systems when

the AP sends the deauthentication (and the ESSID does not

change), which matches the low delay of the WP8 handover

in this case. Another difference is that the mobile terminal

sends a Deauthentication frame only when it receives the

deauthentication from the AP and only for the iOS7 device.

Finally, the two different cases for the “disconnect AP” han-

dover are illustrated by the two different paths that part from

the “AP sends Deauthentication” box. The case that incurs the

highest delay is the path through the Null Function frames,

while the direct path to the active scanning box also involves

considerably lower delays (as abovementioned in Table V). In

this last case, the terminals may follow two different paths,

sending Null Function frames or not, depending on whether

they accept the deauthentication from the AP or think the

connection has been lost.

The use of Null Function frames is a common practice

and, as their usage is not defined by the standard, different

implementations make different use of them. On the one hand,

they are used for power saving, notifying the AP when the

station is going to sleep mode and waking up. On the other

hand, they are used during active scanning to get the AP

buffering the frames addressed to the station while it is sensing

other channels to avoid retransmissions. A third alternative

is to use the Null Function frames as a keep alive for the
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connection. However, the flexibility provided by these frames

is also applied for attacking wireless networks [27].

4) Upper layers behavior: It is worth mentioning that the

handover delay increases significantly in the case of not having

an application running. Moreover, although the behavior on the

link layer is quite similar in the different devices for any of

the scenarios, the behavior in the upper layers is very diverse.

We aim to characterize also the interruption at upper layers

due to the handover. However, we have not been able to extract

similar results to the link layer measurements, due to the

variability in the behavior of the application running and the

high delay to re-establish the flow with the main servers. The

application behavior is not under our control, but several cases

can be identified. In the case of Android, every handover case

involves a complete reconfiguration also at the network layer,

reissuing DHCP discovery and performing DAD. Therefore,

the interruption of any traffic flow is considerably long. When

the device gains connectivity again, the TCP connection is

reset (RST flag set) and any connection of an application

running at the moment of the handover has to be renewed,

sometimes even connecting to different servers – e.g. due

to load balancing at the server. On the other hand, in the

case both APs handle different IP subnets, this re-issue of

DHCP discoveries enables a faster re-configuration of the IP

layer. Otherwise, even though the connection at link layer

takes place successfully, no data will be delivered to or from

the mobile terminal as it does not reconfigure its IP address

according to the new network. However, passing through the

cellular interface during the transition between two WLAN

APs enables the IP re-configuration, also within the same ESS.

This is the case for iOS devices, which do not re-issue a DHCP

discovery when there is a handover within the same ESS.

B. 3G-WLAN Vertical Handover

One of the main differences among the operating systems

under study is in the simultaneous usage of the cellular and

802.11 interfaces. iOS does not allow one interface to remain

active when the other is getting started too, e.g. finishes the

open connections and turns down the cellular interface when

a known WLAN appears in range and tries to connect to it.

On the other side, Android keeps the cellular connection on

until the IP address is configured in the WLAN interface.

Finally, Windows Phone allows the simultaneous connectivity

through both interfaces, even keeps an active communication

through the cellular interface although it gets attached to a

WLAN AP, while applications started from that moment use

the WLAN. This is an important advance over its competitors,

as for instance, it allows to keep a VoIP (Voice over IP)

conversation over the cellular network while connecting to

an 802.11 AP, ensuring that the call will not be interrupted.

In the case of Android 5.0, it includes a significant change

in the network management. First of all, the simultaneous

usage of cellular and WiFi interfaces is allowed. Therefore,

the connections established through the cellular connection

remain active through that interface even in the case the

mobile terminal connects to a WLAN. If there are not active

connections, the WLAN interface is still the preferred one,

deactivating the IP connectivity in the cellular interface 30

seconds after the WiFi interface gets a connection. In order to

introduce these changes, the development team has defined a

routing table per interface, instead of a system-wide routing

table, as in the previous Android versions. This has allowed to

improve, as we show in VI-C the performance of applications

running when a handover occurs, for instance, in the case of

an ongoing Skype call.

C. Application survival to handover

Following the different approaches for handover described

in Section VI, we have studied the influence of these handover

procedures in the behavior of several applications. We have

chosen some of the most widely used applications, varying

their scope. The applications we have evaluated are Skype,

as a VoIP application (Android v3.2.0.6673, v5.1.0.57240

(Nexus4 Lollipop) and v5.1.0.58677 (Nexus 5 Lollipop); iOS6

v4.2.2601; iOS7 v4.17.0.123; iOS8 v5.11; WP8 v2.1.0.241);

Youtube, as a video streaming application (Android 4.2

v4.2.16 and v6.0.13 (Nexus 4 and Nexus 5 Lollipop); iOS6

v1.1.0; iOS7 v2.3.1.11214; iOS8 v10.09.11358); Facebook, as

the most relevant social network at the moment12 (Android

v3.3, v23.0.0.22.14 (Nexus 4 Lollipop) and v24.0.0.30.15

(Nexus 5 Lollipop); iOS6 v5.6; iOS7 v6.8; iOS8 v26.0; WP8

v4.1.0.0) and three applications for radio streaming, which

will be referred to in the following as Radio 113 (Android

v1.08.16 (ICS), v4.1.2 (Nexus4 Lollipop) and v1.08.33 (Nexus

5 Lollipop); iOS6 v2.1.7216; iOS7 v2.1.9327; iOS8 v3.0.0;

WP8 v2.1.0.0), Radio 214 (Android v1.0 and v2.1.3 (Nexus

4 and Nexus 5 Lollipop); iOS6 v2.4; iOS7 v3.0; iOS8 v3.5;

WP8 v1.3) and Radio 315 (Android v2.2.2 and v2.2.6 (Nexus

4 and Nexus 5 Lollipop); iOS6 v2.1.1; iOS7 v2.2.1; iOS8

v2.2.2; WP8 v1.2). We choose three different radio stations to

avoid biasing the conclusions, because some features may be

implementation-dependent.

The test procedure consists on start running the application

under stable network conditions and perform a handover to

analyze the effect of this change. The results of these experi-

ments are presented in Tables VI and VII for intra-technology

WLAN handover and inter-technology handover respectively.

We have observed that the mobile devices under study fall back

to the cellular interface as soon as the WLAN connection is

lost, although other 802.11 networks are available and even

attach to one of them immediately. Because of that, we have

included another variant in our experiments apart from the

different configurations of the WLAN, which is to have the

cellular data connection in the mobile terminals enabled or

disabled. However, regardless whether the cellular interface is

on or off, the delay (presented in Section VI-A) is not affected

but only has an influence on the survival of the application,

which is more likely to overcome the handover when the

cellular interface is on. We have identified different application

behaviors:

12http://www.dreamgrow.com/top-10-social-networking-sites-by-market-
share-of-visits-may-2013/

13The application tested is the one by Los 40 radio station.
14The application tested is the one by Cadena 100 radio station.
15The application tested is the one by RNE radio station.
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a) The application interrupts and does not recover even

when there is global connectivity unless you restart the

application. This is indicated in the table by a black cell.

b) The application interrupts for a small lapse, continues

working intermittently and finally stops. This is indicated

by a dark grey cell.

c) The application interrupts for a small interval, but it

continues working properly and go back to its normal

operation with a noticeable but acceptable glitch for the

user. This is indicated by a light grey cell.

d) The application tolerates the handover, which happens

smoothly and the interruption is seamless for the user.

This is indicated by a white cell.

To gain some space, Youtube has been excluded from the

table because there is no difference in the behavior of this

application in any of the handover combinations. As long as

the buffer does not empty, the user will be able to watch the

video without noticing that there is a handover in progress.

However, the application may stop if the handover does not

allow to keep filling the buffer to continue playing the video.

Facebook does not appear in the table neither for the sake of

clarity, as this application can always recover from the loss

of connectivity, retrying to load the user profile (or the target

page) in several attempts, either automatically triggered by the

application or reloaded by the user.

As recommended by the developer documentation of the

three OS families, HTTP or HTTPS are the way to send or

receive small pieces of information, and this is the way that

all the Radio applications use for streaming their content. The

only application in our experiment set that uses a different

protocol is Skype.

The different mobile terminals analyzed fall back to the

cellular connection as soon as the current WLAN connection

fails, even if there are other known WiFi networks available.

In order to mitigate the interruption in network connectivity,

when the connection to an AP is lost, the mobile terminal uses

the default connection through the cellular interface. Regaining

IP connectivity by the 3G, gives more time to the mobile

terminal to scan in the WiFi channels and connect to another

AP if there are any other networks available. However, the

change in the technology involves a change in the IP address

in use for currently ongoing connections, and this may impact

open connections more than the link layer handover, depending

on the implementation. There are applications that can survive

these two changes in the current connection, while others are

interrupted as soon as the current network interface losses

connectivity. Note that the applications that easily survive are

those that can benefit from buffering the content (Youtube)

but note that buffering does not necessary imply a seamless

handover, as not all the applications that buffer the content

can survive a handover (Radio 3) concluding that the survival

of an application is implementation dependent. It does not

depend neither on the OS nor the API offered to application

developers, as in the same system different applications can

overcome the handover interruption whereas others do not re-

gain connectivity anymore – Radio 1 and Radio 3 in Windows

Phone, respectively. In addition, in the case of the applications

that hand-off successfully, even though the change of access

technology back to 3G involves an additional change in the IP

configuration, it helps improving the user experience making

the interruption smoother.

In the light of the results in Tables VI and VII the first

issue that calls our attention is the poor performance of the

application Radio 3, which cannot survive the change of the

point of attachment to the network. Secondly, we identify that

Radio 2 performs significantly better in the Windows Phone

8 than in Android or iOS. A user of this application in the

Windows terminal can continue listening to the radio station

with a seamless handover or with a minimal interruption in

every case, while an Android or iPhone user would stop being

provided the service. However, while the Android Radio 2

application fails in every handover, under any circumstances,

the iPhone Radio 2 application shows different behavior under

different scenarios and for iOS6, iOS7 and iOS8: i) for iOS6,

the application cannot handle a handover that involves a

change in the IP subnet; a change in the point of attachment

within the same ESS is supported but, changing to a different

ESS this application only survives if the 3G interface is

enabled ii) for iOS7, Radio 2 interrupts only when IP subnet

and channel change within the same ESS; iii) for iOS6, iOS7

and iOS8, the application tolerates inter-technology handovers,

although the app for iOS8 is the one that interrupts the most.

It is also remarkable the improvement from iOS6 to iOS7

versions of the same application, especially for Radio 2 and

Radio 3, as well as in the case of iOS8, where Radio 1 does not

interrupt when 3G connection is on and Radio 3 can always

maintain the connection. However, Radio 2 does not show an

improvement, as it interrupts playing.

The issue of changing the IP address is not trivial. A similar

behavior is observed for Radio 1: the Windows terminal can

handle the change of AP unless it involves a change in the IP

address of the target subnet. Similarly, the iPhone terminal

starts experiencing trouble even when the target wireless

network has the same ESSID, but a different IP. When the

target AP operates in the same channel, as the scanning process

takes less time, the application can recover, but that is the only

case. When the ESSID is different between both networks, the

application running on the iPhone terminal can only handle the

handover when the action that triggers the change comes from

the network, but not when the terminal decides to terminate

the connection. This has been overcome in iOS7, only if the

connection can fall back to the cellular interface, as waiting for

having configured the new WLAN network connection adds

too much delay. However, the Android terminal can manage

the change in connectivity for Radio 1 without interruption in

every case.

By observing the results in Table VI we can see that

the applications running in the Android 4.2 device present

a more homogeneous behavior and mostly do not tolerate

the handover, but for the application Radio 1. However, the

Android update 5.0, has allowed to maintain an ongoing

Skype call in several scenarios, while applications Radio 2 and

Radio 3 still show the same poor performance and interrupt

when handover occurs. It is important to note that although

the application Radio 1 does not interrupt and keeps the

transmission, the user actually hears the last packets before
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TABLE VI
SURVIVAL TO HANDOVER FOR APPLICATIONS OF DIFFERENT NATURE IN THE THREE OS FAMILIES. INTRA-TECHNOLOGY HANDOVER

Skype Radio 1 Radio 2 Radio 3
3G on 3G off 3G on 3G off 3G on 3G off 3G on 3G off

AP user AP user AP user AP user AP user AP user AP user AP user

A 4.2
A 5.0 Nexus 4

Same IP subnet,
A 5.0 Nexus 5

same channel
iOS6
iOS7
iOS8
WP8
A 4.2

A 5.0 Nexus 4

Same IP subnet,
A 5.0 Nexus 5

different channel
iOS6
iOS7
iOS8

Same WP8
ESSID A 4.2

A 5.0 Nexus 4

Diff IP subnet,
A 5.0 Nexus 5

same channel
iOS6
iOS7
iOS8
WP8
A 4.2

A 5.0 Nexus 4

Diff IP subnet,
A 5.0 Nexus 5

different channel
iOS6
iOS7
iOS8
WP8

A 4.2

A 5.0 Nexus 4

Same IP subnet,
A 5.0 Nexus 5

same channel
iOS6

iOS7

iOS8

WP8

A 4.2

A 5.0 Nexus 4

Same IP subnet,
A 5.0 Nexus 5

different channel
iOS6

iOS7

iOS8

Different WP8

ESSID A 4.2

A 5.0 Nexus 4

Diff IP subnet,
A 5.0 Nexus 5

same channel
iOS6

iOS7

iOS8

WP8

A 4.2

A 5.0 Nexus 4

Diff IP subnet,
A 5.0 Nexus 5

different channel
iOS6

iOS7

iOS8

WP8
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TABLE VII
SURVIVAL TO HANDOVER FOR APPLICATIONS OF DIFFERENT NATURE IN THE THREE OS FAMILIES. INTER-TECHNOLOGY HANDOVER

Skype Radio 1 Radio 2 Radio 3

3G → WiFi

A 4.2

A 5.0 Nexus 4
A 5.0 Nexus 5

iOS6

iOS7
iOS8

WP8

WiFi → 3G

A 4.2

A 5.0 Nexus 4

A 5.0 Nexus 5
iOS6

iOS7

iOS8
WP8

Color guide for application behavior during handover in Table VI and Table VII:
Application interrupts Annoying, finally interrupts Acceptable glitches Seamless handover

the handover repeated, so the sound flow keeps being heard,

but if, for instance, listening a song, a part of it will be

heard twice before recovering the flow streaming, with the

subsequent impairment of user experience.

Last, in the case of Skype, the application running on the

Windows phone outperforms the other two versions. This

result was expected, being a proprietary solution by the same

manufacturer. Among the rest, the Android implementation

offers the poorest performance, not being able to survive the

handover in any case. It is worth pointing out that in the case of

inter-technology handover from 3G to WiFi, Windows Phone

8 and iPhone terminals are able to keep the call active for two

different reasons: the iOS device turns down the 3G interface

when the WiFi network becomes available, then, the call just

survives the change of connection and takes advantage of the

higher bandwidth of the WiFi network to overcome packet

losses during the interruption. On the other hand, the Windows

Phone 8 device keeps the ongoing call on the 3G connection,

even though the WiFi connection becomes ready and active

to be used by other applications. We have confirmed that this

only happens when the WiFi connection becomes available

while there is an ongoing call, but if the call starts when

the device is already connected to a WLAN, every call will

use that connection. In any case, Skype is the most sensitive

application among the ones we tested. We cannot claim that it

does not handle a change in network connectivity, but it will

interrupt an ongoing call in case the communication between

the two endpoints is lost for more than 15 seconds.

VII. SUMMARY

In this section we present a summary of the main findings

for the different families of OSes and highlight the differences

and features that called our attention, categorizing them into

five groups:

Simultaneous usage of network interfaces: Out of the

three OS families under study, Windows Phone 8 and Android

Lollipop allow simultaneous usage of cellular and WLAN

interfaces. The Windows Phone 8 device keeps active con-

nections over the cellular and the WLAN interfaces simulta-

neously. Android, only in its latest version (Lollipop) modified

its policy to allow simultaneous connection through both inter-

faces. The cellular connection remains active for 30 seconds

after ongoing sessions finish. iOS devices finish the open

connections on the cellular interface when a connection to

a WLAN is established.

Network selection: None of the systems under study per-

form a network selection algorithm to decide on the best

network available to connect to. They rely on the network

used in the last connection, if it is available. In addition, none

of the systems uses information on link quality or performance

to change point of attachment if needed. iOS8 WiFi client is

particularly sticky, even not responding to user choices and

remaining attached to the current AP if the signal is not lost.

Connection establishment: Android and Windows Phone

8 renew their IP address by reissuing a DHCP discovery every

time they connect to a different AP, but iOS does not if

the change of AP takes place within the same ESS. In the

initial attachment to a WLAN, Android outperforms the other

systems in the link layer attachment, but it is considerably

slower in the IP configuration. The WP8 terminal has proven

to be the fastest one, on average, for initial attachment to an

already visited WLAN. It calls our attention the remarkable

impairment of performance in the connection establishment

to WiFi networks in Android Lollipop running on Nexus 5.

The delay in the connection establishment for iOS8 is also

slightly higher than in previous versions, but the difference is

not as notorious as for Lollipop (on Nexus 5). Although the IP

configuration has been made faster, the connection to the AP

has been considerably damaged. It is also new with respect to

previous versions, the use of Gratuitous ARP in iOS8 and the

CTS-to-self frames sent before authentication frames by iOS8

(iPhone 6) and Lollipop (Nexus 5).

IPv6 configuration: The three OS families implement pri-

vacy extensions for SLAAC [20], configuring an IPv6 address

that does not match their respective EUI-64 identifiers. Actu-

ally, this is not the only IPv6 address configured in the terminal

interface, so applications should handle this and take into

account that this kind of address will change over time, which

may affect ongoing sessions. The first DNS query sent by the

Android phone always requests an IPv6 address, so IPv6 takes
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precedence over IPv4. However, the IPv6 configuration takes

a significantly longer period to be completed. On the contrary,

WP8 issues first the IPv4 query but the delays for IPv4 and

IPv6 configurations are comparable. The cellular networks

available for our experiments do not offer IPv6 support for

the moment. Although standardization bodies have provided

guidelines for the migration to IPv6, to our knowledge, at the

time of writing only some LTE networks in North America

and Europe support IPv6 access.

Handover: Not having any application running increases

delay in case of a handover. Android (except for Lollipop)

presents a more regular behavior, having a handover latency

of 0.9 s for most of the cases evaluated. WP8 and iOS

devices present a more variable performance. Particularly,

when a handover is initiated by a deauthentication from the AP

(between different ESSIDs), the interruption in connectivity

through the WLAN can take approximately 5 s, 10 s or 12 s

on average for Android, WP8 and iOS systems respectively.

However, when the handover happens within the same ESS it

is completed in 0.24 s or 0.4 s by the WP8 phone, a result

which outperforms the other two systems. When the handover

is initiated by the terminal, the fastest handover (90 ms) is

performed by the Nexus 5 Android Lollipop device if the user

is manually indicating the target network, closely followed

by iOS devices. Note that changing to a different channel,

even if the user does it manually, increases delay considerably

in iOS8, due to its sticky client implementation. However,

Android and WP8 offer lower delays than iOS if the terminal

needs to scan for available networks to decide on the new

AP to connect to (“forget” case in our experimental results).

Nevertheless, the new Android version offers a significantly

higher delay (around 4 s) and the new iOS version (iOS8)

overcomes the issues with the manual connection and lowers

the delay to just 170 ms. Only the iOS devices and Android

Lollipop perform a re-association when the handover takes

place within the same ESS. This diminishes the handover

delay for the Lollipop devices, but not for the iOS terminals.

Although all the systems fall back to the cellular connection

when they lose WLAN connectivity, this change does not

increase the delay in the WiFi-WiFi handover. The change

to the cellular network shades the interruption in the WiFi

interface, allowing for time to perform the scanning and the

association to the new AP. The remarkably bad performance

of Android Lollipop and iOS8 deserve a special mention,

especially in the case of changing to a different channel

manually for iOS8 and as a general consideration for Android

Lollipop.

Multicast and network traffic: Unsurprisingly, HTTP is

the dominant traffic as it is also the recommended way to

access remote content in the development documentation. It

calls our attention the intensive use of IEEE 802.11 Null

function frames. The use of these frames is not specified

by the standard, but WiFi clients, especially in smartphones,

send a significant amount of these frames regularly. The most

extended use of Null Function frames is power management,

so the station informs the AP when it goes to sleep or

awakes. However, these frames are sent very regularly, and,

specifically, when connection to the current AP is lost. In

our handover experiments, we have detected that Android and

iOS devices try to reach the AP, whose signal is lost, by

sending numerous Null Function frames and Probe Requests,

delaying the connection to a new point of attachment. It is

also remarkable the number of DNS requests required every

time that any connection is open. Regarding multicast support,

IGMP is not supported in some Android devices, including

Nexus 4 and Nexus 5, which we used in our experiments.

VIII. OPEN ISSUES AND FUTURE DIRECTIONS

The thorough assessment of the connection management

in the three mobile operating system families under study

highlights some flaws in current implementations. Our study

reveals that the design of current mobile terminal OS and

applications only takes into account the availability of Internet

connection, but does not consider the presence of several

access networks as a resource. In addition, current implemen-

tations do not optimize network access selection or handover

and pay minimal attention to connection management, beyond

identifying the interface being used and detecting Internet

connection. To fill these gaps we identify some potential

implementation changes that would be feasible, even easy to

perform, and that would enhance user experience, reducing

latency in the connection and the handover and improving

efficiency in the handling of several interfaces.

A. Enhanced network selection

If several known WLANs are in range, all the systems

analyzed connect to the one they were connected the last time.

None of them takes into account the signal strength or link

quality towards the different APs as a criterion to choose what

network to connect to. If this was considered, handover after

a short time could be avoided. Current drivers and firmware

as the ones in smartphones have full access and capabilities

to monitor certain key indicators of the performance or link

quality. Keeping track of changes in these parameters and other

decision policies are easily implementable in software tools

like wpa supplicant. Even further improvements, as support-

ing some of the recent IEEE 802.11 standard amendments,

are already including in recent versions. The potential changes

that we suggest as an example for access network selection are

mainly related to the WLAN connection:

• Connection to the best WLAN: when the WLAN detects

that already visited networks are available, instead of

connecting to the last visited one, we suggest to connect

to the one that provides the best link quality at that

moment. Another variant of this selection is to keep track

of the performance offered by the network in the previous

connection – or keep an average measurement of historic

connections – at that given location (similar approaches

exist in the context of vehicular networks [28]). This

choice would be customizable and applicable to different

criteria, like security or delay instead of just throughput or

signal quality when several of the networks offer similar

characteristics.

• Reduced scanning during handover: since the mobile

terminal keeps sending Probe Request frames after at-

taching to the WLAN AP, this information could be
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used to speed up the process of handover, shrinking the

interval that the terminal spends scanning again after

disassociating from the previous AP and connecting to the

new one. Moreover, the mobile terminals keep sending

Probe Requests frames to all the visited networks. As

the terminal already has all the information about the

user location and movement, the scanning could adapt

to the user location, only scanning for nearby networks,

reducing considerably the number of frames being sent

regularly.

• Early detection of low link quality: similarly to prior-

itizing the connection to the AP that offers the highest

signal quality, this link quality should be monitored,

given the dynamic nature of wireless networks. This

monitoring would allow a quick reaction when the link

quality gets low, making the current connection likely to

fail. Moreover, we could take advantage of the consider-

able amount of frames that are exchanged with the AP

constantly, as we have checked that, apart from the active

scanning, the three OS families that we have evaluated

send 802.11 Null Function frames at all times for power

management and signaling purposes. Depending on the

terminal capabilities, the current open connections could

be handed-off to the cellular interface and start trying to

connect to a new WLAN in order to avoid interruptions

before the current one fails.

• Get information from network repositories: standard-

ization bodies have made an effort in the specification

of different information repositories and distribution such

as ANDSF [29], ANQP [30], ALTO [31] and MIIS [32]

[33]. Their generalized deployment and the access to this

information can help the mobile device to choose the

best access network to connect to, increase performance

in network-assisted handovers and contribute to more

efficient network management.

B. Multi-interface management and integration of mobility

protocols

The IP layer constitutes a reasonable level to offer inter-

technology mobility support, being the most widespread net-

work layer protocol and in use with different access technolo-

gies underneath. IP mobility has been a research topic for a

long time and the different solutions designed to allow a user

to freely roam across different points of attachment are a clear

example of the evolution of the research on this topic, continu-

ously adapting to the new requirements imposed by operators.

Although there are hundreds of different solutions, none of

them has been a clear market success and none is massively

deployed. The current panorama on mobility management

is somehow mixed, since mobility solutions have only been

deployed within the cellular operator boundaries, e.g., a user

can freely roam across the different access networks defined by

3GPP, but there is no solution for inter technology handover or

IP mobility within non-3GPP technologies in the wide sense16,

due to the lack of support in the network and in the terminal.

16Some technologies have their own mobility support at link layer but the
connections at the terminal will not be able to survive an IP address change.

The lack of a common IP mobility solution implemented

in the majority of smartphones and networks, results in the

inter-dependence between the mobile user experience and the

smartphone mobile services exposed to the applications.

The network connectivity management in multi-interfaced

devices can mainly follow two models, widely known as weak

host and strong host models. The weak host model will accept

any packet destined to one of its IP addresses, regardless of

the interface where the packet is received. On the contrary, the

strong host model will only accept the packet if the destination

address matches that one of the interface which received it.

Different operating systems decide to implement one or the

other. For instance, Linux implements the weak host model,

whereas Windows Vista and Windows 7 default to the strong

host, although weak host model behavior is configurable.

Such implementation decisions affect the performance of the

devices, especially when different access technologies are

available. We argue that a flow mobility solution [34], [35]

may enhance the user experience when a handover takes

place with an ongoing communication. Current smartphones,

which have multiple interfaces and can connect to different

access technologies, need a connection manager that enables

this feature. For Internet access, the two main technologies

currently used are cellular (UMTS, LTE) and IEEE 802.11.

Nevertheless, the most common approach is to use only one

of the interfaces at a time, missing the benefits that the usage

of both interfaces simultaneously could provide. One of these

benefits, currently being discussed by standardization bodies is

3G offloading. By offloading some of the flows at the mobile

terminal over a congested cellular network to a WiFi network

whenever it is possible not only is convenient for the user,

who enjoys greater bandwidth with less delay and at a lower

cost, but also for the network operator that frees resources to

serve other users. The offloading can be selective depending

on the application running or respond to user requirements.

From our experiments, the only OSes that make possible the

simultaneous usage of 3G and WLAN interfaces are Windows

Phone 8 and the latest version of Android (Lollipop). In

this way, e.g., a Skype call can continue without interruption

even though the mobile terminal attaches to a WLAN that

just became available. The attachment to the new network is

totally seamless for the ongoing call as it keeps going through

the cellular interface, but the applications that can tolerate a

hand off, or that start after it, will be bound to the WLAN

interface. This, as we have reported in Section VI-C improve

considerably the performance in case of an inter-technology

handover, which is seamless for the user as the ongoing

communication is kept at the cellular interface while the ap-

plications started from that moment on are connected through

the WLAN. However, once the ongoing session has finished,

the new connections will use the WiFi interface mandatorily,

without a choice, for instance, if the user needs to establish

a longer session and they will be on the move or if they

need to ensure session continuity. According to the IETF [36]

there are different approaches for connectivity management

in multi-interface devices: i) per-application, ii) centralized,

system-wide or based on user input iii) stack-level solutions to

specific problems. If flow mobility were enabled, applications
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could choose their default interface, mobility requirements

if more than one access technology is available or specify

minimum resources or QoS needs according to the network

interface. Both hardware and software tools in current smart-

phones allow the implementation of these kind of policies,

although it increases complexity both in the development of

the applications and the connectivity management. In addition,

the mobile OS has to deal with multiple applications running

in parallel, which may or may not specify network connectivity

requirements in the same way. Therefore, the system needs to

provide a combined approach, with a default policy, system-

wide, based on information available and at the same time offer

the possibility of a more advanced connectivity management

per-application, if it is specified. Moreover, the management

of simultaneous connectivity opens issues as routing, default

address selection [37] and the selection of parameters to be

configured on a per-interface basis [36].

IX. CONCLUSIONS

In this article we have studied a feature that commonly goes

unnoticed, not existing much documentation about its opera-

tion: the network manager in smartphones. To that purpose,

we have analyzed the connection procedure of the three most

popular mobile OS families – Android, iOS and Windows

Phone 8 – and we have studied the performance when a

handover, both inter- and intra-technology takes place. We

have also examined how this procedure in case of handover

impacts the performance of some applications and their effects

in user experience. Finally, we introduced some optimizations

that are directly extracted from the conclusions gathered as

a result of our experiments. The potential optimizations that

we propose are the base for our future lines of research. The

mobile terminal that presented the least network attachment

delay and the most advanced features in terms of connectivity

management is the Windows Phone 8 terminal. WP8 and

Android Lollipop allow both the cellular and WiFi interfaces

to be active at the same time. Unfortunately, WP8 is also

the one that offers the most restricted access to the device’s

features and the least flexibility for potential modifications

resulting from our research. Indeed, in terms of flexibility

and room for modifications, the mobile terminal chosen for

performing further improvements is the Android device. The

open source licensing and the root access provide a convenient

development environment to continue improving the connec-

tivity management in current mobile devices. As we have

confirmed in this article, the three OS families analyzed access

the network in a very similar way and performs also similarly

when the point of attachment to the access network changes,

so the results of the experimentation with the Android phone

would be applicable to other platforms, by adapting it to their

corresponding software stack.
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