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Motivation 

▌ Virtualization and cloud deployments have brought great benefits 
l  OPEX/CAPEX reduction (fewer servers, lower cooling and power 

costs) 
l  Faster deployment 
l  Better disaster recovery 
l  Flexibility through migration 
l  Isolation, multi-tenancy 
 

▌ Can we improve things further, making the cloud more “fluid”? 
l  High consolidation (Hundreds? Thousands of VMs?) 
l  On-the-fly service instantiation (in milliseconds) 
l  Fast migration (hundreds of milliseconds?) 
l  High throughput (10-40+ Gb/s)  
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Talk Overview	

▌ Novel technologies and optimizations 
1.  ClickOS: High performance NFV 
2.  Minicache: Virtualized content caches 
3.  VALE: High performance, modular, energy efficient SW switch 
4.  Massive consolidation: thousands of VMs on a single server 

▌ Check out our open source portal! 
l  http://cnp.neclab.eu/ 
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1. ClickOS: High Performance NFV* 

ClickOS and the Art of Network Function Virtualization 
NSDI 2014 
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NFV: Shifting Middlebox Processing to Software 

▌ Can share the same hardware across multiple users/tenants 

▌ Reduced equipment/power costs through consolidation 

▌ Safe to try new features on a operational network/platform 

▌ But can it be built using commodity hardware while still achieving 
high performance? 

▌ ClickOS: tiny Xen-based virtual machine that runs the Click modular 
router software 
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From Thought to Reality - Requirements 

▌ Fast Instantiation 

▌ Small footprint 

▌  Isolation 

▌ Performance 

▌ Flexibility 

< 20 msec boot times 

ClickOS 

5MB when running 

provided by Xen 

10Gb/s line rate* 
45 µsec delay 

* for most packet sizes 

provided by Click 
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What’s ClickOS? 

▌ Work consisted of: 
l  Build system to create ClickOS images 
l  Emulating a Click control plane over MiniOS/Xen 
l  Reducing boot times 
l  Optimizations to the data plane 
l  Implementation of a wide range of middleboxes 

domU 

paravirt 

apps 

guest 
OS 

ClickOS 

paravirt 

Click 

mini 
OS 
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Data Plane Optimizations	

▌  Introduce VALE/netmap as backend switch in XEN 
l  Same switch is available also for KVM/QEMU 

▌ Permanently map grants with backend (not once per packet) 
▌ Bypass kernel network stack for high speed packet I/O 
▌ Larger I/O request batches 
▌ Split interrupts for transmission and receipt 
 

VALE 

Driver Domain (or Dom 0) Linux/FreeBSD/ClickOS Domain 

netfront 

NW driver 

Application 

Memory Mapped  
Packet Buffers 

netback 
Xen bus/store 

Event channel 

kernel user 

Optimizations result in 10Gb/s line rate for almost all packet sizes	
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Experiment Setup 

ClickOS Host 2 Host 1 

10Gb/s direct cable  10Gb/s direct cable 

Intel Xeon E1220 4-core 3.2GHz (Sandy bridge) 
16GB RAM, 2x Intel x520 10Gb/s NIC.  
One CPU core assigned to Vms, 3 CPU cores Domain-0 
Linux 3.6.10 
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Middlebox Performance (single VM) 



Page 11 © NEC Corporation 2014 

Scaling out – Multiple NICs/VMs 

Intel Xeon E1650 6-core 3.2GHz, 16GB RAM, dual-port Intel x520 10Gb/s NIC.  
3 cores assigned to VMs, 3 cores for dom0 

ClickOS Host 2 

6x 10Gb/s direct cable 6x 10Gb/s direct cable 

Host 1 
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Scaling Out – 100 VMs, Aggregate Throughput 

Intel Xeon E1650 6-core 3.2GHz, 16GB RAM, dual-port Intel x520 10Gb/s NIC.  
3 cores assigned to VMs, 3 cores for dom0 
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ClickOS Delay vs Other Systems 
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2. minicache: Virtualized Content Caches* 

* Towards Minimalistic, Virtualized Content Caches with Minicache 
CoNEXT Hot Middlebox 2013 
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Overview – Virtualizing CDNs 

▌ Current trend: Internet is becoming a “videonet” 
l  57% of Internet traffic today is video 
l  1/3 of peak traffic is the US is Netflix 
l  These numbers will continue to grow 
 

▌ Large majority of videos are delivered by CDNs (e.g., Akamai) 
l  CDN performance is dependent on distance between content and 

users 
•  Deploy content caches in operator networks 

▌ More recently, trend towards renting infrastructure at the network’s 
edge  
l  Micro DCs at PoPs 
l  Mobile Edge Computing (e.g., next to base stations) 
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What’s Minicache? 

▌ Minimalistic VM for serving (video) content (CDN node) 
l  Based on MiniOS  
l  Uses lwIP (1.4.1) as network stack 
l  Simple hash-based filesystem (SHFS) 
l  Simple HTTP server 
l  Interactive Shell (uSh) 

 

▌ Added bonus: a more general VM than 
ClickOS, can support other types of 
processing 

 

▌  Idea: create virtual CDNs as needed, 
no need for upfront investments 
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Memory Footprint 

▌ Minimum: 8MB 
l  SHFS mount adds extra memory: 

#Entries SHFS Table 
size  

Allocation in RAM (without stats) 

512 128 KiB 230 KiB 
1024 256 KiB 460 KiB 
2048 512 KiB 922 KiB 
4096 1 MiB 1.8 MiB 
8192 2 MiB 3.6 MiB 

16384 4 MiB 7.2 MiB 
32768 8 MiB 14.4 MiB 
65536 16 MiB 28.8 MiB 
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Memory Footprint - Breakdown 

▌ 16MB Minicache VM 
▌ SHFS mounted with 4K entries 

Base (6 MiB) 

HTTP+Shell (1.6 MiB) 

SHFS table (1.8 MiB) 

Statistics (0.8 MiB) 

Free / Cache (5 MiB) 
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Boot-up Times 
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3. VALE: a High Performance, Modular, 
Software Switch 
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Motivation	

▌ Software switches play an increasingly important role 
l  Interconnection between VMs and NICs 
l  SDN, Network Function Virtualization (NFV) 

 
▌ Requirements 

l  Throughput (e.g., 10 Gbps) 
l  Scalability (e.g., 100 ports) 
l  Flexibility (i.e., forwarding decision and packet processing) 
l  Reasonable CPU utilization 

▌ Do existing software switches satisfy these 
requirements?	

Software Switch

VM VM VM

NICs
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Existing Software Switches	

▌ OS standard switches  
lack high throughput 
l  Small packets  

are common  
(e.g., TCP SYNs, 
ACKs) 
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while forwarding packets at high rates using DPDK vSwitch
or VALE (the other switches do not yield high throughput
or are not publicly available). In terms of CPU usage, the
fundamental feature of DPDK vSwitch, and indeed, of any
DPDK-based package, is that DPDK’s poll-mode driver re-
sults in 100% utilization irrespective of the traffic rates being
processed. In contrast, VALE relies on interrupts, so that user
processes are woken up only on packet arrival. In our exper-
iments, for the 10 CPU cores handling packets this results
in a cumulative CPU utilization of about 140% for mSwitch
that also adopts an interrupt-based model and a much higher
but expected 1,000% for DPDK vSwitch (the full results for
these experiments are in section 4.2).
High Density: Despite its high throughput, VALE, as we
will show in section 4, scales poorly when packets are for-
warded to an increasing number of ports, and the throughput
further drops when packets from multiple senders are sent
to a common destination port; both of these are common
scenarios for a back-end virtualization switch containing a
single NIC and multiple VMs.

For DPDK vSwitch, its requirement of having a core ded-
icated to each port limits its density. While it is possible to
have around 62-78 or so cores on a system (e.g., 4 AMD
CPU packages with 16 cores each, minus a couple of cores
for the control daemon and operating system, or 4 Intel 10-
core CPUs with hyper threading enabled), that type of hard-
ware represents an expensive proposition, and ultimately it
may not make sense to have to add a CPU core just to be
able to connect an additional VM or process to the switch.
Finally, CuckooSwitch targets physical NICs (i.e., no virtual
ports), so the experiments presented in that paper are limited
to 8 ports total.
Flexibility: Most of the software switches currently avail-
able do not expressly target a flexible forwarding plane, lim-
iting themselves to L2 forwarding. This is the case for the
standard FreeBSD and Linux bridges, but also for newer
systems such as VALE and CuckooSwitch. Instead, Open
vSwitch supports the OpenFlow protocol, and as such pro-
vides the ability to match packets against a fairly compre-
hensive number of packet headers, and to apply actions to
matching packets. However, as shown in figure 1 and in [19],
Open vSwitch does not yield high throughput.

Throughput CPU Usage Density Flexibility
FreeBSD switch ⇥

p p
⇥

Linux switch ⇥
p p

⇥
Open vSwitch ⇥

p p p

Hyper-Switch ⇥
p

⇥
p

DPDK vSwitch
p

⇥ ⇥
p

CuckooSwitch
p

⇥ ⇥ ⇥
VALE

p p
⇥ ⇥

Table 1. Characteristics of software switches with respect
to throughput, CPU usage, port density and flexibility.

DPDK vSwitch takes the Open vSwitch code base and ac-
celerates it through the use of the DPDK packet framework.

DPDK itself introduces a completely different, non-POSIX
programming environment, making it difficult to adapt ex-
isting code to it. For DPDK vSwitch, this means that ev-
ery Open vSwitch code release must be manually adapted to
work within the DPDK vSwitch framework. In contrast, in
section 5 we show how using mSwitch and applying a few,
one-time code changes to Open vSwitch results in a 2.6-3
times performance boost.
Summary: Table 1 summarizes the characteristics of each
of the currently available software switches with respect to
the stated requirements; none of them simultaneously meet
them.

3. mSwitch Design
Towards our goal of implementing a software switch with
high throughput, reasonable CPU utilization, high port den-
sity and a flexible data plane, and taking into consideration
the analysis of the problem space in the previous section, we
can start to see a number of design principles.

First, in terms of throughput, there is no need to re-
invent the wheel: several existing switches yield excellent
performance, and we can leverage the techniques they use
such as packet batching [2, 6, 17, 18], lightweight packet
representation [6, 9, 17] and optimized memory copies [9,
16, 18] to achieve this.

In addition, to obtain relatively low CPU utilization and
flexible core assignment we should opt for an interrupt-
based model, such that idle ports do not unnecessarily con-
sume cycles that can be better spent by active processes or
VMs. This is crucial if the switch is to act as a back-end, and
has the added benefit of reducing the system’s overall power
consumption.

Further, we should design a forwarding algorithm that is
lightweight and that, ideally, scales linearly with the number
of ports on the switch; this would allow us to reach higher
port densities than current software switches are capable of.
Moreover, for a back-end switch muxing packets from a
large number of sending virtual ports to a common desti-
nation port (e.g., a NIC), it is imperative that the forwarding
algorithm is efficiently able to handle this incast problem.

Finally, the switch’s data plane should be programmable
while ensuring that this mechanism does not harm the sys-
tem’s ability to quickly switch packets between ports. This
points towards a split between highly optimized switch code
in charge of switching packets, and user-provided code to
decide destination ports and potentially modify or filter
packets.

3.1 Starting Point
Having identified a set of design principles, the next ques-
tion is whether we should base a solution on one of the ex-
isting switches previously mentioned, or start from scratch.
The Linux, FreeBSD and Open vSwitch switches are non-
starters since they are not able to process packets with high

▌ Recent switches lack 
scalability, flexibility 
and/or reasonable CPU 
utilization 
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Our Contribution	

▌ A scalable, modular software switch 
l  Ideal as a virtualization backend 

▌ Scalable packet forwarding algorithms 
l  Tens to hundreds of destination ports 
l  Concurrent senders to a common destination port 
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Figure 2: mSwitch architecture. A switch sup-
ports a large number of ports that can attach to
virtual machines or processes, physical ports, or
to the host’s network stack. mSwitch handles ef-
ficient packet delivery between ports, while the
switching logic (forwarding decisions, filtering
etc.) is implemented by loadable kernel mod-
ules.

cessing logic running on the switch. Likewise, tra�c
from other ports can reach the host stack if the switch-
ing logic decides so.

Packet forwarding is always performed within the ker-
nel and in the context of the thread that generated the
packet. This is a user application thread (for virtual
ports), a kernel thread (for packets arriving on a physi-
cal port), or either for packets coming from a host port,
depending on the state of the host stack protocols. Sev-
eral sending threads may thus contend for access to des-
tination ports; in Section 3.3 we discuss a mechanism
to achieve high throughput even in the face of such con-
tention.

mSwitch always copies data from the source to the
destination netmap bu↵er. In principle, zero-copy op-
eration could be possible (and cheap) between physical
ports and/or the host stack, but this seems an unnec-
essary optimization: for small packet sizes, once packet
headers are read (to make a forwarding decision), the
copy comes almost for free; for large packets, the packet
rate is much lower so the copy cost (in terms of CPU cy-
cles and memory bandwidth) is not a bottleneck. Cache
pollution might be significant, so we may revise this de-
cision in the future.

Copies are instead the best option when switching
packets from/to virtual ports: bu↵ers cannot be shared
between virtual ports for security reasons, and altering
page mappings to transfer ownership of the bu↵ers is
immensely more expensive.

3.2 Packet Forwarding Algorithm
The original VALE switch operates on batches of pack-

ets to improve e�ciency, and groups packets to the same
destination before forwarding so that locking costs can

pk
t #

p0
p1
p2
p3

dst port #
[0][1][2][3]
0
1
0
1

1
0
1
1

0
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0
1

0
0
0
1

0100p4
Figure 3: VALE’s bitmap-based packet forward-
ing algorithm: packets are labeled from p0 to
p4; for each packet, destination(s) are identified
and represented in a bitmap (a bit for each pos-
sible destination port). The forwarder considers
each destination port in turn, scanning the cor-
responding column of the bitmap to identify the
packets bound to the current destination port.

be amortized. The grouping algorithm uses a bitmap
(see Figure 3) to indicate packets’ destinations; this is
an e�cient way to support multicast, but has a forward-
ing complexity that is linear in the number of connected
ports (even for unicast tra�c and in the presence of idle
ports). As such, this does not scale well for configura-
tions with a large number of ports.

To reduce this complexity, in mSwitch we only allow
unicast or broadcast packets (multicast is mapped to
broadcast). This lets us replace the bitmap with N+1
lists, one per destination port plus one for broadcast
tra�c (Figure 4). In the forwarding phase, we only
need to scan two lists (one for the current port, one
for broadcast), which makes this a constant time step,
irrespective of the number of ports; figures 8 and 9 show
the performance gains.

3.3 Destination Port Parallelization
Once the list of packets destined to a given port has

been identified, the packets must be copied to the desti-
nation port and made available on the ring. In the origi-
nal VALE implementation, the sending thread locks the
destination port for the duration of the entire operation;
this is done for a batch of packets, not a single one,
and so can take relatively long. This is a problem for
virtualized environments, in which many sender ports
converge onto a single destination one (i.e., the NIC).

Instead, mSwitch improves parallelism by operating
in two phases: a sender reserves (under lock4) a suf-
ficiently large contiguous range of slots in the output
queue, then releases the lock during the copy, allowing
concurrent operation on the queue, and finally acquires
4The spinlock could be replaced by a lock-free scheme, but
we doubt this would provide any measurable performance
gain.

4

System Architecture	

▌ Switching fabric moves packets efficiently among 
ports à part of the system 
▌ Switching logic decides packet’s destination à the 

user develops this 
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CPU utilization and Power Consumption, VALE vs OVDK	
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Port Scalability	
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4. Massive Consolidation* 

*Towards Massive Server Consolidation 
Xen Developer Summit, 2014 
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Wouldn’t it be Nice if… 

▌ Thousands of guests on a single server, up to 100K 
▌ Extremely fast domain creation, destruction and migration 

l  Tens of milliseconds 
l  Constant as number of guests increases 
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Two Types of Problems 

▌ Hard limitations 
l  Prevent guests from booting correctly 
l  Only ~300 guests fully usable 

▌ Performance limitations 
l  Decreasing system performance 
l  System (dom0) unusable after just a few hundred guests 
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First Optimizations 

▌  Increase number of file descriptors in Linux 
l  fixes console issues 

▌  Increase number of PTYs in Linux 
l  fixes console issues 

▌ Upgrade to Xen 4.4 + Linux 3.14, kernel with NR_CPUS=4096 
l  fixes # of event channels limit 

▌ Use multiple instance of back-end switch 
l  fixes # of virtual ports limitation 
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First Optimizations - 10K VM Boot Times 

Server: 64 Cores @ 2.1GHz [4 x AMD Opteron 6376] 
128GB RAM DDR3 @ 1333MHz 
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With Optimizations… 

▌  Improvement: system is still usable after 10K guests 
l  Although domain creation time is far from ideal 

▌ However... 
l  xenstored still CPU heavy 
l  xenconsoled still CPU heavy 
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Current Status 

▌ Usable system running 10K guests 
l  10K guests actually working… 
l  …although idle most of the time 

▌ Lower domain creation times 
l  First domain: < 10ms 
l  With 10K domains: < 100ms 

▌ Currently working on 
l  Xenconsoled: switch from poll to epoll: CPU util down to 10% max 
l  Improved XenStore (lixs, Lightweight XenStore) 
l  Simplified control toolstack (xcl: XenCtrl Light) 
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Will it Work up to 100K VMs? Remaining Issues 

▌  Improve lixs and Xenstore protocol 
▌ Have guests doing useful work 
▌ Scheduling 

l  Number of guests much bigger than number of cores 
l  With that many guests we'll have scheduling issues 

▌ Reducing Memory Usage 
l  Smaller image sizes 
l  Share memory between guests booting same image 
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Wrap-Up 
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Conclusions 

▌ Introduced a number of technologies and technologies in 
support of a more “fluid” network cloud 
l  Massive consolidation  
l  On-the-fly service instantiation (in milliseconds) 
l  Fast migration (hundreds of milliseconds) 
l  High throughput (10-40+ Gb/s)  

▌ Tailor-made operating system, supports 
l  Network processing functions (e.g., firewall, tunnel endpoint, etc.) 
l  Content caching (MiniCache) 
l  Your application! 
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Ongoing and Future Work 

▌  Integration with OpenStack/Neutron 
▌ Started porting to KVM (OSv & MiniOS) 
▌ Support for ARM platforms 

l  Cubietruck already working 
l  ARM64 when available 

 

Click 
OS 

CubieTruck 

▌ We’re looking for operators for PoCs/trials… 
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Questions? 

http://cnp.neclab.eu 

felipe.huici@neclab.eu 
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NEC brings together and integrates technology and expertise to create  
the ICT-enabled society of tomorrow.  

We collaborate closely with partners and customers around the world,  
orchestrating each project to ensure all its parts are fine-tuned to local needs.  

 
Every day, our innovative solutions for society contribute to  

greater safety, security, efficiency and equality, and enable people to live brighter lives.	
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