
ICT-317756

TRILOGY2

Trilogy2: Building the Liquid Net

Specific Targeted Research Project

FP7 ICT Objective 1.1 The Network of the Future

D1.2 Initial Cross-Liquidity tools

Due date of deliverable: 31 December 2013

Actual submission date: 3 January 2014

Start date of project 1 January 2013

Duration 36 months

Lead contractor for this deliverable Nextworks (NXW)

Version v1.0, 3 January 2014

Confidentiality status Public

c© TRILOGY2 Consortium 2014 Page 1 of (50)

Abstract

This document presents the results of the analysis carried out on the interactions between existing tech-

niques for creating liquidity in the Internet. In particular the focus is on possible combination and

integration of liquidity mechanisms that collect and manage individual resources as pools at heteroge-

neous domains. These resources include storage, processing and bandwidth. The final aim is to enable,

through these interactions, a converged architecture for the orchestration of provisioning, usage and con-

trol of these heterogeneous resources in the Internet. In this context, the deliverable describes the intial

set of cross-liquidity tools and mechanisms that have been designed, and in some cases implemented,

during the first phase of the Trilogy 2 project.

Target Audience

The target audience for this document is the networking research and development community, particu-

larly those with an interest in the Future Internet technologies and architectures. The material should be

accessible to any reader with a background in network architectures, including mobile, wireless, service

operator and data centre networks. This document will also be of interest to those concerned with the

interactions among heterogeneous network architectures and resource pooling mechanisms, although

specialist expertise in these areas is not a pre-requisite.

Disclaimer

This document contains material, which is the copyright of certain TRILOGY2 consortium parties, and may

not be reproduced or copied without permission. All TRILOGY2 consortium parties have agreed to the full

publication of this document. The commercial use of any information contained in this document may require

a license from the proprietor of that information.

Neither the TRILOGY2 consortium as a whole, nor a certain party of the TRILOGY2 consortium warrant

that the information contained in this document is capable of use, or that use of the information is free from

risk, and accept no liability for loss or damage suffered by any person using this information.

This document does not represent the opinion of the European Community, and the European Community is

not responsible for any use that might be made of its content.

Impressum

Full project title TRILOGY2: Building the Liquid Net

Title of the workpackage D1.2 Initial Cross-Liquidity Tools

Editor Giacomo Bernini, NXW

Project Co-ordinator Marcelo Bagnulo Braun, UC3M

Copyright notice c© 2014 Participants in project TRILOGY2

Page 2 of (50) c© TRILOGY2 Consortium 2014

Executive Summary
The Internet is a concatenation of highly interconnected resources, such as bandwidth, processing, storage

and energy, belonging to heterogeneous domains. The rapid growth of server virtualization, cloud services,

Content Delivery Networks (CDNs), distributed processing and computational frameworks, are setting the

basis for a new converged fluid architecture capable of creating and controlling heterogeneous resource pools

as a whole liquid system, the Liquid Network.

Today’s Internet resource pools and liquidity mechanisms have a limited scope, mostly bound to a single

resource domain. Processing or storage resources are commonly pooled and used by cloud and content

delivery applications independently from bandwidth resources, resulting in an overall inefficient utilization of

resources. On the contrary, bandwidth is a key resource that allows all other resources to be grouped together

and used as an heterogeneous and unified resource pool. A converged and seamless pooling of bandwidth,

processing and storage resources is therefore fundamental to achieve actual liquidity in the current Internet.

In this context, Trilogy 2 aims to provide a converged architectural framework capable of orchestrating,

provisioning, and controlling the usage of heterogeneous resource pools as demanded by emerging highly

distributed applications. The overall architecture is described in Deliverable D2.1. The basic components of

this architecture are the mechanisms and techniques that create liquidity at the different resource domains:

bandwidth, storage and processing. Some of these mechanisms exist in the Internet today and several others

are proposed by the Trilogy 2 project. The new mechanisms for creating liquidity in the different domains are

described in Deliverable D1.1. In addition to creating new liquidity tools, Trilogy 2 provides the integration

of these newly proposed tools with the aim of improving the interactions among the heterogeneous resource

pools. The interaction between these new mechanisms, along with the interaction between the liquidity tools

and the other components of the Internet architecture are explored in this Deliverable. On top of these cross-

liquidity tools a uniform resource information model acts as the glueing description language for a converged

and seamless control of these heterogeneous resource pools across the Internet. The initial version of the

information model is described in Deliverable D2.2.

The focus of this document is on the cross-liquidity mechanisms that have been designed, and in some cases

implemented, during this first year of the project in the context of WP1 activities. A cross-liquidity tool has to

be considered as a set of mechanisms and procedures that regulate and facilitate the interactions among exist-

ing and well-defined resource pooling techniques. In particular we focus our work in the interaction between

the new tools for liquidity discussed in Deliverable D1.1 and other elements of the Internet architecture. The

interactions that have been investigated in this first phase of Trilogy 2 can be categorized as follows:

• interactions between mechanisms and tools that create bandwidth liquidity at different layers in the

networking stack

• interactions between processing and bandwidth liquidity tools for a converged and integrated resource

c© TRILOGY2 Consortium 2014 Page 3 of (50)

pooling

• interactions between bandwidth and storage liquidity mechanisms

• interactions between storage and processing resource pooling techniques

This deliverable describes the initial Trilogy 2 cross-liquidity tools, mainly focusing on the first two categories

mentioned above. Interactions between bandwidth and storage, as well as between storage and processing

liquidity mechanisms, have been the primary focus during this first year of the project: this research work

is still in progress and the results (in terms of new cross-liquidity tools) will be provided in the next WP1

deliverables.

Also in this Deliverable, a set of cross-liquidity mechanisms that operate in the bandwidth domain are pro-

vided: they differentiate according to the network segment they consider. Indeed, tools for enhanced liquid-

ity, flexibility and optimization of bandwidth utilization in data centre and wireless networks are presented.

Moreover, in the context of processing and bandwidth integrated resource pooling, a cross-liquidity tool for

live migration of applications among mobile devices has been designed and also prototypes have been imple-

mented.

The aim of this deliverable is to describe the above mentioned cross-liquidity tools as stand-alone compo-

nents in the Trilogy 2 reference scenario. A more comprehensive and integrated architecture description is

presented in Deliverable D2.1.

Page 4 of (50) c© TRILOGY2 Consortium 2014

List of Authors
Authors Giacomo Bernini, Gino Carrozzo, Nicola Ciulli, Alexandru Agache, Andrei Croitoru, Dragos

Niculescu, Catalin Nicutar, Costin Raiciu, Pedro Andrés Aranda Gutiérrez, Primitivo Matas, George

Milescu, Cătălin Moraru, Valentin Ilie, Rareş Dumitrescu

Participants NXW, UPB, TID, INTEL

Work-package WP1 - Creating Liquidity

Security PUBLIC (PU)

Nature R

Version 1.0

Total number of pages 50

c© TRILOGY2 Consortium 2014 Page 5 of (50)

Contents

Executive Summary 3

List of Authors 5

List of Figures 8

List of Tables 9

1 Introduction 10

1.1 Motivations and scope . 10

1.2 Structure of the document . 11

2 Positioning in the Trilogy 2 architecture 12

3 Cross-Liquidity mechanisms 14

3.1 MPTCP and MPLS-TE Interaction . 14

3.1.1 MPTCP-aware MPLS-TE provider . 14

3.1.1.1 Problem statement . 15

3.1.1.2 Reference scenario . 15

3.1.1.3 Functional architecture . 17

3.2 MPTCP and channel switching interaction . 19

3.2.1 Initial experiments . 20

3.2.2 Dynamic timer adjustment . 20

3.2.3 Evaluating the performance of the switching algorithm 21

3.3 MPTCP and data center networks . 22

3.3.1 Problem statement . 24

3.3.2 GRIN . 25

3.3.2.1 Server interconnection . 25

3.3.2.2 Path selection . 26

3.3.2.3 Address assignment . 29

3.3.3 Implementation . 30

3.3.4 Evaluation . 34

3.3.4.1 Simulation . 34

3.3.4.2 Small cluster deployment . 35

3.3.5 Does Grin Slow Down Local Apps? . 38

3.3.6 Deployment considerations . 42

Page 6 of (50) c© TRILOGY2 Consortium 2014

3.4 Interactions between processing and bandwidth liquidity mechanisms 42

3.4.1 Moving VMs leveraging MPTCP . 43

3.4.1.1 Prototype implementation . 44

3.4.1.1.1 VM Manager . 44

3.4.1.1.2 VM Container . 45

3.4.1.1.3 Proof-of-concept setup . 45

4 Next steps and conclusions 47

4.1 Future work . 47

4.2 Concluding remarks . 48

References 48

c© TRILOGY2 Consortium 2014 Page 7 of (50)

List of Figures
2.1 Trilogy 2 reference scenario. 12

3.1 MPLS-TE operator network with pre-provisioned tunnels among PEs 16

3.2 MPTCP-aware MPLS-TE provider: SDN-based MP box deployment 17

3.3 SDN-based MP box functional decomposition . 18

3.4 Enhancing a VL2 topology . 23

3.5 Hop Analysis - a) Max MCF (left-side), b) Simple evaluation (right-side) 28

3.6 Grin Address Assignment Algorithm . 29

3.7 Simulation results - Permutation, Random, Group, All-to-all 32

3.8 Validation results - Permutation, Random, Group, All-to-all 33

3.9 Improvements depend on the size of the transfer. 36

3.10 NFS . 37

3.11 Cassandra . 38

3.12 Incast mode . 38

3.13 Forwarding overhead - 2Gbps throughput, 64-byte payloads 40

3.14 Decoupling applications from the hardware platform . 44

3.15 Prototype implementation of VM migration across devices 46

3.16 Proof-of-concept Topology . 46

Page 8 of (50) c© TRILOGY2 Consortium 2014

List of Tables
3.1 Throughput measurements for different wait timers and MPTCP implementations. 20

3.2 Performance of channel switching with MPTCP compared to a single AP. 22

c© TRILOGY2 Consortium 2014 Page 9 of (50)

1 Introduction

1.1 Motivations and scope

The Internet today is composed by a heterogeneous set of resources and distributed functions mostly intercon-

nected, which span from the traditional network services up to virtualized ones. It includes classic network

and security functions (enhanced forwarding, Quality of Service (QoS), firewalls, Network Address Transla-

tors (NAT), Deep Packet Inpsectors (DPI), traffic scrubbing, load balancing, etc.), as well as the virtualized

infrastructures (servers and storage technologies), platforms (OS and middleware functions/primitives), and

software layers (Software as a Service - SaaS) typically deployed within data centres.

Multiple technologies and solutions exist today that allow network operators and service providers to easily

launch a variety of base on-demand services for the dynamic pooling of processing, storage, or bandwidth

resources. Initial investigative work is being carried out for the joint orchestration of processing and storage,

mostly within a single administrative entity and generally within the single data centre. Key for the evolution

of these technologies and services is the possibility to treat the different resources as belonging to the same

pool and consequently orchestrate their allocation and usage to better match the complex, multi-layer service

chaining. In Trilogy 2, such a resource pool is the base of the Liquid Network concept. In fact, the resource

pool identifies a collection of individual resources which together act as a single more capable and more

tangible resource. Once a resource pool has been created, it becomes a source of liquidity, as the elements of

the pool are interchangeable. This does not however imply that the elements of the pool are homogeneous -

they will typically vary in capability and location, so moving demand between them affects performance and

redistributes costs.

Based on the concept of resource pool, different types of liquidity can be identified depending on the specific

service aspects and involved technological areas. In Trilogy 2 the following liquidity scopes are identified:

• Cross-provider liquidity, which points to the pooling techniques for orchestrating and controlling

bandwidth, processing, storage and energy resources across different providers / resource owners.

• Cross-layer liquidity, which refers to the possibility to access more flexibly to those network liquidity

functions that are operating in different layers of the stack e.g. MPTCP creates bandwidth liquidity at

the transport layer and MPLS traffic engineering creates liquidity at the sub-IP layer.

• Cross-resource liquidity, which aims at understanding the trading between different types of re-

sources. For example, would it be possible to trade off some storage resources in exchange for lower

latency and higher bandwidth?

This document describes the initial Cross-Liquidity tools that have been designed, and in some cases im-

plemented, during the first phase of the Trilogy 2 project. In the Deliverable D1.1 we have described new

liquidity tools proposed by the Trilogy 2 project. The key objective of this deliverable is to identify the

Page 10 of (50) c© TRILOGY2 Consortium 2014

interactions between the previously described pooling mechanisms running within a single domain while as-

suming cooperating endpoints. In particular, the main focus is in this document is on cross-liquidity tools

that operate inside the bandwidth domain: the main motivation is that bandwidth can be considered as the

bridging resource that enables all the others to be pooled together and be used and controlled in a unified way.

The scope of this document is limited to describing the key aspects and components of the cross-liquidity

mechanisms presented here. A more detailed and comprehensive architecture description is provided in

Deliverable D2.1.

1.2 Structure of the document
This document is organized as follows.

In Section 2 the positioning of the resources pooling and cross-liquidity mechanisms in the Trilogy 2 reference

scenario and architecture is provided.

In Section 3 the cross-liquidity mechanisms that result from the Trilogy 2 design and specification cycle (first

year of the project) are detailed. Focus is on the interaction of the main bandwidth liquidity tool i.e. Multipath

TCP (MPTCP) with other elements of the Internet architecture, namely:

• Multiprotocol Label Switching (MPLS) traffic engineering tools,

• wireless channel switching technologies,

• data center technologies, and

• Virtual Machine (VM) migration.

In Section 4 the future and planned specification steps and studies are discussed to highlight the path Trilogy

2 partners agreed towards consolidation and testing of the proposed solutions for the other workpackages.

c© TRILOGY2 Consortium 2014 Page 11 of (50)

2 Positioning in the Trilogy 2 architecture
Figure 2.1 shows the reference scenario for the Trilogy 2 Liquid Network concept. The basic components

are those mechanisms that create liquidity inside each resource domain, namely bandwidth, processing and

storage domains. We have presented the key liquidity techniques in Deliverable 1.1.

Figure 2.1: Trilogy 2 reference scenario.

One of the primary aims of Trilogy 2 is to connect these heterogeneous resource pools by developing novel

liquidity mechanisms for converged interactions across resource domains. These cross-liquidity tools will en-

able the current disconnected and segmented Internet to evolve towards a Liquid Network where applications

can have on-demand access to converged and seamless bandwidth, processing and storage resource pools.

In other words, the Trilogy 2 architecture, which is described in D2.1, has been designed to provide mecha-

nisms and tools to expose these heterogeneous resources as a unified pool, with the aim of orchestrating their

provisioning and usage through seamless procedures. This is enabled by the definition of a uniform infor-

mation model for the description and abstraction of heterogeneous resources belonging to different resource

domains, which is described in Deliverable D2.2.

This deliverable is devoted to the definition of key aspects and components for the interactions among those

existing mechanisms and tools which create liquidity at a single resource domain level. As a result, a set of

cross-liquidity mechanisms have been defined in support of the interactions among heterogeneous resources

depicted in Figure 2.1. In particular, the main focus here is dedicated on the one hand to the interactions

between bandwidth liquidity tools (i.e. operating inside the bandwidth resource domain), and to the com-

bination of processing and bandwidth liquidity techniques on the other. The research work for interactions

between bandwidth and storage, and between storage and processing resource pooling mechanisms has been

Page 12 of (50) c© TRILOGY2 Consortium 2014

also started and it is still in progress at the time of writing: the results of these investigations and related the

cross-liquidity mechanisms will be presented in the next Deliverables, namely D1.3 and D1.4.

The next chapter describes the initial cross-liquidity tools that have been designed, and in some case imple-

mented, in this first phase of the project.

c© TRILOGY2 Consortium 2014 Page 13 of (50)

3 Cross-Liquidity mechanisms
This section describes the results of the research and investigations carried out in the project regarding the

interactions between the mechanisms and tools which create liquidity at different resource domains and net-

work layers. The aim is to identify and possibly define novel combinations, interactions and integrations of

such mechanisms to enhance current liquidity techniques.

The main objective here is to provide an overview of the analysis and investigations related to liquidity tools

interaction carried out so far in the context of WP1 activities; experimental setups, simulations and tests are

also reported where available. The focus at this stage of the project is to analyze the interaction of the main

bandwidth liquidity tool presented in D1.1 namely MPTCP and other elements of the Internet architecture.

This section is structured as follows.

• Section 3.1 presents the interaction between MPTCP and MPLS traffic engineering tools

• Section 3.2 presents the interaction between MPTCP and channel switching technologies.

• Section 3.3 describes the interaction between MPTCP and the Data center technologies.

• Section 3.4 covers the interaction of MPTCP and one of the fundamental tools for CPU liquidity i.e.

virtualization, in the context of mobile devices.

3.1 MPTCP and MPLS-TE Interaction

The aim of multipath transport is to pool bandwidth resources by simultaneously making use of multiple

disjoint (or partially disjoint) paths across a given network [8]. There are two benefits when compared with

single path transport. First, it enhances the network connectivity resilience by providing multiple paths,

preserving and protecting the end-hosts (and therefore applications running on them) from failure conditions

in the middle of the network. Indeed, in principle the use of multiple interchangeable paths allows data

chunks to be transmitted and re-transmitted, if needed, on any available path. Moreover, multipath transport

natively increases the network resource utilization efficiency by implementing a concurrent use of disjointed

paths, thus increasing bandwidth capacity, throughput and goodput available at the end-hosts.

3.1.1 MPTCP-aware MPLS-TE provider

Multipath transport enables what is called bandwidth liquidity by allowing individual and independent net-

work resources to be used as single pool of resources for the end-hosts. Multipath TCP (MPTCP) [9] aims at

providing the functions described above by extending standard TCP to pool multiple paths within a transport

connection in a transparent way for the application. MPTCP is designed to be used when multiple end-to-end

paths exists and are available at the end-hosts, and when one or both of them are multi-homed.

However, RFC 6182 [8] does not provide a clear mechanism for MPTCP path management in terms of

routing aspects and disjointness of multiple paths across the network. In this context, dedicated mechanisms

Page 14 of (50) c© TRILOGY2 Consortium 2014

and tools which can allow to create and tune Label Switched Paths (LSPs) in Multiprotocol Label Switching

- Traffic Engineering (MPLS-TE) networks, on demand and bound to MPTCP flows and sub-flows need to

be investigated. The main concept is to setup, control and modify multiple disjoint LSPs (potentially with

different degrees of disjointness, such as node based or link based, depending on the application) to carry

MPTCP subflows, above all in case of single homed end-hosts with the aim of overcoming and somehow

mitigating the multi-homing base assumption of MPTCP.

3.1.1.1 Problem statement

The main objective behind the interaction between MPTCP and MPLS-TE is to improve the MPTCP benefits,

including flexibility and redundancy, by leveraging the native MPLS-TE pooling functions and procedures.

In particular, the idea is to design a Multi-Path (MP) box able to bind and correlate MPTCP and MPLS-TE

procedures by providing a set of bridging functionalities to correlate subflows with LSPs, also in case of

single homed end-hosts. A first set of requirements, in terms of functionalities to be supported by this MP

box, has been identified:

• MUST be able to inspect TCP and MPTCP flows

• SHOULD setup and/or tune LSPs based on TCP and MPTCP flows

• MUST implement a decision/coordination entity to correlate subflows and LSPs

• MUST redirect MPTCP subflows in already established LSPs or trigger the creation of additional LSPs

• MUST implement a dynamic association of MPTCP subflows and LSPs, enabling a Forwarding Equiv-

alence Class to Next-Hop Label Forwarding Entry (FEC-to-NHLFE) mapping in the Label Edge Router

(LER) data plane

• Optionally, MIGHT originate MPTCP subflows in case of single homed end-hosts to implement multi-

path transport

In addition to the above requirements, as a general consideration, this MP box should provide a non-invasive

access to the LSP tunnel APIs on the legacy MPLS routers: this means that the MP box should be an enhanced

network function deployed by network operators on top of MPLS routers without impacting any of their

procedures, interfaces and behaviours.

The next sub-section presents a possible deployment scenario for the MP box, and also includes its functional

decomposition along with a description of main functional modules and interfaces.

3.1.1.2 Reference scenario

Network providers usually tend to offer static connectivity services in their MPLS-TE networks, mostly based

on off-line route computations and resource provisioning that meet bandwidth requirements of forecasted end-

to-end traffic patterns. The result is a sub-optimal and inefficient usage of bandwidth resources, especially

c© TRILOGY2 Consortium 2014 Page 15 of (50)

Figure 3.1: MPLS-TE operator network with pre-provisioned tunnels among PEs

when the actual traffic characteristics would encourage a more dynamic and flexible use of resources across

these MPLS-TE networks. Figure 3.1 shows an example of MPLS-TE network operated by a provider, where

a set of tunnels (i.e. LSPs) among the Provider Edge (PE) routers are pre-provisioned to serve the customers

traffic (coming from correspondent Customer Edge (CE) routers) with general purpose connectivity.

In this context, the MP box can be deployed by network providers as a new MPTCP aware appliance to

significantly enhance the flexibility and dynamicity of their MPLS-TE networks for MPTCP traffic generated

by customers. The concept behind the MPTCP-aware MPLS-TE provider is twofold:

• Data plane: pre-pend at each PE router an OpenFlow enabled Layer2 device to tap TCP traffic

• Control plane: deploy on top of the PEs a Software Defined Networking (SDN)-based MP box running

a set of enhanced network applications

Figure 3.2 depicts this twofold approach: for sake of simplicity, it shows the interaction of the SDN-based

MP box with only two PE routers (left-side of the MPLS-TE network). In a real scenario, each PE in the

MPLS-TE provider network should be pre-pended by an OpenFlow enabled device and controlled by the MP

box. At the data plane, different options are available to tap the TCP traffic to be inspected by the MP box.

Port mirroring on each PE router may be the first option; however, to keep the MP box functions as flexible,

programmable and dynamic as possible, a preferable option is to use Open virtual Switch (OVS) or any

OpenFlow Switch in combination with standard MPLS-TE PE routers. As shown in Figure 3.2 (where OVS

is used), this allows the MP box to perform the inspection of TCP traffic via software through the OpenFlow

protocol [16]. Indeed, the latest versions of the Openflow protocol (currently v1.3.3 is under ratification),

allow special forwarding actions on reserved ports, such as the control port towards the SDN controller for

tap operations. The SDN-based MP box can therefore be run as an on-line, flexible and programmable

replanning engine for the MPLS-TE operator network, leveraging the benefits of an SDN architecture [23].

At each PE, TCP traffic coming from and outgoing the CE routers is tapped and inspected by the SDN-

Page 16 of (50) c© TRILOGY2 Consortium 2014

Figure 3.2: MPTCP-aware MPLS-TE provider: SDN-based MP box deployment

based MP box. Here, MPTCP flows are detected, and the information associated to the originating PEs (i.e.

ingress/egress points of MPTCP flows in the MPLS-TE network) are correlated to replan MPLS-TE tunnels

in the network with the aim of seeking for the maximum end-to-end MPTCP flows disjointness.

3.1.1.3 Functional architecture

The SDN-based MP box functional decomposition is depicted in Figure 3.3, that highlights its main func-

tional entities and their interactions. It is built around an OpenFlow enabled SDN controller responsible for

setting the TCP tap operations in each OVS, with a couple of network applications/functions acting as deci-

sion points for the MP box, in terms of MPTCP flows detection and MPLS-TE replanning.

The list of SDN-based MP box functional modules is provided below. For each of them, a high-level descrip-

tion of its main functionalities, roles and responsibilities is given:

• SDN Controller: It is used to implement tap operations via software, by leveraging the capabilities

of the OpenFlow protocol. It controls all the OVSes at the edges of the MPLS-TE network and it

configures proper rules in the OVS flow tables to retrieve TCP traffic crossing each PE router, either

incoming (from CEs to PEs) or outgoing (from PEs to CEs). Its deployment allows to implement a

software driven MP box, with flexible and programmable functions running on top of the SDN con-

troller itself. In the context of the MP box the SDN controller provides basic functions, mainly focused

on the configuration of few flow entries in OVSes for tap operations, without any embedded network

function like Layer2 learning, routing, etc.

c© TRILOGY2 Consortium 2014 Page 17 of (50)

Figure 3.3: SDN-based MP box functional decomposition

Page 18 of (50) c© TRILOGY2 Consortium 2014

• MPTCP Detector: It is a network application that runs on top of the SDN controller, as an external

enhanced function. It handles and inspects TCP traffic (gathered from the SDN controller northbound

interface) with the aim of detecting MPTCP flows. Mainly it looks at TCP handshake to detect MPTCP

subflows creation (i.e. SYN, SYN+ACK, ACK, JOIN, etc.); the flow information retrieved from mul-

tiple PEs are retrieved to correlate MPTCP flows crossing the MPLS-TE network at the same edge

points (i.e. PE routers). The information regarding MPTCP flows, in terms of ingress/egress PE ports

in the MPLS-TE network are then provided to the MPLS-TE Tunnel Manager to accordingly replan (if

needed) the tunnels/LSPs.

• MPLS-TE Tunnel Manager: It is also a network application running on top of the SDN controller. It

is triggered by the MPTCP detector, and it is in charge of checking tunnels/LSPs disjointness (between

the given PEs) when new MPTCP flow notifications are received. This means that the MPLS-TE Tunnel

Manager is aware of the tunnels/LSPs installed in the MPLS-TE network, and is able to evaluate their

degree of disjointness. When needed, it triggers the re-configuration of tunnels/LSPs to seek for the

maximum end-to-end disjointness; to limit the amount of replanning action specific thresholds may be

configured by the network operator to let the MPLS-TE Tunnel Manager re-configure MPTCP flow

aggregates (instead of single flows). Path Computation Element (PCE) functions, if available in the

MPLS-TE network, may be reused for disjoint routing purposes [6]. The replanning actions can be

triggered through Simple Network Management Protocol (SNMP) or Command Line Interface (CLI)

interfaces exposed by the PE routers, mainly performing setup/teardown of LSPs and configuration of

FEC-to-NHLFE.

3.2 MPTCP and channel switching interaction

WiFi channel switching is a technique used in order to achieve bandwidth pooling over WiFi by utilizing

more than one Access Point (AP) using the same physical network interface. In order to achieve end-to-end

connectivity through multiple APs, MPTCP has been used at the transport layer. Various possible interactions

between channel switching policy and MPTCP have been investigated, mainly adjusting the policy and its

various parameters to complement the load-balancing abilities of MPTCP’s congestion control algorithms.

First, each AP is used in a round-robin fashion, spending a certain amount of time on each channel. This time

interval, named T, is one of the parameters of the proposed solution. By increasing T, a higher level of delay

is introduced to packets on each channel. Also, by increasing the time spent on each AP, the efficiency of

the policy is improved mainly because the difference between time spent on each channel and the switching

time is increased, which, with proper hardware and software modifications, is about 3ms. The value of T has

been experimentally calculated at 100ms because it offers an acceptable tradeoff between RTT increase and

throughput efficiency.

Second, a more complex policy, where the fixed time quota T is not the only switch parameter, has been

c© TRILOGY2 Consortium 2014 Page 19 of (50)

Wait time MPTCP cubic MPTCP coupled MPTCP olia TCP single flow TCP no switching
1ms 9770Kbps 9280Kbps 8760 Kbps 9553 Kbps 19947 Kbps
5ms 16544Kbps 17027 Kbps 16280 Kbps 16262Kbps 21221Kbps
10ms 17057 Kbps 15644 Kbps 15797 Kbps 16172 Kbps 19875bps
20ms 15226Kbps 14242Kbps 14225Kbps 14554Kbps 19785Kbps

Table 3.1: Throughput measurements for different wait timers and MPTCP implementations.

considered. Given a situation where one of the APs gives better throughput than the other one(s), it doesn’t

make sense to split the time evenly between all APs. The aim is to use MPTCP to achieve good load-

balancing, using its congestion control algorithms to split the traffic proportionally with the throughput on

each subflow. The initial idea for achieving this is to specify a waiting time (Tw) for each channel. If, during

the waiting time, no incoming or outgoing packets are detected on the sub-interface(s) on a certain channel,

the switch is prematurely triggered. The Tw timer is reset on every incoming or outgoing packet.

Setting a value for Tw is a key element in this strategy. If Tw is too large, it doesn’t achieve the purpose it

is designed for. If Tw is too small, one or serveral APs could potentially starve by not waiting long enough

for packets to arrive for that AP. Experiments have been performed by setting the Tw timer to values ranging

from 1 to 20 ms. A value of 10ms seems the best for most scenarions, excluding a few edge cases. However,

the objective is to create a policy which would work well for all possible cases, thus the wait time cannot be

left fixed and static. It has to update itself dynamically for each channel, depending on different parameters.

3.2.1 Initial experiments

One of the cases that have been studied is a WiFi device associated to two APs on different channels, with

the device near to one of them and far from the other. In this case, we would expect to receive most of the

bandwidth from the closer AP, and a small part from the farther one. By modifying the Tw parameter, the

results in Table 3.1 have been obtained.

Another interesting case is the one where the device is at a fairly large distance from either AP that it gets

reduced throughput through either one. In this case, using channel switching and MPTCP, both APs can be

outperfomed, and a higher throughput can be obtained by using both APs instead of any one of them. Further

experiments also demonstrate that the congestion control used (e.g. cubic or coupled algorithms), does not

affect the throughput achieved when moving from one AP to the other. This is one of the conclusions reached

when testing this solution: since WiFi hides losses by retransmitting lost frames at the second layer, TCP

does not register lost packets, so the congestion window does not vary according to signal strength. Only

an increase in RTT is obtained, which does not alter the connection parameters by a large degree. The load-

balancing is achieved at the second layer of the stack as opposed to the fourth layer, as we originally thought.

3.2.2 Dynamic timer adjustment

Another AP behaviour have been experimentally deduced: if a client sends a power-save frame to the AP

while the AP has not finished sending the buffered packets, the power-save frame will be disregarded, and

the AP will keep sending packets until it has finished delivering all the data buffered while the client was on

Page 20 of (50) c© TRILOGY2 Consortium 2014

another channel. If the client switches channels after sending the power-save frame, the AP will keep trying

to send the packets and, because the client is not replying with link-level ACKs, it will gradually increase the

interval at which it sends packets, up to several milliseconds. Then, when the client comes back to the AP’s

channel, there will be a sizeable delay before the reception of the first packet (due to the backoff described

above), thus reducing the throughput.

Because of this behaviour, a dedicated mechanism to detect when the AP has finished sending all the buffered

packets has been designed. First, the client sends a power-save frame and turns off the TX queues. Then,

it waits for packets from the AP up to a configured timeout (called Tws). After each received packet, the

client waits for Tws milliseconds. If the timeout is triggered, the client sends another power-save frame and

proceeds to switching channels.

Now, the algorithm has three variables that control its performance: T - the default time quota on each chan-

nel, Tw - the timeout for incoming/outgoing packets while on a channel, and Tws - the timeout for incoming

packets after declaring power-save mode. Dynamically adjusting these timers is key to a good behaviour of

the algorithm and to achieving good performance. How to calculate these parameters is described below:

• On each interface, try to compute the average interarrival time for downlink packets. Then, compute

the mean of all interarrival times on each channel. Pick Tw as the minimum of the means, multiplied

by a constant (to adjust for deviations from the mean). This value for Tw is then applied to the next

time slot (to force a switch from the channels with suboptimal throughput).

• If the average interarrival time on a certain channel cannot be computed, it would be due to the fact that

we did not receive enough packets on that channel during the time slot. Thus, that channel is considered

underperforming, and Tw = T is set for the next channel.

• Tws is set to a fixed value (5ms), but it is only applied if, on the previous channel, the entire time quota

(T) was spent, and if the entire time quota on the current channel was also spent. Only if both these

conditions are true, it is assumed that the AP could have more packets buffered for the given device.

• T is set to a default value of 100ms. However, if a certain channel has significantly greater throughput

that any other channels, T is increased in increments of 100ms, up to a maximum of 500ms. If any of

the other channels starts offering more than zero throughput, T is reset to the default value.

Through these heuristics of adjusting the timers, a good throughput is achieved in all possible cases of op-

eration, by giving more air time to the interface that have better performance. Tw is an efficient way of

fine-tuning the load balancing between interfaces that offer similar throughput, while T is used when band-

widths on various interfaces differ by an order of magnitude or more.

3.2.3 Evaluating the performance of the switching algorithm

In order to measure the performance of the above algorithm, a set of experiments have been devised:

c© TRILOGY2 Consortium 2014 Page 21 of (50)

Experiment AP1 AP2 Switch
AP1 21Mbps 0Mbps 20.6 Mbps
AP2 0 Mbps 21Mbps 20.7Mbps
AP1 & AP2 high bandwidth 21Mbps 21Mbps 19.95Mbps
AP1 & AP2 low bandwidth 6Mbps 6 Mbps 12Mbps
AP1 low signal 9.5Mbps 0Mbps 8.55Mbps
AP2 low signal 0 Mbps 11Mbps 10Mbps
AP1 & AP2 low signal 9.5Mbps 11Mbps 9.9 Mbps

Table 3.2: Performance of channel switching with MPTCP compared to a single AP.

(i) Client connected to a single AP(one interface, no switching):

(a) Strong signal: maximum throughput

(b) Weak signal(simulating distance to the AP or wi-fi contention)

(ii) Client connected to 2 APs(one interface, with channel switching)

(a) Strong signal on both channels

i. Simultaneous downlink using both APs

A. Maximum bandwidth

B. Small bandwidth

ii. Downlink through one AP only

(b) Weak signal on both channels

i. Simultaneous downlink

ii. Individual downlink

In these static cases, the performance of the proposed system connected to 2 APs have been measured com-

pared to a single AP.

If the wired bandwidth is smaller than the wireless bandwidth, the throughput is measured again, compared

to the theoretical maximum (the sum of bandwidths on the 2 channels). If the wireless badnwidth is smaller

than the wired bandwidth, the throughput loss given by the channel switching is measured, with the goal to

minimize it.

The results of these experiments are reported in Table 3.2:

3.3 MPTCP and data center networks

FatTree [3] and VL2 [10] are recently proposed data centre network topologies that are being deployed

into production networks and offer full-bisection bandwidth: a high profile example is Amazon’s EC2

Infrastructure-as-a-Service cloud that uses a topology resembling VL2 for their regular instances[19]. Other

major players are using or deploying similar networks.

Page 22 of (50) c© TRILOGY2 Consortium 2014

Figure 3.4: Enhancing a VL2 topology

Full-bisection bandwidth networks are appealing because they allow data centre operators and application

designers to be mostly agnostic of network topology when deciding how to run distributed algorithms or

where to place data. In theory, congestion can only appear on the host access links - by design, the network

core should never become a bottleneck. For data intensive algorithms (such as the shuffle phase of map-reduce

computation), a full-bisection network offers the best possible performance. On the downside, full-bisection

networks incur a larger cost than oversubscribed networks.

Data Centres heavily rely on the concept of resource pooling: different applications’ workloads are multi-

plexed onto the hardware, and any application can in principle expand to utilize as many resources as it needs

as long as there is capacity anywhere in the data centre. In effect, the resources are pooled in time (when

different users access the same machine at different times) and in space (where distributed applications can

scale up and down as needed). Also, mechanisms are put in place to ensure their fair use.

Measurement studies [10, 11] show that data centre networks are underutilized. Many links are running hot

for certain periods of time, while even more links are idle, which results in an underutilized core. The aim

is to extend the resource pooling principle to data centre networks. The goal is simple: when a host wants

to send flat-out, it should be able to use as much of the idle capacity of the network as it needs. It should

be possible to leverage capacity from everywhere: any flow should be able to fill any part of the network, as

long as it wants to do so and the network is underutilized. The effect such network pooling could bring is

very appealing: either the network core is fully utilized or there is no application that is bottlenecked by the

network. In both cases, the network is providing the best possible performance to the applications.

Achieving this goal is clearly not feasible in today’s data centres where hosts connect using a single (typically

gigabit) link to the network; this link becomes the bottleneck when hosts want to send flat-out. The question

we answer is how should data centre topologies change to achieve resource pooling?

We seek solutions that are both cheap and deployable in today’s production networks, and apply to any

full-bisection network, not just FatTree or VL2. Solutions should preserve the same worst-case bandwidth

guarantee provided by full bisection networks, and should ensure that hosts and applications are properly

isolated.

A quick study shows that between 1 to 3 free ports should be commonly available in servers today, as all major

equipment vendors provide either dual-port or quad-port gigabit NICs in their default blade configurations.

c© TRILOGY2 Consortium 2014 Page 23 of (50)

Leveraging this observation, we propose GRIN, a simple change to existing data centre networks where any

free port existing in any server is randomly connected to a free port of another server in the same rack.

Servers can then communicate using a path provided by the original topology, or via one of the servers they

are directly connected to. To be able to utilize multiple paths simultaneously, and to advertise additional

paths, the servers use MPTCP [18]. This solution can function seamlessly over existing data centre networks.

3.3.1 Problem statement

The main objective is to change existing topologies to allow hosts to utilize idle parts of the network when

other hosts are not active. Good solutions share the following properties:

• Ability to scale: cost is a major factor that determines what is feasible to deploy in practice. Using

more server ports should increase performance and incur little to no additional costs.

• Fairness and isolation: access to the shared resource pool must be mediated such that each server

gets a fair share of the total bandwidth. Misbehaving servers should be penalized, and they should not

adversely affect the performance of the network.

• Widely applicable: it should be possible to apply the solution to existing or future networks.

• Incrementally deployable: it should be possible to deploy the solutions on live data centre networks

with the least possible disruption. This implies hardware or software changes to the network core

(including routing algorithms) are out-of-scope. Further, upgrading only an existing subnet should

bring appropriate benefits.

Full-bisection networks offer multiple paths between any pair of servers. In the VL2 network shown in Figure

3.4a there are at least four paths between any pair of servers in different racks. Data centre networks1 give

every host a single IP address and leave to the network the task of mapping traffic onto the available paths.

The network runs an intra-domain routing algorithm such as OSPF on the aggregation and core switches

(effectively these are routers). The algorithm’s output consists of multiple equal-cost routes towards servers.

When forwarding traffic, the switches use Equal Cost Multipath (ECMP) to hash each connection onto one

of the available paths2

MPTCP is an evolution of TCP standardized by the IETF and recently adopted by Apple in IOS7 [1]: it takes

a TCP connection and splits it across multiple paths, while offering applications the illusion they are still

working over TCP. MPTCP has already been proposed as a replacement for TCP in data centres [18]. Its

biggest benefit for VL2 and FatTree is avoiding collisions caused by ECMP when multiple connections are

placed onto the same congested path, despite the existence of idle capacity elsewhere in the network.

1at least as seen from Amazon’s EC2 cloud
2VLANs are another popular solution to expose multiple paths to hosts. Hosts will have as many addresses as possibly paths, and

will implement flow placement on paths.

Page 24 of (50) c© TRILOGY2 Consortium 2014

Any solution devised will have to use multiple NICs at servers. TCP is unable to split a flow across multiple

interfaces. As there are few large flows at any time on a given server [10], adding more NICs will not bring

performance benefits with regular TCP.

MPTCP, however, allows a transport connection to grow beyond the 1Gbps offered by one NIC port. It also

provides by design some of the goals required—it enforces fairness across collections of links [24].

Barring extensive changes to the original topology, the most straightforward solution is to multi-home servers

by using additional Top Of the Rack (TOR) switches. A TOR switch is added for every additional server port

(see Figure 3.4b), so that each server is connected to each of the multiple TOR switches from its rack. In order

to keep the rest of the topology unchanged, the uplinks of the original TOR switch are evenly divided between

all the local TOR switches. The resulting topology is oversubscribed, but now each server can potentially use

much more bandwidth.

Multihoming brings additional costs in terms of switching equipment, rack-space, energy usage and mainte-

nance. As every additional server port could require an additional switch, this solution does not scale well

with the number of server ports used.

To implement multi-homing, each server will receive an additional IP address for every uplink. After ad-

dresses are assigned, MPTCP and ECMP are enough to utilize the network: servers only have to choose the

destination address for each subflow, and the routing will do the rest.

3.3.2 GRIN

A much better solution is to interconnect servers directly using their free network ports, while keeping the

original topology unchanged. Each pair of servers that are directly connected in this manner become neigh-

bors. Intuitively, when a server does not need to use its main network interface, it may allow one or more of

its neighbors to borrow it, by forwarding packets received from them (or packets addressed to them) to their

final destination. This solution is depicted in Figure 3.4c.

When a server wishes to transmit, it can use both the uplink and the links leading to its neighbors. Conversely,

the destination can be reached through both its uplink and via its neighbors. Links used to interconnect servers

are called horizontal (or Grin) links, and reserve the term uplinks for those that connect servers to the switch

in the original topology. The network interface where the uplink is connected becomes the primary interface

of the server, while the others are considered to be secondary interfaces. If every server has the same number

n of available network ports, and all of them are used to connect to other servers, than the degree of the

resulting Grin topology is defined to be equal to n.

3.3.2.1 Server interconnection

It is best to connect those servers that usually do not need to access the network at the same time, otherwise

interconnection will not bring major gains beyond improving local throughput.

Many distributed applications have workloads that correlate the idle and busy periods across all the servers

they are running on, as do the shuffle or data output phases of map-reduce computations. These applications

c© TRILOGY2 Consortium 2014 Page 25 of (50)

tend to distribute their work across many racks to acquire sufficient servers and to improve fault tolerance.

Ideally, which nodes run which applications would be known beforehand and the servers would be inter-

connected running different applications in the hope that the usage peaks from the different applications are

spread out in time. However, this is not possible as the same server is assigned different tasks over short

time-scales.

Instead, it is assumed that servers in the same rack use their uplinks independently. If this holds true, it

is sufficient to randomly interconnect servers in the same rack, which is very easy to cable. Otherwise,

two options are possible: either connect servers from different racks, which increases cabling complexity,

or change the application schedulers to spread servers across racks as much as possible3. Interconnecting

servers from pairs of adjacent racks can be a good compromise, if the data centre layout allows it.

3.3.2.2 Path selection

There are a number of options to consider when choosing a path between two random servers, A and B:

• choose one of the paths available in the original topology

• a path may consist entirely of Grin links

• choose any number of intermediate servers, and form a path using the concatenation of all intermediate

paths

In most if not all topologies encountered in practice equal cost paths or a small number of different path

lengths have been found, depending on the relative position of the communicating hosts in the topology.

If Grin is used, the set of paths can grow to include elements consisting of increasingly large number of

hops, based on the aforementioned possibilities. A compromise must be found between limiting path length

and trying to make the most of the available network capacity. The best way of keeping the path length

as short as possible is to allow at most one horizontal hop both after the source and before the destination

(giving the possibility of two horizontal hops maximum), which will be called one hop routing. This has the

definite advantage of permitting the use of simpler routing schemes and requires the least amount of overall

forwarding effort. On the other hand, one hop routing also appears to have the least potential of actually using

spare network capacity. Thus arises the question of how much of an improvement, if any, can be achieved by

increasing the length of horizontal segments in some of the paths candidate for usage.

First action is to see if there is a correlation between the maximum allowed path length and the amount of

capacity that can be discovered in a Grin network seen as an abstract model. The proposed representation is

agnostic of the original topology, so the idea is to look at it as groups of computers (a group representing one

rack) connected to a single, sufficiently large switch. The computers from each group are interconnected in

a random manner, having in mind the considerations from the previous section, and the entire setup is then

represented as a directed graph. For every pair of elements A and B (where A is a server and B is either

3A Multi-homed topology would also rely on the same assumption

Page 26 of (50) c© TRILOGY2 Consortium 2014

a server or the switch) there is one edge going from A to B and one edge going from B to A, each with a

capacity of one unit.

For this graph and a given set of source-destination pairs (each pair standing for a connection) GLPK [2] is

used to solve the maximum multi-commodity flow problem and a couple of its specializations in which we

place restrictions on the number of horizontal hops. Since these tasks tend to be rather computationally in-

tensive, the network model consisted of six groups of twenty servers. The main variables for each experiment

were the number of available network ports for each server and the traffic pattern. The Grin interconnection

was randomly selected in each case, as previously mentioned.

A minimum of two available network ports (as routing across multiple hops doesn’t make sense for any less)

and a maximum of six was considered. Larger values lead to a significant increase in evaluation time while

not being very likely to appear in a real setting. Four types of traffic patterns were tested:

• permutation traffic: each active server sends data to a single destination, and each destination receives

data from a single source. For this type of traffic pattern the number of active hosts has been varied

from 10% to 70%

• group traffic: every server is randomly assigned to a group such that each group contains the same

number of servers. A single server is chosen at random from each group as the destination for every

other member. The group size ranges from 5 to 60 servers.

• all-to-all traffic: each active server sends data to every other active server. The number of communi-

cating hosts varies from 10% to 30%

• random traffic: the endpoints of every connection are chosen at random. The number of connections

ranges from 10% to 100% of the total number of servers.

The result of each experiment is the total flow in the network. As expected, this is proportional to both the

number of active connections and the Grin degree. The same applies for the difference between the one-hop

and two-hop restricted versions of the problem, which can go up to around 25% in a topology where six

additional ports are used. Figure 3.5(a) shows the average of all experimental results for each case. The

two-hop scenario was always within a few percent of the optimal solution, and often managed to provide the

best result. This tells that with optimal placement and sizing of a sufficient number of flows, there is no need

to consider more than two hops after the source and before the destination.

However, it’s quite hard to form an expectation of real-world flow behavior based only on these results, as

they do not take into account at least two important limiting factors. Any MPTCP connection will only use a

certain number subflows in order to prevent performance degradation [24]. Also, it’s not usually possible to

make informed decisions about flow placement in real time; instead the hope is that spreading flows among

multiple paths together with congestion control can get the most out of the network.

c© TRILOGY2 Consortium 2014 Page 27 of (50)

Figure 3.5: Hop Analysis - a) Max MCF (left-side), b) Simple evaluation (right-side)

Taking this into account, a much simpler performance estimation procedure has been devised, using the

same network model as before. The first step is to build the complete set of paths between any source and

destination from the current traffic matrix. The length of a path is defined as:

• n− 1 if the path is made up of n horizontal segments.

• the number of horizontal segments it contains, otherwise. The shortest such path between two servers

is called the direct path.

For each connection a number of paths without replacement is randomly seleceted and added to the chosen

path set; the direct path is always included. The largest possible flow is then assigend to each element of this

set, in ascending order of length. This is done by finding the path segment with the least amount of available

capacity, and then using that value to fill the entire path.

This method was applied to the same input data as in the previous experiment. An additional variable was the

number of available choices for path selection, with two possibilities, either 8 or 16. Three-hop routing was

also considered. The average results, represented in figure 3.5(b), show that the one-hop strategy is actually

better under these circumstances. This is not entirely unexpected, because smaller Grin degrees make it more

difficult for multiple-hop strategies to discover available capacity. This effect is compounded because the

sampling was performed on a small subset of the numerous long paths.

Many tests were ran without finding any cases where one-hop routing performed sensibly worse than the other

two, while the converse situation came up quite frequently. Adding bias in favor of shorter paths improves

Page 28 of (50) c© TRILOGY2 Consortium 2014

A	 C	 B	

10.0.0.2	 10.0.0.1	 10.0.0.3	

10.32.0.1	 10.64.0.1	
10.32.0.2	 10.32.0.3	

global	 prefix	 	 grin	 id	 	 	 	 server	 iden;fier 	 	
	 	 00001010	 	 	 	 	 	 	 000	 	 	 	 000000000000000000010	

Figure 3.6: Grin Address Assignment Algorithm

the overall results, but doesn’t do much to change the standings. The conclusion is that the one-hop strategy

is preferable, especially when its advantages in terms of forwarding and complexity are considered.

3.3.2.3 Address assignment

Let assume that each server from the original topology uses an address from the 10.0.0.0/11 network for

its primary interface, and that any other address with the 10.0.0.0/8 prefix is neither used nor meaningful

(different non-routable prefixes can also be used). For any server s, the following are defined:

• addrs is the address used by its primary interface.

• us represents the number of ports that were used to connect s to other servers (∀s, us = 0 when starting

with the original topology).

Any network address addr is split into three meaningful group of bits in the following manner:

• the most significant 8 bits are the global prefix, P (addr). This is set to 0x0a for all interfaces.

• the next significant 3 bits represent the Grin identifier, G(addr). The value of these bits taken together

is going to identify each secondary interface connected to a particular server. Since all the primary

interfaces are in the 10.0.0.0/11 network, their Grin identifier will be equal to zero.

• the remaining 21 bits are the server identifier, I(addr), as they represent the unique part of every

primary interface address.

For each Grin interface, the corresponding address is determined during the interconnection process. If the

interface e, belonging to server a, is connected to server b, then it is going to receive the address addre, with

the following structure:

• P (addre) = 0x0a

c© TRILOGY2 Consortium 2014 Page 29 of (50)

• G(addre) = ub

• I(addre) = I(addrb)

The value of ub increases with each additional interconnection involving server b, so it is used as Grin iden-

tifier for interface e, because it is guaranteed to be unique among interfaces connected to b. Lastly, the server

identifier part of addre becomes a reference to server b. For every pair of interconnected secondary interfaces,

each one will be designated as default gateway for the other.

This particular addressing scheme is designed to help the routing process, because it allows us to identify the

primary address of the neighbor through which a flow directed to a Grin interface must be sent. Thus, for any

address, the neighbor function N(a) is defined to have the value of a with the Grin identifier bits set to zero.

Consider the example in Figure 3.6 where there are two ports available on each server, identified by es and fs

for any particular server s. The initial choice was to connect interfaces eA and eB belonging to servers A and

B, respectively. Assuming that addrA = 10.0.0.1 and addrB = 10.0.0.2, then the address 10.32.0.2 was

assigned to eA, and 10.32.0.1 to eB . Then servers A and C (with addrC = 10.0.0.3) were connected using

interfaces fA and fC . Since uC is currently equal to zero, fA is going to receive the address 10.32.0.3, but

uA = 1 so the address of eC will be 10.64.0.1. This process continues until all available network ports are

assigned IP addresses.

3.3.3 Implementation

Let’s consider what happens if the base MPTCP implementation is used with a Grin setup. In the example in

Figure 3.6, assume that there were no more Grin links except those shown, and that server B attempts to send

data to server C. The connection begins like regular TCP using a single flow between the primary interfaces

of the two servers. After the initial handshake is complete, server B will be notified via the MPTCP address

advertisement mechanism of any additional addresses it can use to contact server C. The set of additional

addresses for server C will consist of only one element, 10.64.0.1. Having this information, server B will

attempt to establish a full mesh of subflows between its own addresses (both primary and secondary) and

those just received. In this particular case, no additional subflow can be successfully established, as the

corresponding destination cannot be reached. This problem must be solved for Grin to work.

The simplest solution would be to use static routes. On every server s, for each secondary interface e in the

rest of the network (except those directly connected to s), a route which designates N(addre) is added as

the gateway. Unfortunately, this approach doesn’t scale very well and becomes unwieldy for any reasonably

large network.

The best alternative is to use loose source routing. Whenever a TCP connection is initiated in the kernel,

algorithm 1 is used to determine the content of the LSRR option for that particular socket.

The algorithm begins with a series of tests meant to determine whether adding the option is necessary. For the

first condition on line 5, if the global prefix of the destination address does not match 0x0a, the connection

is considered to be outside the scope of the Grin topology, so no further action is taken. Next check is

Page 30 of (50) c© TRILOGY2 Consortium 2014

Algorithm 1 Set socket IP options
1: l← local primary address
2: s← sock.source address
3: d← sock.destination address
4: H ← ∅
5: if P (d) 6= 0x0a or N(d) = l or N(s) = N(d) then
6: return
7: end if
8: if G(s) 6= 0 then
9: H ← H ∪ {N(s)}

10: end if
11: if G(d) 6= 0 then
12: H ← H ∪ {N(d)}
13: end if
14: opt← make option(LSRR,H)
15: set option(sock, opt)

whether there is a direct connection between the destination and the local server. If the source interface is

directly connected to the destination, then routing will simply work. If some other local interface is the one

connected to the destination, then the present connection becomes invalid because it would contain a loop, so

it is disabled by not adding the LSRR option. The last condition verifies whether the source and destination

interfaces are directly connected to the same intermediate server. When true, this once more renders source

routing unnecessary, as everything will work by default. On line 8 the format of the source address is verified.

If it’s the address of the primary interface then nothing is done, because it should be reachable from anywhere

in the network. If not, then the primary address of its neighbor has to be added to the intermediate hops list.

On line 11 this process is repeated for the destination address. Finally, the LSRR option is assembled and

applied to the socket.

At first glance it may seem that statement from line 9 is unnecessary. When a connection is established

between two secondary interfaces, the source will send packets to its neighbor anyway, because of the default

gateway settings. However, the destination must honor the LSRR option by using the same intermediate

servers, but in reverse order. Without adding the neighbor of the source to the option, packets on the reverse

path are going to get stuck after the first hop, because there is no direct route from that server back to the

source.

Source routing has the advantage of being already implemented in the Linux kernel. The overhead in terms

of increased IP header size is at most 11 bytes (for two hops). This is considered to be an acceptable tradeoff

considering the simplicity of the solution. The Grin implementation requires IP forwarding and source routing

to be enabled. Another requirement, less apparent than the previous two, is that reverse path filtering must

be disabled. This is caused by the addressing scheme, which can lead to situations where a server receives

a packet from a subnet that appears to be accessible through another interface. While all these settings go

against recommended general security practices, servers from a Grin network are assumed to be properly

insulated against foreign interference.

c© TRILOGY2 Consortium 2014 Page 31 of (50)

Figure 3.7: Simulation results - Permutation, Random, Group, All-to-all

Page 32 of (50) c© TRILOGY2 Consortium 2014

Figure 3.8: Validation results - Permutation, Random, Group, All-to-all

c© TRILOGY2 Consortium 2014 Page 33 of (50)

Some other small changes to the MPTCP kernel were also performed. The first is related to subflow initi-

ation. Establishing a full mesh, especially for higher Grin degrees, would involve a very large number of

connections. The default behavior for Grin is to establish the smallest number of subflows such that every

horizontal link is used at least once. Thus, in a Grin topology with degree n, MPTCP will establish n addi-

tional subflows. There is also the option of specifying a certain number of subflows, which are going to be

selected at random in a manner consisted with the goals of the default algorithm.

Another modification was to adjust the MPTCP subflow selection process, which decides what subflow to

use when sending each particular packet. In most situations, it is desirable to send data using the direct

subflow whenever possible, but the RTT estimation alone might not entice MPTCP to make this selection.

Bias in favor of the direct connection were also added, based on a simple linear equation with configurable

parameters. By default, its estimated RTT is halved for comparison purposes.

3.3.4 Evaluation

Grin has been evaluated using packet level simulations and by deploying it in a small cluster. Multiple Grin

topologies are compared with a multi-homed topology in simulation, while on the cluster the simulation

results are validated and examined with real-world application performance.

3.3.4.1 Simulation

The simulation studies used a topology consisting of 120 servers, connected to a single switch, with 20

servers in each rack. Increasing network size up to tenfold gave qualitatively similar results. Using the htsim

simulator, the average data rate of each active receiver was measured and compared to the maximum possible

value for the original topology. Each multipath connection is long lived and uses 16 subflows.

Three Grin topologies were tested, using 1 - 3 additional server ports, and one multi-homed topology that uses

one additional server port. They are referred to as GRIN1, GRIN2, GRIN3 and Multi-homed, respectively.

Multi-homed requires the same total number of ports as GRIN2, costs more and requires additional rack

space.

Multi-homed and GRIN topologies were expected to perform significantly better than the original topology

on average, and at least as well in the worst case. While traffic patterns usually found in data centre networks

quite complex, the hope is to be able to provide at least some insight regarding how will this Grin approach

behave in a real-life scenario. Intuitively, the greatest improvements should happen when either a small

number of servers are using the network, or the ratio of senders to receivers increases considerably.

The traffic matrices used in these tests were once more permutation, group, all-to-all and random, with

different percentages of active servers and numbers of connections per server. 20 random instances of every

case were evaluated. Given the small size of the network, only connections between servers from different

racks were allowed for permutation and random matrices. In much larger networks, connections chosen at

random would seldom end up being local. The assumption is that the network interface is the only limiting

factor for the amount of data that can be sent or received by any server.

Page 34 of (50) c© TRILOGY2 Consortium 2014

For a permutation traffic matrix, as illustrated in figure 3.7a, lower percentages of active servers lead to signif-

icantly better results for GRIN topologies. The performance of these topologies, however, degrades quicker

than that of Multi-homed, which provides better throughput when 25% and 40% of servers, respectively, be-

come active.The group connection matrix simulates scatter-gather communication. This is the most favorable

situation for GRIN topologies, because the large number of sources will fill every link of the receiving server.

As seen in figure 3.7c, the performance benefit starts out at a minimum for the smallest group size, because

of the significant probability of having two or more destinations in close proximity, and then increases to near

the maximum value relatively quick. The all-to-all simulations (figure 3.7d) lead to a predictable outcome;

the best results are found for the smallest number of active servers, and then gradually decline. The results

for Multi-homed decline slower, but also start at a significantly lower value compared to GRIN2 or GRIN3.

The final experiments were made for the random traffic matrix. The results, seen in figure 3.7b, resemble

those found in the permutation case.

3.3.4.2 Small cluster deployment

Grin has been also deployed in a local cluster, consisting of 10 servers which were used to run the Grin

implementation, together with a few other machines for management purposes. Each server has a Xeon

E5645 processor, 16 GB of RAM and 4 x 1Gb network interfaces. One interface was used for network boot

and another to connect each primary interface to the switch. A GRIN2 topology has been built using the two

remaining network ports. By disabling one or both of them the downgrade to GRIN1 was possible as well as

the revert to the original setup. It was not possible to deploy a multi-homed topology because of hardware

constraints. Each server is also equipped with a slow HDD. This prompted us to rely on an in-memory

filesystem whenever the need for persistent storage arisen in any experiment. One particular case involves the

Network File System (NFS). NFS cannot export directories out of a tmpfs mount, so we just had to rely on

the fact that the operating system will buffer as many previously accessed files as possible in memory. The

results are thus an upper bound for performance when disks are involved.

Basic Measurements. The first attempt was to validate the results of the previous simulations, at least to the

extent allowed at this much smaller scale. Inputs were generated trying to match the experiments described

in section 3.3.4.1, and fed them to a script which would connect to the appropriate servers and launch iperf

connections to their corresponding destinations. The duration of a connection is set to 5 seconds. Figure 3.8

shows the findings.

In order to relate to the simulated results, each value was normalized with respect with the rate of 941Mb/s,

which is expect to achieve for a single-path, long running, UN-obstructed connection. The results for the

permutation traffic pattern match very well, with the implementation being actually better in most cases.

However, this is influenced by the fact that some servers will communicate more efficiently based on their

proximity, which is not possible in the simulated scenario where intra-rack connections are forbidden. The

same holds for the random traffic pattern, but here a somewhat steeper decline in performance is also encoun-

c© TRILOGY2 Consortium 2014 Page 35 of (50)

Figure 3.9: Improvements depend on the size of the transfer.

tered as more servers become active, caused by the higher negative impact of two or more sources choosing

the same destination. In the all-to-all scenario, things look a bit different. One reason is the fact that the

same percentages of active servers could not be replicated given the small size of the network. When taking

this into perspective, the results for GRIN1 match reasonably well, while those of GRIN2 are only somewhat

worse. The group traffic pattern related experiments were the hardest to enact. Since the network is so small,

a single group of 10 servers and two groups of five was only considered. The former case is not really mean-

ingful since it involves a single destination, so the latter is considered, which provides a better result, but once

more proximity has taken into account.

The aim was also to find out when Grin starts bringing benefits if there are fixed-size transfers, assuming

there is no contention anywhere in the network. A series of tests was ran using a simple client-server program

which requests and then receives a certain number of bytes. The results are shown in figure 3.9, and reveal that

there is need to transmit data on the order hundreds of kilobytes before any sizeable gain becomes apparent

for a single connection. Also, for smaller transfers (between 15-75K), Grin may add at most 200µs to the

completion time. This is an issue of the current implementation, caused by the way data is distributed among

subflows.

Applications. The next step of the evaluation was to run a couple of real-world applications, starting with an

NFS[17] server. The goal was to measure the time it took to read every file from an exported directory. The

size of each file was variable from one experiment to another, but the contents of the directory always added

up to 2GB. As can be seen in figure 3.10, throughput improvement is directly proportional to file size. After a

certain point, each file is large enough to make the request overhead almost negligible in relation to the actual

transfer duration.

Another application considered is HDFS [21]. This is a natural choice for any Grin setup because it involves

handling large amounts of data, potentially causing a lot to gain in terms of performance. One server was

used to host the NameNode, 8 were running DataNodes, and the last one acted as a client. The time needed

to transfer a 4GB file from HDFS to local storage was measured. GRIN1 gave the best possible result, as

the file transferred almost twice as fast. The switch to GRIN2 however, did not bring the expected threefold

increase in speed. This was apparently caused by the java process becoming CPU bound. When two transfers

in parallel are requested, each process ran on a different core and every network interface was almost fully

Page 36 of (50) c© TRILOGY2 Consortium 2014

Figure 3.10: NFS

utilized.

Next, the goal is to see if Grin can bring any benefits to virtual machine migration. The Xen Hypervisor[4]

version 4.2 was installed on several servers running the modified version of the MPTCP kernel. The virtual

machine created for the experiments had 4GB of RAM, and its disk image was shared by an network block

device server. The metric used during each test was the time required to migrate the VM to another server. The

first attempts, using the xl toolstack, met with complete failure. By default, xl will use ssh to send migration

data, which incurs a hefty overhead. Since the data rate hovered around 50MB/s, there was no reason to

even begin to consider Grin. At this point we tried to find some way of circumventing the shortcomings

caused by ssh in terms of speed. One possibility is to install an extension like High Performance SSH [20]

which allows the use of a none-cipher together with various additions designed to improve the performance

of ssh connections. Under these circumstances the migration of the VM was performed at a considerably

higher speed, but still without using much more bandwidth than a single interface could provide. The best

results are obtained by switching back to the xm toolstack, which uses plain TCP. In this case, using GRIN1

increased migration speed by around 60%, while GRIN2 doubled it.

The last application in the test suite was Apache Cassandra [12]. A Cassandra cluster consisting of 9 servers

was set up, while the last one acted as client. The goal was to use the Cassandra-stress tool to measure

the time required to write a constant amount of data in different circumstances. Default values for most

parameters were used, only changing the number of columns to 10, and then varying the size of each column

and the numbers of keys inserted such that the total transfer size was around 2GB. The relation between

column size and request completion time is presented in figure 3.11. Somewhat unsurprisingly, the way

parameters combine o determine the amount of data per row is what matters most in terms of performance.

The operations complete much more quickly for a smaller number of larger rows. Increasing the number of

columns while decreasing the number of rows will also lead to better results, but not to the same extent as

using larger rather than more columns.

Incast. A Grin topology could also be used to lessen the effects of incast under specific conditions. The main

idea is that instead of trying to use as many distinct paths as possible, a sender can choose a single path to

its destination and only send data that way. With a sufficient number of senders and a random path selection

algorithm, the flows should be spread reasonably even between the uplink used by the destination and those

c© TRILOGY2 Consortium 2014 Page 37 of (50)

Figure 3.11: Cassandra

Figure 3.12: Incast mode

of its neighbors. We call this incast mode.

Any connection is initiated on the direct path between two servers, so incast mode cannot really help transient

connections, because the first packets are always going to be received by the destination directly from the

switch (unless we start using some kind of out-of-band address advertisement mechanism). On the other

hand, persistent connections which amount to periodic message exchanges will represent the principal use

case. The current Grin implementation comes with two version of incast mode for testing purposes: weak

affinity and strong affinity. The former will pick a subflow as the preferred one, but is still willing to use other

subflows whenever the first temporarily becomes unable to send any more packets. The latter will only use

the chosen subflow.

A multi-threaded program was used to periodically request data from multiple sources. Figure 3.12 shows the

behavior encountered when one server simultaneously requests 30KB of data over 27 persistent connections,

evenly distributed among the nine remaining servers. There are 50 rounds of transfers, each being followed

by a 300ms waiting period. Here the original topology is compared with a GRIN2 setup using weak affinity

and another one using strong affinity. For each case, the percentage of transfers that were able to complete

before a particular time interval has elapsed are represented. As expected, strong affinity gives significantly

better results because it enforces the clear separation of connections.

3.3.5 Does Grin Slow Down Local Apps?

Fair Use of Uplinks. With basic Grin routing, every server is going to evenly share its uplink between

subflows, whether they are local or not. While this may be acceptable or even desirable in some settings,

there are also circumstances where it would be considered completely unfair to the forwarding server. This is

especially true in a public data centre, where multiple tenants share the network. In such cases, the aim is to

Page 38 of (50) c© TRILOGY2 Consortium 2014

discriminate against flows with foreign origin when the server is using its uplink.

In order to achieve this goal, a simple scheme based on DiffServ is employed. High priority code point (e.g.

EF) is assigned to each direct subflow, while all the others retain the default value. There are two situations

to consider. If contention happens at the sender, then packets are buffered locally and priority routing can be

used on the primary interface (in Linux, the PRIO qdisc is used) to make sure they are treated according to

their priority. On the other hand, when there is contention on the downlink, the network itself has to be able

and configured to honor DSCP markings. Fortunately, most commodity switches nowadays support assigning

traffic to at least two priority classes, if not more.

Thus, when a server needs to send or receive data flat out then it will be able to fully utilize its uplink if there

is no other limiting factor. Also, direct subflows are only going to share the network between themselves, as

it would have happened in the original topology. In public clouds, the proper assignment of priorities will be

implemented in the hypervisor.

Latency. The goals of high bandwidth and low latency have generally found themselves at odds, so the sight

of one while chasing the other must not be lost. Using a Grin topology may generate a number of dangerous

situations in terms of latency. For example, a sensitive destination server can be suddenly overwhelmed by a

large transfer requested by one of its neighbors. Another issue could be the increased buffer pressure caused

by higher network utilization. Also, secondary paths will inherently exhibit higher latency caused by the

extra hops. The general goal in this matter becomes to ensure that the latency characteristics of the original

topology are not exacerbated; in other words, the aim is to do no worse.

Dealing with latency also depends a lot on the particular setting in which Grin is used. The best possible

scenario would be a private data centre with priority-aware applications and network stack. This means that

whenever data is sent, the application has the possibility of specifying a certain priority for that data, which is

then also honored by the network. Under these circumstances, there is no need to do anything special because

the most latency-sensitive flows already have the highest priority. In fact, Grin should in theory provide lower

delay than the traditional topology, when there is heavy congestion: this was confirmed by htsim simulations.

In the testbed deployment flow completion times have been measured in heavily congestion both in the GRIN

topology and the original network. The experimental results were variable, however, giving the same average

performance for GRIN and the original topology, and high variance. This is most likely an artefact of the

MPTCP Linux kernel implementation.

At the other extreme is a multi-tenant data centre where application priorities are unknown and fairness is

paramount. In such cases, it is best to prioritize direct traffic over Grin-routed traffic. Most short connections

will finish before an additional MPTCP subflow is setup, so the delay is exactly the same as in the original

topology. For longer flows, MPTCP will open additional subflows and there is a danger that latency sensitive

data may end up being sent on a low priority path. This will happen because the congestion window of the

direct subflow is going to become full at some point, so the MPTCP subflow selection algorithm will have to

c© TRILOGY2 Consortium 2014 Page 39 of (50)

Figure 3.13: Forwarding overhead - 2Gbps throughput, 64-byte payloads

pick a secondary one to send outgoing data. These packets will face a much higher risk of being delayed or

lost somewhere in the network. Therefore, in this case, only latency-sensitive flows up to a certain size will

exhibit the same characteristics as in the original topology.

To accommodate larger latency-sensitive flows, a sysctl entry is implemented: it specifies the minimum

amount of data that has to be successfully acknowledged by a connection before MPTCP is allowed to send

data on secondary interfaces. The counter is periodically reset in order to deal with persistent connections.

Presently, this is a global option that will affect every connection. However, it could also be made connection-

specific, in order to eliminate any potential negative impact it may have on larger flows.

Forwarding overhead. With Grin, servers have to forward packets on behalf of their neighbors, and a valid

concern is whether packet forwarding will slow down any running programs. Most of the time, a single server

should only forward at most 2Gb/s. This is a positive consequence of using one-hop routing; since forwarded

traffic is going to be sent or received through the uplink, congestion control will ensure that the total incoming

and outgoing rate cannot exceed that value. 4

Forwarding has two main sources of overhead: processing interrupts generated by the NIC when packets

are received, and memory bandwidth usage to reading packet fields, forwarding table lookups and packet

modifications (e.g. decrease TTL or implement Loose Source Routing). To understand these effects, it is not

enough to track the CPU usage of forwarding on an otherwise idle machine (which is very low in the tests).

Instead, real applications have been ran while measuring their completion time with and without packet

forwarding. Experiments with a number of real-world applications gave, as expected, in I/O bound scenarios

there are no significant negative consequences. CPU and memory bound applications are more interesting,

and results for two representative programs have been collected: transcode, a multi-threaded video transcoder

that is CPU-bound, and memwalk, a synthetic worst-case application that is bound by memory-bandwidth (it

4There are also some exceptions which may appear whenever two communicating servers happen to share a neighbor, but this is
comparatively rare.

Page 40 of (50) c© TRILOGY2 Consortium 2014

has no cache locality).

Transcode heavily utilizes all the cores of the server. Figure 3.13(a) shows that its execution time increases

by 4%-13% when the server is forwarding 2 Gb/s. The exact overhead depends on the packet size—larger

packet sizes lead to smaller packet rates, and thus smaller overhead.

Memwalk allocates 100MB of memory and runs a long loop where it writes one byte, skips 63 bytes, writes

another byte, and so on. Memwalk has no memory locality whatsoever, as every write forces another cache

line to be loaded. Memwalk effectively measures the available memory bandwidth, and will be most affected

by forwarding. The results in figure 3.13(a) show this effect: memwalk’s execution time more than doubles

when forwarding small packets.

The second experiment, shown in Figure 3.13(b), only uses minimum-sized packets, varying the packet rate

and measuring the effects on the same applications. This experiment emulates an adversarial setup where a

server attempts to disrupt the operation of its neighbor. The overhead induced on transcode is now almost

entirely caused by interrupts, and peaks around 250kpps. This is where the interface automatically switches

to polling mode, drastically reducing the number of interrupts. The difference to the previous experiment

is due to the inter-packet gaps that delay the point at which the interface goes into polling mode. As the

overhead with polling enabled is only around 13%, one solution could be to enable polling more aggressively.

Memwalk suffers much more as the packet rates grow towards 250kpps; interrupt overheads also dominate

up until 250kpps.

In summary, the overhead of forwarding on I/O bound and CPU-bound applications is negligible at gigabit

speeds, regardless of packet size. Even for heavy CPU-bound apps, the overhead hovers between 4 and 13%.

Memory bandwidth-bound applications will suffer a lot more; while these are uncommon, they do exist: in-

memory web-search is a likely candidate. To reduce the effects of packet forwarding, shaping is the obvious

choice: packets exceeding a certain rate should be dropped. However, in the case of a denial-of-service attack,

the box still has to process receive interrupts, and experiments show that this is just as expensive as doing

the whole forwarding. Thus, the only solution is to turn off Grin altogether, by bringing down the interfaces

corresponding to horizontal links.

When should Grin be disabled? The number of cache misses is a good indicator of memory performance

[5]: by measuring the cache miss rate of the application with forwarding enabled and disabled one can tell

whether the application is going to be impacted by Grin forwarding. For instance, the number of cache misses

in transcode only varied by a few percent when forwarding packets. In contrast, memwalk generated 8 times

more cache misses when forwarding was enabled. This profiling process can be manual (e.g. engineers decide

to disable Grin on web-search machines) or even automatic, by measuring cache miss rates and runtime and

correlating them with forwarding activity.

c© TRILOGY2 Consortium 2014 Page 41 of (50)

3.3.6 Deployment considerations

Grin can be deployed in most of today’s data centres, where gigabit multi-port NICs are the norm. Grin has

been assumed to run in a private data centre, but it can be easily deployed in public clouds too. In this setting,

Grin routing and priorities will be implemented in the hypervisor; the tenant virtual machines only have to

use Multipath TCP to be able to take advantage of the multiple paths.

A valid question is whether Grin would be applicable when hosts NICs are upgraded to 10Gbps. Running

Grin over 10Gbps is obviously possible, but most applications today are unable to generate traffic at such

speeds, and forwarding at 10Gbps is much more expensive for local applications. Running Grin in such

settings today will only bring benefits for heavily optimized apps running in clusters where interference is

not an issue.

Beyond enhancing existing networks, Grin opens up a new dimension in which data centre topologies can be

designed. So far, the only knob has been to choose the size of the core, i.e. the amount of over-subscription.

For instance, Jellyfish [22] is a recent proposal that advocates the use of random interconnections for data

centre networks and allows provisioning the core capacity with fine granularity. Jellyfish could be used

with Grin to build purpose-specific networks where the expected network load is used not only to optimize

the size of the core, but also to decide on how many Grin links to use. For example, if a data centre deals

predominantly with scatter-gather traffic, the number of Grin links becomes much more important than having

a full bisection network.

3.4 Interactions between processing and bandwidth liquidity mecha-

nisms

This section presents a set of mechanisms for accessing bandwidth and CPU resources across devices. The

mechanism are based on VM migration, enabling an abstraction layer between user applications and hardware

and operating system interfaces.

Virtualization tools enable CPU liquidity across devices, decoupling the operating system from the hardware

platform. We can take advantage of these tools by running applications in a virtualized container. Migrating

the container from one hardware platform to another also migrates the application, maintaining the application

context between the source and the destination. The application context includes process state, CPU register

state, memory allocation, open files etc.

Maintaining the network state of the application during migration requires a more advanced set of protocols

that decouple the layer 4 socket state from the network configurations. The mechanism presented in this

section take advantage of MPTCP to offer a seamless transition of the network state during the application

migration.

The first part of this section details the proposed mechanism and the second part presents the prototype

implementation of the architecture.

Page 42 of (50) c© TRILOGY2 Consortium 2014

3.4.1 Moving VMs leveraging MPTCP

Since mobile devices have multiple network interfaces both wired and radio-based, the solution for enhanc-

ing the live migration of applications takes advantage of these features by using MPTCP. What makes this

protocol the best choice for migrating applications is that it spreads the traffic over different interfaces of

an end-host, making the transition between them possible without losing connectivity and seamless for the

application and thus the user.

VM migration represents one common use-case scenario of MPTCP, that is a host running an application

which initiates a fixed Internet connection with a server, issuing a request or downloading data. The Mul-

tipath TCP protocol creates one or more subflows, based on the known available interfaces, which appear

like a regular TCP connection for the network. This only leads to the conclusion that each of the entities

participating in the communication must be MPTCP capable.

The VM where the application is running can be viewed as a mobile host which has a Linux kernel with

MPTCP extension. This enables to use the VM on every host device (phone, tablet, PC) which doesn’t need

to have its kernel modified to support MPTCP, since the connection with the server takes place inside the

VM. Based on the number of virtual interfaces present in the VM and the changes in its physical network

attachment point, results in acquiring or modifying IP addresses, thus in creating and terminating subflows.

To be more precise, the VM attaches to the host through a virtual tap0 interface. Inside the VM, there can be

more interfaces created which results in sending to the server, ADD ADDRESS packets with the known IP

addresses.

The server hosting the video to be streamed also has to be MPTCP capable and inform the VM with its

known IP addresses. If the server’s kernel doesn’t support MPTCP, a proxy can be used, following the same

scenario. After the two end-devices know about their communication capabilities, the corresponding subflows

are created between them.

Until this stage, a regular MPTCP connection was used, between a physical server which provides data to

the running application and a VM present on a host, which will further be migrated to another host. What

makes this migration seamless for the application and permits the connection to stay up, in other words,

live migration of the VM, is the break-before-make feature of MPTCP. Break-before-make is a hand-off

that permits to detach an interface used by the subflows and attach another one to them, without losing

connectivity. This is exactly what happens in the proposed scenario since after migrating the VM on another

host, another interface is present, thus another IP. When the migration starts, the connection to server remains

open until a significant number of RAM pages are copied to the destination host and then the VM has to

be stopped and started at the destination. This is the moment when the MPTCP connection is stalled and

for a limited period of time then it can recover from this interruption by establishing a new subflow and

continue the transmission. The VM sends other ADD ADDRESS packets informing the server that it has a

new interface from the destination host and a new subflow is created, without disturbing the application. The

c© TRILOGY2 Consortium 2014 Page 43 of (50)

Figure 3.14: Decoupling applications from the hardware platform

initial MPTCP flow is dropped after a timeout because of inactivity.

This process enables the VM to maintain its active network connections during the migration process. It

positively impacts mobility and also enables VM migration between different networks.

3.4.1.1 Prototype implementation

The proposed solution completely decouples the applications from the hardware platform by providing a

seamless migration layer (see Figure 3.14). This is achieved by encapsulating each application into a small

container composed of an virtual machine that will be live migrated between devices, regardless of type

(phones, tables, laptops).

From an architectural point of view, the solutions components are divided into two main categories: VM

manager and VM container. The following two sub-sections highlights their main functionalities: a further

sub-section also provides a description of the test environment that has been setup for this prototype.

3.4.1.1.1 VM Manager

The VM Manager controls the VM life cycle events like: creation, migration, deletion. It must handle both

the user input and interactions with VM managers on other devices.

The VM itself is run into qemu. Due to the nature and particularities of every platform, the implementation

of VM Manger must take care of different software frameworks, mainly Linux and Android.

3.4.1.1.1.1 Android

Due to Android ecosystem particularities, the VM Manager will be an application on this platform. The

project design in this particular case is similar the one of a regular Android application that has native code.

The SDL on Android provides the necessary abstraction layer between the Android framework graphics,

sound and input and the qemu hypervisor. Qemu and depending libraries will be compiled as native code.

3.4.1.1.1.2 Linux

Due to the flexibility and good support of the linux enviroment, the VM Manager on linux is currently

Page 44 of (50) c© TRILOGY2 Consortium 2014

composed of a set of scripts and library dependencies. For example, the SDL library support is requiered on

the linux machine.

The qemu hypervisor is controlled from those scripts through a qemu specific protocol: QMP. When QMP is

enabled, qemu opens a socket in witch it listens for commands and replies with different status information.

This is the way the migration is initiated and also the way the migration process is verified.

3.4.1.1.2 VM Container

The VM Container represents the component that will be migrated. Currently it is represented of a small

Linux machine with X11 and a stripped down version of chromium browser.

The Linux kernel is MPTCP capable, enabling seamless TCP connection migration. The browser has both

HTML5 and video codecs suitable to open youtube movies and various video streams.

One idea for obtaining a smaller migration time, meaning reduced size of the VM RAM and disk, was to

use a very lightweight browser which can run HTML5 applications out-of-the-box, but with limited features.

The open-source Chromium project developed and maintained by Google is used: it is basically the base of

Chrome browser without other additional third party licensed software.

After a checkout of the latest repo from their development branch, which was highly unstable and continuosly

updated, the final decision went for the usage of the latest release (version 33). After compilation, the binary

executable occupied 120MB of memory, 60MB of RAM with one tab opened and had a lot of plugins. The

aim was to reduce the size of the memory by cutting as many unused features of chromium, maintaining only

HTML5 capabilities and multimedia codecs.

The final product achieved is called chromium content shell, which is basically a stripped version of the initial

chromium with single process for rendering, no tabs option, debug features and other limited capabilities.

Buttons, menus and URL bar were also removed resulting in a white blank canvas which renders web pages.

The ffmpeg codecs were installed and the browser scored 462 points for HTML5 capabilities. The final

version we achieved occupied only 65MB with a RAM consumption of 25MB.

The solution is working on both Linux and Android operating systems. On Linux, the kernel versions used

are 3.5.7 and 3.10.10, both KVM capable. For Android, the IA port on Intel platforms was used, patched to

have KVM enabled. The version used is 4.2.2 on Acer Iconia tablets and 4.1.2 on RAZRi phone.

3.4.1.1.3 Proof-of-concept setup

In this section the proof-of-concept setup is described. Two Acert Iconia w700 tablets with Android IA

version 4.2.2 have been deployed. Those two tables are connected to a gigabit ethernet switch through USB

3.0 to ethernet gigabit adapters. The tablets are controled through adb from a third station a laptop, as you

can see in the following picture. There is also a webserver connect to the topology. This server serves a page

that displayes a video stream. The stream is created by vlc from a local video file.

In order to have precise control over the migration process, the virtual machine is managed from command

line scripts.

c© TRILOGY2 Consortium 2014 Page 45 of (50)

Figure 3.15: Prototype implementation of VM migration across devices

The VM Manager starts on both tabled. The application that is migrated is a video rendering application. On

the first tablet the VM manager fires up a VM with the content shell (stripped down version of chromium)

browser that opens a web page transmiting a live video stream.

The VM running the video rendering app starts with 320 MB RAM and actually uses 250MB of RAM.

The tablets are connected through USB3.0 to gibabit ethernet adapters to the gigabit ethernet switch. The

migration lasts 8 seconds. The testing is done using the pre-copy migration technique. Thus, in this 8

seconds interval, the video is continually displayed in the source machine. After the migration,the display is

switched to the destination machine and the stream progress continues uninterrupted.

Figure 3.16: Proof-of-concept Topology

Page 46 of (50) c© TRILOGY2 Consortium 2014

4 Next steps and conclusions

4.1 Future work

The research work on the cross-liquidity mechanisms described in this document will continue within Trilogy

2, and a lot of future work is planned in two main directions. First, the tools presented in this deliverable will

be implemented (if not already complete), upgraded to support new functionalities and also further experi-

mentally evaluated. Moreover, new cross-liquidity mechanisms are currently being investigated, with main

focus on the interaction and combination of storage liquidity tools (such as Trevi, described in Deliverable

D1.1) and bandwidth pooling mechanisms (mainly MPTCP). The next WP1 deliverables, D1.3 and D1.4,

will report the results of this new ongoing research work. With regard to the cross-liquidity tools described

in this document, the following are the key future activities and tasks:

• MPTCP-aware MPLS-TE provider: The next steps mainly refer to the implementation and deployment

of the MP box. Some of the functional components are already available, like the OVSes and the SDN

controller. For the latter, a couple of options are being evaluated for deployment in the MP box, mainly

OpenDaylight [15] and Floodlight [7] due to their native modular and extensible architecture and full

support of OVS and OpenFlow. The internal design and implementation of the MPTCP detector, as

a network application on top of the SDN controller also needs to be finalized. The deployment and

evaluation of the whole MP box in an emualated MPLS-TE network provider environment will be

also considered: a candidate option is to leverage the GMPLS and PCE stacks owned by Nextworks

(namely NXW-GMPLS [13] and NXW-PCE [14])

• MPTCP and channel switching: The next steps concern the mobility experiments; the plan is to to

measure throughput while a mobile client moves between two APs, and compare it to an unmodified

client. Measurements of wi-fi handover efficiency will also be considered. Another aspect to be tackled

would be the migration of the channel switching code from a laptop to a mobile phone. As the code

is only in the generic 802.11 layer in the Linux kernel, porting it to Android is the next logical step.

Moreover, measurements to evaluate the power cost of current implementation are also planned.

• GRIN: The most interesting and pressing direction for future work regarding GRIN is the transition to

10G networks. This provides some unique challenges as server forwarding effort will greatly increase,

and ways to deal with this or to prove that there are circumstances where the tradeoff is acceptable

should be found. Morever, using GRIN to optimise topologies for certain dominant traffic patterns is a

further interesting topic.

• MPTCP-enabled virtual machine (VM) migration in mobile devices: Future work activities include

both development and performance tunning activities. From the development point of view, the plan

is to enable the usage of the SDL Library on Android. By providing an abstraction layer to graphics,

c© TRILOGY2 Consortium 2014 Page 47 of (50)

sound and input, SDL can be used as part of the I/O Controller architecture. From the performance

tunning perspective, the plan is to reduce migration time to under 5 seconds, in order to improve the

application migration experience for the user. The current project status denotes a migration time of

8 seconds for a VM playing a video stream in content shell. The only performance improvements

carried out so far were to obtain a stripped down but functional version of a browser. Future research

will include network migration patterns, memory allocation enhancements for qemu and application

profiling.

4.2 Concluding remarks
This deliverable provided a description of the initial cross-liquidity tools that have been defined so far in the

project. The primary focus has been dedicated to those tools that operate in the bandwidth domain, mainly

because bandwidth is the key resource in the current Internet architecture that acts as a glue among all the

existing distributed functions, enabling the usage of of heterogeneous pool of resources. These tools fit in

the Trilogy 2 architecture by enabling interaction, integration and combination among resource pools in the

bandwidth, processing and storage domains. The cross-liquidity mechanisms described in this document, set

the basis for the development of a converged Liquid Network architecture for seamless creation and control

of heterogeneous resource pools.

Page 48 of (50) c© TRILOGY2 Consortium 2014

Bibliography
[1] Apple seems to also believe in multipath tcp. http://perso.uclouvain.be/olivier.

bonaventure/blog/html/2013/09/18/mptcp.html.

[2] GNU Linear Programming Kit. http://www.gnu.org/software/glpk/.

[3] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commodity data center

network architecture. In Proc. SIGCOMM 2010.

[4] Paul Barham, Boris Dragovic, Keir Fraser, Steven H, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt,

and Andrew Warfield. Xen and the art of virtualization. In In SOSP (2003, pages 164–177.

[5] Mihai Dobrescu, Katerina Argyraki, and Sylvia Ratnasamy. Toward predictable performance in soft-

ware packet-processing platforms. In Proceedings of the 9th USENIX conference on Networked Systems

Design and Implementation, NSDI’12, pages 11–11, Berkeley, CA, USA, 2012. USENIX Association.

[6] A. Farrel, J.P. Vasseur, and J. Ash. A Path Computation Element (PCE)-Based Architecture - IETF RFC

4655, August 2006.

[7] Project Floodlight. http://www.projectfloodlight.org/floodlight/.

[8] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar. RFC 6182: Architectural Guidelines for

Multipath TCP Development, March 2011.

[9] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Extensions for Multipath Operation with

Multiple Addresses. Rfc6824, IETF, 2013.

[10] Albert Greenberg el al. VL2: a scalable and flexible data center network. In Proc. ACM Sigcomm 2009.

[11] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ronnie Chaiken. The nature

of data center traffic: measurements & analysis. In Proceedings of ACM IMC 2009.

[12] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage system. SIGOPS

Oper. Syst. Rev., 44(2):35–40, April 2010.

[13] Nextworks. NXW-GMPLS. Standard GMPLS stack owned by Nextworks and compliant with the

GMPLS architecture specified by IETF and ITU-T ASON project.

[14] Nextworks. NXW-PCE. Standard centralized PCE owned by Nextworks and compliant with the IETF

PCE architecture.

[15] OpenDaylight Project. ,http://www.opendaylight.org/.

c© TRILOGY2 Consortium 2014 Page 49 of (50)

http://perso.uclouvain.be/olivier.bonaventure/blog/html/2013/09/18/mptcp.html
http://perso.uclouvain.be/olivier.bonaventure/blog/html/2013/09/18/mptcp.html
http://www.gnu.org/software/glpk/
http://www.projectfloodlight.org/floodlight/
, http://www.opendaylight.org/

[16] OpenFlow Switch Specification. https://www.opennetworking.org/sdn-resources/

onf-specifications.

[17] Brian Pawlowski, David Noveck, David Robinson, and Robert Thurlow. The nfs version 4 protocol.

In In Proceedings of the 2nd International System Administration and Networking Conference (SANE

2000, 2000.

[18] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon Wischik, and Mark

Handley. Improving datacenter performance and robustness with multipath TCP. In Proceedings of

ACM SIGCOMM 2011.

[19] Costin Raiciu, Mihai Ionescu, and Dragos Niculescu. Opening up black box networks with CloudTalk.

In Proceedings of USENIX HotCloud 2012.

[20] Chris Rapier and Benjamin Bennett. High speed bulk data transfer using the ssh protocol. In Pro-

ceedings of the 15th ACM Mardi Gras conference: From lightweight mash-ups to lambda grids: Un-

derstanding the spectrum of distributed computing requirements, applications, tools, infrastructures,

interoperability, and the incremental adoption of key capabilities, MG ’08, pages 11:1–11:7, New York,

NY, USA, 2008. ACM.

[21] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop distributed file

system. In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies

(MSST), MSST ’10, pages 1–10, Washington, DC, USA, 2010. IEEE Computer Society.

[22] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. Jellyfish: networking data centers

randomly. In Proceedings of the 9th USENIX conference on Networked Systems Design and Implemen-

tation, NSDI’12, pages 17–17, Berkeley, CA, USA, 2012. USENIX Association.

[23] Open Networking Foundation white paper. Software-Defined Networking: The New Norm for Net-

works, April 2012.

[24] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. Design, implementation and

evaluation of congestion control for multipath tcp. In Proc. Usenix NSDI 2011.

Page 50 of (50) c© TRILOGY2 Consortium 2014

https://www.opennetworking.org/sdn-resources/onf-specifications
https://www.opennetworking.org/sdn-resources/onf-specifications

	Executive Summary
	List of Authors
	 List of Figures
	List of Tables
	Introduction
	Motivations and scope
	Structure of the document

	Positioning in the Trilogy 2 architecture
	Cross-Liquidity mechanisms
	MPTCP and MPLS-TE Interaction
	MPTCP-aware MPLS-TE provider
	Problem statement
	Reference scenario
	Functional architecture

	MPTCP and channel switching interaction
	Initial experiments
	Dynamic timer adjustment
	Evaluating the performance of the switching algorithm

	MPTCP and data center networks
	Problem statement
	GRIN
	Server interconnection
	Path selection
	Address assignment

	Implementation
	Evaluation
	Simulation
	Small cluster deployment

	Does Grin Slow Down Local Apps?
	Deployment considerations

	Interactions between processing and bandwidth liquidity mechanisms
	Moving VMs leveraging MPTCP
	Prototype implementation
	VM Manager
	VM Container
	Proof-of-concept setup

	Next steps and conclusions
	Future work
	Concluding remarks

	References

