
ICT-317756

TRILOGY2

Trilogy 2: Building the Liquid Net

Specific Targeted Research Project

FP7 ICT Objective 1.1 – The Network of the Future

D1.3 Advanced Cross Liquidity Tools

Due date of deliverable: 1 January 2015

Actual submission date: 15 January 2015

Start date of project 1 January 2012

Duration 36 months

Lead contractor for this deliverable Intel

Version v1.0, January 15, 2015

Confidentiality status Public

c© TRILOGY2 Consortium 2015 Page 1 of (95)

Abstract

Trilogy 1 successfully defined a set of mechanisms to provide optimal fault tolerant transport across an

IP network by creating and exploiting multiple simultaneous path across the network. Trilogy 2 sets out

to extend the results of Trilogy 1 to be cross-resource, cross-layer, and cross-provider. Cross-resource

seeks a generalization to all IT resources including processing and storage. This document describes

more advanced liquidity tools, focusing on enabling liquidity across providers. It focuses on the design,

implementation and evaluation of solutions that allow pooling different resource types across different

providers.

Target Audience

The target audience for this document is the networking research and development community, partic-

ularly those with an interest in Future Internet technologies and architectures. The material should be

accessible to any reader with a background in network architectures, including mobile, wireless, service

operator and datacenter networks.

Disclaimer

This document contains material, which is the copyright of certain TRILOGY2 consortium parties, and may

not be reproduced or copied without permission. All TRILOGY2 consortium parties have agreed to the full

publication of this document. The commercial use of any information contained in this document may require

a license from the proprietor of that information.

Neither the TRILOGY2 consortium as a whole, nor a certain party of the TRILOGY2 consortium warrant

that the information contained in this document is capable of use, or that use of the information is free from

risk, and accept no liability for loss or damage suffered by any person using this information.

This document does not represent the opinion of the European Community, and the European Community is

not responsible for any use that might be made of its content.

Impressum

Full project title TRILOGY2: Building the Liquid Net

Title of the workpackage D1.3 Advanced Cross Liquidity Tools

Editor George Milescu, Intel

Project Co-ordinator Marcelo Bagnulo Braun, UC3M

Copyright notice c© 2015 Participants in project TRILOGY2

Page 2 of (95) c© TRILOGY2 Consortium 2015

Executive Summary
As the Internet started to connect different systems together, it became a bridge where storage, processing,

bandwidth and energy were shared for services worldwide. These resources, however, were stand-alone

islands that could not be grouped together but accessed separately each within its own domain.

Trilogy 2 aims to create a framework capable of orchestrating, provisioning, and controlling the usage of

heterogeneous resource pools as demanded by the applications. Within the project, WP1 develops the set

of tools that the framework is based on. The focus of this document is on the advanced cross-liquidity

mechanisms that have been implemented in the second year of the project in the context of WP1 activities.

Work for D1.3 continued on the basis set during the first year of the project, and described in D1.2 - Initial

cross-liquidity tools.

The target of this deliverable is to describe the above mentioned advanced cross-liquidity tools and the way

they interconnect different resources across providers. We group our descriptions into cross-resource, cross-

layer and cross-provider tools.

The cross-resource tools provide mechanisms to allow resource trading to happen. Resources can be ex-

changed between entities by cross-trading, allowing a balance to be obtained between the resources that are

spent to gain access to more valuable resources. As an example, in vM3 bandwidth is exchanged to access

CPU and storage. Storage liquidity tools make use of both network and CPU to facilitate accessing the storage

resources. These tools are enhanced with the use of Mirage, a unikernel system, and Irminsule, a distributed

database designed for static type-safety for security and reliability. Trevi, based on fountain coding, allows

the design of a storage service that is tolerant to packet loss, but without retransmissions or timeouts. For

cloud deployments, Federated Block Storage offers a wide-area replication architecture. In terms of NFV, the

Customer Premises Equipment (CPE) is emerging as one of the primary applications of the NFV architec-

ture. Sharing resources between the operator data center and the edge equipment brings extra flexibility in

designing infrastructure architectures and efficiently exploiting available resources.

The cross-layer tools open access to resources controlled at different levels in the system or network archi-

tecture. HACK [34] performs a cross-layer optimization of TCP and WiFi acknowledgements, by combining

them and significantly improving the medium utilization. Multi WiFi takes the handoff problem from layer 2

and brings it to layer 4, presenting itself as a very good solution for device mobility. The concept of Polyver-

sal TCP (PVTCP) is improved by adding a security mechanism for key exchange that is used on cross-layer

encryption. In datacenters, Multi-path TCP (MPTCP) [11] is a valuable tool for exploiting all available net-

work interfaces, and improving the network overlay between nodes. GRIN [1] presents such an architecture

that covers both layer 2 and layer 3 in the networking stack.

Cross-provider liquidity orchestrates the resources coming from different providers or resource owners. In

this context, the Federated Market is a management system permitting different cloud systems to share re-

sources among them. In terms of bandwidth liquidity, MPTCP has proven to be a flexible tool for accessing

c© TRILOGY2 Consortium 2015 Page 3 of (95)

bandwidth across network providers. In addition to the basic MPTCP mechanisms, this deliverable contains

tools for enabling applications to control the MPTCP sub-paths and react to network events by implementing

their own Path Management.

Page 4 of (95) c© TRILOGY2 Consortium 2015

List of Authors
Authors Pedro Aranda, Marcelo Bagnulo, Giacomo Bernini, Olivier Bonaventure, Julian Chesterfield, Jaime

Garcia-Reinoso, Felipe Huici, Fabien Duchêne, Benjamin Hesmans, Toby Moncaster, George Milescu,

Cătălin Moraru, Valentin Ilie, Dragos, Niculescu, Costin Raiciu, John Thomson, Lynne Salameh

Participants Intel, NEC, NXW, OnApp, TID, UC3M, UCAM, UCL-BE, UPB, UCL-UK

Work-package WP1

Security Public (PU)

Nature R

Version 1.0

Total number of pages 95

c© TRILOGY2 Consortium 2015 Page 5 of (95)

Contents

Executive Summary 3

List of Authors 5

List of Figures 9

1 Introduction 11

1.1 Deliverable context . 11

1.2 Structure of the document . 12

2 Cross resource liquidity 13

2.1 VM Migration for Mobile (vM3) . 13

2.1.1 Migration Service . 14

2.1.2 Device discovery . 14

2.1.3 VM slot management . 15

2.1.4 Injection of context information inside the VM . 16

2.1.5 App Wrapper . 17

2.1.6 Application I/O . 17

2.2 Federated Block Storage . 18

2.2.1 Introduction . 18

2.2.1.1 Description of the issues faced . 19

2.2.1.2 Utilising Wide Area Block Replication 20

2.2.2 Architecture . 21

2.2.2.1 The OnApp storage architecture . 21

2.2.2.2 Wide-area replication over OnApp’s storage architecture 23

2.3 Irmin . 24

2.3.1 Mirage, an OCaml-based unikernel system

(based on the openmirage.org website) . 25

2.3.2 Design . 26

2.3.3 Architecture . 27

2.3.4 Weakly consistent data structures . 28

2.3.4.1 Queues . 28

2.3.4.2 Ropes . 29

2.3.5 Data structure analysis . 31

2.3.5.1 Automatic checking . 31

Page 6 of (95) c© TRILOGY2 Consortium 2015

http://openmirage.org

2.3.5.2 Benchmarking . 32

2.3.6 Conclusion and future work . 33

2.4 Trevi . 34

2.5 VNF Pool enabled Virtual CPE . 35

2.5.1 Reference Scenario . 36

2.5.2 Evolution towards a VNF Pool enabled virtual CPE solution 37

2.5.2.1 Extended functional architecture . 38

3 Cross layer liquidity 43

3.1 HACK . 43

3.1.1 WiFi MAC Overhead . 44

3.1.2 HACK in Overview . 45

3.1.3 Cross-Layer Nuances . 46

3.1.4 HACK in Practice . 48

3.1.4.1 Driver and NIC Functionality . 48

3.1.4.2 Compression . 50

3.1.5 Evaluation . 51

3.1.5.1 SoRa Implementation . 51

3.1.5.2 SoRa Results . 52

3.1.5.3 Simulation Results . 53

3.2 MultiWifi . 55

3.2.1 Towards an optimal solution for Wifi Mobility . 57

3.2.2 Single Channel Mobility . 58

3.2.2.1 Hidden terminal experiments . 58

3.2.2.2 Carrier-sense experiments . 60

3.2.3 Channel-switching . 63

3.3 PVTCP . 64

3.3.1 Introduction . 65

3.3.2 Architecture . 66

3.3.3 Key Properties . 66

3.4 An Evolution of GRIN . 67

3.4.1 A GRIN primer . 67

3.4.2 Implementation . 69

3.4.3 Evaluation . 71

3.4.3.1 Basic performance . 72

3.4.3.2 Opportunistic usage for 10Gbps networks 73

c© TRILOGY2 Consortium 2015 Page 7 of (95)

3.4.3.3 Perils of Opportunistic GRIN Usage . 74

3.4.3.4 GRIN-aware applications . 75

4 Cross provider liquidity 77

4.1 Federated Market . 77

4.1.1 Introduction . 77

4.1.1.1 History of the Market . 77

4.1.1.2 Overview of the Market . 78

4.1.2 Architecture . 78

4.1.2.1 Current Design . 79

4.1.2.2 Security and Triple-A . 81

4.1.3 Ensuring fairness . 81

4.1.4 Adoption and Business Case . 81

4.1.5 Future work . 82

4.2 MPTCP Path Management . 83

4.2.1 Use cases . 83

4.2.1.1 Selection of the best performing subflow 84

4.2.2 Architecture . 85

4.2.3 Support for the different use cases . 87

4.2.3.1 Selection of the best performing subflow 87

4.2.3.2 Reset reactions . 88

4.2.3.3 Refreshing subflows . 88

4.2.4 Early results . 88

5 Conclusion 91

References 91

Page 8 of (95) c© TRILOGY2 Consortium 2015

List of Figures
2.1 Migration Service Architecture . 14

2.2 VMSlot management . 15

2.3 App I/O with QEMU and SDL on Android . 18

2.4 Block replication can provide a remote hot spare VM . 19

2.6 Overview of the Onapp storage architecture . 21

2.5 Migrating a VM using remote block replication . 22

2.7 The backend and frontend nodes can be remote . 24

2.8 VM appliances vs unikernels . 25

2.9 High-level prefix-tree interface of Irmin . 27

2.10 Cost of queue operations . 28

2.11 Type declaration of mergeable queue structuring elements 29

2.12 Example of a possible queue internal structure. 30

2.13 Complexity of operations on ropes and strings . 30

2.14 Generic tree rotation . 31

2.15 Needed time for one operation on a rope of size n on the Obj backend 32

2.16 Time needed for n push followed by n pop on different backends 33

2.17 Number of read/write used during one operation on a rope of size n. 34

2.18 Relation between number of reads and writes during one rope operation 34

2.19 VNF Pool Enabled Virtual CPE reference scenario . 37

2.20 VNF Pool Enabled Virtual CPE functional split . 42

3.1 Theoretical goodput for 802.11a (a) and 802.11n (b) rates 44

3.2 Interaction between A-MPDUs, Block ACKs and encapsulated HACK packets 47

3.3 Client-side TCP/HACK compressing a TCP ACK . 49

3.4 Client-side TCP/HACK receiving a batched frame . 51

3.5 TCP throughput comparison . 52

3.6 TCP goodput for different transmission schemes with 1–10 clients, and UDP for comparison. 54

3.7 Envelope of average TCP goodput comparison . 56

3.8 Multiwifi replacement of fast handover . 56

3.9 Hidden terminal (HT) experiments . 59

3.10 Carrier sense experiments . 61

3.11 Network utilisation of a simple Map/Reduce job . 67

3.12 Enhancing a VL2 topology to improve network utilisation 68

3.13 Simple GRIN1 Setup . 69

c© TRILOGY2 Consortium 2015 Page 9 of (95)

3.14 GRIN improves performance by 50% to 150% for Random traffic. 71

3.15 GRIN improves performance by 80% to 250% in the All-to-all traffic pattern. 72

3.16 GRIN forwarding . 74

3.17 HDFS running on 1000 EC2 instances . 74

4.1 Roles in the Market . 79

4.2 The Cloud.net Platform . 80

4.3 Cloud.net already has availability in many locations world-wide. 82

4.4 MPTCP path management architecture . 85

4.5 Laboratory setup . 88

4.6 Cross traffic detection . 90

Page 10 of (95) c© TRILOGY2 Consortium 2015

1 Introduction

1.1 Deliverable context

The development of the Internet led to a new set of computing paradigms where resources were shared

between devices and were used to provide the services requested by the clients. In this design resource sharing

is limited to stand-alone islands of compute, storage and bandwidth with boundaries shaping the separate

usage of each resource. Technologies existing today efficiently exploit hardware resources but maintain a

separation between resource types and architecture layers. As a very simple example, bandwidth available

on a network interface cannot be easily used to compensate for an overloaded second interface. At the same

time, the bandwidth available from separate network providers can not easily be aggregated together and is

seen as two separate resources.

The aim of Trilogy 2 is to provide tools and to create a framework that takes individual resources and puts

them together in a pool, facilitating resource allocation towards application demand and making the resources

liquid. Trilogy 2 focuses on creating liquidity for three types of resources: CPU, storage and network.

CPU resources are allocated and used both as stand-alone pools and as a part of accessing storage and net-

work. The same applies for network resources, where the traffic starting from a node or originating to a node

is associated with data processing or data storage, while traffic passing through a node may be regarded as

a stand-alone network resource. Storage resources, however, rely on CPU and network to be accessed. This

results in network being a common denominator for resource sharing. The Trilogy project introduced the

MPTCP protocol and created network liquidity. The protocol allows bandwidth resources to be aggregated

and efficiently allocated to application requirements.

Creating liquid resource pools and using them to respond to the application demand is the first step towards

making resource utilization more efficient. The real advantages of the liquidity pools arise from placing

together heterogeneous resources, both in terms of resource types and in terms of resource providers. This

creates cross-liquidity tools that govern the interactions between existing resource pooling techniques.

Initial work in this area was presented in D1.2 - Initial Cross-Liquidity tools that covered the work performed

during the first year of the project. D1.2 mainly focused on the bandwidth domain as bandwidth provides

topology to the network and allows all other resources to be pooled together and managed in an unified

way. This Deliverable, D1.3, presents a more complete set of tools that create liquidity from three different

perspectives: cross-resource, cross-layer and cross-provider.

Cross-resource liquidity puts together different types of resources and introduces mechanisms to trade be-

tween them, trying to meet the application demand in the most effective way.

Cross-layer liquidity increases the flexibility of the network liquidity tools by bridging the gap between

different layers of the stack.

Cross-provider liquidity enables the coordination of heterogeneous resources offered by different providers.

c© TRILOGY2 Consortium 2015 Page 11 of (95)

These three dimensions of liquidity determine the types of resource pools that can be created. Some of

the tools presented in this Deliverable clearly fit into one of the above dimensions, for example the VM

Migration for Mobiles (vM3) is cross-resource since it trades the usage of bandwidth for compute and storage.

Other tools extend across multiple dimensions and can be seen from different perspectives, for example the

Federated Market can be both cross-resource and cross-provider. We have presented such tools in the section

that is closest to the fundamental idea of the tool. This discussion is included at the beginning of each of the

following sections and will further detail the separation between the three liquidity domains.

1.2 Structure of the document
Section 1 presents an introduction and the overview of the Deliverable.

Section 2 presents the cross-resource liquidity tools. Since bandwidth allows other resources to be pooled

together, this section includes mechanisms for trading bandwidth for compute and for storage.

Section 3 details cross-layer liquidity. The tools in this section cross the boundaries of the networking stack

and create closer links between different layers.

Section 4 introduces cross-provider liquidity. Placing together resources governed by different providers

increases the flexibility of resource allocation and created new market opportunities.

Conclusions are presented in section 5.

Page 12 of (95) c© TRILOGY2 Consortium 2015

2 Cross resource liquidity
Cross resource liquidity aims at creating heterogeneous resource pools that can be managed in an efficient

way to reduce the overall costs in running services in the current cloud centric world. The applications

running in this paradigm can trade some of their resources (e.g. storage) to obtain other types of resources

(e.g. compute, bandwidth).

VM Migration in Mobile (vM3) is a mechanism that allows applications to be moved between mobile devices

or even pushed to the cloud. This mechanism allows, for example, pushing the backend CPU intensive task of

an app to another nearby device or the cloud, allowing the phone to save battery, at the cost of a small delay

in getting the computed results back. MPTCP helps vM3 to keep the network connections alive during the

migration, making this solution a solid candidate for migrating applications that have a critical dependency

on their Internet connection (e.g. Skype).

Federated block storage deals with wide area block replication systems, addressing use-cases where tradi-

tional mechanisms fail to work. The main expected use-case scenarios are disaster recovery as a service

and virtual machine migration with the migration use-case detailed in Deliberable D3.2. Virtual machine

migration benefits from federated block storage by having its attached virtual storage synchronized between

relevant locations. Federated block storage utilises network resources in order to give improved storage reli-

ability and redundancy.

Irmin uses MirageOS[23], a library operating system, to build high-performance network applications. Mira-

geOS runs on top of Xen[2], benefiting from its stable hardware platform, avoiding the need for device drivers

found in a traditional OS. Its small footprint make it an optimal candidate for auto-scaling web-servers with

minimal latency.

Trevi [29], presented in previous deliverables, has been concluded in this Deliverable, with work related to

a storage transport service that is tolerant to packet loss. This solution trades bandwidth to obtain a reliable

channel with no retransmissions or timeout.

VNF Pool virtual CPE is a method of moving network functions that traditionally are implemented on spe-

cialized hardware, to virtualized computing platforms. This flexibility allows huge cost savings by avoiding

the need to deploy new network boxes and replacing hardware that has reached its end of life. Virtual CPE

can also be used in datacenters, by implementing liquid VPN services that can be used in conjunction with

OpenStack.

2.1 VM Migration for Mobile (vM3)
The Virtual Machine Migration for Mobile (vM3) tool is responsible for creating liquidity on the end devices,

allowing the user to share resources among nearby computing resources. The tool targets two main areas:

• Mobile to mobile liquidity

• Mobile to cloud liquidity

c© TRILOGY2 Consortium 2015 Page 13 of (95)

In the first case the liquidity tools provide enhanced user mobility. They enable the building blocks for a new

user-interaction paradigm: the application follows the user. By breaking the hardware boundaries between

devices, the context of applications can be moved to the device that best suits the user’s needs. Figure 2.1

highlights the main components of the architecture.

2.1.1 Migration Service

The Migration Service (MS) is the management part of the tool. The The Migration Service handles mul-

tiple, migratable applications during their life cycle. Migratable applications are applications that run in a

specialized container called a VMSlot. The Migration Service is an always-on agent (a service) that handles

three main events relative to an application: start, stop and migrate.

Figure 2.1: Migration Service Architecture

Because this vM3 tool must run on both Linux and Android, the number of VMSlots is fixed. The main goal

of Migration Services is to enable apps to migrate from one VMSlot to a VMSlot located on another device.

Because of this each migration-capable device must run a “Migration Service”.

Migration slot actions:

• Start App inside VMSlot

• Discover other migration-enabled devices

• Initiate migration

• Handle migration request

2.1.2 Device discovery

In order to migrate an application, the tool must first discover peer devices that can handle migration. A

device becomes aware of neighbor migration-capable devices by using a discovery logic. This discovery

logic must first establish contact between devices and must result in establishing a communication migration-

able channel. Currently migration can only be achieved over IP networking, but the contact channel can be

established in a number of other ways, like Bluetooth and NFC.

Page 14 of (95) c© TRILOGY2 Consortium 2015

The current version of the vM3 tool uses Multicast DNS [7] in order to discover other migration-able devices

in the same network. Every device uses mDNS to maintain and update a list of neighbors that advertise the

same service. The neighbors are not actually contacted until a migration process is initiated.

The advantages of mDNS are zero configuration and portability. Multicast DNS implementations exist in both

Linux and Android, the main operating systems our tool is targeting. The disadvantages of using mDNS are

delays in broadcasting peer state updates (when a peer goes online/offline) and sporadic failures of reporting

the presence of a new peer in the system.

2.1.3 VM slot management

The vM3 tool design imposes a fixed number of VMSlots per device. A VMSlot is a context that runs a

Virtual Machine containing an application. VM Slot management refers to allocating running applications to

existing VMSlots.

There are multiple reasons why the number of VMSlots is fixed per device. The main reason is that, on

Android, each application can have only one running instance. Thus, each VMSlot must be seen as a different

application. Also, an application must be first installed prior to running (excluding the case when the device

is rooted). As a result, it is very difficult to instantiate applications on demand for the Android ecosystems.

As a solution, the vM3 tool on Android uses a fixed number of pre-installed VMSlots that differ only by

name. Another reason for having a static number of devices is to simplify the management logic.

Figure 2.2: VMSlot management

Figure 2.2 shows VMSlot management in a typical migration scenario. The receiving MS has to find an

empty slot before confirming the migration. The sending MS has to free the slot only after the migration is

signalled as successful.

Migration Service has to do more maintenance work than just handling VM slots. A receiving MS has to

check the requirements of the incoming VM (like RAM usage or used devices). Only after it made sure

c© TRILOGY2 Consortium 2015 Page 15 of (95)

that a matching VMSlot is fired up, can the receiving MS agree to the transfer. There are cases when the

migration destination device cannot meet all the source requirements and instead negotiates a trade-off set of

requirements. The sending VMSlot initiates the transfer but keeps the VM running. Only after the migration

process is successful and the VM has resumed on the destination device, can the sending MS shut down the

VM and free the VMSlot.

2.1.4 Injection of context information inside the VM

By definition a VM is a separate environment that is loosely connected to the outside world. But the vM3

design covers three key elements in the life of a VM:

• Starting the VM

• Starting the application

• Migration of the VM

In the current vM3 implementation, starting the application inside the VM takes place immediately after the

VM starts. In the case of starting a VM, general configurations like IP address, VMSlot ID or connected

devices must be established. These configurations are all local settings and depend on the host device. The

parameters are passed directly to the hypervisor upon starting the VM.

Starting the application however requires information about external application resources, like the link for

retrieving the application. For example an HTML5 video streaming application requires a link to the web

location of the stream. Passing parameters to the application at VM startup can be done in a number of

different ways. The vM3 solution prefers opening a socket to the VM and directly passing the parameters to

a listening daemon. The parameters are encoded as a text string are interpreted by the guest OS.

The VM start and application start events are not necessarily connected. Starting a VM is a time consum-

ing operation, so in the future we plan to have pre-booted VM’s that can be resumed when a migratable

application needs to be started. This way, the VM start event occurs a significant amount of time before the

application start event.

The third and most important event is the signal to migrate sent by the Migration Services instance to a

VMSlot. This event can be subdivided into two components:

• MigrationStart (the moment when the memory transfer starts between the source and the destination

device)

• MigrationEnd (the moment when the VM is resumed on the destination device)

It is important to notice that while MigrationStart can be easily signalled to the VM (through a socket or a char

device communication channel), MigrationEnd is harder to detect. After migration, the VM is transported to a

different VMSlot setup and must be reinitialized with almost the same set of parameters as the VMStart event.

Only this time the parameters cannot be passed directly to the hypervisor and all the usual communication

Page 16 of (95) c© TRILOGY2 Consortium 2015

channels (socket, char devices) are severed. So, even if the signal of MigrationEnd reaches inside the VM, it

is still hard to pass the new configuration. The VM could perform an action like DHCP request to a predefined

server, but this is time consuming and in the end it gets to the point where TCP connections are severed.

To resolve this issue, we mount a partition from the destination host into the newly received VM. The mount

action generates a HW signal that marks the end of the migration process. Also, the mounted partition

contains configuration data related to the new VMSlot used to host the migrated VM. This approach is fast

and resolves the two issues at once: signalling and reinitialization. The downside is that the VM migration

process cannot be restarted immediately after the VM has been copied on the destination device. The system

needs to wait an amount of time for the partition to be mounted and the data stored in it to be interpreted.

2.1.5 App Wrapper

The AppWrapper is the environment required to run a migratable applications. This environment is composed

of two major ingredients:

• Image binary - consisting of a very slim ISO image that is meant to be booted with the application.

This binary is used by all applications. The size of the image is around 80 MB.

• App binary - containing only app specific data that is needed to start that app on the VM image. The

app binary is on a partition that is mounted prior to starting the app.

An interesting observation is that on Android, those binaries must be installed as APK Expansion Files and

not with the rest of the application (they are represented by Opaque Binary Blobs (OBB’s) and are installed

in a different path altogether).

2.1.6 Application I/O

In this section we discuss the way vM3 handles I/O. The app runs in a virtualized container powered by the

QEMU and KVM software stack. This stack is developed mainly for the Linux kernel and desktop/server

Linux-based operating systems. Android OS on the other hand uses a very different software stack on top of

a modified Linux kernel. In order to extend the I/O features to mobile devices, the vM3 tool had to extend

the QEMU and KVM I/O capabilities to mobile devices.

One of the main I/O functions to be ported is video output. At first we tried using the kernel framebuffer

directly. The upside is good performance. The main downside of the approach is that it is too intrusive and

requires profound changes to the Android image, changes that have a low probability of being accepted into

the upstream Android tree. The other downside is that the approach is a process of reinventing the wheel on

Android.

The other solution was to look at existing projects that could, at least partly, do what we wanted. The most

well suited project was Simple Direct Media Layer, SDL. SDL is a hardware abstraction library that offers a

generic API to access I/O devices like video, sound, keyboard. It covers a wide range a platforms including

Linux, Android and Windows. It even has QEMU binding.

c© TRILOGY2 Consortium 2015 Page 17 of (95)

We integrated SDL along side our tweaked version of QEMU in order to integrate with the Android frame-

work. We opted for maintaining the binding with Android framework as the main event source/destination in

order to envelope the vM3 applications as a normal Android application.

Figure 2.3: App I/O with QEMU and SDL on Android

The full software stack of the VMSlot part of the vM3 tool can be seen in Figure 2.3. The components specific

only to the Android version of the tool are the VM Slot Android App and the JNI bindings to the emulator.

QEMU, SDL and GuestVM parts are mostly the same as their Linux counterparts. This way the vM3 tool

brings together pieces in order to create new liquidity capabilities.

2.2 Federated Block Storage

2.2.1 Introduction

Resource liquidity lies at the heart of Trilogy 2 and storage is a key element of this. Data replication in general

and block replication in particular are key enablers for storage liquidity and underpins other functionality such

as Virtual Machine Migration.

Storage replication is not a new idea and is already used for a number of reasons within datacenters. Key

among these are high availability and redundancy to protect against hard disk failure; Creation of a snapshot

(or backup) of data to a more reliable storage media; Duplication of data across nodes to allow for efficient

parallelism. SLAs and working practices determine what data is replicated and how. Regulation also requires

that certain types of financial and health related data are located at different physical sites to increase cross-

site resilience.

For certain types of work-loads, reverting to a previous snapshot of data from a backup is an acceptable

recovery mechanism. However other types of transactional workloads such as financial or retail systems

cannot rely on backups and need an active transaction system that is consistent and verifiable. Currently

local replication through the use of RAID and self-monitoring systems has been sufficient for ensuring data

Page 18 of (95) c© TRILOGY2 Consortium 2015

Figure 2.4: Block replication can provide a remote hot spare VM

consistency. However as workloads scale there is an increased need to maintain redundancy across hardware

units within a Datacenter and between Datacenters. This requires wide area block replication across and

between datacenters.

This section describes the wide area block replication system designed as part of the Trilogy 2 project. D3.2

then gives details of how this helps enable Virtual Machine Migration.

2.2.1.1 Description of the issues faced

A number of issues must be addressed for any wide area block replication system to work efficiently. These

are summarized below.

I/O Limitations Currently replication of data is handled within a single system device such as a SAN, locally

within a server or in between storage elements within a rack. Depending on the mechanisms and choices made

there are a set of possible configurations for replication in both hardware and software that will ultimately

lead to a trade-off between performance, reliability and availability. In the case of wide-area replication the

main issue is the slow write path to the remote storage location. Local I/O performance through storage

controllers and RAID devices is limited by the physical I/O speed of the device, the communication channel

bandwidth, the controller bandwidth or the host server. Once you are looking at replication across physically

separate racks or between datacenters you have to include the network bandwidth within the datacenter,

the upstream bandwidth of the datacenter, the link bandwidth and congestion between datacenters and the

congestion control systems on the local and remote systems. The overall I/O speed will be limited to the

slowest point in the path and may not be linear with changing load.

Control Path Latency The increased latency due to a longer path there also creates issues in the communica-

tion between the sender and the receiver. Control messages will take longer to be received and re-assembled at

each end slowing down error checking and correction. Round trip times (RTT) for messages can also increase

c© TRILOGY2 Consortium 2015 Page 19 of (95)

with each additional software layer in the end-to-end path. These are known issues that affect distributed file-

systems and distributed databases. Various mechanisms have been proposed to handle slow replication paths

using a combination of local caching, eventually consistent best-effort mechanisms (BASE). However remote

block replication provides a much faster replication mechanism.

Transaction Synchronicity Reads by nature are usually asynchronous and are normally only used in a syn-

chronous configuration if data validation and verification is required. Read performance benefits from this

asynchronous behaviour. With careful selection of different blocks from different replica locations the band-

width for reads will be close to the sum of all the bandwidths of the individual paths to the blocks. Latency

can also be improved at the cost of read bandwidth by using data from the fastest path - the read bandwidth is

reduced as both paths will have to read the same blocks. Writes however require validation from both paths

that the data has been successfully written before the system can be sure that the write is consistent and so

require synchronous paths. This means writes see the slowest latency of all the available paths and the write

performance is dominated by the bandwidth of the slowest path. Local caching can be used at both sender

and receiver (only the fastest path will use the local cache). This can be used to allow bursty data to be written

to at least one path and allow other I/O operations to continue. However at the point that the local cache is

full, the rate will then be limited to that of the slowest path.

2.2.1.2 Utilising Wide Area Block Replication

Within the context of Trilogy 2 there are two main use cases for wide area block migration. These are Disaster

Recovery as a Service (DRaaS) and Virtual Machine Migration. Virtual Machine Migration forms one of the

key Trilogy 2 Use Cases. As such it is described in some detail in D3.2 ‘Use Case Selection’. The following

is a brief summary of how it makes use of wide area block replication.

Virtual Machine Migration (or VMM) describes the ability to be able to migrate live VMs between different

sites for purposes such as dealing with planned maintenance, balancing workloads according to demand,

responding to cost/energy savings (including ‘follow the sun’ requirements), Business continuity and disaster

recovery. Current approaches for migrating VMs rely on stopping the local VM instance, taking a snapshot

to capture its state, then spawning a new remote VM using that system state. Wide area block replication

offers the chance to do this in a much more efficient manner with no loss of service (see Figure 2.5). Upon

identifying the need to migrate a VM the workflow might progress like this:

(i) The local Cloud manager selects a VM to migrate.

(ii) Once selected the manager chooses a migration target and sets up a VM on that target.

(iii) The new VM will use block replication to create an exact copy of the current VDisk belonging to the

local VM.

(iv) Once all data is synchronised between the two VMs the new VM can be brought up (or alternatively

can function as a “hot spare” ready for any failover).

Page 20 of (95) c© TRILOGY2 Consortium 2015

(v) Any writes to the original disk are automatically transferred to the remove VDisk, thus capturing any

current transaction state. If the WAN link between the two VDisks is unpredictable these changes may

not propagate immediately.

(vi) When the system is ready to transfer the old VM can be paused and the load balancer transfers any

connections to the new VM so it takes over from the old one.

(vii) Finally the old VM can be turned off.

This highlights a few of the issues that need to be addressed by the wide area block replication tool. These

include the need to replicate only the blocks that have changed, the requirement to secure the data being

replicated and the desirability of asynchronous write behaviour if the workload is highly bursty.

2.2.2 Architecture

The proposed wide-area replication architecture is based on the federated OnApp cloud architecture that

includes the OnApp storage platform, so before delving into the design of the wide-area storage replication,

we present a brief introduction to the architecture of the OnApp storage platform.

2.2.2.1 The OnApp storage architecture

The OnApp storage architecture is a distributed block storage system that uses existing commodity cloud

hardware to present a reliable, scalable storage system as an alternative to traditional storage area networks

(SANs).

Figure 2.6: Overview of the Onapp storage architecture

At the lowest level of the storage platform, the storage devices (disk or solid-state drives) are accessed by

back-end instances that perform network communication with the front end, either locally or within the

OnApp Control Panel, a web-based interface to manage resources within a local cluster of hypervisors (HVs).

c© TRILOGY2 Consortium 2015 Page 21 of (95)

Figure 2.5: Migrating a VM using remote block replication

Page 22 of (95) c© TRILOGY2 Consortium 2015

A virtual disk (VDisk) is part of a data store. Each VDisk replica has an individual handler that connects

it with the front end; the back end also handles the access to the storage drives. Once a VDisk has been

successfully created, it becomes available through the device mapper as a block based drive.

Drives that are connected to the hypervisor are displayed in the OnApp Management user interface, a web-

console which manages the OnApp Cloud Platform and Storage system. After the back end reports about the

storage drives, they will be displayed in the OnApp user interface.

OnApp Storage uses multiple front ends (2+ hypervisors) that communicate via back-ends to avoid a single

point of failure. As long as there is an active back end with access to a replica, the data can be accessed. If a

hypervisor that contains a replica fails, the failed data replica will become out of date as soon as data writes

are performed. This leads to the VDisk degrading. To fix the degraded disk, you need to manually perform

the disk repair operation. During the disk repair, the disk volume is repaired using good available replicas.

However, if the disk drive has completely failed and cannot be repaired, it can be forgotten via the UI. Then

it can be replaced with the new drive after the rebalancing operation.

The OnApp Storage system is also location-aware. Having detected where the application virtual server is,

the Storage system will attempt to keep and use a replica on the back end system which is local to that

server. This feature allows to optimize data placement, reduce the amount of network traffic and improve the

performance. If the virtual server is migrated to another location, the Storage system will detect changes and

migrate data to the new VS location.

Virtual server live migration is available on Xen and KVM hypervisors and storage migration is fully sup-

ported across the data store to any hypervisor drives within the same zone.

The OnApp Storage architecture has been designed to use existing cloud hardware. There are many different

types of storage drives connected to the hypervisor servers. The Storage system divides the drive performance

into low, medium and high. For example, most Solid State Drives (SSDs) will be classified as high perfor-

mance. Standard Hard Disk Drives (HDDs) can be either of low or medium performance. The performance

metrics are calculated when the storage is activated to check the read and write behaviour. You can also

manually set disk performance in the OnApp UI. Different drives are then detected and enabled through a

multicast channel local to a single Control Panel and divided by hypervisor zones. The division by hypervisor

zones helps to separate the storage channels for different types of underlying hypervisor types (Xen/KVM

etc).

2.2.2.2 Wide-area replication over OnApp’s storage architecture

With reference to the scenario described in Section 2.2.1.2. Initially the local VM has access to one or

more local VDisks (indicated as a block store in Figure 2.4). If the “prefer local storage” option has been

chosen then these will be on the same hypervisor. When the new VM is created on the remote provider an

identical VDisk arrangement needs to also be created. The data is replicated to these VDisks via the WAN.

This replication happens at the back-end node level with writes to the “nbd servers” being sent to the remote

c© TRILOGY2 Consortium 2015 Page 23 of (95)

VDisks (see Figure 2.7).

Figure 2.7: The backend and frontend nodes can be remote

Due to the high latency over the WAN writes replicating the data remotely will be buffered and coalesced

locally before being sent. This allows the system to verify the write asynchronously (which is important

across a wide area network with variable latency). It is also possible for writes to be sent as staggered chunks

to the remote replicas. If a striping scheme is employed on the primary VDisk (with alternate stripes of data

being written to alternate VDisks), there would be need to be a similar de-striping mapping on the secondary

VDisk setup to allow proper data placement for reconstruction, since data is copied at the stripe level. The aim

of this system is to keep the remote replicas as near identical to the state of the primary VDisks as possible.

The goal is for the remote replication to avoid introducing any overhead that may affect the performance

of the primary VDisk. If the WAN connecting the primary and remote replicas has adequate throughput to

handle the volume and rate of writes then there should be no noticeable performance degradation. However

if the level of writes is too high and exceeds the capacity of the buffer to level them out then the system has

to choose between two options:

(i) The primary VDisk is throttled to match the performance level of the replication

(ii) The replication stops temporarily and is performed in lower frequency intervals. This second approach

is more appropriate for temporary problems, such as temporary network outages

2.3 Irmin

Work arround this topic was presented, in previous Trilogy 2 deliverables, as Irminsule. Currently the name

of the tool was changed to Irmin and this section together with future deliverables will reflect this change.

Page 24 of (95) c© TRILOGY2 Consortium 2015

2.3.1 Mirage, an OCaml-based unikernel system

(based on the openmirage.org website)

Unikernel compiler

Hardware

Hypervisor

OS Kernel

User Processes

Language Runtime

Parallel Threads

Application Binary

Language Runtime

Hardware

Hypervisor

Application Code

Configuration Files
application source code
configuration files
hardware architecture
whole-system optimisation

specialised
unikernel}

Figure 2.8: Contrasting software layers in existing VM appliances vs. unikernel’s standalone kernel compi-
lation approach.

Most applications that run in the cloud aren’t optimised to do so, ecause they rely on an underlying operating

system. Compartmentalisation of large servers into smaller virtual machines has enabled many new busi-

nesses to get started and achieve scale. But many of those virtual machines are single-purpose and yet they

contain largely complete operating systems, including their vulnerabilities and bloat. Mirage represents a

new approach where only the necessary components of the OS are included and compiled along with the ap-

plication into a unikernel. This results in highly efficient appliances that can be deployed directly to the cloud

and embedded devices, with the benefits of reduced costs and increased security and scalability. Figure 2.8

describes the difference between unikernels and current approaches.

Mirage is a library operating system[22] designed for constructing secure, high-performance network appli-

cations across a variety of cloud computing and mobile platforms. It is based around the Xen hypervisor

and the OCaml language. Xen provides a stable hardware platform[3], which avoids the need to support

the thousands of device drivers found in a traditional OS. Thanks to OCaml, code can be developed in a

high-level functional programming language which avoids many of usual flaws[21]. It is then compiled into

a fully-standalone, specialised unikernel which can run directly on Xen hypervisor APIs. Since Xen powers

most public clouds, Mirage lets you deploy your servers more cheaply, securely and faster in any of them.

Due to the much smaller size, it is possible for example to create auto-scaling web-servers with very small

footprints. If a sudden spike in traffic occurs, the web-servers can be configured to create and deploy copies

of themselves to serve the demand. This auto-scaling can happen so quickly that an incoming connection can

trigger the creation of new server and the new server can then handle that request before it times out (which

is on the order of milliseconds). When the demand dies down again, these web-servers can automatically

shut themselves down. This elasticity results in the ability to precisely match the demand and avoid wasting

resources.

c© TRILOGY2 Consortium 2015 Page 25 of (95)

http://openmirage.org

2.3.1.0.1 Towards a distributed database As a cloud oriented operating system, Mirage has to deal

with all the problems arising in distributed systems. One of them is to share data between several devices

spread out over a network. In the example of self-scaling web-servers, newly created instances should first

fork an image of the web-server’s global current state. Then they can modify it independently according to

the requests they receive. Finally, when the traffic is decreasing and returning to a normal rate, the forked

web-servers have to somehow merge back all their local modifications.

2.3.2 Design

Irmin is a portable distributed database written in OCaml, and designed with the requirements of static type-

safety for security and reliability. Designing a distributed database is a difficult problem, mainly because of

the CAP theorem [14] which states that:

It is impossible for a distributed system to simultaneously provide all three of the following guar-

antees:

(i) Consistency: all nodes see the same data at the same time

(ii) Availability: a guarantee that every request receives a response about whether it was suc-

cessful or failed

(iii) Partition tolerance: the system continues to operate despite arbitrary message loss or failure

of part of the system.

The modern answer to solve this paradox is to maintain availability but relax the consistency model. Most

of the large-scale distributed systems assume there is no unique global state of the system, which results

in a class of system said to be eventually consistent [5]. Irmin’s approach to relax the consistency model

is inspired by distributed version control systems such as Git and Mercurial. Every actor owns a branch

representing a partial replica of the global database. Modifications are local and happen only on the current

branch. Branches can explicitly be merged in order to recover the consistency property, using application-

defined merge policies between replicas. Such classes of systems have been called branch-consistent models.

Data replication is a key technology in distributed systems that enables higher availability and performance. It

is possible to distinguish two kinds of replication: pessimistic [36] [20] [28] methods where master election

and synchronous locking are used to block the system while changes are propagated; and optimistic [33]

methods where the changes are propagated in the background and where special techniques handle supposed

rare conflicts. Irmin chooses to use an optimistic replication system because it improves availability, does not

need knowledge about the underlying network, and can easily scale because it does not need synchronisation.

The drawback is that the users have to handle conflicts.

Conflicts can appear in two different situations: when two nearby users are modifying the same value at the

same time; and when a value has been changed in two distant locations, with the background propagation

resulting in a conflict. Irmin allows the application developer to deal with these situations using several tools:

Page 26 of (95) c© TRILOGY2 Consortium 2015

• Conflict-free replicated data types [37]

• Type of data with custom merge operator

• Callback functions applied every time a conflict happen

The study and the design of such mechanisms is one of the main goals of my internship.

2.3.3 Architecture

Irmin provides a high-level interface built upon two user-provided stores.

The block store is a low-level key/value append-only store, where values are a sequence of bytes and keys are

deterministically computed from the values (for instance using SHA algorithms). This mean that:

• if a value is modified, a new key/value pair is created: the resulting data-store is immutable

• if two data-stores share the same values, they will have the same keys: the store is consistent, the

overall structure only depend on the stored data

The block store contains serialized values from application contents, but also structured data, like prefix-tree

nodes and history meta-data. As the store is append-only, there is no remove function. The store is expected

to grow forever, but garbage-collection and compression techniques can be used to manage its growth. This

is not an issue as commodity storage steadily becomes more and more inexpensive.

module type S = sig
type t
type path
type contents

val read: t -> path -> contents
(** Read the content at [path] in [t]. *)
val update: t -> path -> contents -> unit
(** Replace the contents at [path] in [t] by [contents] if [path] is already
defined and create it otherwise. *)
val remove: t -> path -> unit
(** Remove the given [path] in [t]. *)
...

end

Figure 2.9: High-level prefix-tree interface of Irmin, generated over the block store, the tag store and the
application contents description.

The tag store is the only mutable part of the system. It is a key/value store, where keys are names created by

users and values are keys from the block store, and can be seen as a set of named pointers to keys in the block

store. This store is expected to be local to each replica and very small. The tag store is central for higher-level

algorithms such as synchronisation and garbage collection.

The high-level interface is generated over the block store, the tag store and the application contents descrip-

tion. It lifts immutable operations on the block store into a mutable prefix-tree, whose signature is given in

c© TRILOGY2 Consortium 2015 Page 27 of (95)

figure 2.9. The prefix tree path is usually a list of strings and node values are the user-defined mergeable

contents.

2.3.4 Weakly consistent data structures

As mentioned earlier, Irmin allows the application developer to deal with conflicts using several tools. One of

them is the use of data structures with custom merge operators. The idea is to give an abstraction of the Irmin

low-level store as a high-level data structure. In addition to their classical operations, these data structure

include the merge operation mentioned earlier. The OPAM repository for mergeable queues is available on

github.com/mirage.

These data structures and their associated operations have already been widely studied, even in a pure func-

tional context [27]. The purpose of this work is not to compete with existing implementations of such data

structures, but to extend them with an efficient and consistent merge operation.

2.3.4.1 Queues

There are several efficient implementations of queues that can perform enqueuing (or push) and dequeuing (or

pop) operations inO(1) time. However, Irmin is built on an append-only low-level store. Such representations

of the memory matches well with the functional programming model where the memory is immutable. For

this reason these mergeable queues are designed as functional queues.

Operation Read Write Big O
Push 0 2 O(1)

Pop 2 on average 1 on average O(1)

Merge n worst case 1 O(n)

Figure 2.10: Cost of queue operations where n denotes the length of the queue. Read and write are expressed
in number of memory access.

A functional queue is composed of two simple linked lists. The first one contains elements that have been

pushed onto the queue, and the second one those that will be popped. When the pop list is empty, the push

list is flushed into the pop one. This operation is called normalization. Event though the normalization is a

linear operation, each element of the queue has to be normalized only once. That is why –as it is reminded in

figure 2.10– the amortized cost of operations on the queue is O(1).

2.3.4.1.1 Internal structure The implementation of mergeable queues is based on an Irmin store con-

taining three types of element: Index, Node and Elt. Their type declarations are given in Figure 2.11.

Index are queue accessors. They are defined by four fields, push, pop, top and bottom. The two first

fields, push and pop, are the number of pushes and pops applied to the queue since its creation. They are

useful for the merge operation. The two others, top and bottom, are keys of the top and bottom element of

the queue.

Node are elements manipulated by queue operations. They are composed of four optional elements, next,

previous, elt and branch. next and previous are keys to a potential preceding or following ele-

Page 28 of (95) c© TRILOGY2 Consortium 2015

https://github.com/mirage/merge-queues

ment.In practice, only one of these two can be not empty. elt is also an optional key which points to a value

of the queue. The last field branch is an optional index, used only by the merge operation.

Finally, Elt contains elements added to the queue.

type index = { type node = {
push: int; next: K.t option;
pop: int; previous: K.t option;
top: K.t; elt: K.t option;
bottom: K.t; branch: index option;

} }

type elt = Index of index | Node of node | Elt of V.t

Figure 2.11: Type declaration of mergeable queue structuring elements. The Irmin store is specialized in
order to containing such elements.

2.3.4.1.2 Major operation The two first main operations on a queue are push and pop. The push

operation adds a new Elt containing the pushed value, and a Node pointing to this element and the previous

bottom element of the queue. It returns a new Indexwhere the bottom element is the new created Node. The

pop operation tries to read the top element of the queue. If the pop list is empty, the queue is normalized.

Then it returns the value associated with the reading Node and an Index, where the top element is the

following element of the reading Node. On average, there are two reads and three writes in the Irmin store

for one push and one pop.

The other main operation is merging. The merging operation takes three arguments: two queues to be merged,

q1 and q2, and a common ancestor to those two queues called old. The resulting queue – called new – has

to reflect the transformations from old to both q1 and q2. First, elements of old which have been removed

from q2 are removed from q1. This is done without accessing these elements by using the push and pop

values. In the same way, all elements of old which are still in q2 are removed. Then, q2 is concatenated at

the end of q1 by adding a new node where the field branch contains the index of q2. In the worst case, the

merge operation uses a number of reads linear in the size of old, but always only one write.

In Figure 2.12 the main queue is accessible through the index I0. The index I1 is pointing to a queue

concatenated during a previous merge operation. This queue will be unfolded during the next normalization.

Because of the Irmin store behavior, two nodes containing the same element share its physical representation.

2.3.4.2 Ropes

2.3.4.2.1 General description A rope is a data structure that is used for efficiently storing and manip-

ulating a very long string. A rope is a binary tree having leaf nodes that contain a short string. Each node

has an index equal to the sum of the length of each string in its left subtree. Thus a node with two children

divides the whole string into two parts: the left subtree stores the first part of the string and the right subtree

stores the second part. The binary tree is crossed from the root to leaf each time the string has to be accessed.

It can be done in log(n) time if the tree is balanced.

c© TRILOGY2 Consortium 2015 Page 29 of (95)

I0

n01

n02

n03

n04

n05

n06

n07

I1

n11

n12

n13

n14

to
p

bottom

t
o
p

bottom

Index

Node

Elt

pop list

push list

Figure 2.12: Example of a possible queue internal structure.

The main operations on a rope are set, get, split, concatenate, insert and delete: Set and get respectively

set or get the character at a given position. Split(t, i) split at the position i the rope t into two new rope.

Concatenate(t1, t2) return a new rope which is the concatenation of t1 and t2. Insert(t, i, s) insert the character

chain s in the rope t at the position i. Finally, Delete(t, i, j) delete in the rope t the characters between i and

j. Figure 2.13 compares the complexity of these operations for a rope and a string.

If ropes are mainly used to manipulate strings, they can also be used to manipulate any other type of container,

as long as they support the above six operations. In fact, I design the ropes with the following idea: ”give

me a container with a set of operations, and I will return you a rope on this container, supporting the same

operations but achieving a better complexity, with the exception of set and get”. I therefore request a merge

operation on the container in order to implement the merge operation of the mergeable rope. Indeed, because

such a rope can be built on any type of container, it is impossible to have a general way to merge it.

Operation Rope String
Set/Get O(log n) O(1)

Split O(log n) O(1)

Concatenate O(log n) O(n)

Insert O(log n) O(n)

Delete O(log n) O(n)

Merge log (f(n)) f(n)

Figure 2.13: Comparison of the complexity of several operations on ropes and strings. n denotes the length
of the rope/string, and f is the complexity of the merge function provided by the user.

2.3.4.2.2 Implementation overview The implementation of mergeable ropes is quite straightforward,

in the sense that it follows the previous description, and its signature is given in binary search tree which

keeps a factor of two between its minimal and maximal depth. To implement such tree, the Irmin store is

specialized in order to contain three types of elements. As in mergeable queue, Index are accessors to the

Page 30 of (95) c© TRILOGY2 Consortium 2015

α

β γ α β

γ

Figure 2.14: Generic tree rotation. A tree rotation moves one node up in the tree and one node down.

data structure. Node are intermediate elements of the tree which contain information to improve the binary

search. Finally, Leaf are the user-defined container on which the rope is built.

The implementations of the six main operations follow more or less the same pattern. The algorithm performs

a binary search on the tree in order to determine the leaves concerned by the operation. Then the operation

is applied on the containers found in the leaves. In order to achieve the log n complexity, the size of these

containers has to be of the same order as the depth of the tree. Finally, the tree is recursively rebuilt, using a

rotation transformation in order to maintain the balancing property.

The merge operation is a bit different. Given two trees to be merged and their common ancestor, their keys

in the Irmin store are used to determine the smallest subtrees where modifications occurred. Then these

subtrees are linearised in containers on which the user-defined merge operation is applied. On simple trees,

this approach is very efficient because the merge operation is applied on the smallest possible container.

However, the balancing property reduces this effectiveness. Indeed, the internal structure of a tree can be

deeply modified during a rebalancing operation, making it impossible to compare potentially large subtrees.

In order to minimize the scope of rebalancing operations, the rotation function is applied as little as possible,

and only on the smallest unbalanced subtree. Due to this restriction, the impact on the merge function

efficiency is proportional to the volume of modifications produced by an operation.

2.3.5 Data structure analysis

After having implemented those two data structures, it was necessary to assert the correctness of these imple-

mentations and to analyse their effective costs.

2.3.5.1 Automatic checking

In the case of the correctness, we especially want to ensure that the classical operations match with their

equivalents in other implementations, and that the merge operation follows its specification. The way it

works is similar for queues and ropes. An oracle is used to determine a sequence of operations and their

result. This sequence is then applied on the tested data structure, and on a witness obtained from another

implementation. At each step, the data structure and the witness are required to exactly match. And at the

end of the sequence, the two obtained result have to correspond with the result predicted by the oracle.

If this protocol is working fine with classical operations, it cannot be honestly applied on the merge operation.

Indeed, to my knowledge no other data structure exists that can be used as a witness. The verification process

c© TRILOGY2 Consortium 2015 Page 31 of (95)

is therefore a bit different for this operation. In this case, we chose a result with a easily verifiable property

which is preserved after each merge operation. For example, a queue containing an increasing sequence

of numbers, or a rope composed by a non-decreasing sequence of characters. This result is decomposed

into several subresults that have to be merged in order to recover the initial one. As a merge preserves the

aforementioned property, we can verify the correctness of the merge operation at each of its uses.

These tests have successfully guaranteed the good behaviors of the implementation of queues and ropes data

structures. But they are not sufficient to ensure that the theoretical complexity is reached. Several benchmark

tests have been developed in order to validate this last point. Aside from showing that theoretical complexity

is reached, these tests highlight some other interesting facts.

2.3.5.2 Benchmarking

2.3.5.2.1 Performance analysis The most obvious interest of benchmark tests is to measure the needed

time of a given operation. Figure 2.15 shows the result of one of these tests. As a first glance, we can see that

the theoretical complexity is reached for every operations. Then we can see a general stair behavior. This one

is due to the internal tree representation. At each a step a new level is needed in this tree in order to represent

the whole rope. Finally, we can see several spikes, which are the consequences of the complex interactions

between the balancing property and maintaining a leaf length proportional to the depth of the tree.

0

20

40

60

80

100

120

140

0 10000 20000 30000 40000 50000 60000 70000

T
im

e
sp

e
nt

 fo
r

on
e

op
er

at
io

n
(µ

s)

Size of the rope on wich the operation is applied

Insert
Delete

Append
Split

Figure 2.15: Needed time for one operation on a rope of size n on the Obj backend

2.3.5.2.2 Backend comparison As Irmin can be instantiated on different backends, it may be interesting

to compare their relative performances. The figure 2.16 shows the result of a same test run on different

backends. On this graph, Memory refers to the in RAM backend. GitMem and GitDsk respectively refer to a

Git backend, in the first case instantiate in the memory, on the hard drive in the second case.

The two last are a slightly different. Obj is backend based on the OCaml module Obj that I have implemented.

The idea is to directly manipulate the OCaml heap. In a sense, that gives the raw cost of the algorithm. Its

implementation is given in Finally Core is not strictly a backend because it refers in fact to the implementation

of functional queue in the Core library. It is used here as a sort of optimal case, in a matter of comparison.

As we can see, there is a factor five between Core and the implementation of my queue on the Obj backend.

Page 32 of (95) c© TRILOGY2 Consortium 2015

It is an acceptable price to pay for maintaining a mergeable data structure.

0

100000

200000

300000

400000

500000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
sp

e
nt

 fo
r

w
ho

le
 o

p
er

at
io

n
s

(µ
s)

Number of push/pop successively applied

Core
Obj

Memory
GitMem
GitDsk

0

100

200

300

400

500

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
sp

e
nt

 fo
r

w
ho

le
 o

p
er

at
io

n
s

(µ
s)

Number of push/pop successively applied

Core
Obj

Memory
GitMem
GitDsk

Figure 2.16: Time needed for n push followed by n pop on different backends

2.3.5.2.3 IO cost estimation A last original use of benchmarks is the possibility to determine the time

needed for a read and a write on different backends. Indeed, the rope implementation is able to produce some

statistics about the number of reads and writes used in each operation. Some results are given in figure 2.17.

Aside from highlighting the obvious fact that the cost of an operation is proportional to the number of reads

and writes, we can see that the relative proportion of read and write is different in each operation. Knowing

the time needed for one operation, these proportions give us a linear system of four independent equations

where variables are the time needed for a read and a write, represented in Figure 2.18. The average of the

intersection points indicates the solution that we are looking for.

2.3.6 Conclusion and future work

Further work is ongoing on the use of Bloom Filters and DAGs to maintain consistency during concurrent

access. We wrote a library1 of functions enabling a user to synchronize persistent DAGs, with a low cost in

term of data exchanged and of complexity. We dealt with the side cases due to false positive in Bloom Filters

and tried to find a ”good” hash family function that ensures the user that the false positive rate will be low.

The question of choosing an interesting hash function family is very important in our problem because we

1https://github.com/samoht/ocaml-bloom-filters

c© TRILOGY2 Consortium 2015 Page 33 of (95)

0

200

400

600

800

1000

1200

1400

1600

8192
16384

32768

65536

8192
16384

32768

65536

8192
16384

32768

65536

8192
16384

32768

65536

N
um

be
r

of
 r

ea
d/

w
rit

e
us

ed
 d

ur
in

g
on

e
 o

pe
ra

tio
n

Size of the rope on which the operation is applied

Insert read
write

Delete read
write

Append read
write

Split read
write

Figure 2.17: Number of read/write used during one operation on a rope of size n.

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

W
rit

e
tim

e
es

tim
at

io
n

(µ
s)

Read time estimation (µs)

IrminGit.Memory backend

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

W
rit

e
tim

e
es

tim
at

io
n

(µ
s)

Read time estimation (µs)

IrminMemory backend

Figure 2.18: Let x be the time needed for one read, y the time needed for one write and d the time needed for
one operation on a rope. Then the above curves –where colors match with the previous figure– are the plot of
the equation: x ∗ nrb of read + y ∗ nbr of write = d

often have to hash elements, in order to be able to store data or to test the membership of an element in a set.

Therefore we want the hash functions to be fast to compute while being independent. In particular we will

look for a set of hash functions that hashes integers in the set {0, · · · ,m− 1} :

(i) The multiplication method : we assume that we have a real number generator. We generate the hash

family hθ : x→ bmfrac(x× θ)c where 0 < θ < 1 is a random real number.

(ii) The less hashing method : we assume that we have two hash functions ha and hb hashing integers to the

set {0, · · · ,m− 1}, we can generate the hash function familyH = {x→ ha(x) + ihb(x) modm, i ∈

{0, · · · , k − 1}}.

2.4 Trevi

The Trevi work [29] was published in Hotnets last year. Ongoing work is now in a separate project run by

George Parisis at Sussex University collaborating with another T2 partner, OnApp.

Fountain coding is central to our proposal as it allows us to provide a storage transport service that is tolerant

Page 34 of (95) c© TRILOGY2 Consortium 2015

to packet loss, but without retransmissions or timeouts. It requires extra computing resources to encode and

decode symbols and it has a small penalty in terms of bandwidth due to requiring a slightly larger number of

encoded symbols than the initial number of fragments to decode the original information. This overhead can

be as low as 5%.

Flow and congestion control

Traditionally, the fountain coding transport model has been push-based. i.e. senders send symbols until all

receivers decode the data. In receiver-driven layered multicast, receivers take an active role by subscribing

to and un-subscribing from multicast groups that represent different coding layers, according to the network

congestion. In future work, the other project will mainly investigate receiver-driven, pull-based communica-

tion models where receivers actively manage the rate at which encoded symbols arrive (effectively providing

flow and congestion control), by explicitly requesting symbols by receivers. No action is taken when sym-

bols are lost because all symbols equally contribute to the decoding process and, therefore, a new symbol is

requested instead, without having to rely on retransmission timeouts. In our proposal senders are requested

to send encoded symbols at a rate they can actually cope with, by adjusting the number of symbol requests

according to RTT variations and observed loss rates. Congestion can be inferred and avoided. Receivers react

when congestion occurs in the network by decreasing the rate at which they request new encoded symbols.

Hence, there is no need to extensively buffer packets to avoid congestion-related losses.

2.5 VNF Pool enabled Virtual CPE

NFV aims to evolve the way network operators design, deploy and provision their networks by leveraging

standard IT virtualization technologies to move and consolidate a wide range of network functions and ser-

vices onto industry standard high volume servers, switches and storage. The main idea is therefore to run

network functions and services in either datacenters or commodity network nodes, in some cases close to

the end user premises. This means that with NFV, network functions that are traditionally implemented on

specialized hardware devices are moved to general purpose servers based on virtualized computing platforms,

with the possibility to be instantiated or moved to various locations in the network as required, without the

need for installation of new equipment. A Virtualized Network Function (VNF) provides the same function

as the equivalent network function (e.g. firewall, load balancer) but is deployed as a software instance running

on general purpose servers via a virtualization technology. Moreover, operators’ networks are populated with

a large and increasing variety of proprietary software and hardware tools and appliances. The deployment

of new network services in operational environments is often a complex and costly procedure, requiring ad-

ditional space and power to accommodate new boxes. Moreover, today hardware-based appliances rapidly

reach end of life, requiring much of the design integration and deployment cycle to be repeated with little rev-

enue benefit. In this context, the adaptation of network functions and appliances from hardware to software

solutions by means of NFV promises to address and overcome these hindrances for network operators.

Here, we focus on the virtualization of the Customer Premise Equipment (CPE), which is emerging as one

c© TRILOGY2 Consortium 2015 Page 35 of (95)

of the primary applications of the NFV architecture, with the potential to generate a significant impact on

the network operators business. With virtual CPE we refer to the execution in virtual environments of those

network functions traditionally integrated in hardware gears at customer premises, e.g. for BGP, Firewall,

NAT, etc. In particular, we concentrate on the virtual CPE in the datacenter, used to implement liquid VPN

services for business customers using the operators IaaS.

2.5.1 Reference Scenario

Current telco infrastructures are facing the rapid development of the cloud market, which includes a broad

range of emerging services and distributed applications. The network edge is under a deep revolution, being

stimulated by the recent updates on NFV and SDN. In fact, the operators are looking at their future datacenters

as more and more dynamic infrastructures with flexible network architectures, on-demand services for their

customers and high elasticity to scale up and down while optimizing performances and resources utilization.

The virtual CPE in the operator’s datacenter has been introduced in deliverable D3.1 in its first version. The

reference scenario is reported again for sake of completeness of this document in Figure 2.19: a business

customer wants to interconnect his sites (e.g. offices, headquarters, labs, etc.) through IP/MPLS VPNs

services offered by its network operator and buys also a set of IaaS resources (e.g. VMs, storage areas, etc.)

from the same operator. This customer wants to extend these Layer 3 VPNs to incorporate the new virtual

assets into a private cloud. This scenario is aligned with the current trend followed by most of network

operators, which are extending their pure network based product and service portfolio (mostly including

connectivity offers), towards a more integrated offer including Infrastructure as a Service (IaaS), leveraging

proprietary datacenters where latest NFV and SDN solutions can be deployed to ease the provisioning and

orchestration of virtualized network functions and services. In this scenario, the virtual CPE, as depicted in

Figure 2.19, is an additional VM under the control of the operator, deployed on demand and in an automated

way to dynamically control and provision the customer VPN memberships, that is to dynamically join/release

customer VMs to the proper VPN. Upon the request from a customer to buy some IaaS resources and include

them into a private cloud accessible through its Layer 3 VPNs already in place, the virtual CPE VM is

deployed on-demand as part of the IaaS to extend the VPN. This is implemented by running Open virtual

Switches (OVS-es) in the datacenter hypervisors, which allow VPNs and IaaS service chaining via software,

properly managed and controlled by and SDN and NFV enabled orchestration framework, as detailed in the

next section.

With respect to the solution provided in deliverable D3.1, here we present an evolution towards a resilient and

high availability virtual CPE version. Indeed, network operators need to be assured that the resilience and

availability of their networks are not impaired when VNFs are introduced. Indeed one of the main motivations

behind the introduction of NFV technologies in operational environments is to improve, ease, automate and

speed up the network functions and services resiliency, by means of flexible high availability mechanisms and

deployment of sets of VNF instances grouped in pools to provide the same function in a reliable way. The

Page 36 of (95) c© TRILOGY2 Consortium 2015

Figure 2.19: VNF Pool Enabled Virtual CPE reference scenario

evolution of the virtual CPE described here goes exactly in this direction: integrate the VNF Pool concepts

with the aim of achieving high reliability for virtual CPEs deployed in the operators’ datacenters.

2.5.2 Evolution towards a VNF Pool enabled virtual CPE solution

VNF Pool, as defined by IETF and also reported in deliverable D2.3 as a fundamental building block of the

Trilogy 2 architecture, aims to provide mechanisms to dynamically manage a set of VNFs (grouped in pools)

which provide the same network function in a transparent way for end-hosts and service control entities,

and also map the VNF currently in use with the pool it belongs. In the case of the virtual CPE described

here, the VNFs are the operator’s VMs implementing the virtual CPE network function, the end-hosts are the

operator’s customers accessing their VMs by means of the extended Layer 3 VPNs, while the service control

entity is the SDN and NFV enabled management engine depicted in Figure 2.19 that orchestrates the liquid

and highly resilient VPN services offered by the network operator. In this scenario, this evolved VNF Pool

enabled virtual CPE is a practical demonstration of how SDN and NFV technologies and concepts can be

integrated to provide substantial benefits to network operators in terms of robustness, ease of management,

control and provisioning of their network infrastructures and services. SDN and NFV are indeed clearly

complementary solutions for enabling virtualization of network infrastructures, services and functions while

supporting dynamic and flexible network traffic engineering. On the one hand, SDN focuses on network

programmability, traffic steering and multi-tenancy by means of a common, open, and dynamic abstraction

of network resources. On the other hand NFV targets a progressive migration of network elements, network

appliances and fixed function boxes into VMs that can be run on commodity hardware, enabling the benefits

of cloud and datacenters to be applied to network functions. To take full advantage of those benefits, SDN can

control the dynamic traffic steering and flexible network provisioning that VNFs VMs require for recovery,

c© TRILOGY2 Consortium 2015 Page 37 of (95)

as well as scale-in/out and migration.

2.5.2.1 Extended functional architecture

The VNF Pool enabled virtual CPE described here is an evolution of the virtual CPE introduced in deliv-

erable D3.1. Its functional decomposition is provided in Figure 2.20 where the main functional entities are

highlighted along with their interactions. The core part is represented by the OpenDaylight SDN controller

(one for the whole datacenter) combined with a set of enhanced network applications provides on-demand

flow and routing tables configuration at the OVS and datacenter edge router. The deployment of an SDN con-

troller allows to implement a software driven virtual CPE, with flexible and programmable network functions

for VPN and IaaS service chaining. In addition, OpenStack the Cloud Management Platform owned by the

network operator and controlling its datacenters (possibly more than one) and is in charge of the on-demand

deployment and configuration of the IaaS resources (mainly VMs, storage, etc.) requested by the business

customers, by means of the dedicated modules Nova and Neutron. A detailed description for each of the VNF

Pool enabled virtual CPE functional module is provided hereunder, in terms of main functionalities, roles and

responsibilities.

OpenStack - Cloud Management System

The OpenStack open source cloud management system groups all the sets of hypervisors within a datacenter

(or cross multiple datacenters) into pools of resources, which can be used and managed from a single point,

i.e. the dashboard of Openstack. It easily provides functions a set of primitives to create virtual machines,

configure networks and manage volumes all from a single place. OpenStack is therefore a control layer

that sits above all the virtualized layers and provides a consistent way to access everything regardless of the

hypervisor technology used (e.g.: KVM, Xen, vmware, etc.). Thus, OpenStack is a framework that enables

efficient and dynamic management of virtualization, storage and networking of all the resources with great

flexibility and ease, by means of a consistent set of APIs provided by the different sub-systems of OpenStack.

Indeed, OpenStack is a composition of several modules, each providing a given function (e.g. Nova for IaaS,

Neutron for networking, Ceilometer for monitoring, etc.).

In the context of the VNF Pool enabled virtual CPE, OpenStack is fully controlled and operated by the

network operator: it provides the on-demand orchestration of the IaaS resource deployment (the customers’

VMs) and the configuration of the virtual CPE functions, in terms of networking and routing. In particular,

two OpenStack sub-systems are mostly used for the on-demand and dynamic extension of the customer’s

VPN to incorporate the IaaS resources in the datacentre: Nova by the OpenStack Heat Orchestration Template

(HOT). The HOT provides to the operator a set of REST APIs to seamlessly manage in a coordinated way

the provisioning of IaaS and networking resources inside the datacenter, as provided individually by Nova

and Neutron respectively. Nova is the project name for OpenStack Compute, a cloud computing fabric

controller, the main part of an IaaS system. Nova deploys a set of Compute Controllers to host and manage

the computing resources, that in the case of the VNF Pool Enabled virtual CPE are the set of VMs deployed

Page 38 of (95) c© TRILOGY2 Consortium 2015

for either customers’ IaaS or virtual CPE functions. Neutron is the networking project in OpenStack, and its

main goal is to allow for programmatic management of the virtual networks in multi-tenant environments.

It provides REST APIs for programmatic management of virtual networks by the operator and by the cloud

tenants, and a pluggable architecture to allow for diverse implementations with extensible design to allow for

feature addition and evolution, such as the provisioning of the VPNs configurations for the VNF Pool enabled

virtual CPE implementation by means of interaction and integration with the OpenDaylight SDN controller.

OpenDaylight SDN controller

OpenDaylight is an open source platform for network programmability hosted by the Linux Foundation

through a combination of components including a fully pluggable controller, interfaces, protocol plug-ins and

applications. The core part of the project is the modular, pluggable and flexible controller: it is implemented

strictly in software and is contained within its own Java Virtual Machine (JVM) that can run on any platform

that supports Java. The northbound and southbound interfaces are clearly defined and documented APIs; their

combination allows vendors, service providers, customers and application developers to utilize a standards-

based and widely supported SDN platform. The OpenDaylight SDN platform architecture is composed by

three main layers: the Network Application Orchestration and Services, the Controller Platform and the

Southbound Interfaces and Protocol Plugins.

The Network Application Orchestration and Services is composed by business and network logic applications

for network control, provisioning and monitoring. In addition, more complex and advanced orchestration

applications needed for cloud, datacenter and virtualization services also reside in this layer. These heteroge-

neous applications use the open northbound API framework exposed by the SDN controller platform which

is implemented by a set of bidirectional REST interfaces. The Controller Platform is the core layer where

the SDN abstraction happens. It is composed by a collection of dynamically pluggable modules to perform

a variety of network tasks and services. A set of base network services are offered by the SDN controller

platform: Topology Manager, Statistics Manager, Switch Manager, Shortest Path Forwarding, Host Tracker.

Each of these modules exposes its own northbound APIs to let network applications and orchestration services

program the network and controller behaviour. In addition, platform oriented services and other enhanced

network services can be implemented as part of the controller platform for enhanced SDN functions. Multiple

southbound interfaces are supported in OpenDaylight through an heterogeneous set of dynamically loadable

plugins implementing a wide set of southbound protocols, such as OpenFlow 1.0, OpenFlow 1.3, BGP Link

State (BGP-LS), NETCONF, Open vSwitch Database (OVSDB), PCEP, etc. These modules are dynamically

linked into a Service Abstraction Layer (SAL) which actually provides the SDN controller platform abstrac-

tion capabilities. Below the SDN controller platform, a wide range of physical and virtual devices, switches,

and routers that provides the actual connective fabric between the network endpoints can be controlled.

OpenDaylight has been selected as the reference controller for the SDN software implementations of the

virtual CPE due to its highly extensible and modular architecture that natively deploys a wide set of services,

c© TRILOGY2 Consortium 2015 Page 39 of (95)

appliances and northbound API for either datacenter or transport ecosystems. Moreover, the high popularity

of the industry-led OpenDaylight project in both scientific and industry communities has also been consid-

ered as a crucial term of selection, aiming to generate a high impact in the community. In this VNF Pool

enabled virtual CPE implementation, OpenDaylight is mainly used to control and provision the network con-

figurations inside the operator’s datacenter: this means that it takes care of configuring the OVSes running

in the servers to provision the virtual LANs for each customer (including all its IaaS VMs), allowing the

proper isolation across multiple customers. To this purpose OpenDaylight natively supports at its southbound

interface a plugin for the OVSDB protocol, that is a management protocol standardized by IETF configura-

tion of virtual switches, including OVS. Also, OpenDaylight enables the virtual CPE VM to peer with other

BGP instances to exchange reachability information and Virtual Routing and Forwarding (VRF) tables for

the given IaaS VMs.

Virtual CPE Pool Manager

The Virtual CPE Pool Manager is a new function with respect to the virtual CPE described in deliverable

D1.1, and its main aim is to provide those high availability and resiliency features according to the IETF

VNF Pool architecture, which identifies a VNF Pool Manager as the entity that manage the reliability of the

VNF itself, by selecting the active instance and interacting with a Service Control Entity for consistent service

provisioning. In the case of the virtual CPE, the Service Control Entity is implemented by the combination of

OpenStack (for overall orchestration of the liquid VPN service for operator’s customers) and OpenDaylight

(for actual provisioning of network resources inside the operator’s datacenter). The Virtual CPE Pool Man-

ager is a network application deployed on top of OpenDaylight and triggered by OpenStack to mostly act as

a virtual CPE redundancy and reliability entity; after the creation and configuration of the master virtual CPE

VM with Nova, it provides some post-configuration functions to instantiate the virtual CPE with the desired

degree of reliability and redundancy. This translates into further actions to create and configure additional

VMs as backups for the virtual CPE VM, therefore building a virtual CPE Pool. The virtual CPE Pool Man-

ager offers several types and degrees of reliability functions. First, it implements specific functions for the

persistence of the virtual CPE configuration, including making periodic snapshots of the whole virtual CPE

VM. Moreover, at runtime (i.e. with the liquid VPN service in place), the virtual CPE Pool Manager monitor

the operational status and performances of the master virtual CPE VM by registering as a new observer of the

same APIs used by the Compute Controllers in Nova to collect notifications about VMs status. The virtual

CPE Pool Manager reacts to any failure condition by autonomously replacing the master virtual CPE VM

with one of its backup on the pool, implementing a swap of VMs for service recovery purposes. Two options

have been identified: cold recovery and hot recovery. In the former, a backup virtual CPE VM, properly

configured with the same master configuration, is kept ready (but switched off) to be started when the master

VM dies. In this case, the convergence time for the service recovery depends on the BGP convergence time

to re-build the routing tables from scratch. In the hot recovery, an active backup virtual CPE VM is kept syn-

Page 40 of (95) c© TRILOGY2 Consortium 2015

chronized with the master one, but not directly connected to the BGP adjacency with the peering PE router.

In this case the convergence time for the service recovery is much faster, especially if redundancy methods

such as the Virtual Router Redundancy Protocol (VRRP) is used, since the backup VM is already in place

and fully synchronized with the master one.

Virtual CPE VM

The virtual CPE VM is allocated on-demand by OpenStack as the master VM to implement the virtual CPE

routing functions. It is part of the virtual CPE Pool, that is instead managed by the virtual CPE Pool Manager,

and it is created and instantiated on-demand by Nova. In particular, a dedicated master virtual CPE VM is

deployed for each customer, along with its associated VMs pool.

The virtual CPE VM hosts an implementation of the BGP protocol, that allows IP/MPLS routers to exchange

network reachability information and VRFs: in particular it runs the exterior BGP protocol to define the

routing needed to allow customer IaaS VMs traffic to be routed across networks (i.e. from datacenter to

customer sites, through the backbone) and join the proper Layer 3 VPNs. This BGP instance inside the

virtual CPE VM is implemented with Quagga routing software package that provides TCP/IP based routing

services for UNIX with routing protocols support such as RIPv1, RIPv2, RIPng, OSPFv2, OSPFv3, IS-

IS, BGP-4, and BGP-4+. Quagga uses an advanced software architecture to provide multi server routing

engine with an interactive Cisco-like user interface for each routing protocol that supports common client

commands. The core part of Quagga is zebra, which acts as an abstraction layer to the underlying Unix

kernel and presents a set of APIs over a Unix or TCP stream to the Quagga protocol clients. Since in our

case the virtual CPE, and the BGP protocol instance, are running in a virtual environment (i.e. a VM), the

Quagga Forwarding Information (FIB) push interface extensions external component to learn the forwarding

information computed by the Quagga routing suite to support our scenario where the virtual CPE router has

a forwarding path that is distinct from the kernel, i.e. implemented by the external OVSes and not by the VM

kernel. This is provided by a Forwarding Plane Manager (FPM), that is the Quagga component that programs

the external forwarding plane; in our virtual CPE implementation, this FPM configures the OVSes by means

of the OpenDaylight SDN controller.

Virtual CPE Configurator

The virtual CPE configurator is a network application deployed on top of the OpenDaylight SDN controller

and hosts the logic for the provisioning of network resources inside the datacenter (mostly the OVSes), acting

as a bridge between OpenStack and OpenDaylight). The Virtual CPE Configurator is triggered by Neutron

mostly to provision the network configurations for the customer IaaS and the VPN service chaining. First,

by means of the northbound APIs exposed by OpenDaylight, it performs the configuration of the virtual CPE

BGP routing daemons running in the virtual CPE VMs, mainly in terms of VRFs to be flooded. Moreover,

again through OpenDaylight, it sets flows and routing tables in the OVSes for both VMs and BGP protocol

traffic purposes.

c© TRILOGY2 Consortium 2015 Page 41 of (95)

Figure 2.20: VNF Pool Enabled Virtual CPE functional split

PE Configurator

The PE configurator is another network application running on top the OpenDaylight SDN controller. The

main role of the PE configurator is to set the VRFs in the datacenter edge router (i.e. the PE router) upon the

request coming from the CMS. This allows the traffic generated by the customer’s VMs be associated to the

proper VPNs. Optionally, the PE configurator may perform some additional MPLS management actions on

the PE router to dynamically create or modify MPLS tunnels/LSPs to support new VRFs and establish new

VPNs.

Page 42 of (95) c© TRILOGY2 Consortium 2015

3 Cross layer liquidity
This section details the cross-layer liquidity tools from the group of advanced liquidity tools. This research

is based on the cross-layer mechanism found in D1.2. Cross-layer liquidity tools explore the possibility to

interconnect control over resources at different levels of the system architecture or networking stack.

The tools described in this category are HACK, MultiWifi, PVTCP and GRIN. Every tool has features that

could include it in a different cross-liquidity category, we will explain in the following paragraphs why those

tools are inherently cross-layer liquidity tools.

HACK, described in section 3.1, is a tool that performs cross-layer optimizations to TCP traffic on Wifi

networks by carrying TCP ACKs within WiFi’s link-layer acknowledgment. HACK is a cross-layer liquidity

tool because it bridges data and transport layers in order to improve the medium utilization.

MultiWifi, see section 3.2, offers a novel way of handling the layer 2 handoff problem of connecting to an

Access Point at layer 4. The project improves mobility by enabling a mobile client to lock into a single

Wifi channel and associate automatically to all Access Points in it’s range without using an explicit layer 2

handover.

The concept of PVTCP is improved through the Shushi tool, see section 3.3, by adding a security mechanism

for key exchange that is used to create a closer link between the application layer and the underlying transport

layer.

GRIN, see section 3.4, contributes to cross-layer liquidity by taking advantage of MPTCP in datacenters.

MPTCP has the capability of using all network paths in a datacenter and improving the network overlay

between nodes.

3.1 HACK

Physical layer speeds have increased in WiFi from 802.11b’s 11 Mbps to the Gbps rates of emerging 802.11ac.

Despite these gains, WiFi’s inefficient MAC layer limits the achievable end-to-end throughput. Namely, the

current variants of 802.11 require a sender to first sense the medium to be idle for a randomly chosen interval

each time it wishes to transmit, to desynchronize would-be concurrent senders. Unfortunately, the mandatory

idle period during each medium acquisition now dominates the duration of a packet’s transmission. To use a

concrete example, Enhanced Distributed Channel Access (EDCA) in 802.11n [18] enforces an average idle

period of 110.5 µs before a frame’s transmission, whereas a 1500-byte payload itself lasts only 80 µs at 150

Mbps. Each frame’s link-layer acknowledgement (LL ACK) consumes further channel capacity.

As the physical-layer bit-rate increases the pre-transmission idle period remains the same, causing greater

inefficiency. If a 600 Mbps 802.11n sender sent single frames in this fashion, it would only achieve 9% of

the theoretical channel capacity. Moreover, WiFi senders back off exponentially after a failed transmission,

and so incur even longer mean pre-transmission idle periods under contention, further reducing medium

efficiency.

c© TRILOGY2 Consortium 2015 Page 43 of (95)

6 912 18 24 36 48 54
5

10

15

20

25

30

Phy Rate (Mbps)

G
oo

dp
ut

 (
M

bp
s)

TCP/802.11a
TCP/HACK

(a)

0 100 200 300 400 500 6000

100

200

300

400

500

TCP/802.11n
TCP/HACK

(b)
Figure 3.1: Theoretical goodput for 802.11a (a) and 802.11n (b) rates. In (b), theoretical TCP/HACK achieves
an 8% improvement on average over TCP/802.11n for physical rates lower than 100 Mbps.

In an effort to amortize the significant overhead of medium acquisition over multiple data frames, 802.11n’s

MAC protocol batches multiple data frames into a single aggregate MAC protocol data unit (A-MPDU), and

incurs only a single medium acquisition for each such batch. 802.11n further aggregates the LL ACKs for

the data packets in a received A-MPDU into a single LL Block ACK.

Despite these work-arounds, frame aggregation and LL Block ACKs leave significant medium acquisition

overhead for TCP ACKs. TCP traffic is inherently bidirectional: a TCP receiver typically transmits a single

TCP ACK packet for every pair of TCP data packets it receives. Not only do TCP ACKs incur further

expensive medium acquisitions by the TCP receiver—they run the risk of colliding with the TCP data sender’s

transmissions as well.

In the following sections, we propose TCP/HACK (Hierarchical ACKnowledgment), a system that applies

cross-layer optimization to TCP traffic on WiFi networks by carrying TCP ACKs within WiFi’s link-layer ac-

knowledgments. LL ACKs are an ideal vessel for carrying TCP ACK information on the reverse path without

incurring a costly medium acquisition. By eliminating all medium acquisitions for TCP ACKs in unidirec-

tional TCP flows, TCP/HACK significantly improves medium utilization, and thus significantly increases

achievable capacity for TCP workloads. We demonstrate these improvements through simulation of up to 10

competing TCP flows on a 150 Mbps 802.11n network. The simulations illustrate that TCP/HACK improves

aggregate throughput by up to 22% over TCP on “stock” 802.11n. Additionally, through an evaluation of a

prototype online, wire-speed implementation of TCP/HACK for 802.11a on the SoRa software-defined radio

platform [39], we illustrate that TCP/HACK improves aggregate throughput up to 32% over TCP on “stock”

802.11a.

3.1.1 WiFi MAC Overhead

Consider a typical WiFi scenario, where a single 802.11a or 802.11n client downloads a large file from a

remote TCP sender. We assume throughout that the TCP receiver uses delayed ACK, and thus generates one

Page 44 of (95) c© TRILOGY2 Consortium 2015

TCP ACK packet for every two TCP data packets it receives.1

In Figures 3.1(a) and 3.1(b), the curves labeled “TCP 802.11{a,n}” show analytical predictions of the

throughput a single TCP downloader achieves as a function of physical-layer bit-rate on lossless 802.11a

and 802.11n networks, respectively. These analytical predictions are based on the parameters of the 802.11a

and -n MACs. A detailed derivation of the capacity of the 802.11n MAC layer may be found in [24]; we do

not repeat it here. The calculation for 802.11a is similar. (Figures 3.1(a) and 3.1(b) also show the improved

throughput achieved by HACK, our modified 802.11 MAC protocol that carries TCP ACKs in link-layer

ACKs, which we describe in Section 3.1.2.)

Note that for “stock” 802.11a and -n, the achievable TCP throughput is a progressively smaller fraction of

the physical layer bit-rate as the latter increases. Time spent on non-payload overhead for each medium

acquisition is to blame. In 802.11a, these overheads include the durations of Distributed Coordination Func-

tion InterFrame Space (DIFS) and the contention window (both before a data frame’s transmission), the data

frame’s preamble, the Short InterFrame Spacing (SIFS) interval between data frame and LL ACK, and the

LL ACK itself.2

As noted earlier, 802.11n aggregates data frames into A-MPDUs so as to amortize medium acquisition over-

head over many frames, and combines multiple LL ACKs into Block ACKs in response. The results in

Figure 3.1(b) include the application of these techniques, and show that while they reduce 802.11a’s over-

head, TCP still suffers progressively greater throughput limitations vs. the physical-layer rate because of the

overhead of medium acquisitions for TCP ACKs.

3.1.2 HACK in Overview

Let us first consider how TCP/HACK works in the simpler case of 802.11a, without batching of packets into

A-MPDUs. When a regular TCP client receives a TCP data packet, its network stack generates a TCP ACK

and enqueues it for transmission by the WiFi NIC.

Under TCP/HACK, a client does not immediately enqueue a TCP ACK for transmission. Instead, the client

compresses each TCP ACK and appends them to a compressed frame that it builds. When the next data

packet from the AP arrives, the client encapsulates the compressed TCP ACK frame within the returning LL

ACK, effectively avoiding all medium acquisitions for the corresponding TCP ACKs. The AP recognizes an

“augmented” LL ACK, which it decompresses. It then reconstitutes the encoded TCP ACKs, and forwards

them upstream.

Now let us consider 802.11n, where data packets can be aggregated into a single batched A-MPDU, and

link-layer ACKs take the form of a Block ACK that includes a bitmap indicating which packets from the

A-MPDU were received. On “stock” 802.11n during a TCP download the normal repeating pattern will then

be:
1Note that this assumption is the best case for the efficiency of the status quo WiFi MAC—were a delayed ACK not used, a TCP

receiver would generate twice as many ACK packets, and the WiFi MAC would incur significantly more medium acquisitions.
2802.11n’s parameter names and values differ slightly (e.g., AIFS instead of DIFS); the overall scheme of per-medium acquisition

overhead does not.

c© TRILOGY2 Consortium 2015 Page 45 of (95)

(i) one A-MPDU from AP to client containing TCP data.

(ii) one Block ACK from client to AP.

(iii) one A-MPDU from client to AP containing TCP ACKs.

(iv) one Block ACK from AP to client.

To eliminate medium acquisitions for TCP ACKs in 802.11n, we would like a TCP/HACK client to encap-

sulate all the TCP ACKs generated in step (iii) in the Block ACK sent in step (ii), and thus avoid step (iv)

entirely.

In practice, the arrival of an A-MPDU containing a batch of TCP data packets will cause the client’s OS to

generate a burst of TCP ACK packets in step (iii) after the Block ACK has departed for that A-MPDU. These

TCP ACKs arrive at the client’s transmit queue where they are compressed and concatenated, waiting for the

arrival of the next A-MPDU from the AP. The client will then append this compressed frame to the Block

ACK it sends the AP in step (ii).

Although the description above is for downloads, the design is in fact symmetric; we envisage TCP/HACK

as especially useful for wireless backup to LAN-attached storage, such as Apple Time Capsule.

3.1.3 Cross-Layer Nuances

We now refine our design to handle the subtle cross-layer interactions that arise between TCP and 802.11.

In principle, we would like to encapsulate TCP ACKs on the link-layer ACKs of the TCP packets they

acknowledge. For example, if a batch containing TCP packets 1-64 arrives, the client would like to piggyback

the TCP ACKs for packets 1-64 on the Block ACK for that batch. However, the 16µs SIFS interval between

receiving data and sending the link-layer ACK or Block ACK is too short for the host’s TCP stack to turn

around the TCP ACKs, compress them, and DMA them to the NIC. For HACK to be practical, the compressed

ACKs will have to wait until the next data arrives, and piggyback on its ACK or Block ACK. It turns out that

this significantly complicates the dynamics of TCP/HACK and we will explore the consequences.

Figure 3.2 illustrates this process3. In response to a batch containing TCP packets 1 and 2, TCP ACKs 1 and

2 arrive at the client transmit queue too late to be carried on that batch’s Block ACK. Instead, the TCP ACKs

are compressed but not yet sent. When the next batch carrying TCP packets 3 and 4 arrives, its Block ACK

can now carry the compressed frame with TCP ACKs 1 and 2. The AP then reconstitutes the full TCP ACKs

and passes them up the network stack.

So long as TCP data packets continue to arrive, there is a steady stream of Block ACKs on which to piggyback

compressed TCP ACK frames: all TCP ACKs are carried as HACK packets and no vanilla TCP ACK packets

need to be sent. But what happens if no further data packets arrive? The client cannot retain the TCP ACKs

for too long, or it will cause the TCP sender to time out and retransmit. Thus, after some time period, the

3For simplicity it assumes that delayed TCP ACKs are disabled

Page 46 of (95) c© TRILOGY2 Consortium 2015

AP Driver AP NIC Client NIC Client Driver

TCP Data 1, 2

1234

TCP Data 3, 4

34

A-MPDU (TCP Data 1, 2)
TCP Data 1, 2

Block ACK TCP ACKs
 1, 2Comp.

TCP ACKs 1, 2

TCP Data 3, 4

A-MPDU (TCP Data 3, 4)

A-MPDU (TCP Acks 3, 4)

Comp.

TCP ACKs 1, 2

TCP ACKs
 1, 2

TCP ACKs 3, 4

Block ACK

Tx Queue

Tx Queue

TCP Acks 3, 4

Block ACK
+ Comp. TCP Acks 1, 2

Fr
om

 C
lie

nt
 N

et
w

or
k

St
ac

k

TCP ACKs
3, 4

To
 A

P
N

et
w

or
k

St
ac

k

TCP ACKs
 3, 4

1

2

3

Figure 3.2: Interaction between A-MPDUs, Block ACKs and encapsulated HACK packets

client must send uncompressed vanilla TCP ACKs in the normal way. In Figure 3.2, TCP ACKs 3 and 4 meet

this fate, and are in turn Block-ACKed.

Figure 3.1 summarizes the theoretical upper bound on TCP/HACK throughput on 802.11a (Figure 3.1(a)) and

802.11n (Figure 3.1(b)). The curves assume that the sender transmits the largest possible A-MPDUs,4 that

HACK manages to encapsulate all TCP ACKs in TCP Block ACKs, and that the compression is performed

using the algorithm in Section 3.1.4. As the bit-rate increases, TCP/HACK significantly improves capacity,

with a 20% improvement seen at 600 Mbps on 802.11n. In reality, the improvement can actually exceed that

shown in the figure, as TCP/HACK can get closer to its bound than vanilla TCP can. This is due to collisions

between TCP data packets and vanilla TCP ACK packets, a problem HACK sidesteps.

To HACK or not to HACK?

To maximize the benefits, TCP/HACK packets should be used whenever possible. But TCP ACKs must not

be delayed when no more TCP data packets will arrive. How long should the client retain these TCP ACKs

before giving up and sending them natively?

There are several reasons no more packets may arrive, including that the sender has stopped sending, but with

802.11n, the principal reason is the adverse effect of A-MPDUs on TCP’s ACK clock. On a busy AP or during

slow start, it is common for the entire TCP congestion window to be queued at the AP and then to be sent

to the client in a single A-MPDU. An entire congestion window of TCP ACKs is generated and compressed,

and these now sit at the client, waiting for the arrival of another incoming data packet so they can be send on

4A-MPDU length is limited either by the 64 KByte A-MPDU bound or at lower bitrates by 802.11n’s 4 ms transmit opportunity
limit.

c© TRILOGY2 Consortium 2015 Page 47 of (95)

its Block ACK. As the congestion window is full, this next packet never arrives and the connection stalls until

TCP’s retransmit timer fires. On 802.11a, which lacks aggregation, we don’t often see this problem, but it is

normal during slow start when 802.11n batching is used. We consider the following three different designs

to address these concerns:

Explicit Timer A naive approach would be to have TCP/HACK time out and fall back to sending regular

ACKs after a delay. In practice there is no good delay value that can be chosen, since the client cannot know

the RTT and congestion window at the TCP sender, how the sender’s packets will be spaced throughout the

RTT, nor if the AP will suddenly start sending to another client.

Opportunistic HACK A more adaptive approach is not to explicitly delay TCP ACKs at all, but rather be

opportunistic. When the wireless link is the bottleneck, the next downstream data batch will contend with

the upstream TCP ACK batch. If the downstream batch wins, HACK can be used, but otherwise vanilla

TCP ACKs will be sent. Such a design may often squander the opportunity to use HACK, but it has the

virtue of seeming simple—until one considers the complexity of the NIC-network driver interface needed to

implement it.

The MORE DATA Bit In Figure 3.2, initially there are four data packets queued at the AP. When the AP

forms the first batch containing TCP data packets 1 and 2, it already knows more data will be sent to that

client, as it already has packets 3 and 4 in its queue. So long as the AP has more packets queued than will

fit in a batch, it knows that it is safe for the client to save up compressed ACKs waiting for the next batch.

The AP simply tells the client that there is more data coming by setting the MORE DATA bit in the 802.11

header of the A-MPDU.5 When the client sees this flag, it latches this state and will not transmit any more

non-encapsulated TCP ACKs until the next data packet arrives, when it can use HACK to send them.

3.1.4 HACK in Practice

In the preceding sections, we have presented a conceptual description of TCP/HACK, but several questions

concerning the practicality of this conceptual design remain unanswered. First, how realizable is TCP/HACK

given current systems and hardware? In particular, how should TCP/HACK’s functionality be divided be-

tween a station’s network interface card (NIC) hardware and NIC device driver? Finally, what manner of

compression should TCP/HACK employ to reliably encode the TCP ACKs?

3.1.4.1 Driver and NIC Functionality

We realize TCP/HACK (including the MORE DATA mechanism) with very few changes to a station’s 802.11

NIC. The main strategy is to implement the bulk of TCP/HACK within the NIC’s driver, as we demonstrate

using the example shown in Figure 3.2. Our discussion is in the context of a modern Linux wireless driver,

such as the Atheros ath9k driver.6

AP (data transmission) The only modification needed to the AP when transmitting data packets is to set the

5This bit exists in stock 802.11 to assist with power saving. HACK uses this bit irrespective of whether power saving is enabled.
6http://wireless.kernel.org/en/users/Drivers/ath9k

Page 48 of (95) c© TRILOGY2 Consortium 2015

http://wireless.kernel.org/en/users/Drivers/ath9k

Client Driver

Client NIC

Wireless Medium

More Data?

Compress

Send TCP ACK
addr

addr

Descriptor

Tx Queue

Comp.
 TCP ACK

c_addr

YesNo

c_addr

Descriptor

Dst Addr 1

Dst Addr 2

.

.

.

TCP ACK Cache

DMADMA

Set TCP/HACK Ready

Set Tx Ready

1

2

Figure 3.3: Client-side TCP/HACK compressing a TCP ACK, ready to be sent on the link-layer acknowledg-
ment of the next frame.

MORE DATA flag when there are more packets remaining in the transmit queue for the same client.

Client The client’s driver needs to determine when it can use TCP/HACK and when it must send TCP ACKs

normally. In Figure 3.2, on receiving packets 1 and 2, the client’s NIC also passes the MORE DATA state to

the driver. The client TCP stack acknowledges the data, generating TCP ACKs 1 and 2, and puts them in the

transmit queue at point 1 .

Figure 3.3 shows what happens at points 1 and 2 from Figure 3.2 in more detail. If the driver is not in the

MORE DATA state, it simply enqueues these ACKs normally. However, if MORE DATA is set, it compresses

the arriving TCP ACKs and creates corresponding buffer descriptors. A separate buffer descriptor chain per

destination address is needed to match compressed TCP ACKs with Block ACKs for that destination.

At point 2 the driver DMAs the buffer descriptor chain to the NIC. The NIC maintains this table of com-

pressed TCP ACK descriptors separately from normal transmission descriptors. Finally, the driver sets a flag

in the NIC to indicate that TCP/HACK is ready.

Figure 3.4 shows what happens when the next batch from the AP arrives at the client. If the TCP/HACK flag

indicates “ready,” the NIC uses the corresponding descriptors to DMA the compressed TCP ACK frames to

the card. It concatenates these frames, and appends them to the returning Block ACK at point 3 . Recall that

the NIC normally fires an interrupt when it receives data packets. In this case, the interrupt must also indicate

whether the NIC succeeded in sending the compressed ACKs.

This design also copes with the race condition where the batch carrying packets 3 and 4 arrives with the

MORE DATA flag not set before the driver has succeeded in conveying compressed TCP ACKs 1 and 2 to the

NIC. In this case, the TCP/HACK “ready” check will fail. The NIC sends a normal Block ACK and signals to

c© TRILOGY2 Consortium 2015 Page 49 of (95)

the driver a TCP/HACK failure in the receive interrupt. The driver now is free to re-enqueue the TCP ACKs

on the transmit queue for normal transmission.

AP (ACK reception) Finally, the AP needs to recognize and decompress the “augmented” Block ACKs. The

task of recognition falls to the AP’s NIC, which extracts the compressed TCP ACK frame from the received

Block ACK, adds it to the transmit complete report and interrupts to indicate transmit complete. The driver

extracts the compressed TCP ACK frame, decompresses and reconstitutes the TCP ACKs, and forwards them

upstream.

3.1.4.2 Compression

A critical component of the design is choosing a compression method for TCP ACKs. As 802.11a and -

n transmit LL ACKs at one of the slower basic rates, e.g. 6 Mbps, it is desirable to minimize the size of

the TCP ACK information appended to LL ACKs. Moreover, the 802.11a and -n MAC protocols’ DIFS

and AIFS intervals protect “stock” LL ACKs from collisions. Ideally, the compressed ACK information that

HACK appends to LL ACKs should be short enough to fit within DIFS and AIFS, to avoid risking a collision.7

We would like to leverage the redundancy within TCP and IP headers across consecutive TCP ACKs. Since

most of the TCP/IP header fields remain static for a particular flow, they can be cached at the compression

and decompression endpoints.

To encode TCP and IP header fields reliably, TCP/HACK uses Robust Header Compression (ROHC) [35]

to efficiently condense TCP/IP segments. ROHC supports the most popular TCP options like Timestamps

and Selective Acknowledgments (SACK), and defines the notion of contexts, each with a particular identifier

(CID). A context for TCP/HACK’s purposes maps nicely to a particular TCP flow. In addition to caching

static fields like the TCP/IP five-tuple at the endpoints, ROHC losslessly compresses the dynamic fields like

the TCP Sequence and ACK numbers.

TCP/HACK-specific ROHC optimizations Since TCP/HACK applies ROHC in a specific context, we make

the following simplifications:

(i) We do not explicitly send Initialize-Refresh (IR) packets from the TCP client to the AP. To initialize a

new context, the client can simply send uncompressed TCP ACKs outside of the TCP/HACK mecha-

nism. The AP will consequently store the necessary state for the new context and assign it the correct

CID.

(ii) The client and AP need not exchange any messages to agree upon a new CID for an emergent flow.

Instead CIDs are computed independently at each endpoint. The client’s driver on receiving a TCP

ACK for a new flow computes the MD5 [32] hash over the ACK’s 5-tuple and selects the lowest byte

as the CID.
7In our simulations in Section 3.1.5.3, we find that 98.5% of the LL ACKs carrying ROHC-compressed TCP ACKs fit within

AIFS for best-effort traffic. For the few that don’t fit, the sender may either split the compressed TCP ACKs across multiple LL
ACKs (ensuring each LL ACK is fully protected by AIFS) or it may send them all on a single LL ACK (risking a collision with a
hidden terminal). Our simulator does the latter; there are no hidden terminals in the scenarios we simulate.

Page 50 of (95) c© TRILOGY2 Consortium 2015

Receive Data

Is TCP/HACK
ready?

DMA

Yes
No

Wireless Medium

Client NIC

Client Driver

Compressed TCP ACKs

LL ACK

Send LL ACK

Rx Interrupt
 More Data State

TCP/HACK Success State

LL ACK

3

Figure 3.4: Client-side TCP/HACK receiving a batched frame from the air and including compressed TCP
ACK frames in the corresponding link-layer acknowledgment.

(iii) Compressed TCP ACK packets encapsulated within link-layer ACKs require a new mechanism to deal

with losses outside of sending explicit ROHC feedback packets. We will refrain from going into detail

here, but refer the reader to [34] to understand how TCP/HACK handles losses.

With ROHC, a driver can shrink a TCP ACK to about 4 bytes, or even 3 bytes if the associated flow transmits

a constant payload size (e.g. for large file downloads) [35].

3.1.5 Evaluation

We evaluate TCP/HACK through a combination of simulation in ns-3 [26] and experiments with a real-world

implementation for the SoRa software-defined radio platform [39]. We simulate TCP/HACK for 802.11n in

ns-3, while our SoRa implementation is for 802.11a, as the public SoRa release does not support 802.11n.

3.1.5.1 SoRa Implementation

We implemented TCP/HACK including the MORE DATA bit and ROHC compression for the SoRa user-level

physical layer on Windows 7. Hardware limitations of our SoRa radio boards require us to run 802.11a in the

2.4 GHz band, but this does not affect protocol behavior.

One quirk of the SoRa platform bears mention. We have found that SoRa receivers sometimes return 802.11

link-layer ACKs later than the 802.11 specification’s ACK timeout interval, causing spurious link-layer re-

transmits and backoffs. To avoid this performance hit, we increased the 802.11 ACK timeout to accommodate

SoRa’s late LL ACKs. The net effect of these delayed LL ACKs is that at 54 Mbps, our SoRa implementa-

tion only achieves 87% of the theoretical throughput across all protocols. We confirmed though simulation

that this change does not significantly affect the relative benefit of TCP/HACK over regular 802.11a, but the

absolute performance numbers are slightly lower.

Testbed Our three wireless nodes each have four-core Intel Core i7 CPUs, between 8–24 GB of RAM, and a

PCI Express SoRa radio control board. One acts as the AP and the other two act as clients. We operate the

c© TRILOGY2 Consortium 2015 Page 51 of (95)

0 5 10 15 20 25

U

H

T

U

H

T

U

H

T

O
ne

 C
lie

nt
B

ot
h

cl
ie

nt
s

Mean Goodput Mbps

Client 1
Client 2

Figure 3.5: TCP throughput with stock 802.11a (T), TCP with HACK (H), and UDP (U) with stock 802.11a,
with 1 and 2 clients.

SoRa interfaces in ad hoc mode to eliminate periodic beacon transmission. We run experiments on 802.11g

channel 14 (2.484 GHz) in an open-plan office environment. We use iperf to generate TCP data streams with

a 1500 byte MTU and send at 54 Mbps, the highest 802.11a rate.

3.1.5.2 SoRa Results

Besides demonstrating a successful implementation as evidence of TCP/HACK’s practicality, we wish to

answer several questions experimentally:

• Are TCP/HACK’s capacity benefits in line with theoretical predictions?

• When an AP sends TCP flows to two clients, does TCP over 802.11a suffer collisions between clients’

TCP ACKs, and if so, does TCP/HACK offer a performance benefit partly by eliminating such colli-

sions?

Baseline Comparison Figure 3.5 compares the application-level throughput achieved by TCP/802.11a and

TCP/HACK for bulk downloads, with UDP/802.11a for comparison. Each bar shows a different experiment:

sending to one or both clients, using TCP over HACK, TCP over stock 802.11a or, as a control experiment,

unidirectional UDP, which gives an upper bound on usable capacity. The data is the mean over five different

120-second runs; error bars show standard deviation.

Client 1’s throughput is slightly less than Client 2’s because it suffers a greater packet loss rate, even when

only one flow is active. UDP’s unidirectional data minimizes medium acquisitions, and achieves the greatest

throughput possible on SoRa with link-layer ACKs enabled. In an ideal 802.11 MAC, UDP would achieve

30.2 Mbps; on SoRa, UDP averages 26.5 Mbps across the three experiments. SoRa’s link-layer ACK delays

alone reduce the attainable throughput to 28.1 Mbps, and our UDP measurements approach that figure.

Page 52 of (95) c© TRILOGY2 Consortium 2015

If TCP/HACK encapsulated all TCP ACKs in LL ACKs, it would achieve almost the same throughput as

UDP (though UDP’s packet headers are smaller). In practice, TCP/HACK’s single-client throughput of 25.0

Mbps (mean of C1 and C2) is very close to the UDP benchmark. TCP/802.11a only achieves 19.4 Mbps

in this scenario. TCP/HACK improves performance by 29% and 32.2% in the one- and two-client cases

respectively. Both TCP/HACK and TCP/802.11a are fair.

UDP/ TCP/ TCP/
802.11a HACK 802.11a

Client 1
no retries 99% 97% 87%
1 or more 1% 3% 13%

Client 2
no retries 99% 98% 88%
1 or more 1% 2% 12%

Both
no retries 99% 98% 86%
1 or more 1% 2% 14%

Table 3.1: Percentage of frames successfully sent on the first attempt (no retries) and after one or more retries,
when the AP is sending to Client 1 and Client 2 alone, and both clients at the same time, using UDP/802.11a,
TCP/HACK, and TCP/802.11a.

Where do TCP/HACK’s savings come from?

We note with interest that TCP/HACK improves throughput more than predicted analytically in Section 3.1.1.

That prediction focused solely on saving medium acquisitions for TCP ACKs. In Table 3.1 we show the

percentage of frames received after the first transmission, and the percentage that required one or more re-

transmissions. We see that TCP/802.11a experiences far more link-layer retransmissions than TCP/HACK

or UDP/802.11a. These retransmissions occur because of collisions between TCP ACKs sent by clients and

TCP data packets sent by the AP. TCP/HACK obviates most (but not all) of these TCP ACKs, and so sig-

nificantly reduces the number of retransmissions needed. TCP/HACK not only eliminates costly channel

acquisition overheads, but by encapsulating TCP ACKs in LL ACKs, also incurs fewer collisions.

3.1.5.3 Simulation Results

We now examine how TCP/HACK interacts with frame aggregation, with a larger number of clients than

possible in our testbed. To this end, we implement A-MPDU support and TCP/HACK in ns-3. We evaluate

both the opportunistic and MORE DATA variants of HACK described in Section 3.1.3 to verify that the the

latter outperforms the former as hypothesized.

We simulate multiple WiFi clients scattered randomly within a circle of 10-meter radius centered on the AP.

Our aim is to model the scenario where several clients connect via 802.11n WiFi to a server located nearby

on a high-speed LAN. We present results modeling an 802.11n single-antenna setup using data packet and

link-layer ACK bit-rates of 150 Mbps and 24 Mbps, respectively. The wired link between the server and the

AP has a latency of one millisecond and a bit-rate of 500 Mbps.

To glean the benefits of the MORE DATA scheme, we would like AP’s transmit queue to contain at least 126

packets per flow. We choose this number so that the AP may buffer of up to three batches of 42 packets per

client, accounting for some variability in the A-MPDU size in the presence of TCP retransmissions. To avoid

c© TRILOGY2 Consortium 2015 Page 53 of (95)

0 20 40 60 80 100 120 140

1 client

2 clients

4 clients

10 clients

Mean Aggregate Goodput (Mbps)

UDP
TCP/HACK More Data
TCP/Opp. HACK
TCP/802.11

Figure 3.6: TCP goodput for different transmission schemes with 1–10 clients, and UDP for comparison.

adverse “buffer bloat” effects [13], the transmit queue should not be too large in the case of one flow, but

rather grow as the number of flows increases. A large buffer in our system would cause an excessive loss of

packets when slow start overflows the buffer, with or without TCP/HACK. With ten clients, the AP’s transmit

queue would be 1260, which is reasonable since Linux drivers usually use buffer sizes of 1000 packets.

TCP/HACK vs. TCP/802.11n To determine the benefit of TCP/HACK and its constituent parts, we compute

the aggregate goodput for TCP flows sending 1460 byte packets, averaged across five simulated runs per

experiment. To mitigate phase effects with multiple clients, we stagger the starts of clients’ downloads. As

such, we compute the aggregate goodput over the steady-state portion of the runs, once all the clients have

more or less exited slow start.

Figure 3.6 shows that UDP maintains a roughly constant goodput as the number of downloading clients

varies, as expected. As a unidirectional protocol, UDP’s performance is minimally affected by the number of

clients competing for the link. In contrast, the goodput of TCP/802.11n decreases slightly as the number of

downloading clients increases. Although the AP elicits TCP ACK packets from clients in turn, there is still

a chance that two or more clients’ TCP ACKs can collide, or that a TCP ACK can collide with a data packet

from the AP. These collisions account for the lower measured goodput than that predicted in Section 3.1.1.

We note with surprise that Opportunistic TCP/HACK does not significantly outperform TCP/802.11n: this

most naı̈ve implementation of HACK sends few compressed TCP ACKs in LL ACKs, and mostly regular

TCP ACKs. It therefore does not achieve a TCP goodput closer to the physical rate.

Role of MORE DATA Bits We now turn our attention to the bars labeled “TCP/HACK More Data” in Fig-

ure 3.6. We observe that the MORE DATA variant of TCP/HACK achieves the most pronounced throughput

gain over unmodified 802.11n. While simple, the MORE DATA mechanism is crucial to TCP/HACK’s suc-

cess in reducing medium acquisitions, and gives rise to goodput improvements between 15% for one client

and 22% for ten clients at the physical rate of 150 Mbps.

Page 54 of (95) c© TRILOGY2 Consortium 2015

Lossy Environment We next evaluate TCP/HACK under different SNR regimes. In addition to providing a

wider spectrum of comparison between TCP/HACK and TCP/802.11n, these experiments will verify whether

the HACK protocol can operate in a lossy environment and avoid stalls due to recurring TCP timeouts.

We begin with a setup similar to that described above, and then place a single client at varying distances from

the AP in order to simulate a decreasing set of SNRs. In lieu of simulating bit rate adaptation explicitly, at

each particular distance we simulate a download of a 100 MB file at a rate selected from a range of 802.11n

high throughput rates. This range corresponds to rates which are achievable using a 40 MHz channel, 400 ns

guard interval and one antenna. The corresponding LL ACK rates are chosen from the set of basic rates

(6, 12 and 24 Mbps) according to the rules outlined in the 802.11n specification. To emulate a real system,

we applied the 4 ms transmit opportunity limit to all transmissions, therefore limiting the size of A-MPDU

packets for experiments using lower physical rates. At each distance/physical rate combination, we computed

the average TCP goodput (including slow start) over five runs.

Figure 3.7 shows the average TCP goodput for TCP/HACK and TCP/802.11n. It plots a separate dashed

curve per 802.11n physical rate for TCP/HACK. We use these curves to compute the envelope (in black),

which indicates the best goodput achievable by an ideal bit rate adaptation algorithm. Similarly we plot the

corresponding envelope for regular TCP/802.11n (the separate rate curves for TCP/802.11n are not shown).

Our simulations indicate that TCP/HACK functions correctly in a lossy environment and does not elicit any

decompression CRC failures. Moreover, TCP/HACK improves TCP goodput by an average of 12.6% across

the range of SNR values. Figure 3.7 shows that as the physical rate drops, the relative improvement increases

slightly for the cases where the transmit opportunity limit reduces the number of packets a station can possibly

transmit in an aggregate. Recall that 802.11n uses aggregation to amortize medium access costs, therefore

we expect a better goodput gain for TCP/HACK over regular TCP at these rates. Similarly, as the physical

rate increases past 90 Mbps, the overall improvement increases slightly to about 14%, because the 802.11n

medium access delays now consume a larger portion of the transmission time relative to data.

3.2 MultiWifi

Traditional WiFi mobility techniques (as with all other L2 mobility mechanisms) are based on the concept of

fast handover: when a mobile client exits the coverage area of one Access Point (AP), it should very quickly

find another AP to connect to, and quickly associate to it. There is a great wealth of research into optimizing

fast handover including scanning in advance, re-using IP addresses to avoid DHCP, synchronizing APs via a

backplane protocol, even the using additional cards[4] to reduce the association delay. We think this is the

wrong approach, for many reasons:

(i) To start the handover mechanism, a client has to lose connectivity to the AP, or break-before-make

(ii) There is no standard way to decide which of the many APs to associate with for best performance

c© TRILOGY2 Consortium 2015 Page 55 of (95)

0

20

40

60

80

100

120

140

A
ve

ra
ge

 G
oo

dp
ut

 (M
bp

s)

15 Mbps
30 Mbps
45 Mbps
60 Mbps

90 Mbps

120 Mbps
135 Mbps
150 MbpsTCP/HACK

TCP/802.11

0 5 10 15 20 25 30
 0

 10
 20

SNR

%
 Im

pr
ov

em
en

t

Figure 3.7: Envelope of average TCP goodput for TCP/HACK and TCP/802.11n under different SNR regimes
and physical rates. The lower graph shows TCP/HACK’s percent improvements over TCP/802.11n.

Figure 3.8: Instead of fast handovers, we propose that wireless clients associate to all the APs in range and use MPTCP
to spread traffic across them.

(iii) Once a decision is made, there is no way to dynamically adjust to changes in signal strength or load

We conjecture that the emerging standard of Multipath TCP (MPTCP) enables radical changes in how we use

WiFi: use of multiple APs becomes natural, whether on the same channel or different ones, and the perennial

handoff problem at layer 2 gets handled at layer 4 allowing for a clean, technology independent, end-to-end

solution for mobility. In this section we test the following hypothesis: all WiFi clients should continuously

connect to several access points in their vicinity for better throughput and connectivity.

We carefully analyze the performance experienced by a mobile client locked into using a single WiFi channel

and associating automatically to all the APs it sees, without using any explicit layer 2 handover. We run a

mix of testbed experiments to test a few key usecases and simulations to analyze the generality of our testbed

findings across a wide range of parameters and scenarios. We find that, surprisingly, the performance of this

simple solution is very good out of the box for a wide range of scenarios and for many WiFi flavours (802.11a,

b, g): a WiFi client connecting to all visible APs will get close to the maximum achievable throughput. We

discuss in detail the reasons for this performance, namely the WiFi MAC behavior and its positive interaction

with MPTCP. In particular, the hidden terminal problem gets a constructive solution with MPTCP, as subflows

of a connection take turns on the medium instead of competing destructively.

Page 56 of (95) c© TRILOGY2 Consortium 2015

3.2.1 Towards an optimal solution for Wifi Mobility

Consider a wireless client that can associate to three distinct APs, as shown in Figure 3.8. Which one should

the client pick and associate to? Prior work has shown that using signal strength is not a good indicator of

future performance, so the client may actively probe or passively measure [40] all three APs briefly before

deciding on picking one of them. However, this initially optimal choice may quickly become suboptimal

because of multiple reasons outside the client’s control:

• The client may move.

• Other clients may use the medium, affecting this client’s throughput and his choice.

• The wireless channel to the chosen AP may have temporary short-term fluctuations, affecting its ca-

pacity.

The combination of these factors is impossible to predict in practice, and the best AP for any given client

changes not only in mobility scenarios, but even when the client is stationary. All existing solutions that

connect to a single AP are forced to be conservative, because fluctuations (flopping back and forth between

APs) can affect performance; thus they all tend to stick to their choice for some time.

We observe that the emergence of MPTCP enables a radically different approach to WiFi mobility: instead

of using only one AP at a time and doing handovers, mobile clients should connect to all APs at any given

time. The solution is conceptually very simple, and is shown in Figure 3.8: we have the client associate to

multiple APs, obtaining one IP address from each, and then rely on MPTCP to spread data across all the APs,

with one subflow per AP. As the mobile moves, new subflows are added for new APs, while old ones expire

as the mobile loses association to remote APs.

How should traffic be distributed over the different APs? As the client has a single wireless interface, it can

only receive packets from one AP at a time, even if it is associated to multiple APs. Should the client spend

an equal amount of time receiving data via each AP? This policy is optimal only when all APs offer equal

throughput. In practice, one AP will offer the best performance, thus it is preferable for the client to transfer

most data via this access point. However, all other feasible APs should be used to send probe traffic to ensure

that the client can detect when conditions change and adapt quickly. While simple in principle, the key to

this solution is understanding the interactions between MPTCP and the WiFi MAC. There are two high-level

cases that need to be covered:

APs are on the same wireless channel. If we disregard WiFi interference between APs, the theoretically op-

timal mobility solution is to always connect to every visible AP, and let MPTCP handle load balancing at the

transport layer: if an AP has poor signal strength, its loss rate will be higher (because of lower bandwidth and

similar RTTs) and the MPTCP congestion controller will simply migrate most of the traffic to the APs with

better connectivity to the client. This way, handover delays are eliminated and the mobile enjoys continuous

connectivity. Interference, of course, can be a major issue, and will be explored in depth in the next section.

c© TRILOGY2 Consortium 2015 Page 57 of (95)

APs are on different wireless channels. In this case the mobile client must dynamically switch channels

while associated to multiple APs, giving each AP the impression it is sleeping when in fact it is going on

a different channel. Channel switching has already been proposed as a technique to aggregate AP backhaul

capacity by a number of works including FatVAP [19] and Juggler[25]. We discuss the interactions between

MPTCP and channel switching in section 3.2.3.

3.2.2 Single Channel Mobility

We implemented a prototype client that is locked on a single channel and continuously listens for beacons of

known APs; when a new AP is found, the client creates a new virtual wireless interface and associates to the

AP, opening a new MPTCP subflow via the new AP. We ran this code on our 802.11a/b/g/n testbed without

external interference, as well as in simulation to understand the interactions that can arise due to interference

between different APs, and the extent to which this solution approximates the optimal one.

3.2.2.1 Hidden terminal experiments

The first case we test is a pathological one: consider two APs that are outside of carrier-sense range and the

MPTCP client connects to both. Lack of carrier-sense means the CSMA mechanism does not function and

the frames coming from the two APs will collide at the client. In fact, each AP is a hidden terminal for the

other.

To run this experiment, we reduced the power of our two APs until they went out of Carrier Sense, with the

client still able to achieve full throughput to at least one AP at all test locations. Then, we place the client

close to one AP and move it towards the other AP in discrete steps and measure the throughput for UDP and

TCP via either AP (the status quo) as well as MPTCP. As shown in figure 3.9(a), the graph exhibits three

distinct areas. In the two areas close to either AP, neither UDP nor TCP throughput is affected: here the

capture effect of WiFi predominates, as packets from the closer AP are much stronger, and the effect of a

collision is very small—the client will just decode the stronger packet as if no collision took place, and the

subflow via the furthest AP will reduce its rate to almost zero because of repeated packet losses.

The area in the middle is more interesting. As we expected, the combined UDP throughput of two simultane-

ous iperf sessions is greatly diminished by the hidden terminal situation. However, by running two simulta-

neous MPTCP subflows, the combined throughput is surprisingly good. Repeated runs showed this result is

robust, and we also confirmed this via ns2 simulation (Figure 3.9(b)). MPTCP connection statistics show that

the high-level reason for the high throughput is that traffic is flowing entirely over one of the two subflows,

while the other one is starved, experiencing repeated timeouts. This would suggest that the starved subflow

is experiencing much higher loss rates, which would explain why it never gets off the ground properly.

To understand the reason of this behavior, we used simulation to measure the loss probability of the two

subflows when contending for the medium. When subflow 1 is sending at full rate, subflow 2 sends a single

packet which collides with a packet of subflow 1. The WiFi MACs will then backoff repeatedly until the max

retransmission count has been reached, or until one or both packets are delivered. We run the simulation for

Page 58 of (95) c© TRILOGY2 Consortium 2015

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
[%

]

Position

UDP1
UDP2

UDP1+2
MPTCP1+2

(a) Experimental results with 802.11a, 6Mbps: UDP flows systematically
collide, while MPTCP subflows take turns on the medium.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100 120 140 160

T
h

ro
u

g
h

p
u

t
[%

]

Distance [m]

UDP1
UDP2

UDP1+2
TCP1+2

(b) ns2 simulation of the same situation in 3.9(a). In the middle region
MPTCP exhibits higher variability because one subflow starves the other.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

P
a

c
k
e

ts
 l
o

s
t

(%
)

Number of retransmissions

Subflow 1
Subflow 2

(c) The subflow sending packets infrequently experiences a much higher
loss rate. This makes it hard for a (MP)TCP flow to escape its slowstart.

Figure 3.9: Hidden terminal (HT) experiments: using Multipath TCP results in very good throughput because
one subflow monopolizes the air, while the other is starved.

c© TRILOGY2 Consortium 2015 Page 59 of (95)

a long time to repeat many such events, and show the percentage of events each subflow experiences a loss

in Fig. 3.9(c) as a function of the retry count. When few retransmissions are allowed, both subflows lose a

packet each when a collision happens, but the effect of the loss is dramatic for the second subflow pushing it to

another timeout. As we allow more retransmissions, the loss probability is reduced dramatically: the second

subflow loses around 40% of its packets if 6 or more retransmissions are allowed. The reason for the flattening

of the line at 40% is the fact that the first sender always has packets to send, and when subflow 1 wins the

contention for the first packet, its second packet will start fresh and again collide with the retransmissions

from the second subflow, further reducing its delivery ratio. This also explains why subflow 1 experiences no

losses after six retransmissions: either it wins the contention immediately, or it succeeds just after the second

subflow delivers its packet. In effect, we are witnessing a capture effect at the MPTCP level triggered by the

interaction with the WiFi MAC. This behavior is ideal for the MPTCP client.

3.2.2.2 Carrier-sense experiments

The most common case is when a client connects to two APs on the same channel that are within carrier sense

range of each other, so that the WiFi MAC will prevent both APs sending simultaneously. The mobile asso-

ciates to both APs and again we move the client from one AP to the other in discrete steps. The performance

of our MPTCP client in this case strongly depends on the rate control algorithm employed by the AP, and we

explore a number of these to understand their effects.

First, we have our Linux APs use 802.11a and run the default Minstrel rate selection algorithm. The results

are given in Fig. 3.10(a), and they show that the throughput of the MPTCP client connected to both APs is as

high as the maximum offered by any of the two APs. The reasons for this behavior are not obvious.

CASE I: In-between APs the client obtains slightly more throughput (10%) by using both APs than if we

were using either AP in isolation. The fundamental reason lies at the physical layer: due to fading effects,

individual channel quality varies quickly over time, despite both channels having a roughly equal longer-term

capacity. To test this hypothesis, we simultaneously sent a low rate broadcast stream from each AP and

measured their delivery ratio at the client. As broadcast packets are never retried, their delivery ratio captures

the channel quality accurately; the low rate is used to ensure the two APs don’t fight each other over the

airtime, while still allowing us to probe both channels concurrently. The instantaneous packet delivery ratios

computed with a moving window are shown in Figure 3.10(b), confirming that channels from the two APs

are largely independent.

The 802.11 MAC naturally exploits physical channel diversity: the sender that sees a better channel will

decrease its contention window, and will be advantaged even more over the sender with a weaker channel.

This behavior is experimentally verified by previous work [8] with several clients and bidirectional traffic

to/from the APs. For our client downloading from two APs, when one has a slightly worse channel, it will

lose a frame and double its contention window before retrying, leaving the other AP to better utilize the

channel.

Page 60 of (95) c© TRILOGY2 Consortium 2015

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

T
h

ro
u

g
h

p
u

t
[%

]

Position

TCP via AP1
TCP via AP2

MPTCP over AP1+2

(a) Throughput of a client moving between AP1 and AP2: the MAC
favors the sender with the better channel. Max throughput is 22Mbps.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9

P
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

 [
%

]

Time [s]

Channel to AP1
Channel to AP2

(b) A fixed node has channels with a raw PDR≈50% to each AP. The
quality of the two channels varies independently in time.

0
10
20
30
40
50
60
70
80
90

100

1 10

C
D

F
 [
%

]

Packet interarrival time[ms]

AP1
AP2

AP1+2

shorter tail = fewer retries

(c) Packet interarrival rate exhibits a longer tail when a single AP is used.
indicating periods where the channel is bad. When both APs are sending,
the tail is much shorter.

Figure 3.10: Carrier sense experiments: the client using MPTCP gets the throughput of the best TCP connec-
tion when close to either AP, and better throughput when in-between.

c© TRILOGY2 Consortium 2015 Page 61 of (95)

To validate our hypothesis, we analyzed interarrival times between packets for the client using either AP or

both at the same time, and plotted the CDF in Figure 3.10(c). The data shows that most packets arrive 1ms

apart, and that AP1 prefers a higher PHY rate (24Mbps) while AP2 prefers a lower PHY rate (18Mbps) when

used alone. Using both APs leads to interarrival times in between the two individual curves for most packets.

The crucial difference is in the tail of the distribution, where using both APs results in fewer retries per packet.

When one AP experiences repeated timeouts, the other AP will send a packet, thus reducing the tail.

In this setup, the optimal AP changes at timescales of a few seconds, and the only realistic way of harvesting

this capacity is by connecting to multiple APs. Further experiments with 802.11n and simulations have shown

this behavior is robust: when the APs offer similar long-term throughput, a client connected to multiple APs

will manage to harvest 10-20% more throughput.

CASE II: One AP dominates. Consider now the case when the client is closer to one AP; in such cases the

most efficient use of airtime is to use only the AP that’s closest to the client. In this case, the throughput of a

client connected to all APs strongly depends on the rate selection algorithms used.

In the experiment in Fig. 3.10(a) we use Minstrel that favours higher bitrates even at low signal strengths

(with lower frame delivery rate), which leads to more retransmissions per packet for the far away AP. Each

retransmission imposes an exponentially larger backoff time on the transmitter, which allows the AP with

better signal strength to win the contention more often and thus send more packets; this explains the near-

optimal throughput enjoyed by the MPTCP client near either AP. This behavior is strictly enforced by the

L2 conditions, and we verified that the choice of TCP congestion control has no effect on the distribution of

packets over the two paths; the same results were obtained with UDP.

We also verified in the simulator that when two senders use the same rate, the MAC preference for the better

sender holds regardless of the maximum number of retransmissions allowed (0 - 10). This immediately raises

the question: what happens when the AP farthest from the client sends using lower rates, thus reducing its

frame loss rate? Simulations showed that the effect on total throughput can be drastic: the client connecting to

both APs can receive less then half of the throughput it would get via the best AP. This is because lower rates

give the farthest AP and the closest one similar loss rates and thus similar chances of winning the contention

for the medium. However, packets sent at lower bitrate occupy more airtime, thus decreasing the throughput

experienced by the client.

Is this case likely to appear in practice? We ran the same experiment on APs and clients running 802.11n in

the 5GHz frequency band. When the client is close to one of the APs, the results differed from 802.11a/g: the

throughput obtained with MPTCP was only approximately half the throughput obtainable via the closest AP.

Monitoring the PHY bitrates used by the transmitters shows that minstrel ht (the rate control algorithm

Linux uses for 802.11n) differs from minstrel significantly: instead of using aggressive bitrates and many

retransmissions, minstrel ht chooses the rates to ensure maximum delivery probability of packets. The

block ACK feature of 802.11n is likely the main factor in this decision, as the loss notification now arrives

Page 62 of (95) c© TRILOGY2 Consortium 2015

at the sender after a whole block of frames has been transmitted (as much as 20): the sender can’t afford to

aggressively use high bitrates because feedback is scarce.

In fact, the block ACK mechanism together with the cautious choice of bitrates by the transmitters ensures

block-level fairness between the two APs: the client will receive one block from AP1 at high bitrate, then one

block from AP2 at lower bitrate, and so on.

This issue is not limited to 802.11n: any WiFi rate control algorithm that offers packet-level fairness between

multiple senders in Carrier Sense range greatly harms the combined throughput achievable by MPTCP when

utilizing multiple APs. Rate control is a modular element and is not regulated by the 802.11 standard, thus

wireless NIC manufacturers can implement different algorithms in their drivers.

In summary, a client that associates to multiple APs and spreads traffic over them with MPTCP will receive

close-to-optimal performance in a number of situations (hidden-terminal) but not in all. In particular, the

performance achieved in carrier-sense environments is strongly dependent on the rate adaptation algorithms

employed by the APs, and these are outside the client’s control.

3.2.3 Channel-switching

To connect to APs on different WiFi channels, clients can use channel switching, a technique supported by

all NICs for probing. This technique was proposed and shown to work in previous work [19, 15, 25, 38]; We

implement a similar procedure, but with adaptation based on the actual bandwidth obtained on each channel.

Say the client spends a slot ci on channel i, such that the sum of all slots equals the global duty cycle

C =
∑

i ci. While on channel i, the client measured the bandwidth it receives on that channel, bi, by

counting the number of bytes received in a slot and dividing it by ci. We consider the following family of

algorithms for channel switching:

ci =
bαi∑
j b
α
j

· C (3.1)

The equation prescribes how the value of ci for the next interval is computed based on the throughput observed

in the current interval, where the interval is a multiple of C. α dictates how aggressively we prefer the

good channels over the bad ones: higher values lead to more time spent on the best channels. Choosing α

strikes a tradeoff between throughput obtained and accurate probing that enables quick adaptation in channel

conditions.

The discussion so far has assumed MPTCP is able to allow all APs on different channels to send at flat rate

during their slot; in other words Multipath TCP manages to keep all the paths busy. Also note that there are

no direct interactions between the MACs of the different APs during this time: enabling MPTCP to work

over channel switching is a much easier task. All we need is to make sure the MPTCP subflows do not suffer

frequent timeouts, which can occur due to:

• Widly varying round-trip times leading to inaccurate values of the smoothed RTT estimator.

• Bursts of losses suffered when congestion windows are small and fast retransmit is not triggered.

c© TRILOGY2 Consortium 2015 Page 63 of (95)

The first problem is quite likely to appear during channel switching, as the senders will see bimodal RTT

values: path RTT for packets sent during the channel’s slot, and C for packets sent while outside the slot.

To avoid this problem, we impose that C is smaller than the smallest possible RTO at clients, which must be

higher than the delayed ACK threshold (200ms). Hence, our first restriction is that C ≤ 200ms.

To avoid the second problem, we lower bound the time spent on any channel to a minimum value that allows

the AP to send at least one packet per slot; this implies that the smallest slot has to be at least 10ms.

We have implemented channel switching support in the Linux kernel, together with the family of algorithm

discussed above. With this implementation, we ran a series of simple experiments to understand the basic

performance of channel switching in our context. We have the client associate to two APs in (channels 40

and 44, 802.11a) and modify the transmit power of the APs while we observe the adaptation algorithms at

work. The results are shown in the table below. The experiments with both APs set at max power show that

the channel switching overheads (of around 5ms in our measurements) reduce the total available throughput

by around 10% when switching between two channels with a duty cycle of 200ms. If we decrease the power

of AP2, α = 2 does a good job of increasing the slot of AP1, and obtaining 87% of the optimal throughput.

In contrast, the algorithm α = 0 assigns equal slot to both APs and throughput is the average of both APs’

throughput:

Power for TCP TCP MPTCP + switch
AP1&AP2 AP1 AP2 α = 2 α = 0

Max & Max 20 20 18 18
Max & Low 20 14 17.5 16
Max & Low 20 5 17.5 12

Table 3.2: Throughput of both APs related to power

The experiments show that MPTCP and channel switching play nicely together. We note that the experiments

work similarly regardless the WiFi standard used.

The key difference between the single channel and multi channel scenarios is the behavior when multiple

users are connected to the same APs. When on the same channel, users tend to stick to the AP closest to

them as our experiments showed in the previous section. When switching, the clients are not coordinated

and will affect each other’s throughput and channel estimates in quasi-random ways, depending on how their

slots overlap. Here, simulations showed that higher values of alpha also lead users away from bad equilibria,

however the total throughput achieved is only 70% of the optimal.

Our driver independent channel switching procedure, through its adaptive slot, makes it possible for an

MPTCP based mobile to access capacity on independent channels in a fluid manner.

3.3 PVTCP

Evolution of PVTCP APIs and Security

The sockets API really shows its age as it struggles to support the complex semantics demanded by libraries

Page 64 of (95) c© TRILOGY2 Consortium 2015

that provide encrypted transport streams such as TLS. Applications need to directly deal with the complexities

of certificate validation, connection re-keying, and keeping sensitive key material from prying eyes. They

rarely do so consistently due to programming complexity, resulting in a regular stream of security breaches.

We present Shushi, a replacement architecture that uses trusted arbiters to separate the concerns of networked

cross-layer encryption and key exchange from individual applications. Shushi integrates with OS sandbox-

ing technologies such as Capsicum [41], supports high-performance interconnects via authenticated shared

memory channels, and can reduce RTTs during connection establishment via out-of-band signalling. It is

built with distributed and virtualized systems in mind, and shared memory channels can be reconfigured into

distributed equivalents in the event of VM live migration or host failures.

3.3.1 Introduction

The increasing need for security in public networks (from wireless networks to multi-tenant datacenters) has

seen a surge in applications shifting to using end-to-end encrypted connections. Across all of these networks,

an efficient low-latency transport encryption is essential, since the standard interfaces are not resistant to ad-

versarial snooping. Our target is to encrypt all traffic over untrusted links, but still do dynamic path selection

to maintain performance and congestion control.

The common refrain ’just deploy SSL’ is complicated by the heterogeneity of modern datacenters. Appli-

cations may be privilege separated (e.g. Wedge, Capsicum, Geode or SE Linux), run inside lightweight

containers (e.g. LXC, Docker) or fully virtualized environments (e.g. Xen, KVM, VMWare), and also often

employ non-TCP transports such as Unix sockets, shared memory or SCTP. Applications are currently forced

to explicitly choose which layer of the network and OS stack they will deploy encryption on, which is brittle

in the face of changing load and failure conditions.

Once the choice of transport encryption has been made, the next problem is secure key management. Every

application needs to generate and manage keys at several layers of the network: from long-term identities

to prevent MitM, to obtaining strong entropy through layers of visualization, to ephemeral key generation,

to revocation checking. Applications are notoriously poor at fully implementing the complex requirements

imposed by APIs such as OpenSSL , often leading to a false sense of security. At the same time, an appli-

cation vulnerability could cause the corresponding private keys to be compromised (for instance, the recent

Heartbleed vulnerability in the OpenSSL library).

We propose Shushi, a datacenter architecture that uses trusted arbiters to separate the concerns of transport

selection and connection establishment (including the full key exchange procedure and authentication) from

the applications themselves. Shushi integrates with lightweight sandboxing technology, such as Capsicum,

and also supports high-performance interconnects via authenticated shared memory channels. It is built with

distributed systems in mind, and so shared memory channels can be reconfigured into distributed equivalents

in the event of live relocation or other events.

Equally important, Shushi enables the dynamic usage and synthesis of underlying communication mecha-

c© TRILOGY2 Consortium 2015 Page 65 of (95)

nisms, transparently to applications, in a fashion that satisfies the hints provided by the application developer.

Innovation is encouraged since Shushi will always try to utilise new communication mechanisms, if they fit

the applications’ requirements, and fall back to basic mechanisms, such as TCP or Unix sockets, if that is the

only alternative (e.g. under the pressure of middleboxes).

Encryption keys (usually rather small in size) need to be treated very separately from the bulk application

data. Hence, Shushi creates a “control plane” for low-bandwidth secure coordination traffic that is isolated

from application data via OS sandboxing and network isolation.

3.3.2 Architecture

Shushi defines a privileged arbiter to handle the establishment of I/O channels between peers, including key

management, name resolution and transport suggestions. Arbiters in a network publish their public ephemeral

keys and capabilities information in a directory service. Applications can run in unprivileged or sandboxed

mode, and call the arbiter when they need to communicate to a remote or local peer.

Shushi delegates transport selection, key management and authority into a separate privilege domain from

the main application, since these operations require a significant amount of complex code that is likely to be

vulnerable to software exploits.

Shushi also defines strong security constraints for the arbiter implementation since it operates with all key

material of applications. A compromised arbiter breaks the security of all data connections for the applica-

tions that it is mediating. The concerns broaden for the directory service, for which a set of active attacks,

such as an attack, become available to an adversary. We propose solutions to reduce the risk of these threats

(e.g. via type-safe programming languages), but cannot eliminate them completely. Shushi still represents a

significant increase in security over the current practice of linking all data into one address space.

3.3.3 Key Properties

Dynamic selection of a suitable transport Datacenter traffic demands high throughput between peers, and

optimal transport selection can involve choosing shared memory if on the same OS, inter-VM channels

on the same hypervisor, and TCP only for remote communication. Shushi uses the directory to publish

the hierarchy of nodes, and arbiters use that information to select the most appropriate transport for an

I/O request.

Simplifying trust management There are two levels of trust in Shushi: (i) applications trust an arbiter over

a trusted channel (e.g. a Unix domain socket to the kernel); (ii) arbiters use a directory service to

authorize peer communications. A directory server in the network is used as a top-level source of trust,

and we define methods to protect the integrity of authority communications.

Isolated key traffic channels Shushi’s threat model depends on focusing trust into a small control plane for

key traffic. We argue that it is much more realistic to have a tightly audited, version-controlled system

for relatively small amounts of key traffic, rather than getting it mixed up with the large (gigabytes or

Page 66 of (95) c© TRILOGY2 Consortium 2015

terabytes) of storage used by the applications themselves.

Isolated private key material Shushi never ever exposes any private keys to the application. Therefore,

even if an application can be compromised, an attacker cannot obtain any private keys (for instance,

the recent Heartbleed bug would not have revealed private keys with Shushi).

3.4 An Evolution of GRIN
Various full bisection designs have been proposed for datacenter networks. They are provisioned for the

worst case in which every server sends flat out and there is no congestion anywhere in the network. However,

these topologies are prone to considerable underutilisation in the average case encountered in practice. To

utilise spare capacity we have designed GRIN, a simple, cheap and easily deployable solution that simply

wires up any free ports datacenter servers may have. GRIN allows each server to use up to a maximum

amount of bandwidth dependent on the number of available ports and the distribution of idle uplinks in the

network. The original GRIN implementation was built with 1Gbps networks in mind, and we had to face

the fact that higher speeds are becoming commonplace. We present the main GRIN implementation changes,

the transition to 10Gbps networks, as well as new evaluation results, both in terms of performance benefits

and possible interactions with other running applications. We describe how distributed application schedulers

can be modified to become GRIN-aware, and also show the results of running GRIN on 1000 Amazon EC2

instances.

3.4.1 A GRIN primer

Datacenters heavily rely on the concept of resource pooling: different applications’ workloads are multi-

plexed onto the hardware, and any application can in principle expand to utilize as many resources as it needs

as long as there is capacity anywhere in the datacenter. In effect, the resources are pooled in time (when dif-

ferent users access the same machine at different times) and in space (where distributed applications can scale

up and down as needed). Measurement studies show that datacenter networks are underutilized. Many links

are running hot for certain periods of time, while even more links are idle, which results in an underutilized

core. We set out to extend the resource pooling principle to datacenter networks.

Figure 3.11: Network utilisation of a simple Map/Reduce job

To understand why networks are underutilised most of the time, we measure the network utilisation of a small

cluster of ten servers connected to non-blocking switch and running a map-reduce job, a typical datacenter

c© TRILOGY2 Consortium 2015 Page 67 of (95)

Switch	

Server	

c)	
 Grin	
 Topology	

…	

b)	
 Mul7homed	
 Topology	

…	
 …	

Rack	

Top	
 of	
 Rack	

Aggrega7on	

Core	

10Gb	

10Gb	

1Gb	

a)	
 VL2	
 Topology	

Figure 3.12: Enhancing a VL2 topology to improve network utilisation

application. The servers run Hadoop word-count over a collection of web pages (50GB) stored on the same

servers at replication level 3, and we plot the individual network throughput measured for each server in Fig-

ure 3.11. In the map phase, there will be a small percentage of tasks whose data is non-local, thus requiring

filesystem reads from other servers, which will be bottlenecked by the host NIC capacities, assuming appro-

priate storage provisioning. The shuffle phase will move the data generated by the mappers to the reducers.

The shuffle phase is notoriously bandwidth hungry, but this depends on the number of reducers. In the worst

case, all servers are reducers and download data at the same time, leading to an all-to-all traffic pattern that

fully utilises the network core. In practice, the number of reducers is an order of magnitude smaller then the

number of mappers, and the shuffle phase starts earlier for some servers, thus the core network utilisation

will be a lot smaller; still, some reducers will be bottlenecked by their servers’ NIC. Finally, the output of the

reduce phase is written to disk leading to point-to-point transfers, again bottlenecked by the host NIC.

Barring extensive changes to the original topology, the most straightforward solution is to multihome servers

by using additional TOR switches. We add a TOR switch for every additional server port (see Fig.3.12b), so

that each server is connected to each of the multiple TOR switches from its rack. In order to keep the rest

of the topology unchanged, we evenly divide the uplinks of the original TOR switch between all the local

TOR switches. The resulting topology is oversubscribed, but now each server can potentially use much more

bandwidth. Multihoming brings additional costs in terms of switching equipment, rack-space, energy usage

and maintenance. As every additional server port could require an extra switch, this solution does not scale

well with the number of server ports.

GRIN takes a different approach. The servers are directly interconnected using additional ports (some of

which are already installed, and effectively free), while keeping the original topology unchanged. Each pair

of servers that are directly connected in this manner become neighbours. Intuitively, when a server does

not need to use its main network interface, it may allow one or more of its neighbours to “borrow” it, by

forwarding packets received from them (or packets addressed to them) to their final destination. This is

depicted in Figure 3.12c. When a server wishes to transmit, it can use both its uplink and the links leading

to its neighbours. Conversely, the destination can be reached through both its uplink and via its neighbours.

We call the links used to interconnect servers, horizontal (or GRIN) links, and reserve the term uplinks for

those that connect servers to the switch in the original topology. The network interface where the uplink

is connected becomes the primary interface of the server, while the others are considered to be secondary

Page 68 of (95) c© TRILOGY2 Consortium 2015

A	
 B	

switch	

b1	

a2	
 b2	

r1	

R	

C	
 c1	

Figure 3.13: Simple GRIN1 Setup

interfaces. If every server has n GRIN neighbours, we say that the degree of the GRIN topology is equal to

n. We use the term horizontaln routing (or hn routing) to describe the fact that in a given GRIN topology

we are only interested in paths which have horizontal segments of length at most n; by this definition, the

original topology uses h0 routing. The GRIN implementation employs h1 routing, because it utilises most of

the capacity, while being the cheapest from a forwarding point-of-view. We also rely on a custom addressing

scheme. For any given address we are able to tell if it’s associated with a primary or secondary interface, and

it also possible to determine the primary address of the neighboring server in the latter case.

3.4.2 Implementation

To implement GRIN we reuse forwarding support provided by modern OSes. Linux, for instance, peaks at

a rate of about 570Kpps in our tests. This is good enough for gigabit links, or even at 10 Gbps with jumbo

frames, but cannot really keep up as NICs become faster.

Can we do better? When processing packets for its GRIN neighbours, a server is fulfilling three main func-

tions: identification of packets intended for another server, rewriting some header fields and forwarding the

result. For packet identification, we can leverage hardware filtering capabilities present in modern NICs

which allow packets to be received on different queues based on various discriminants, such as destination

address. With IP forwarding, each server must write at least the MAC source and destination addresses in

the packet. As no hardware support exists for IP forwarding in commodity NICs, this operation must be

performed in software.

In theory, GRIN allows us to avoid this extra work by using bridging instead of forwarding. In this context,

bridging means simply passing a packet from one interface to another, without doing any kind of software

processing on it. The origin server knows the MAC address of the next IP hop for a packet. In an L2 network

this is the primary interface of the destination (if the packet is heading for a primary address) or the primary

interface of one of the destination’s neighbours. For a L3 network, the next hop is the designated first router.

In both cases, we use ARP to find the proper MAC address, as the IP address is already known (directly from

the packet for L2 and by configuration for L3).

This concept is presented in Figure 3.13: servers A and B are neighbours, and the default gateway for B’s

uplink traffic is router R. When A sends a packet to C, with basic forwarding the packet will have the

destination IP address Dip(p) = c1 and destination MAC address Dmac(p) = mac(b2). The latter will

c© TRILOGY2 Consortium 2015 Page 69 of (95)

change over the following hops, first to mac(r1) and, eventually, mac(c1). With bridging, the packet leaves

A with Dip(p) = c1 and Dmac(p) = mac(r1); it can find mac(r1) by sending an ARP request. B can simply

pass the packet to the uplink upon reception; the original contents are enough to steer it to the destination.

In summary, h1 routing allows GRIN to not only avoid source routing, but also IP forwarding: intermediate

servers can just copy packets between interfaces without processing them. Modern commodity 10Gbps NICs

(e.g. based on the popular Intel 82599 chipset) already have a simple hardware switch, but it can only move

frames between different queues of a single NIC in the tx→rx scenario; GRIN needs to pass packets from

one rx queue of an interface to a tx queue of another interface (the two interfaces will likely belong to the

same multi-port card). With this in place, we could eliminate forwarding overhead altogether. Until hardware

support is available, we continue to rely on Linux forwarding for our implementation. This section will

conclude with the description of a prototype that shows the viability of the bridging solution.

The GRIN implementation works with a MPTCP-enabled Linux kernel and mainly deals with address as-

signment to secondary interfaces in user-space. The GRIN addressing scheme allows us to use any routing

mechanism that was already in place in the original topology, as long as the original addresses can be adapted

to the new structure. The assignment itself relies on pre-existing mechanisms, e.g. DHCP. To automati-

cally configure secondary interfaces, we have implemented a simple server that runs on every computer. It

only serves requests that arrive on GRIN interfaces, and its primary functionality is the dissemination of

proper secondary addresses to neighbours. After the endpoints of a horizontal link exchange addresses in

this manner, each server also adds the required information to the local routing tables. There are two such

entries needed per neighbour: one to designate it as the default gateway for all traffic leaving that particular

secondary interface, and another to state that the address of the remote endpoint is reachable via the same

interface. Additionally, we use Proxy ARP to make servers reply to ARP requests for their neighbours’

secondary interfaces, while also making them ignore queries for their own such interfaces.

Bridged implementation. We have also implemented the prototype of a bridged GRIN1 topology that

uses netmap as a stand-in for the missing hardware functionality. Outgoing packets that are heading to a

primary interface receive no special treatment. For all others, we make sure that the MAC destination address

field contains the L2 address of the proper gateway. For both primary and secondary NICs, we use ethtool

to enable ntuple filtering and add filters that make sure any packet destined for the local server arrives on rx

queue 0, while all others are received on queue 1. Finally, the netmap bridge ensures that packets received

on queue 0 of each NIC are sent to the host TCP stack and packets coming from the host stack are sent using

tx queue 0. Also, packets received on rx queue 1 of any interface are simply sent to tx queue 1 of the other

interface. This could easily be extended to work with higher GRIN degrees by using an additional rx/tx pair

of queues for each secondary interface added.

For the setup in Figure 3.13, when a packet p going from a2 to c1 reaches B, it will be placed in rx queue 1,

because Dip(p) 6= ip(b2), the netmap bridge will transfer it to tx queue 1 of b1. The switch will direct the

Page 70 of (95) c© TRILOGY2 Consortium 2015

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60 70
Hosts sending(%)

Original
G1
G2
G3
MH

(a) Simulation, 120 servers

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60 70
Hosts sending(%)

(b) EC2, 1000 servers

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60 70
Hosts sending(%)

2x Original

(c) Testbed 1Gbps network

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60 70
Hosts sending(%)

(d) Testbed 10Gbps network

Figure 3.14: GRIN improves performance by 50% to 150% for Random traffic.

packet towards r1, based on the destination MAC address, and from R it will make its way to the destina-

tion. To understand the performance difference between forwarding and bridging we stressed our prototype

with minimum sized packets, finding that it can bridge 14Mpps on a single core. If netmap is used to do

forwarding, the rate drops to 9Mpps (30% less). We still used the main implementation in our evaluation

because netmap does not support hardware offload when exchanging packets with the Linux TCP stack, and

this affects Linux performance.

3.4.3 Evaluation

This section presents new experimental results and also compares some of them with related previous results.

The GRIN implementation was deployed on a small local cluster of ten servers directly connected to a switch

to examine real-world application performance. Each server has a Xeon E5645 processor, 16 GB of RAM,

a quad-port gigabit NIC (one port is used for management) and a dual-port 10Gbps NIC. In our testbed, we

can build 1Gbps GRIN1 and GRIN2 topologies and a 10Gbps GRIN1 topology. We use both gigabit and ten

gigabit networks in our evaluation. Gigabit links to servers are still in wide use today, and GRIN can offer an

immediate and much needed increase in performance for deployed networks assuming extra server ports are

available. Our 10Gbps tests aim to establish is GRIN is also applicable to newer networks that use 10Gbps

links to the servers. The small size of the testbed prevented us from building a useful multihomed setup; even

if the bandwidth constraints could be enforced, we could only have at most two racks of five servers each

which would allow communication at double speed with half of the servers in the testbed. An upper bound is

c© TRILOGY2 Consortium 2015 Page 71 of (95)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70
Hosts sending(%)

Original
G1
G2
G3
MH

(a) Simulation, 120 servers

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70
Hosts sending(%)

(b) EC2, 1000 servers

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70
Hosts sending(%)

2x Original

(c) Testbed 1Gbps network

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70
Hosts sending(%)

(d) Testbed 10Gbps network

Figure 3.15: GRIN improves performance by 80% to 250% in the All-to-all traffic pattern.

provided instead by simply doubling the results obtained in the original setup.

We also deployed a larger GRIN1 topology on 1000 Amazon EC2 c3.large instances that allows us to test our

solution’s scalability in practice. Every instance has three ENIs (elastic network interfaces): the first is used

for management purposes, the second is considered to be the uplink, and the last is the secondary interface.

While it was not possible to directly connect neighbouring secondary interfaces, we managed to achieve a

similar behaviour using policy routing in an Amazon VPC, that offers the illusion of an L2 network. We rely

on dummynet to limit both primary and secondary interfaces to 100Mbps, to ensure the variable bandwidth

provided by the EC2 network does not impact our experiments too much.

Finally, to understand the basic properties of GRIN across a wider range of parameters than feasible in

practice, we used simulation in htsim, a scalable packet level simulator. This has the advantage of giving very

precise results and allows us to study reasonably large networks, but doesn’t account for factors outside of

the transport protocol itself and cannot be used to evaluate applications. Our simulations were based on the

same 120 server topology described in the previous section. Increasing network sizes up to tenfold provides

qualitatively similar results, however it takes substantially longer to run.

3.4.3.1 Basic performance

To understand how GRIN works in practice, we begin our tests with synthetic traffic patterns that we can

easily reason about. We use the same patterns described our hop-count evaluation, namely permutation,

random, group and all-to-all, and run the experiments in both simulation, on Amazon EC2 on 1000 servers

Page 72 of (95) c© TRILOGY2 Consortium 2015

and on our local testbed with gigabit and 10 gigabit networks. In all cases we run the baseline and GRIN1. In

simulation we also run multihoming, and GRIN3, which we view as an upper bound of the number of ports

that GRIN may use in practice.

In Figure 3.14 we present the results for random traffic as we vary the percent of active servers from 10%

to 70%. One thing to keep in mind is that, due to the small size of our local testbed, connections between

neighbours will happen more often, and the results will appear better overall. Finally, to allow easy compar-

ison between graphs, we normalize the resulting throughput measurements to that of the original topology

(941Mbps for the 1Gbps network, 9960Mbps for 10Gbps and 100Mbps for EC2).

The results show that, as expected, lower percentages of active servers lead to significantly better results for

GRIN topologies. Performance improvements are smaller as more servers become active, GRIN2 and GRIN3

performance is better than multihoming until 40% of servers are active, and match it after that.

Note that the simulation results are matched very well by EC2 results and are qualitatively similar to the

testbed results, giving us confidence in our evaluation. The EC2 results underline the scalability of our

solution: a real-life deployment of GRIN1 can smoothly run on 1000 servers. Running GRIN at 10Gbps is

also worthwhile, doubling the throughput when few servers are active. The results for permutation traffic are

similar.

We next turn to all-to-all traffic, a pattern mimicking the shuffle phase of map-reduce. When running this

experiment on EC2 we ensure that no server initiates or receives more than 20 concurrent connections to

reduce the effects of incast. The results in Figure 3.15 show that every additional port used with GRIN

brings close to 100% performance improvement when few hosts are active. Multihoming is almost always

dominated by GRIN2 and GRIN3, however it outperforms GRIN1. As expected, the testbed results are better.

The EC2 results accurately track those obtained in simulation.

Finally, the group connection matrix simulates scatter-gather communication. This is the most favorable

situation for GRIN topologies, because the large number of sources will fill every link of the receiving server.

The results are consistent across both simulation and actual implementation: we get close to the optimal

throughput.

3.4.3.2 Opportunistic usage for 10Gbps networks

Regular applications don’t scale nearly as well as the iperf experiments do at 10Gbps, even with jumbo

frames and hardware offload functionality enabled. Thus, we focused on a few apps have high bandwidth

requirements and are fast enough to take advantage from it: the NFS, HDFS and Spark.

With NFS, the server hosts a single 12 GB file which can be transfered by one client in around 10 seconds

with GRIN disabled, and a little less than that with one secondary interface enabled. GRIN does not help

because the client is CPU-bound. If two clients attempt to transfer the same file simultaneously over a GRIN1

network, they both finish in around 10.5 seconds, implying that the server was able to fully utilise both its

10Gbps interfaces.

c© TRILOGY2 Consortium 2015 Page 73 of (95)

kernel memcache transcode
idle, 5 cores 137s 5.9 mreq/s 122s
fw, 5 cores 139s 5.9 mreq/s 124s

idle, 6 cores 118s 6m mreq/s 106s
fw, 6 cores 132s 5.5 mreq/s 120s

Figure 3.16: GRIN forwarding brings little over-
heads if resource-hungry apps run on separate cores
from forwarding. In the worst case, the overhead is
10%

 0
 10
 20
 30
 40
 50
 60

 10 20 30 40 50 60 70T
ra

n
sf

er
 t

im
e(

s)

Hosts requesting(%)

base
grin

optimised

Figure 3.17: HDFS running on
1000 EC2 instances

We used a variable number of Spark workers, connected to a single-node DFS deployment, to count the

occurrences of a string in the same 12GB file. At first, GRIN is disabled. A single worker completes the

task in 14.5 seconds on average. We need two workers to reduce to time to 10.5 seconds, which is very close

to the duration of the data transfer, so we can consider the computation to be finally network-bound. With

GRIN1 enabled for both workers, the completion time drops to 7.5 seconds. By starting a third one we can

improve this result to around 5.5 seconds, and Spark is now network-limited.

3.4.3.3 Perils of Opportunistic GRIN Usage

There are a number of issues that may be caused by the transition to a GRIN topology. The additional

flows may increase buffer pressure and overall latency, while servers could find themselves competing with

neighbours for their own uplinks. Our main goal in this regard is to do no worse than the original topology.

To deal with these two issues we employ a simple priority scheme, based on DSCP. Each direct flow receives

a high-priority codepoint (such as EF), while secondary flows retain the default low value. We rely on iperf

to test the fair use of uplinks, and on a simple client-server program to measure the latency of transferring

small amounts of data. GRIN specific contention may happen in two distinct situations: server-local when

multiple flows use the uplink and at the switch, on the egress port leading to a particular server. In order to

honor DSCP markings locally, servers use a priority aware queuing discipline, such as PRIO in Linux. Our

experiments show that a single, high-priority flow is able to fully utilise the uplink, regardless of the presence

of any other low priority flows.

An idle 10Gbps link takes 100µs on average to transfer 1KB, and 140µs for 100KB with TCP. When compet-

ing with several running iperf connections without priorities, the transfer time increases to around 1.8ms in

both situations. With the PRIO qdisc, it decreases to 350µs for 1KB and 400µs for 100K. On the downlink,

the transfer time grows in both cases to around 2.4ms without priority. If we add priority and configure the

switch to discriminate based on DSCP marking, the latency drops to around 110µs and 160µs, respectively.

Does enabling GRIN slow down resource-intensive local applications? Our tests show that GRIN forwarding

does not impact storage bound apps, but it is interesting to examine CPU bound and memory bound scenarios.

We ran three resource-intensive applications, Linux kernel compilation, video transcoding and a memcache

server, on one of our 6-core Xeon servers. Where relevant, we use a ram disk for persistent storage. Run-

ning time is the metric for kernel compilation and transcoding. For memcache, we preload 220 keys with

Page 74 of (95) c© TRILOGY2 Consortium 2015

corresponding 60 byte values, and then measure the number of requests that can be fulfilled during 20 second

intervals. The requests are generated by 60 local threads that connect to the server using UNIX sockets.

The first two lines in the results in Table 3.16 show that running the app on five cores gives near-identical

performance regardless of whether the sixth core is idle or forwarding traffic bidirectionally at 10Gbps: if we

can spare a core for forwarding, there will be negligible impact on all other apps. The last two lines show the

overhead when we run the app on all cores: here forwarding decreases application performance by 9%-13%.

We stress, however, that in many cases clusters of computers are dedicated to one distributed application (e.g.

web-search) to avoid bad performance interactions. In such cases the side-effects of forwarding are irrelevant

as long as the application as a whole runs faster. In the next section we describe results with GRIN-aware

applications where the total completion time is reduced despite the negative effect of forwarding.

3.4.3.4 GRIN-aware applications

A downside of opportunistic usage is the probability than two neighbours will be using their uplinks at the

same time; the busier the network is, the higher this probability. However, most datacenter applications have

centralized schedulers that decide how to partition the work across the many workers in the system. We can

gain performance comparable to multihoming solutions without the associated costs if we modify application

schedulers to take into account GRIN links. We have implemented such optimisations for Hadoop, HDFS

and Spark.

One simple and very effective optimisation is to schedule bandwidth intensive jobs onto servers that are not

direct GRIN neighbors. We have optimised HDFS for reads by placing replicas of the same block in this

manner. When a read request comes in, the scheduler replies with the least-recently accessed server that has

a replica, and records that the server and his neighbor were “accessed”. We deployed the optimised version

of HDFS on 1000 EC2 instances. In each experiment we used a fraction nodes to transfer a 400MB file from

HDFS to local storage. We used a replication factor of three and a block size equal to 140MB. The results,

found in Figure 3.17, compare the default implementation of HDFS, HDFS running over GRIN1 and, finally,

HDFS optimised for GRIN. The results show that running HDFS opportunistically improves download time

on average by 14%, and running optimised HDFS brings a 28% improvement. The results also show that, as

expected, the optimised version is superior at higher loads, where the probability of GRIN neighbours to be

active is much higher.

Next, we optimised Hadoop and Spark by changing the job placement algorithm to avoid scheduling mappers

and reducers on neighbour nodes, whenever possible. We ran Spark to run the same string occurrence problem

in a large 24GB file over the 1Gbps network. Two HDFS nodes store the data and two Spark nodes do the

actual processing. Without GRIN, the total execution time is around 111 seconds. Even if all nodes are

clumped up together, using GRIN1 brings the execution time down to 106 seconds. This is caused by a

somewhat uneven distribution of the data (one node holds 11G and the other 13G). Since the application

can process it pretty fast, GRIN allows one server to “help the other out” after it finishes sending all the local

c© TRILOGY2 Consortium 2015 Page 75 of (95)

data. With optimisations enabled, every node has an idle neighbour, and the execution time drops to around

54.5s. A similar optimisation for Hadoop reduces the overall shuffle duration by 20%.

Page 76 of (95) c© TRILOGY2 Consortium 2015

4 Cross provider liquidity
The cross-liquidity tools are built on top of existing resource pools and manage the interactions between

multiple pools. One of the three liquidity scopes presented in this deliverable is cross-provider liquidity,

where resources owned by different providers are placed together and interaction between them is governed

to create a single domain.

Two tools are presented in this section. The first one is the Federated Market. It introduces mechanisms

for controlling virtual machine resources on a set of connected cloud domains allowing sellers to announce

their spare capacity and buyers to acquire the resources they need. The Federated Market includes tools for

exchanging information about resource availability and usage, tools for sharing the resources and tools for

enforcing the resource usage. By placing multiple seller entities in the same pool, a market is created where

monetisation is the incentive for sellers to offer their resources.

The second tool presented in this deliverable is MPTCP Path Management. The MPTCP protocol allows the

bandwidth resources to be aggregated and efficiently allocated to application requirements. The basic imple-

mentation of the protocol allows little control on the subflow creation and termination. MPTCP Path Man-

agement introduces tools that enable applications to control the MPTCP paths and to react to network events

by implementing their own path management. Since the network paths associated with different MPTCP

subflows can be owned by different network providers, this solution offers flexibility in choosing network

characteristics like delay and throughput to efficiently meet the application requirements.

4.1 Federated Market

4.1.1 Introduction

The ability to trade resources is central to the concept of a liquid network. The Federated Market (usually

referred to as the Market) is a tool that allows the creation and management of virtual machine resources

on a set of connected cloud domains. It enables liquidity by acting as the management system between

multiple cloud end points. The Market allows “Sellers” with spare server capacity to trade this with “Buyers”

that need extra capacity. Each individual cloud system is operated independently in an established manner

with the Federated Market providing a web-based dashboard UI for the trading and management of remote

resources.

4.1.1.1 History of the Market

The Federated Market resulted from early development work on the testbed platform that was established

in Year 1 as part of D1.1. OnApp connectors for using the CompatibleOne1 platform were developed and

released as open-source components that can be used to control OnApp resources from the CompatibleOne

ACCORDS2 platform. The efforts associated with developing for this platform were then refocused to work

1http://compatibleone.org/
2https://github.com/compatibleone/accords-platform

c© TRILOGY2 Consortium 2015 Page 77 of (95)

http://compatibleone.org/
https://github.com/compatibleone/accords-platform

on an OnApp Market instance that removed some of the limitations encountered and allowed for more direct

control of the resources on the platform. The development of a focused platform also allows for more direct

control and makes it easier to incorporate other outputs of Trilogy 2. The Federated Market was released as

an Alpha as part of OnApp 3.2.0 (2014/01/28) and closed-Beta in OnApp 3.3.0 (2014/07/01). The plan is to

make the platform live in Q1 2015 as part of the commercial exploitation of the results of Trilogy 2.

4.1.1.2 Overview of the Market

The Market is designed to allow spare server resources to be traded on the open market by providing the tools

needed to safely and efficiently inter-connect disparate resources across multiple cloud providers. The Market

knows about the individual resources that make up each VM including storage, compute and bandwidth.

However it defers control of individual Virtual Machine (VM) resources to the specific Hypervisors (HV) on

the associated IaaS (Infrastructure as a Service) platforms. The Market makes the information about available

servers visible at the different end-points and allows resources that are not directly comparable to be traded.

This allows buyers and sellers to set end-point prices that will ultimately determine the price of resources

through normal market dynamics.

The Federated Market is a collection of tools and platforms designed to meet the following objectives:

• Tools for exchanging information about resource availability and usage. The Federated Market allows

for the collation and communication of resources available in the platform. It also maintains a record

of who acquires resources so can be used to show is the current owner of a resource.

• Tools for sharing the resources. The Federated Market allows for encapsulated network, compute

and storage resources to be shared within a community and provided to buyers of the resource for a

monetary cost. Once the resource lease has expired these resources are then made available for the

other members of the community to use.

• Tools for enforcing the resource usage. The Federated Market can be used to limit the usage of re-

sources.

Recent work has included adding new features to improve the management of the platform from a cloud

provider perspective and the provision of an improved top-level management overview of the platform. There

has also been effort into identifying and improving the business model associated with the Federated Market

to promote its adoption by users.

4.1.2 Architecture

The architecture of the Market is straightforward and is based on some simple design goals. A market should

clearly identify the resources or services that are on offer from buyers to sellers. These can exist in many

varieties so it must be able to cope with highly heterogeneous resource sets. In the end there may be several

markets that are competing to trade the same resources so it must handle this. At certain points the process

behaviour needs to be transactional as the resources will be traded and may change hands multiple times. Thus

Page 78 of (95) c© TRILOGY2 Consortium 2015

the system will need to be synchronised at that point or possibly suffer from over- or under-provisioning of

resources.

There are three main roles within the market:

• Buyer. A buyer wishes to acquire additional resources for their cloud. They purchase resources from

the available pool advertised on the Market and will then enter a contract with the Seller of those

resources. They may on-sell the acquired resources but will then operate in the role of a (re-)seller.

• Seller. A seller is a resource owner with spare capacity they wish to monetise. They can promote this

spare capacity to the Market which then assists them in establishing contracts with buyers who will

acquire those resources.

• Market operator. The Market operator is tasked with maintaining an accurate representation of the

resources available to trade based on the operating conditions that it states. They also provide the

mechanisms needed for accountability and monitoring.

1.2cm 9.5cm 0cm,clip=true

Figure 4.1: Roles in the Market

In addition as shown in Figure 4.1 there is a fourth role of Customer. Customers don’t own their own infras-

tructure, nor do they manage infrastructure. Instead they are clients of the larger buyers who trade their VMs

via a system such as OnApp’s Cloud.net (Figure 4.2).

4.1.2.1 Current Design

Currently the Market is a centralised system that runs as an appliance server. Central to the market is the

idea of zones. A seller with spare servers they wish to monetise add that set of servers to a zone. Buyers are

c© TRILOGY2 Consortium 2015 Page 79 of (95)

9.5cm 0cm,clip=true

Figure 4.2: The Cloud.net Platform

then able to search for servers matching their required specification and then can subscribe to the appropriate

zone(s).

Aside from marking the physical servers that will be part of the zone, the other elements that a seller needs

to set up are the network configuration, the storage layer and the available template types. The network

configuration details to the system how IP address handling should be performed and also to which network

interfaces the networks are associated. The storage layer requires storage resources to be described in such

a way that they can be properly utilised. Template types are VM templates that indicate what kernel to use,

which ISO image to load the VM from and also the minimum resource settings required by those VMs.

Once the system has been described sufficiently to host VM resources on the local cloud, this zone can then

be added to the Federation using the ‘Add to Federation’ command from the OnApp UI in a process also

known as publishing. This action sends a description of the resource types to the Market system that contains

all the necessary information including the IP address and the template types as well as the billing model.

This then gets interpreted by the Market system and is added to a local database of the available resources

and associated with the appropriate cloud license settings from the originator.

A buyer sees the available zones that are advertised on the Market and can then specify the zone to acquire

resources. This operation will establish a subscription to the seller’s resources via the Market. In turn the

physical resources will then be displayed as a remote zone in the local UI. Creation of a VM on a remote

system can then be performed as if it were on a local system with the only difference being the billing plan.

VM actions can also be performed on the remote cloud as if it were local, with all commands being routed

through the Market place to ensure consistency.

Page 80 of (95) c© TRILOGY2 Consortium 2015

4.1.2.2 Security and Triple-A

One of the key requirements for the Market is the provision of Authentication, Authorisation and Account-

ability (triple-A) similar to the system from the Diameter Protocol3. Users of the system must be authorised

to use resources and this requires that contracts are established between resource owners and buyers. API

commands between the different clouds are transmitted via the Market. These API commands must be au-

thenticated and secure as they cross administrative boundaries between buyers and sellers. To achieve this,

a user with sufficient roles and permissions is set up on both clouds. In this iteration of the market there is

a single virtual user that is set up at the time of promoting or subscribing to resources. This user once set

up on a cloud is then shared between all remote cloud requests via the Market which might lead to issues of

accountability unless the market can clearly delineate where the commands are destined for.

Each message that is sent from any cloud in the Federation must go through the Market, which therefore

means there is a single point of failure in the system. Changes to make the system work in a distributed

manner are ongoing but will require careful synchronisation steps to ensure that operations that should be

carried out by a single end-point are handled correctly and that the other systems are warned of any failure to

acquire or sell resources. Consistency throughout the market is a complicated design and architectural issue.

Currently, worker threads update the resources periodically but any time that servers are added or removed

from a zone this change must be handled in the queue and correctly resolved before proceeding.

4.1.3 Ensuring fairness

A key aim for the Market is to enable “fairness” across the platform for those participating. Fairness is a

tenuous concept, but in this context we mean that resources should be as advertised, that no buyer should be

able to game the system to get a greater share than they are paying for, that the performance a buyer sees

should be isolated from other tenants and that billing should be accurate and transparent. Future monitoring

systems can be used to index and rank performance. Those sellers/providers that fall below minimal levels for

specified criteria can be removed from the Federated Market and/or highlighted as running a sub-performance

system. Using schedulers that already exist in Hypervisor platforms, fairness of resource usage within the

platform can be configured, although it is difficult to enforce completely fair sharing of resources unless the

workloads are capped at a certain maximum usage level. Capping the usage level allows for providing some

level of assurance of resource usage between all users in the system but comes at the cost of a lower overall

utilisation of the platform in general as workloads can at most only take up their maximum share.

4.1.4 Adoption and Business Case

Provisioning VM resources in multiple locations requires the establishment of separate contracts between

the buyer and the various sellers. Having a single portal that handles all of the management of the contracts

should improve the platform. Currently the Federated Market is only available to some OnApp customers.

Feedback and the research done in Trilogy 2 have driven improvements to the beta platform. Feedback from

3http://tools.ietf.org/html/rfc6733

c© TRILOGY2 Consortium 2015 Page 81 of (95)

http://tools.ietf.org/html/rfc6733

Figure 4.3: Cloud.net already has availability in many locations world-wide.

customers has been vital as it has helped to identify issues in the current platform that would otherwise not be

visible from a pure research platform. Customers using the publicly available Cloud.net have chosen sites to

provision VM resources based on location and price (see Figure 4.3). There have been requests to better filter

the results available based on search queries but generally the main hurdle thus far has been to get people

interested in and using the platform. Currently VMs that are provisioned in different clouds are managed

separately as individual instances. Offering the ability to create connections between the VMs using publicly

accessible network routes is seen as one way to promote adoption. In D3.2 we describe VM mobility across

the wide-area as being a use-case that will encourage usage of the platform.

4.1.5 Future work

There are a number of limitations with the current system. The centralised model of the Market, leads to

potential issues in accessibility and reliability of the Market. Downtime of the Market can lead to operations

being blocked, which will count as a disruption of service. The centralised model does not scale well so there

are changes to make this work in a distributed manner.

In its current state the Market will not work with other cloud resource types as there is no information model

associated that allows the interpretation of resources to be performed. Having connector pieces is possible

but for each cloud platform that is supported there will need to be another connector which ultimately leads

to the same issue as was found with CompatibleOne in that effort would go into translation types that are

non-standardised.

Using a freely available open Information Model that identifies resource types will lead to greater chance of

adoption. Several options are being investigated in this space based on the work in Deliverable D2.2, the

Information Model. This will feed into the later WP2 Deliverables. Integrating the Information Model with

the Federated Market is an important next step to allow multi-cloud support to be performed.

Although initial work has been taken into incentives and enforcement, the associated business practices and

Page 82 of (95) c© TRILOGY2 Consortium 2015

contracts that are needed from a business perspective are still in their infancy and require further development

as there is further uptake of the Market from real customers.

4.2 MPTCP Path Management

The Multipath TCP protocol [11] allows communicating hosts to establish subflows at any time and for any

reason. This flexibility is important given the wide range of environments where Multipath TCP can be used

and the different needs of the applications. However, until now there was a gap between the theoretical ca-

pabilities of the protocol and the real capabilities of its implementation in the Linux kernel. The Multipath

TCP implementation in the Linux kernel contains several hooks to enable the definition of different strate-

gies to manage the subflows of each Multipath TCP connection. However, as of this writing, the current

release (v0.89) of Multipath TCP in the Linux kernel only supports two strategies to manage subflows that

are implemented as modules in the Linux kernel :

• The full-mesh path manager creates a full-mesh of subflows among all addresses of the client and all

addresses advertised by the server. All these subflows are created by the client since it could be behind

a NAT or a firewall that would block subflows initiated by the server.

• The ndiffports path manager has a different objective. It assumes that the client and the server are

single-homed and the client creates n subflows.

These two path managers are static. The subflows are created by the client as soon as the Multipath TCP

connection is established and subflows are only modified based on the reception of ADD ADDR or RM ADDR

options. Many applications have specific requirements and Multipath TCP-aware applications will need to

better control the establishment of the subflows. For example, a VPN application running over TLS would

probably want to be notified of the reception of RST segments over a subflow and react by using another

interface. An interactive application would prefer to use the subflows with the lowest delay while a streaming

application could be satisfied with a single subflow provided that its bandwidth is above some threshold.

Implementing a kernel module that can cope with all these various requirements seems very difficult. Another

more flexible solution is required. In this section, we extend the Netlink library proposed in [9] that allows

to develop Multipath TCP path managers in user space. Thanks to this library, each Multipath TCP-aware

application can define its own path manager and react to various events intelligently.

Section 4.2.3 explains several motivating use cases. Section 4.2.2 describes the architecture of the proposer

solution and section 4.2.4 analyses the first results obtained with this prototype implementation.

4.2.1 Use cases

This section discusses several of the motivating use cases for the development of a flexible Multipath TCP

path manager.

c© TRILOGY2 Consortium 2015 Page 83 of (95)

4.2.1.1 Selection of the best performing subflow

A Multipath TCP connection aggregates several subflows that may have very different performance. Several

authors have shown that a low performing subflow may affect the performance of the Multipath TCP con-

nection. For example, [31] shows that when a Multipath TCP connection has a limited window and is used

over a 3G and a WiFi with different delays, then the higher delay on the 3G subflow can severely affect the

overall performance. This problem is solved in [31] by reinjecting packets from the 3G subflows over the

WiFi subflow and penalising the congestion window on the low performing subflow. However, this subflow

continues to forward some packets that regularly need to be reinjected over the other subflow, which reduces

the performance of the Multipath TCP connection. A Multipath TCP path manager should be able to detect

that the 3G subflow under performs and disable it.

Another example is described in [6]. A Multipath TCP host is transferring over both WiFi and 3G. In the

middle of the transfer, the WiFi interface becomes very lossy and many packets are reinjected over the 3G

interface. Unfortunately, the WiFi interface remains up and Multipath TCP continues to retransmit the data

that was sent initially on the WiFi interface (and already acknowledged at the Multipath TCP level over

the 3G interface). This behaviour of Multipath TCP is necessary to cope with middleboxes that expect

segments in sequence over the WiFi interface. However, this retransmitted data consumes window space

and lowers performance. A Multipath TCP path manager should detect that reinjected data has already been

acknowledged at the Multipath TCP level and terminate the under performing subflow by sending a RST. This

RST would remove all middlebox state on the under performing path and a new subflow could be initiated

over this path.

A third example is the impact of bufferbloat on interactive applications. Bufferbloat occurs when there is

some congestion and too much buffering on a given path. Measurements have indicated that WiFi home

routers and various cellular networks can suffer from bufferbloat that can delay packets for up to a few

seconds. Multipath TCP can also be affected by this bufferbloat problem [16]. Even if the default RTT-based

scheduler prefers paths with the lowest round-trip-time, it may send packets over paths than have a much

longer delay that the delay that could be tolerated by interactive applications. Consider for example an ssh

session where some of the data suffers from a two second delay. For interactive applications, a Multipath

TCP path manager should measure the round-trip-time of the established subflows and disable the subflows

that have too long a delay.

A fourth example is streaming applications running on mobile devices. These applications are frequently

used on smartphones and tablets to listen to radio or view video clips. These applications require a minimum

bandwidth to operate correctly. Usually, they do not need to aggregate two wireless interfaces to work and

from an energy consumption viewpoint, it would be useful to disable the unnecessary interface. A Multipath

TCP path manager should detect that an application is correctly served with a single interface and disable the

other one to minimise the energy consumption.

Page 84 of (95) c© TRILOGY2 Consortium 2015

Figure 4.4: MPTCP path management architecture

A fifth example is the middleboxes that are used in some cellular networks and some countries to slowdown

the long-lived TCP connections. Such middleboxes detect those long-lived connections and they place them

in a low priority queue after some time. This gives a benefit to short connections although the user some-

times needs to transfer large files over a long period. A Multipath TCP path manager could cope with such

interference by terminating the subflows every few minutes or once their performance decreases. This path

manager would also be useful on single-homed hosts.

A sixth example is the middleboxes that generate RST segments because they have detected a “prohibited”

payload or because an unknown application is using a standard port [17]. Such middleboxes can be a nui-

sance in some networks that want to restrict the traffic to a small number of applications. Although the

IAB considered this behaviour to be harmful [10], there are still such middleboxes in some countries or

cellular networks. A Multipath TCP path manager should react to the reception of such RST segments by

re-establishing a subflow, possibly over another interface, to preserve the ongoing Multipath TCP connection.

4.2.2 Architecture

The Multipath TCP path manager is composed of two complementary parts. The first part is implemented

inside the Linux kernel and the second part is implemented in userspace. The two parts communicate through

a new Netlink family [9]. The global architecture is depicted in figure 4.4 and discussed in more detail below.

The kernel part of the Multipath TCP path manager is implemented as a kernel module and is mainly com-

posed of two subparts. The first subpart generates path manager events for the userspace library(4). Because

it is attached to the kernel MPTCP path manager interface defined by struct mptcp_pm_ops (3), the

module knows when to send these events. This kernel facility delegates all choices linked to the path manager.

In our case, the module also delegates the choice by sending an event to the userspace library. The module

generates the following events :

c© TRILOGY2 Consortium 2015 Page 85 of (95)

MPTCP EVENT CREATED : This event indicates that a new Multipath TCP connection has been cre-

ated.

MPTCP EVENT ESTABLISHED : This event indicates that a new Multipath TCP connection has been

established. It now possible to establish new subflows.

MPTCP EVENT CLOSED : This event indicates that a Multipath TCP has been terminated.

MPTCP EVENT ANNOUNCED : A new address has been announced by the peer.

MPTCP EVENT REMOVED : An address has been removed by the peer.

MPTCP SUB CREATED : This event indicates that a new subflow has been created.

MPTCP SUB ESTABLISHED : This event indicates that a new subflow has been established.

MPTCP SUB CLOSED : This event indicates that one of the subflows has been closed.

MPTCP EVENT SUB PRIORITY : This event indicates that the priority of one of the subflows has

changed.

This allows the userspace path manager to react to events generated by the Multipath TCP kernel.

The second subpart of the modules handles commands sent through the Netlink interface from the userspace

to the kernel. This allows the userspace part to react to events received. The available commands are :

MPTCP CMD ANNOUNCE : Announces a new address to the peer.

MPTCP CMD REMOVE : Announce that an address has been lost to the peer.

MPTCP CMD SUB CREATE : Request the creation of a new subflow.

MPTCP CMD SUB DESTROY : Request the termination of a subflow.

MPTCP CMD SUB PRIORITY : Request a modification of the priority of a subflow.

The module handles these commands by directly interacting with the MPTCP kernel. To sum up, the kernel

part defines a new Netlink family that is used to both send events from the kernelspace to the userspace and

also to receive commands from the userspace to the kernelspace.

Complementary to the kernel part, the userspace part listens to the events described above and binds them

to the userspace API offered by the library [9]. Concretely, a new userspace path manager can register itself

through the userspace library that will relay the events by calling specific functions when events are received

from the Netlink socket. On the other hand, the userspace library exposes functions that generate command

messages over the Netlink socket. To summarise, the userspace part is a glue that translates events/com-

mands received/sent over the Netlink socket into an easy to use API to implement an MPTCP userspace path

manager.

Page 86 of (95) c© TRILOGY2 Consortium 2015

4.2.3 Support for the different use cases

In this section, we explain how the library [9] has been enhanced to support the use cases described earlier.

4.2.3.1 Selection of the best performing subflow

This path manager monitors every subflow of every MPTCP connection that it manages. In order to monitor

the subflows, this path manager uses a modified version of Idiag4, which is a library that works on top of

libnl5 which itself implements the userspace part of Netlink protocol. The path manager regularly polls the

kernel to retrieve information about the performance of the different subflows. The poll period is configurable.

In the prototype, we have used a polling interval of 300 msec. Idiag provides access to a wide range of

performance statistics about the different subflows, e.g. : struct tcp_info, RCVBUF, SNDBUF,. . . In

practice, for each new MPTCP connection, the path manager maintains some state that it updates after each

new completed request. The path manager sends requests over Netlink via Idiag and the responses come

back via an asynchronous call to a special function in the path manager.

Note that this path manager can be coupled with other path managers such as a userspace implementation of

the kernel fullmesh path manager to react to new local addresses etc. Various information about the state of

the subflows can be retrieved via Idiag and we can further divide this path manager into more specific path

managers. In the rest of this section we describe two specific use cases for this particular path manager. Our

first example is a path manager that reacts to rtt changes and the second reacts to various of snd_cwnd.

4.2.3.1.1 Reaction to rtt changes

This path manager uses Idiag to monitor the evolution of the rtt over each subflow. The application

configures a maximum round-trip-time for the subflows and the path manager disables the subflows whose

rtt becomes too long compared to the others. This reaction complements the default scheduler that already

prefers the subflows having the smallest round-trip-time.

4.2.3.1.2 Reactions to snd cwnd changes

For streaming applications, the path manager monitors the transmission rate on the Multipath TCP connection

and the average rate on the different subflows. It tries to predict the available bandwidth available in the near

future by monitoring the congestion window of the sender. To evaluate the bandwidth, we simply use the

following formula :

bw = cnwd ∗mss/rtt

where each term represents the following:

• bw - bandwidth
4http://www.infradead.org/˜tgr/libnl/doc/api/group__idiag.html
5http://www.infradead.org/˜tgr/libnl/

c© TRILOGY2 Consortium 2015 Page 87 of (95)

 http://www.infradead.org/~tgr/libnl/doc/api/group__idiag.html
http://www.infradead.org/~tgr/libnl/

• cnwd - congestion window size

• mss - maximum segment size

• rtt - round-trip time

These three variables can be regularly accessed by using Idiag from the userspace Multipath TCP path

manager.

4.2.3.2 Reset reactions

Since the path manager receives an event when a subflow is reset, it can react by re-establishing a new subflow

immediately, over the same interface or over another interface. It should be noted that the next version of

Multipath TCP [12] will include MPTCP specific options to indicate a reason for a RST. If the remote peer

sends a RST to terminate a subflow, it will include this option in the RST segment. The absence of this option

would be an indication that the RST has been generated by a middlebox or an attacker. In this case, the host

could react by establishing a new subflow over another interface.

4.2.3.3 Refreshing subflows

The path manager can be configured to always have n active subflows and refresh them every m seconds to

mitigate the effects of middleboxes slowing down a long connection. The path manager simply refreshes the

subflows by opening a new one and closing the corresponding one when the new ones are fully established.

4.2.4 Early results

For the path manager that reacts to changes in the congestion window state, we made a special version of the

path manager that is able to output the evolution of the monitored variable. The results are described below

for a particular use case.

The laboratory setup that we consider is depicted in figure 4.5. We have one host (A) with two interfaces.

The default interface to be used by the host is connected to a shared bottleneck (shared with host B). The

other interface should not be used unless we can not reach 5Mbit/s with the default interface.

Figure 4.5: Laboratory setup

Furthermore, we consider two scenarios, in the first scenario A sends a 30MB file to S and B is inactive,

in other words no cross traffic occurs on the default interface. In the second scenario, we also consider the

exchange of a 30MB file from A to S but B generates cross traffic after 10sec.

Page 88 of (95) c© TRILOGY2 Consortium 2015

This setup corresponds to the smart phones use case described in 4.2.3.1.2 where we have a cheap interface

with a variable quality (bandwidth) that we want to use as much as possible and an other interface which cost

more to the user that is only enabled if it is needed.

We use the path manager to poll the congestion window every 300ms and calculate the available bandwidth

based on the formula described in section 4.2.3.1.2.The results are shown on figure 4.6. Note that we used

a smoothed version of the formula presented in section 4.2.3.1.2 to avoid too much oscillation. The figure

shows the evolution of the available bandwidth on the default interfaces in the two cases. The first case,

with no cross traffic corresponds to the red line, while the second case with cross traffic after 10 seconds

corresponds to the green line. We observe that the red line stays close to 5 Mbit/s during the whole duration

of the connection while the green line drops after 10sec. In this case, it is therefore possible to quickly detect

the degradation of the primary link and the path manager can decide to open another subflow on the other

interface.

Note that the curves are high at the beginning of the connections. This is due to two effects. Firstly, the slow

start of the TCP connection generates high value for the congestion windows. We may mitigate this effect by

only considering the size of the congestion window when we are in congestion avoidance phase. Secondly,

the curve does not stabilize immediately because we used a smoothed value of the bandwidth to avoid fast

oscillations. We used the same factor as defined in [30] for the calculation of the smoothed RTT (0.125). This

factor may be tuned to react faster to congestion window changes. However we should be careful when we

chose this factor because it may lead to a lot of oscillations.

c© TRILOGY2 Consortium 2015 Page 89 of (95)

0 10 20 30 40 50 60

3
4

5
6

7

Time (s)

s
m

o
o
th

e
d
 b

w
 b

a
s
e
d
 o

n
 c

w
n
d

Figure 4.6: Cross traffic after 10sec in the second can be detected based on the evolution of the congestion
window

Page 90 of (95) c© TRILOGY2 Consortium 2015

5 Conclusion
This Deliverable focused on presenting liquidity pools and how resources can be shared by grouping them

together and facilitating a flexible access to them for the applications. Creating homogeneous pools is only

the first step towards having liquidity for resources and the tools presented in this Deliverable build advanced

interaction scenarios between resources.

Based on work started in D1.2, the mechanisms presented here improve the combination of resource pools by

bridging islands of heterogeneous resources. The advanced cross-liquidity tools create three dimensions in

resource liquidity, based on the nature of the bridges: cross-resource, cross-layer and cross-provider. These

dimensions are presented by trading between CPU, bandwidth and storage to create liquidity pools that effi-

ciently meet the application demands.

Current work was focused on all three areas, with part of the tools covering multiple liquidity dimensions

(for example the Federated Market extends both cross-resource sharing and cross-provider sharing). Since

bandwidth is a common denominator that allows CPU and storage resources to be accessed, a part of the

presented tools are mode bandwidth-centric.

The work performed in this Deliverable is used by Work Package 2 to create a better control over the liquidity

and also by Work Package 3 to use liquidity pools in set of usecases. Also, the results from this Deliverable

will be used to build the Liquid Net in D1.4 by bridging across different resource types, layers and providers

in the Internet.

c© TRILOGY2 Consortium 2015 Page 91 of (95)

Bibliography
[1] Alexandru Agache and Costin Raiciu. Grin: Utilizing the empty half of full bisection networks. In

Proceedings of the 4th USENIX Conference on Hot Topics in Cloud Ccomputing, HotCloud’12, pages

7–7, Berkeley, CA, USA, 2012. USENIX Association.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian

Pratt, and Andrew Warfield. Xen and the art of virtualization. SIGOPS Oper. Syst. Rev., 37(5):164–177,

October 2003.

[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian

Pratt, and Andrew Warfield. Xen and the art of virtualization. SIGOPS Oper. Syst. Rev., 37(5):164–177,

October 2003.

[4] Vladimir Brik, Arunesh Mishra, and Suman Banerjee. Eliminating handoff latencies in 802.11 wlans

using multiple radios: Applications, experience, and evaluation. In Proceedings of the 5th ACM SIG-

COMM Conference on Internet Measurement, IMC ’05, pages 27–27, Berkeley, CA, USA, 2005.

USENIX Association.

[5] Sebastian Burckhardt, Daan Leijen, Manuel Fähndrich, and Mooly Sagiv. Eventually consistent trans-

actions. In Proceedings of the 21st European Conference on Programming Languages and Systems,

ESOP’12, pages 67–86, Berlin, Heidelberg, 2012. Springer-Verlag.

[6] Yung-Chih Chen, Yeon-sup Lim, Richard J. Gibbens, Erich M. Nahum, Ramin Khalili, and Don

Towsley. A measurement-based study of multipath tcp performance over wireless networks. In Pro-

ceedings of the 2013 Conference on Internet Measurement Conference, IMC ’13, pages 455–468, New

York, NY, USA, 2013. ACM.

[7] S. Cheshire and M. Krochmal. Multicast DNS. Technical Report 6762, IETF Secretariat, February

2013.

[8] Sunwoong Choi, Kihong Park, and Chong-kwon Kim. On the performance characteristics of wlans:

Revisited. SIGMETRICS Perform. Eval. Rev., 33(1):97–108, June 2005.

[9] G. Detal and S. Barre. A software library for multipath tcp path managers. Unpublished software, 2014

October.

[10] S. Floyd. Inappropriate TCP Resets Considered Harmful. Technical Report 3360, IETF Secretariat,

August 2002.

[11] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Extensions for Multipath Operation with

Multiple Addresses. Technical Report 6824, IETF Secretariat, January 2013.

Page 92 of (95) c© TRILOGY2 Consortium 2015

[12] Alan Ford, Costin Raiciu, Mark Handley, and Olivier Bonaventure. TCP Extensions for Multipath

Operation with Multiple Addresses. Internet-Draft draft-ietf-mptcp-rfc6824bis-03, IETF Secretariat,

October 2014. I-D Exists.

[13] Jim Gettys and Kathleen Nichols. Bufferbloat: Dark buffers in the Internet. CACM, 55(1), 2012.

[14] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, available, partition-

tolerant web services. SIGACT News, 33(2):51–59, June 2002.

[15] Domenico Giustiniano, Alberto Lopez Toledo, Eduard Goma, and Pablo Rodriguez. Wiswitcher: An

efficient client for managing multiple aps, 2009.

[16] David Hayes, Simone Ferlin, and Michael Welzl. Shared Bottleneck Detection for Coupled Congestion

Control for RTP Media. Internet-Draft draft-hayes-rmcat-sbd-01, IETF Secretariat, October 2014. I-D

Exists.

[17] Andy Heffernan. Protection of BGP Sessions via the TCP MD5 Signature Option. Internet-Draft draft-

ietf-idr-rfc2385bis-01, IETF Secretariat, March 2002.

[18] IEEE. IEEE Standard 802.11-2012, March 2012.

[19] Srikanth Kandula, Kate Ching-Ju Lin, Tural Badirkhanli, and Dina Katabi. FatVAP: aggregating AP

backhaul capacity to maximize throughput. In Proceedings of the 5th USENIX Symposium on Networked

Systems Design and Implementation, NSDI’08, pages 89–104, Berkeley, CA, USA, 2008. USENIX

Association.

[20] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, May 1998.

[21] Anil Madhavapeddy, Alex Ho, Tim Deegan, David Scott, and Ripduman Sohan. Melange: Creating a

”functional” internet. SIGOPS Oper. Syst. Rev., 41(3):101–114, March 2007.

[22] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj Singh, Thomas Gaza-

gnaire, Steven Smith, Steven Hand, and Jon Crowcroft. Unikernels: Library operating systems for the

cloud. In Proceedings of the Eighteenth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS ’13, pages 461–472, New York, NY, USA,

2013. ACM.

[23] Anil Madhavapeddy, Richard Mortier, Ripduman Sohan, Thomas Gazagnaire, Steven Hand, Tim Dee-

gan, Derek McAuley, and Jon Crowcroft. Turning down the lamp: Software specialisation for the cloud.

In Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, pages

11–11, Berkeley, CA, USA, 2010. USENIX Association.

c© TRILOGY2 Consortium 2015 Page 93 of (95)

[24] E. Magistretti, K. Chintalapudi, B. Radunovic, and R. Ramjee. WiFi-Nano: Reclaiming WiFi efficiency

through 800 ns slots. In MobiCom, 2011.

[25] Anthony J. Nicholson, Scott Wolchok, and Brian D. Noble. Juggler: Virtual networks for fun and profit.

IEEE Transactions on Mobile Computing, 9(1):31–43, January 2010.

[26] NS3. ns-3 simulator. http://www.nsnam.org/, 2013.

[27] Chris Okasaki. Purely Functional Data Structures. PhD thesis, Pittsburgh, PA, USA, 1996.

AAI9813847.

[28] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In Proceedings

of the 2014 USENIX Conference on USENIX Annual Technical Conference, USENIX ATC’14, pages

305–320, Berkeley, CA, USA, 2014. USENIX Association.

[29] George Parisis, Toby Moncaster, Anil Madhavapeddy, and Jon Crowcroft. Trevi: Watering down storage

hotspots with cool fountain codes. In Proceedings of the Twelfth ACM Workshop on Hot Topics in

Networks, HotNets-XII, pages 22:1–22:7, New York, NY, USA, 2013. ACM.

[30] Vern Paxson, Mark Allman, Jerry Chu, and Matt Sargent. Computing tcp’s retransmission timer. Tech-

nical report, RFc 2988, November, 2000.

[31] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda, Fabien Duchene, Olivier

Bonaventure, and Mark Handley. How hard can it be? designing and implementing a deployable

multipath tcp. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Imple-

mentation, NSDI’12, pages 29–29, Berkeley, CA, USA, 2012. USENIX Association.

[32] R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321, April 1992.

[33] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Comput. Surv., 37(1):42–81, March

2005.

[34] Lynne Salameh, Astrit Zhushi, Mark Handley, Kyle Jamieson, and Brad Karp. HACK heirarchical

ACKS for efficient wireless medium utilization. In USENIX ATC, 2014.

[35] Kristofer Sandlund, Mark West, and Ghyslain Pelletier. RObust Header Compression (ROHC): A Profile

for TCP/IP (ROHC-TCP). Internet-Draft draft-ietf-rohc-tcp-16, IETF Secretariat, February 2007.

[36] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.

ACM Comput. Surv., 22(4):299–319, December 1990.

[37] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated data types.

In Proceedings of the 13th International Conference on Stabilization, Safety, and Security of Distributed

Systems, SSS’11, pages 386–400, Berlin, Heidelberg, 2011. Springer-Verlag.

Page 94 of (95) c© TRILOGY2 Consortium 2015

http://www.nsnam.org/

[38] Hamed Soroush, Peter Gilbert, Nilanjan Banerjee, Brian Neil Levine, Mark Corner, and Landon Cox.

Concurrent wi-fi for mobile users: Analysis and measurements. In Proceedings of the Seventh COn-

ference on Emerging Networking EXperiments and Technologies, CoNEXT ’11, pages 4:1–4:12, New

York, NY, USA, 2011. ACM.

[39] Kun Tan, Jiansong Zhang, Ji Fang, He Liu, Yusheng Ye, Shen Wang, Yongguang Zhang, Haitao Wu,

Wei Wang, and Geoffrey Voelker. Sora: High performance software radio using general purpose multi-

core processors. In Proc. of the NSDI Conf., April 2009.

[40] Sudarshan Vasudevan, Konstantina Papagiannaki, Christophe Diot, Jim Kurose, and Don Towsley. Fa-

cilitating access point selection in IEEE 802.11 wireless networks. In Proceedings of the 5th ACM

SIGCOMM conference on Internet Measurements, pages 26–26. USENIX Association, 2005.

[41] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway. Capsicum: Practical ca-

pabilities for unix. In Proceedings of the 19th USENIX Conference on Security, USENIX Security’10,

pages 3–3, Berkeley, CA, USA, 2010. USENIX Association.

c© TRILOGY2 Consortium 2015 Page 95 of (95)

	Executive Summary
	List of Authors
	 List of Figures
	Introduction
	Deliverable context
	Structure of the document

	Cross resource liquidity
	VM Migration for Mobile (vM3)
	Migration Service
	Device discovery
	VM slot management
	Injection of context information inside the VM
	App Wrapper
	Application I/O

	Federated Block Storage
	Introduction
	Description of the issues faced
	Utilising Wide Area Block Replication

	Architecture
	The OnApp storage architecture
	Wide-area replication over OnApp's storage architecture

	Irmin
	Mirage, an OCaml-based unikernel system(based on the openmirage.org website)
	Design
	Architecture
	Weakly consistent data structures
	Queues
	Ropes

	Data structure analysis
	Automatic checking
	Benchmarking

	Conclusion and future work

	Trevi
	VNF Pool enabled Virtual CPE
	Reference Scenario
	Evolution towards a VNF Pool enabled virtual CPE solution
	Extended functional architecture

	Cross layer liquidity
	HACK
	WiFi MAC Overhead
	HACK in Overview
	Cross-Layer Nuances
	HACK in Practice
	Driver and NIC Functionality
	Compression

	Evaluation
	SoRa Implementation
	SoRa Results
	Simulation Results

	MultiWifi
	Towards an optimal solution for Wifi Mobility
	Single Channel Mobility
	Hidden terminal experiments
	Carrier-sense experiments

	Channel-switching

	PVTCP
	Introduction
	Architecture
	Key Properties

	An Evolution of GRIN
	A GRIN primer
	Implementation
	Evaluation
	Basic performance
	Opportunistic usage for 10Gbps networks
	Perils of Opportunistic GRIN Usage
	GRIN-aware applications

	Cross provider liquidity
	Federated Market
	Introduction
	History of the Market
	Overview of the Market

	Architecture
	Current Design
	Security and Triple-A

	Ensuring fairness
	Adoption and Business Case
	Future work

	MPTCP Path Management
	Use cases
	Selection of the best performing subflow

	Architecture
	Support for the different use cases
	Selection of the best performing subflow
	Reset reactions
	Refreshing subflows

	Early results

	Conclusion
	References

